
Joint Messaging Service Submission 1

Joint Revised Submission

Alcatel
Hewlett-Packard Company
Highlander Communications, L.C.
INPRISE Corporation
IONA Technologies
Lockheed Martin Federal Systems, Inc.
Lucent Technologies, Inc.
Nortel Networks
Objective Interface Systems, Inc.
Object-Oriented Concepts, Inc.
Sun Microsystems, Inc.
Tri-Pacific Software, Inc.

supported by

France Telecom
Humboldt-University
MITRE Corp.
Motorola, Inc.
University of Rhode Island
Washington University

OMG TC Document orbos/98-10-05

Realtime CORBA

2 orbos/98-10-05: Realtime CORBA Joint Revised Submission

October 18, 1998

Copyright 1998 by Alcatel
Copyright 1998 by Hewlett-Packard Company
Copyright 1998 by Highlander Communications, L.C.
Copyright 1998 by INPRISE Corporation
Copyright 1998 by IONA Technologies
Copyright 1998 by Lockheed Martin Federal Systems, Inc.
Copyright 1998 by Lucent Technologies, Inc.
Copyright 1998 by Northern Telecom Ltd.
Copyright 1998 by Objective Interface Systems, Inc.
Copyright 1988 by Object-Oriented Concepts, Inc.
Copyright 1998 by Sun Microsystems, Inc.
Copyright 1998 by Tri-Pacific Software, Inc.

The submitting companies listsed above have all contributed to this submission. These
companies recognize that this submission is the joint intellectual property of all the submitters,
and may be used by any of them in the future, regardless of whether they ultimately participate
in a final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof,
so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed
copies.
The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
The information contained in this document is subject to change without notice.
This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the OMG
evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.

10/18/98 orbos/98-10-05 : Realtime CORBA Joint Revised Submission iii

1 Introduction .5

1.1 Cosubmitting Companies . 5
1.2 Proof of Concept . 5
1.3 Submission Contact Points. 6

2 Response to RFP Requirements .9

2.1 Mandatory Requirements . 9
2.2 Optional Requirements. 11
2.3 Issues to be Discussed . 12

3 Realtime CORBA. .13

3.1 Objectives and Scope of Specification. 13
3.2 Realtime CORBA Architecture . 14

3.2.1 RT_CORBA module . 14
3.2.2 RT_CORBA::ORB . 14
3.2.3 Realtime CORBA Configuration . 14

3.3 Activities and Realtime CORBA . 15
3.4 Thread Scheduling . 15
3.5 Native Thread Priorities . 15
3.6 CORBA Priority . 17

3.6.1 Client Priority Propagation Model . 18
3.6.2 Server-Set Priority Model . 18

3.7 CORBA Priority Mappings . 19
3.7.1 Installation of CORBA Priority Mappings . 21

3.8 Mutex interface. 22
3.9 Server-side Configuration . 23

3.9.1 ProtocolPolicy . 23
3.9.2 Threadpool Policy . 26
3.9.3 Server Priority Model Policy . 29
3.9.4 Priority Derivation Policy . 30

3.10 Client-side Configuration . 31
3.10.1 Explicit Binding . 31
3.10.2 ProtocolPolicy (Client Side) . 32
3.10.3 PriorityBandedConnectionsPolicy . 33
3.10.4 PrivateConnectionPolicy . 34

3.11 Request Buffers . 34

4 Realtime CORBA Scheduling Service .37

4.1 Introduction . 37
4.2 IDL . 39

iv orbos/98-10-05 : Realtime CORBA Joint Revised Submission 10/18/98

4.3 Semantics . 39
4.4 Example . 40

5 Conformance Issues .43

5.1 Introduction . 43
5.2 Compliance. 43

10/18/98 orbos/98-10-05 : Realtime CORBA 5

Introduction 1

1.1 Cosubmitting Companies

The following companies are pleased to jointly submit this proposal in response to the
OMG Realtime CORBA 1.0 RFP (OMG document orbos/97-09-31)

• Alcatel

• Hewlett-Packard Company

• Highlander Communications, L.C.

• INPRISE Corporation

• IONA Technologies

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• Nortel Networks

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• Sun Microsystems, Inc.

• Tri-Pacific Software, Inc.

1.2 Proof of Concept

This proposal is the product of the experience of the submitters and supporting
organizations in designing realtime distributed systems.

6 orbos/98-10-05 : Realtime CORBA 10/18/98

1

1.3 Submission Contact Points

The editor and primary contact point for this submission is:

Jonathan Currey
Highlander Communications, L.C.
206 East Pine Street
Lakeland, FL 33801
USA
phone: +1 941 686 7767
email: jon@highlander.com

The contact points for the other co-submitting companies are:

Michel Ruffin
Alcatel Alsthom Recherche
Route de Nozay
91460 Marcoussis
France
phone: +33 1 6963 1357
email: Ruffin@aar.alcatel-alsthom.fr

Jishnu Mukerji
Hewlett-Packard New jersey Labs
300 Campus Drive, MS 2E-62
Florham Park, NJ 07932
USA
phone: +1 914 443 7528
email: jis@fpk.hp.com

Jeff Mischkinsky
INPRISE Corporation
951 Mariner's Island Blvd.
Suite 460
San Mateo, CA 94404
USA
phone: +1 650 358-3049
email: jeffm@visigenic.com

Oisin Hurley
IONA Technologies
The IONA Building
Shelbourne Road,
Dublin 4
Ireland
email: ohurley@iona.com

10/18/98 orbos/98-10-05 : Realtime CORBA 7

1

Tom Barker
Lockheed-Martin Federal Systems
Owego
USA
phone: +1 607 751-3794
email: thomas.barker@lmco.com

Judy McGoogan
Lucent Technologies, Inc.
Room 5B-427
2000 N. Naperville Road
Naperville, IL 60566
USA
phone: +1 630 713-7355
email: jmcgoogan@lucent.com

Dave Stringer

Nortel Networks
London Road
Harlow
Essex, CM17 9NA
UK
phone: +44 1279 403712
email: drs@nortel.com

Bill Beckwith
Objective Interface Systems, Inc.
1892 Preston White Drive
Reston, Virginia 20191-5448
USA
phone: +1 703 295 6519
email: bill.beckwith@ois.com

Marc Laukien
Object-Oriented Concepts, Inc
44 Manning Road
Billerica, MA 01821
USA
phone: +1 978 439 92 85
email: ml@ooc.com

Michel Gien
Sun Microsystems
Consumer and Embedded Division
6, avenue Gustave Eiffel
F-78182, Saint-Quentin-en-Yvelines cedex
France
phone: +33 1 39 44 74 22
email: Michel.Gien@sun.com

8 orbos/98-10-05 : Realtime CORBA 10/18/98

1

Peter Kortmann
Tri-Pacific Software, Inc.
1070 Marina Village Parkway
Suite 202
Alameda, CA 94501
USA
phone: +1 510 814 1775
email: peter@tripac.com

10/18/98 orbos/98-10-05 : Realtime CORBA 9

Response to RFP Requirements 2

The following sections list the requirements from the Realtime CORBA 1.0 RFP
(OMG orboss/97-09-31) and describe how this submission responds to each of them.

2.1 Mandatory Requirements

• Extensions to OMG Specifications

This proposal does not re-specify existing functionality provided by OMG
specifications. Realtime CORBA is therefore specified as an extension to CORBA.

• Define a "Schedulable Entity"

This proposal discusses "activity" as a design concept and uses threads as provided by
an underlying OS as a schedulable entity to implement that concept. It also defines an
optional Fixed Priority Scheduling Service to help application programmers schedule
activities.

• Interfaces for Priority control of Schedulable Entity

This proposal defines a universal, platform-independent priority scheme called
CORBA Priority. A CORBA Priority may be associated with the current thread by
setting the priority attribute of the RT_CORBA::Current object. A PriorityMapping
interface is defined to map the CORBA Priority to/from the native priority scheme of a
given scheduler.

• Mechanism for propagating client priority to the server

This proposal defines a ServerPriorityModelPolicy which is used to determine the
priority at which a server handles requests from clients. Two models are supported:

• CLIENT_PRIORITY_PROPAGATION: in which the server honors the priority of
the request set by the client, and

• SERVER_SET_PRIORITY: in which the server handles requests at a set priority.

10 orbos/98-10-05 : Realtime CORBA 10/18/98

2

In both models, the client application's CORBA priority is propagated in a new service
context which is passed in the invocation request message. In the
CLIENT_PRIORITY_PROPAGATION model, the server ORB will map the CORBA
PRIORITY to its local RTOS priority and execute the invocation.

The proposal also defines a PriorityDerivationPolicy which allows the application
programmer to choose whether onward invocations from servant application code will
be made at either the current base or derived priority of the dispatch thread.

• Mechanisms for avoiding or bounding priority inversion

The mechanism described above for propagating client priority to the server was
designed as one tool for application programmers to use to minimize and bound
priority inversion in CORBA invocations. Other tools that are specified include:

• a mutex interface that can be used to coordinate contention for system resources
and that allows applications to use the same mutex implementation as the ORB,

• policies for specifying and configuring communication protocols,

• a threadpool abstraction used to manage threads of execution on the server side,
and

• policies to be used with the explicit_bind operation (discussed below) that let the
client:
1) set up multiple transport connections - each dedicated to carrying invocations
of distinct bands of CORBA priorities; and/or
2) specify use of non-multiplexed connections.

• Mechanisms for bounding method invocation blocking

The mechanisms described above are also useful for minimizing/bounding method
invocation blocking. The Scheduling Service is another mechanism that aids in this.

In addition, there is an open issue for the submitters to examine the relationship of this
proposal to the Messaging Service. As part of that review, they plan to investigate the
timeout capability that Messaging specifies.

• Define "resources" for purposes of resource management

For this proposal, resources include: threads, threadpools, transport connections, and
request buffers.

• Mechanisms for management of resource allocation

A mutex interface is defined that can be used to coordinate contention for system
resources. Management of thread priorities is described above. An API is defined for
threadpool management. Transport connections are managed via the use of protocol
policies and the explicit_bind operation.

• Mechanism for client and server side protocol selection

10/18/98 orbos/98-10-05 : Realtime CORBA 11

2

This proposal provides the ability for an application to associate protocols with a
Realtime POA. Any objects activated within that Realtime POA domain may use any
protocols which have been associated with that POA. All protocols supported by a
Realtime POA will be exported within the Object References. The Client may
explicitly select a protocol via an object scope ProtocolPolicy.

• Interfaces for explicitly setting up and configuring a binding

The proposal defines an explicit_bind interface on the client side that provides a
connection to the server object prior to the first operation invocation upon that object.

It also defines optional policies that can be used by this interface for:

• client-side protocol specification and configuration

• priority band creation

• request for the client to have a non-multiplexed connection to the server

• Refer to POA, rather than the BOA

All references within this document refer to the POA rather than the BOA. Indeed
many of the ideas are based upon the framework of Policy association and the use of
child POAs.

The use of child POAs constrains policy locality to that portion of a Realtime ORB
which requires such tight controls. At the same time, this allows the non-realtime
portions of such an ORB to use the ORB services with less specification on behavior.

2.2 Optional Requirements

• Optionally Specify an interface for client request/reply time-out

The submitters plan to examine the relationship of this proposal to the Messaging
Service. As part of that review, they plan to investigate the timeout capability that
Messaging specifies.

• Optionally Specify an interface for installation of user-provided
transport protocols

This proposal does not discuss the interface by which an ORB vendor will provide the
ability to substitute a user-provided transport protocol. However, it supports selection
and use of such user-provided transport protocols via the selection of protocols using
the ProtocolPolicy

• Optionally Specify a RT Interaction protocol interoperability between
RT ORBs

Since CORBA Priority is passed in the service context, this specification does not need
to define a new protocol for this.

• Optionally Define run-time interfaces for a "schedulable entity"

12 orbos/98-10-05 : Realtime CORBA 10/18/98

2

Not addressed.

2.3 Issues to be Discussed

• Assumptions made about the underlying operating system

It is possible for an OS that doesn't implement some or all of the POSIX Real-Time
Extensions to support end-to-end predictability, but specifying the required OS features
is beyond the scope of this specification.

• Relationship to POSIX

If an OS implements the IEEE POSIX 1003.1-1996 Real-Time Extensions, it has the
necessary features to facilitate end-to-end predictability.

• Relationship to Concurrency Service, Time Service, Transaction
Service, and Event Service

This proposal is not dependent on these services.There is no restriction in RT_CORBA
on invoking these services. However, application programmers should note that these
services as currently specified do not include any constraints on their realtime
behavior. Thus, using them could impact end-to-end predictability.

• Relationship to Security Service

This proposal is orthogonal to the Security Service.

• Definition of "binding"

The semantics of explicit_bind are discussed.

• Relationship to Messaging Service

There is an open issue for the submitters to examine the relationship of this proposal to
the Messaging Service. Specifically, they plan to investigate differences/similarities
between this specification's explicit_bind operation and Messaging's
set_policy_override and validate_connection operations.

• How to build Realtime CORBA Applications

The chapter on the Fixed Priority Scheduling Service addresses this.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 13

Realtime CORBA 3

3.1 Objectives and Scope of Specification

The goal of this specification is to provide a standard for CORBA ORB
implementations that support end-to-end predictability. For the purposes of this
specification, "end-to-end predictability" of timeliness in a fixed priority CORBA
system is defined to mean:

• respecting thread priorities between client and server for resolving resource
contention during the processing of CORBA invocations;

• bounding the duration of thread priority inversions during end-to-end processing;

• bounding the latencies of operation invocations.

A Realtime CORBA system will include the following four major components, each of
which must be designed and implemented in such a way as to support end-to-end
predictability, if end-to-end predictability is to be achieved in the system as a whole:

1. the scheduling mechanisms in the OS;

2. the Realtime ORB;

3. the communication transport;

4. the application(s).

The scope of this specification is limited to the affect of the Realtime ORB upon end-
to-end predictability within the system. In addressing this, requirements are placed
upon the other components of the system. These are specified in such a way that they
may be satisfied by as wide as possible a variety of implementations.

Nevertheless, satisfying the requirements that Realtime CORBA places upon them will
not in itself guarantee that the other components of the system can support end-to-end
predictability. If an OS implements the IEEE POSIX 1003.1-1996 Real-Time
Extensions, it has the necessary features to facilitate end-to-end predictability. It is

14 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

possible for an OS that doesn’t implement some or all of the POSIX Real-Time
Extensions specification to support end-to-end predictability, but specifying the
required OS features is beyond the scope of this specification.

3.2 Realtime CORBA Architecture

3.2.1 RT_CORBA module

Realtime CORBA is specified as an extension to the CORBA Specification. All
CORBA IDL specified by Realtime CORBA is contained in a new RT_CORBA
module.

3.2.2 RT_CORBA::ORB

An implementation of Realtime CORBA must be capable of producing one or more
Realtime CORBA ORB objects. Realtime CORBA ORBs are represented by the
RT_CORBA::ORB IDL type, which is derived from CORBA::ORB:

//IDL module RT_CORBA {

 interface ORB : CORBA::ORB {

 ...

 };

};

Initializing a RT_CORBA::ORB triggers initialization of the Realtime extensions to
the ORB interface and makes that ORB instance ready to perform with the behavior
specified in the following sections of the Realtime CORBA specification.

Additionally, the interface has a number of operations, that manage the creation and
destruction of the other Realtime CORBA IDL interface types, which are defined in
sections below.

3.2.3 Realtime CORBA Configuration

The configuration of all RT CORBA features is handled through the CORBA::Policy
mechanism. RT CORBA defines a number of new Policy types, instances of which are
created using the existing CORBA::ORB::create_policy interface, supplied with the
appropriate new PolicyType values.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 15

3

3.3 Activities and Realtime CORBA

Note – Realtime CORBA does not define a CORBA Activity entity, and hence does
not define any IDL for activities. Instead, Realtime CORBA works in terms of threads
and invocations made from threads. This leaves applications, and possibly future OMG
specifications, free to define and use the activity concept. This section discusses how
activities might be supported in terms of the entities used in Realtime CORBA.

An activity is a concept that is sometimes used in the design and implementation of
realtime systems, where it might be defined as a sequence of control flow that can
traverse across system boundaries. Activities are a useful abstraction for describing
distributed priority propagation.

Where activities are defined, the lifetime of an activity may vary according to the
needs of the application developer. Typically an activity would start with the beginning
of the execution of a thread in some client that then makes invocations. The activity
would end when the originating client thread completes. Any time that an existing
activity invokes a remote oneway operation a new, temporary activity could be
considered to have been created. The creation point of this second activity would be
the point at which the thread of the invoking activity is released to continue execution.
When exactly this point occurs would depend upon on the synchronization scope
policy in place for the oneway operation invocation.

3.4 Thread Scheduling

Realtime CORBA uses threads as a schedulable entity. Generally, a thread represents a
sequence of control flow within a single node. In systems that support multiple
address spaces, there typically can exist multiple threads per address space. Realtime
CORBA specifies interfaces through which the characteristics of a thread that are of
interest can be manipulated.

Note – The Realtime CORBA view of a thread is compatible with the POSIX
definition of a thread.

3.5 Native Thread Priorities

A realtime operating system (RTOS) sufficient to use for implementing a Realtime
ORB compliant with this specification will have some discrete representation of a
thread priority. This representation typically specifies a range of priorities and a
direction in which the priorities have higher value. The particular range and direction
in this priority representation varies from RTOS to RTOS. This specification refers to
this RTOS specific thread priority representation as a native thread priority scheme.
The priority values of this scheme are referred to as native thread priorities.

Native thread priorities are used to designate the execution eligibility of threads. The
ordering of native thread priorities is such that a thread with higher native priority is
executed at the exclusion of any threads in the system with lower native priorities.

16 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

A native thread priority is an integer value that is the basis for resolving competing
demands of threads for resources. Whenever threads compete for processors or ORB
implementation-defined resources, the resources are allocated to the thread with the
highest native thread priority value.

The base native thread priority of a thread is defined as the native priority with
which it was created, or to which it was later set. The initial value of a thread’s base
native priority is dependent on the semantics of the specific operating environment.
Hence it is implementation specific.

At all times, a thread also has a derived native thread priority , which is the result of
considering its base native thread priority together with any priorities it inherits from
other threads. At any time, the derived native thread priority of a thread is the
maximum of all the priorities the thread is inheriting at that instant. For a thread that is
not suspended, its base native thread priority is always a source of priority inheritance.

Priority inheritance is the term used for this process by which the native thread
priority of other threads is used in the evaluation of a thread’s derived native thread
priority. A priority inheritance protocol must be used by a conforming Realtime
CORBA ORB to implement the execution semantics of threads and mutexes. It is an
implementation issue as to whether the Realtime ORB implements simple priority
inheritance, immediate ceiling locking protocol, original ceiling locking protocol or
some other priority inheritance protocol.

Whichever priority inheritance protocol is used, the native thread priority ceases to be
inherited as soon as the condition calling for the inheritance no longer exists. At the
point when a thread stops inheriting a native thread priority from another source, its
derived native thread priority is re-evaluated.

The thread’s derived native priority is used when the thread competes for processors.
Similarly, the thread’s derived priority is used to determine the thread’s position in any
queue (i.e., dequeuing occurs in native thread priority order).

Native priorities have an IDL representation in Realtime CORBA, which is of type
short :

module RT_CORBA {

 typedef short NativePriority;

};

This means that native priorities must be integer values in the range -32768 to +32767.
However, for a particular RTOS, the valid range will be a sub-range of this range.

The NativePriority type is used in defining mappings between native and CORBA
priority, as described in the section on CORBA Priority Mappings, below.

Realtime CORBA does not support the direct use native priorities : instead, the
application programmer uses CORBA Priorities, which are defined in the next section.
However, applications will still use native priorities where they make direct use of
RTOS features.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 17

3

3.6 CORBA Priority

Realtime CORBA defines a universal, platform independent priority scheme called
CORBA Priority . It is introduced to overcome the heterogeneity of different native
priority schemes, and allows Realtime CORBA applications to make prioritized
CORBA invocations in a consistent fashion between nodes with different native
priority schemes.

For consistency, Realtime CORBA applications always use CORBA Priority to express
the priorities in the system, even if all nodes in a system use the same native thread
priority scheme, or when using the alternate, server-set priority model.

A RT_CORBA::Priority type is defined:
//IDL
module RT_CORBA {

 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language mapping. However,
only values in the range 0 (minPriority) to 32767 (maxPriority) are valid. Numerically
higher CORBA Priority values are defined to be of higher priority.

A CORBA Priority may be associated with the current thread, by setting the priority
attribute of the RT_CORBA::Current object:

//IDL
module RT_CORBA {

 interface Current : CORBA::Current {
 attribute RT_CORBA::Priority priority;
 };

};

A CORBA system exception is thrown if an attempt is made to set the priority to a
value outside the range 0 to 32767.

Upon setting this attribute, the CORBA Priority value is mapped to a native priority
value and the native priority of the current thread is immediately set to that value.
bCORBA Priority mappings are described in the next section.

Once a thread has a CORBA Priority value associated with it, the behaviour when it
makes an invocation upon a CORBA Object depends on which value of the
ServerPriorityModelPoloicy that CORBA Object supports:

18 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

3.6.1 Client Priority Propagation Model

If the object that is invoked upon supports the CLIENT_PRIORITY_PROPAGATION
value of the ServerPriorityModelPolicy, the CORBA Priority is carried with the
CORBA invocation and is used to ensure that all threads subsequently executing on
behalf of the invocation (on client or server) run at the appropriate priority. The
propagated CORBA Priority becomes the CORBA Priority of any such threads, and the
threads run at a native priority mapped from that CORBA Priority.

The CORBA Priority is propagated in a CORBA Priority service context which is
passed in the invocation request message.

module IOP {

 const ServiceId CorbaPriority = ??;
 // <number to be assigned by OMG>

};

The context_data contains the RT_CORBA::Priority value as a CDR encapsulation of a
short type.

Note – The CorbaPriority const should be added to a future version of GIOP.

The thread that dispatches the invocation (i.e. runs the servant code) initially has the
CORBA Priority of the invoking thread. Therefore if, as part of the processing of this
request it makes CORBA invocations to other objects, these onward invocations will be
made with the same CORBA Priority. If the CORBA Priority of the dispatch thread is
changed by the application, any subsequent onward invocations will be made with this
new priority.

The above scenario does not consider the effect of priority inheritance. Its possible
effect on the propagated CORBA Priority is discussed in the sections on the CORBA
Mutex interface and the PriorityDerivationPolicy, below.

3.6.2 Server-Set Priority Model

If the Object that is being invoked upon supports the SERVER_SET_PRIORITY value
of the ServerPriorityModelPolicy, then in the same way as for the client priority
propagation model, any threads on the client side that subsequently run on behalf of
the invocation are run at a native priority mapped from the CORBA Priority, and the
CORBA Priority value is passed with the invocation, in a service context.

Issue – Under the Server-Set priority model, the submitters have identified
circumstances in which it would be desirable not to send the CORBA Priority
in a service context, but also other circumstances in which it is desirable. A
third server priority model may be required.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 19

3

However, the propagated CORBA Priority it is not used to determine the priority of
threads on the server-side running on behalf of that invocation. Instead, server-side
threads running on behalf of the invocation run at a native priority mapped from the
CORBA Priority associated with that CORBA Object, which is given in the
server_priority attribute of the ServerPriorityModelPolicy used at its creation.

If as part of the processing of the request, the servant code makes CORBA invocations
to other objects, these onward invocations will be made with the CORBA Priority of
the server. If the CORBA Priority of the dispatch thread is changed by the application,
any subsequent onward invocations will be made with this new priority.

This scenario does not consider the effect of priority inheritance. Its possible effect on
the priorities, including the CORBA Priority that is used to make onward calls from
servant code, is considered in the sections on the CORBA Mutex interface and the
PriorityDerivationPolicy, below.

Issue – Whether CORBA Priority values may be returned to the caller in a
reply message service context is still being investigated. The following
choices all have merits : a value must always be returned; must always be
returned if the value has changed; may be returned (by a particular
implementation); may not be returned.

3.7 CORBA Priority Mappings

Priority values specified in terms of the CORBA Priority scheme must be mapped into
the native priority scheme of a given scheduler before they can be applied to the
underlying schedulable entities. On occasion, it is necessary for the reverse mapping to
be performed, to obtain a CORBA Priority to represent the present native priority of a
thread. The latter can occur, for example, when priority inheritance is in use, or when
wishing to introduce an already running thread into a CORBA system at its present
(native) priority.

To allow the Realtime ORB and applications to do both of these things, Realtime
CORBA defines a PriorityMapping interface:

20 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

//IDL
module RT_CORBA {

 // Locality Constrained interface
 interface PriorityMapping {

 boolean to_native (in Priority corba_priority,
 out NativePriority native_priority);

 boolean to_CORBA (in NativePriority native_priority,
 out Priority corba_priority);

 };

};

Only one PriorityMapping object is active (or "installed") at any one time, per ORB
instance. Conformant Realtime CORBA implementations must provide a "default
PriorityMapping", which is installed by default. However, the particular mappings that
the default provides are an implementation issue. Applications may install their own
PriorityMapping object. PriorityMapping installation is explained in the next section.

The priority mappings between native and CORBA priority are defined by the
implementations of the to_native and to_CORBA operations of a PriorityMapping
object. The to_native operation accepts a CORBA Priority value an an in parameter
and maps it to a native priority, which is given back as an out parameter. Conversely,
to_CORBA accepts a NativePriority value as an in parameter and maps it to a CORBA
Priority value, which is again given back as an out parameter.

As the mappings are used by the ORB, and may be used more than once in the normal
execution of an invocation, their implementations should be as efficient as possible.
For this reason, the mapping operations may not raise any CORBA exceptions,
including system exceptions. The ORB is not restricted from making calls to the
to_native and/or to_CORBA operations from multiple threads simultaneously. Thus,
the implementations should be re-entrant.

Rather than raising a CORBA exception upon failure, a boolean return value is used to
indicate mapping failure or success. If the priority passed in can be mapped to a
priority in the target priority scheme, TRUE is returned and the value is returned as the
out parameter. If it cannot be mapped, FALSE is returned and the value of the out
parameter is undefined.

to_native and to_CORBA must both return FALSE when passed a priority that is
outside of the valid priority range of the input priority scheme. For to_native this
means when it is passed a short value outside of the CORBA Priority range, 0-32767
(i.e. a negative value.) For to_CORBA this means when it is passed a short value
outside of the native priority range used on that system. This range will be
implementation specific.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 21

3

Neither to_native nor to_CORBA is obliged to map all valid values of the input
priority scheme (the CORBA Priority scheme or the native priority scheme,
respectively.) This allows mappings to be produced that do not use all values of the
native priority scheme of a particular scheduler and/or that do not use all values of the
CORBA Priority scheme.

The mappings do not have to be idempotent : they are not obliged to yield the same
output value every time they are given a particular input value. However, they should
be idempotent to produce a reasonably schedulable system.

When the ORB receives a FALSE return value from a mapping operation that is called
as part of the processing of a CORBA invocation, processing of the invocation
proceeds no further, and if possible a system exception is raised to the application
making the invocation. Note that it may not be possible to raise an exception to the
application if the failure occurs on a call to a mapping operation made on the server
side of an oneway invocation.

Issue – Particular system exceptions have not yet been assigned in this or
other places where Realtime CORBA may raise a system exception.

3.7.1 Installation of CORBA Priority Mappings

The realtime ORB, RT_CORBA::ORB, provides an operation for the installation of a
new PriorityMapping:

// IDL
module RT_CORBA {

 // Locality Constrained interface
 interface ORB : CORBA::ORB {

 ...

 void install_priority_mapping (in PriorityMapping pm);

 ...

 };

};

Only one PriorityMapping may be installed at any one time, so installing a new one
replaces the one that was previously installed.

To create a consistently schedulable system, a new priority mapping should only be
installed in the interval between the initialization of the realtime ORB and making first
use of CORBA Priority. However, because of the potential overhead incurred by
tracking whether a previously installed PriorityMapping has been used yet, later
installation is not trapped by the install_priority_mapping operation.

22 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

3.8 Mutex interface

The Mutex interface provides the mechanism for coordinating contention for system
resources.

Realtime CORBA specifies a RT_CORBA::Mutex locality constrained interface, so
that applications can use the same mutex implementation as the ORB.

//IDL
module RT_CORBA {

 // locality constrained interface
 interface Mutex {

 void lock();

 void unlock();

 boolean try_lock(in TimeBase::TimeT max_wait);
 // if max_wait = 0 then return immediately

 };

 interface ORB : CORBA::ORB {

 ...
 Mutex create_mutex();
 ...

 };

};

A new RT_CORBA::Mutex object is obtained using the create_mutex() operation of
RT_CORBA::ORB.

A Mutex object has two states: locked and unlocked. Mutex objects are born in the
unlocked state. When the Mutex object is in the unlocked state the first thread to call
the lock() operation will cause the Mutex object to change to the locked state.
Subsequent threads that call the lock() operation while the Mutex object is still in the
locked state will block until the owner thread unlocks it by calling the unlock()
operation. Implementations must ensure that the lock operations are atomic in the
presence of multiple processors if the system has multiple processors.

The try_lock() operation works like the lock() operation except that if it does not get
the lock within max_wait time it returns FALSE. If the try_lock() operation does get
the lock within the max_wait time period it returns TRUE.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 23

3

A conforming ORB implementation must provide a implementation of Mutex that
implements some form of priority inheritance protocol. This may include, but is not
limited to, simple priority inheritance or a form of priority ceiling locking protocol.
The mutex returned by create_mutex must have the same priority inheritance properties
as those used by the ORB to protect resources.

If an ORB implementation offers a choice of priority inheritance protocols, or offers a
protocol that requires configuration, selection or configuration will be controlled
through an implementation specific interface.

While a thread executes in a region protected by a mutex object, it can be preempted
only by threads whose derived native thread priorities are higher than either the ceiling
or derived (inherited) priority of the mutex object.

The effect of priority protocols on the execution of Realtime CORBA application code
is handled through the PriorityDerivationPolicy policy object, which is described in the
server-side configuration section, below.

3.9 Server-side Configuration

New policies are defined, to cover the configuration of the following server-side RT
CORBA features :

• protocol selection

• protocol configuration

• server-side thread configuration (through Threadpools)

• server priority model (inherited from client v. set by server)

• handling of priority derivation resulting from use of priority inheritance protocols
on mutexes.

Which of the CORBA policy application points (ORB, POA, Current) a given policy
may be applied at is given along with the description of each policy, below. An attempt
to apply a policy at an inappropriate level will lead to a WrongPolicy exception being
raised.

3.9.1 ProtocolPolicy

The ProtocolPolicy policy type is used to configure the selection and configuration of
communication protocols in RT CORBA.

24 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

// IDL module RT_CORBA {

 // Locality Constrained interface
 interface ProtocolProperties {};

 struct Protocol {
 IOP::ProfileId protocol_type;
 ProtocolProperties orb_protocol_properties;
 ProtocolProperties transport_protocol_properties;
 };

 typedef sequence <Protocol> ProtocolList;

 // Protocol Policy
 const CORBA::PolicyType PROTOCOL_POLICY_TYPE = ??;

 // Locality Constrained interface
 interface ProtocolPolicy : CORBA::Policy {
 readonly attribute ProtocolList protocols;

 };

 };

A ProtocolPolicy allows any number of protocols to be specified and, optionally,
configured at the same time. The order of the Protocols in the ProtocolList indicates
the order of preference for the use of the different protocols. Information regarding the
protocols must be placed into IORs in that order, and the client should take that order
as the default order of preference for choice of protocol to bind to the object via.

The type of protocol is indicated by an IOP::ProfileId (from the specification of the
CORBA IOR), which is an unsigned long. This means that a protocol is defined as a
specific pairing of an ORB protocol (such as GIOP) and a transport protocol (such as
TCP.) Hence IIOP would be selected, rather than GIOP plus TCP being selected
separately. IIOP in particular is represented by the value TAG_INTERNET_IIOP (or
the value 0, that it is defined as.)

A Protocol type contains a ProfileId plus two ProtocolProperties, one each for the ORB
protocol and the transport protocol.

The properties are provided to allow the configuration of protocol specific configurable
parameters. Specific protocols have their own protocol configuration interface that
inherits from the RT_CORBA::ProtocolProperties interface. A nil reference for either
ProtocolProperties indicates that the default configuration for that protocol should be
used. (Each protocol will have an implementation specific default configuration, that
may be overridden by applying the protocol policy at ORB scope. See policy scope,
below.)

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 25

3

//IDL
module RT_CORBA {
 interface TCPProtocolProperties : ProtocolProperties {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean keep_alive;
 attribute boolean dont_route;
 attribute boolean no_delay;
 };
};

TCP is the only protocol that RT CORBA specifies a ProtocolProperties interface for.
A similar interface is not specified for GIOP, as GIOP has no configurable properties.

ProtocolProperties should be defined for any other protocols useable with an RT
CORBA implementation, but unless they are standardized in an OMG specification
their name and contents will be implementation specific. ProtocolProperties for other
protocols may be standardized in the future, and a ProtocolProperties interface should
be specified in the standardization of any other protocol, if it is to be useable in a
portable way with RT CORBA.

Scope of ProtocolPolicy Policy

Applying a ProtocolPolicy to the creation of a POA controls the protocols that
references created by that POA will support (and their configuration if non- nil
ProtocolProperties are given.) If no ProtocolPolicy is given at POA creation, the POA
will support the default protocols associated with the ORB that created it. (Note that
supplying a ProtocolPolicy overrides, rather than supplementing or sub-setting, the
default selection of protocols associated with the ORB.)

The ORB’s default protocols, and their order of preference, are implementation
specific. The default may be overridden by applying a ProtocolPolicy at the ORB level.
As a consequence, portable applications must override all defaults to ensure the same
behavior between ORB implementations.

Only one ProtocolPolicy should be included in a given PolicyList, and including more
than one will result in a CORBA system exception being raised.

Protocol Configuration Semantics

Note that the above API only allows policies to be set at POA creation time. No API is
proposed to allow (re)configuration of any policy after POA creation.

The protocol configuration selected at the time of POA creation is used to determine
the server-side configuration that is to be used by the protocol in question for all
connections from clients to objects that have references created by that POA.

26 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

However, as the configuration semantics of a protocol (such as whether a particular
property can be configured on a per-connection basis or only globally for that instance
of the protocol) are protocol specific, the exact semantics of protocol configuration via
ProtocolProperties are not specified by RT CORBA, and must be specified on a per-
protocol basis.

If a protocol offers a configurable property that can only be configured at some scope
wider than that of the individual POA (say at the scope of the ORB instance), it can
choose either to:

• change that property at the wider scope when a different value is requested for the
creation of a new POA. This will ensure that the new POA gets the configuration
requested, but will also affect the configuration of new and possibly existing
connections made to other CORBA Objects via the same protocol. The exact scope
and semantics of the property change must be given as part of the documentation of
the ProtocolProperties interface for that protocol.

• not change the property, but instead raise an InvalidPolicy exception and fail to
create the new POA. In this way, the original value of the property is preserved for
the existing references that use it. Once again, this behaviour must be covered in the
documentation of the ProtocolProperties interface for that protocol.

Which of the two strategies a protocol uses is an implementation issue.

3.9.2 Threadpool Policy

A threadpool abstraction is used to manage threads of execution on the server- side of
the RT CORBA ORB.

Threadpools offer the following features:

• preallocation of threads. This helps reduce priority inversion, by allowing the
application programmer to ensure that there are enough thread resources to satisfy a
certain number of concurrent invocations, and also helps reduce latency and
increase predictability, by avoiding the destruction and recreation of threads
between invocations.

• partitioning of threads. Having multiple thread pools, associated with different
POAs allows one part of the system to be isolated from the thread usage of another,
possibly lower priority, part of the application system. This can again be used to
reduce priority inversion.

• bounding of thread usage. A threadpool can be used to set a maximum limit on the
number of threads that a POA or set of POAs may use. In systems where the total
number of threads that may be used is constrained, this can be used in conjunction
with threadpool partitioning to avoid priority inversion by thread starvation.

Threadpools are managed using operations on the Realtime ORB:

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 27

3

//IDL
module RT_CORBA {

 // Threadpool types
 typedef unsigned long ThreadpoolId;

 struct ThreadpoolLane {
 Priority lane_priority;
 unsigned long static_threads;
 unsigned long max_threads;
 };

 typedef sequence <ThreadpoolLane> ThreadpoolLanes;

 // Threadpool Policy
 const CORBA::PolicyType THREADPOOL_POLICY_TYPE = ??;

 interface ThreadpoolPolicy : CORBA::Policy {

 readonly attribute ThreadpoolId threadpool;

 };

 interface ORB : CORBA::ORB {

 ...

 exception InvalidThreadpool {};

 ThreadpoolId create_threadpool (in unsigned long stacksize,
 in unsigned long static_threads,
 in unsigned long max_threads,
 in Priority default_priority);

 ThreadpoolId create_threadpool_with_lanes (
 in unsigned long stacksize,
 in ThreadpoolLanes lanes,
 in boolean allow_borrowing);

 void destroy_threadpool (in ThreadpoolId threadpool)
 raises (InvalidThreadpool);

 ...

 };

};

The create_threadpool and create_threadpool_with_lanes operations allow two
different styles of threadpool to be created : with or without lanes.

28 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

In both cases, the stacksize parameter is used to specify the stack size, in bytes, that
each thread must have allocated.

To create a threadpool without lanes the following parameters must also be specified:

• static_threads, which specifies the number of threads that will be pre-created and
assigned to that threadpool at the time of its creation. An exception is raised if this
number of threads cannot be created, in which case no threads are created and no
threadpool is created.

• max_threads, which specifies the maximum number of threads that the threadpool
may hold. If this is a value greater than static_threads, additional threads will be
created dynamically, individually and upon demand, when the static threads are all
in use and an additional thread is required to service an invocation. Whether a
dynamically created thread is destroyed as soon as it is not in use, or is retained
forever or until some condition is met is an implementation issue.

If max_threads is the same as static_threads no additional threads may be dynamically
created, and only the static threads are available. In either case, once the maximum
number of threads has been reached, no additional threads will be added to the
threadpool, and any additional invocations will block waiting for one of the existing
threads to become available.

If max_threads is zero, no limit is placed on the number of threads that the threadpool
may grow to hold. max_threads may not have a non-zero value less than min_threads,
and attempting to create a threadpool with such a value will result in the
create_threadpool operation failing with an exception.

• default_priority, which specifies the CORBA priority that the static threads will be
created with. (Dynamic threads may be created directly at the priority they are
required to run at to handle the invocation they were created to handle.)

To create a threadpool with lanes, a lanes parameter must be configured, instead of the
static_threads, max_threads and default_priority parameters. The lanes specifies a
number of ThreadpoolLanes, each of which must have the following parameters
specified :

• lane_priority, which specifies the CORBA Priority that all threads in this lane (both
static, and dynamically allocated ones) will run at.

• static_threads, which specifies the number of threads that will be pre-created, but in
this case allocated to this specific lane, rather than the pool as a whole.

• max_threads, which specifies the maximum number of threads that may be
allocated to this lane. The relationship between the value of max_threads and
static_threads is the same as in the case of threadpools without lanes : it determines
whether and if so how many additional threads may be dynamically created (but in
this case the dynamic thread are specific to this lane and are created with the
CORBA Priority specified by lane_priority.)

Additionally, to create a threadpool with lanes, the allow_borrowing boolean parameter
must be configured to indicate whether the borrowing of threads by one lane from a
lower priority lane is permitted or not.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 29

3

If thread borrowing is permitted, when a lane of a given priority exhausts its maximum
number of threads and requires an additional thread to service an additional invocation,
it may "borrow" a thread from a lane with a lower priority. The borrowed thread has its
CORBA Priority raised to that of the lane that requires it. When the thread is no longer
required, its priority is lowered once again to its previous value, and it is returned to
the lower priority lane. The thread will be borrowed from the highest priority lane with
threads available. If no lower priority lanes have threads available, the lane wishing to
borrow a thread must wait until one becomes free (which will quite possibly be one of
its own.)

More generally, for both threadpools with and without lanes, if the priority of a thread
is changed whilst dispatching an invocation, it is restored to its original priority before
returning it to the threadpool.

When a threadpool is successfully created, using either method, a ThreadpoolId
identifier is returned. This can later be passed to destroy_threadpool to destroy the
threadpool. If a threadpool cannot be created because the parameters passed in do not
specify a valid threadpool configuration, a CORBA system exception is raised. If a
threadpool cannot be created because there are insufficient operating system resources,
a system exception is raised.

The same threadpool may be associated with a number of different POAs, by using a
ThreadpoolPolicy containing the same ThreadpoolId in each POA_create.

Scope of ThreadpoolPolicy:

The ThreadpoolPolicy may be applied at the POA and ORB level. A POA may only be
associated with one threadpool, hence only one ThreadpoolPolicy should be included
in the PolicyList specified at POA creation.

A ThreadpoolPolicy may be applied at the ORB level, where it assigns the indicated
threadpool as the default threadpool to use in the subsequent creation of POAs, until
the default is again changed. The default is used if a ThreadpoolPolicy is not specified
in the polices used at the time of POA creation.

3.9.3 Server Priority Model Policy

The overall goal of Real-Time CORBA is to minimize and bound priority inversion in
CORBA invocations. One mechanism that is employed to achieve this is propagation of
the activity priority from the client the server, with the requirement that the server side
ORB make the up-call at this priority (subject to any priority inheritance protocols that
are in use.)

However, in some scenarios, it is sufficient to design the application system by setting
the priority of servers, and having them handle all invocations at that priority.

Hence, RT CORBA supports two models for the priority at which a server handles
requests from clients, which are selected by use of the provided
ServerPriorityModelPolicy interface :

30 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

//IDL
module RT_CORBA {

 // Server Priority Model Policy
 const CORBA::PolicyType
 SERVER_PRIORITY_MODEL_POLICY_TYPE = ??;

 enum ServerPriorityModel {

 CLIENT_PRIORTY_PROPAGATION, SERVER_SET_PRIORITY
 };

 interface ServerPriorityModelPolicy : CORBA::Policy {

 readonly attribute ServerPriorityModel server_priority_model;
 readonly attribute Priority server_priority;

 };

 };

 - CLIENT_PRIORTY_PROPAGATION: in which the server honours the priority of
the request, set by the client. Requests from non-RT CORBA ORBs (i.e. ORB’s that do
not propagate a CORBA Priority in the request’s service contexts) are handled at the
priority specified by the server_priority attribute of the policy.

The Client application’s CORBA priority (set via the RT_CORBA::Current priority
attribute) will be propagated to the server ORB in the service context of IIOP
messages.

The server ORB will use this CORBA PRIORITY and map it with the to_native
mapping operation to its local RTOS priority and execute the invocation. We will call
this Client assigned priority model.

 - SERVER_SET_PRIORITY: in which the server handles requests at a set priority,
which is configured by the server_priority attribute of the policy.

In this model the server side processing of an invocation will use a server specified
CORBA priority to perform processing of client invocations.

3.9.4 Priority Derivation Policy

Realtime CORBA offers the application programmer the choice of onward invocations
from servant application code being made at either the current base or derived priority
of the dispatch thread. The choice is made using the PriorityDerivationPolicy:

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 31

3

//IDL
module RT_CORBA {

 // Priority Derivation Policy
 const CORBA::PolicyType PRIORITY_DERIVATION_POLICY_TYPE = ??;

 enum PriorityDerivationPolicy {

 USE_BASE_PRIORITY, USE_DERIVED_PRIORITY

 };

 interface PriorityDerivationPolicy : CORBA::Policy {

 readonly attribute PriorityDerivationPolicy derivation_policy;

 };

};

If the USE_BASE_PRIORITY value is selected, the base CORBA Priority of the
dispatch thread at the time of the further invocation is used as the CORBA Priority for
that invocation.

If the USE_DERIVED_PRIORITY value is selected, the derived CORBA Priority of
the dispatch thread at the time of the further invocation is used as the CORBA Priority
for that invocation. It is an implementation issue whether or not arriving at the derived
CORBA Priority involves mapping from a native priority, using the to_CORBA
priority mapping operation.

Note that the priority attribute of RT_CORBA::Current always reflects the base, rather
than derived, priority of the current thread.

3.10 Client-side Configuration

3.10.1 Explicit Binding

Issue – The explicit_bind operation has been specified by considering the
requirements of Realtime CORBA in isolation. The relationship to the
Messaging specification - and in particular the set_policy_overrides and
validate_connection operations - is currently being studied by the submitters.

Note that the requirements outlined in the issue on the
PriorityBandedConnectionsPolicy, below, are relevant to this, as the
submitters believe this requires functionality beyond that specified by
Messaging.

32 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

Explicit binding offers the following features :

• connection to server object prior to the first operation invocation upon that object,
similar to the Messaging Service’s validate_connection.

• optional client side protocol specification and configuration.

• optional priority band creation

• optional request for the client to have a non-multiplexed connection to the server.

The following IDL is defined for explicit binding:

//IDL
module RT_CORBA {

 // Locality Constrained interface
 interface ORB : CORBA::ORB {

 ...

 exception WrongPolicy {};

 Object explicit_bind (in Object o,
 in CORBA::PolicyList policies)
 raises (WrongPolicy);
 ...

 };

};

A new object reference is returned, and the existing object reference passed in is still
valid for application use, or destruction. This respects the immutability of object
references.

The following client-side policies are used to provide the features outlined above:

3.10.2 ProtocolPolicy (Client Side)

The ProtocolPolicy policy defined for server side configuration is also applicable on
the client side.

When applied to an explicit bind, the ProtocolList indicates the protocols that may be
used to make a connection to the specified object, in order of preference. If the ORB
fails to make a connection because none of the protocols is available on the client
ORB, a CORBA system exception is raised. If one or more of the protocols is
available, but the ORB still fails to make a connection a CORBA system exception is
raised. In both cases no binding is made.

If it is necessary to know which protocol a binding was successfully made via, a single
protocol should be passed into each of a succession of explicit binds until one of them
is successful.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 33

3

If no BindingProtocolPolicy is provided, then the protocol selection is made by the
ORB based on the target object’s available protocols, as described in its IOR, and the
protocols supported by the client ORB.

3.10.3 PriorityBandedConnectionsPolicy

To reduce priority inversion due to use of a non-priority respecting transport protocol,
RT CORBA provides the facility for a client to communicate with a server via multiple
connections, with each connection handling invocations that are made at a different
CORBA priority or range of CORBA priorities. The selection of the appropriate
connection is transparent to the application, which uses a single object reference as
normal.

The PriorityBandedConnectionsPolicy is defined thus:

//IDL
module RT_CORBA {

 struct PriorityBand {
 Priority low;
 Priority high;
 }

 typedef sequence <PriorityBand> PriorityBands;

 // PriorityBandedConnectionPolicy
 const CORBA::PolicyType
 PRIORITY_BANDED_CONNECTIONS_POLICY_TYPE = ??;

 interface PriorityBandedConnectionPolicy : CORBA::Policy {

 readonly attribute PriorityBands priority_bands;

 };

};

The PriorityBands attribute of the policy may be assigned any number of
PriorityBands. PriorityBands that cover a single priority (by having the same priority
for their low and high values) may be mixed with those covering ranges of priorities.
No priority may be covered more than once. The complete set of priorities covered by
the bands do not have to form one contiguous range, nor do they have to cover all
CORBA Priorities.

Once the binding has been successfully made, an attempt to make an invocation with a
CORBA Priority which is not covered by one of the bands will fail, with a CORBA
system exception. Hence, a policy specifying only one band can be used to restrict a
client’s invocations to a range of priorities

If no bands are provided, then a single connection will be established.

34 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

Issue – No mechanism is specified for the banding information to be
communicated from the client to the server. Whilst implementations are
possible that do not require the banding information to be propagated, the
submitters are considering specifying a protocol for the communication of
the banding information from the client to the server at the time of band-
connection establishment. One solution being considered is an implicit
operation (similar to is_a.)

Note that this issue is being considered in the study of the relationship
between Realtime CORBA and the Messaging specification.

3.10.4 PrivateConnectionPolicy

This policy allows a client to obtain a private transport connection which will not be
multiplexed (shared) with other client-server object connections.

//IDL
module RT_CORBA {

 // Private Connection Policy

 const CORBA::PolicyType PRIVATE_CONNECTION_POLICY_TYPE = ??;

 interface PrivateConnectionPolicy : CORBA::Policy {};

 };

Note that it is not possible to explicitly request a multiplexed connection. Whether
multiplexing is appropriate or not is a protocol specific issue, and hence an ORB
implementation issue. By not requesting a private connection the application indicates
to the ORB that a multiplexed connection would be acceptable. It is up to the ORB
implementation to make use of this indication.

3.11 Request Buffers

Issue – This topic is one that the submitters are still examining, to
understand if, and if so how, it should be specified. The text below explains
the problem being addressed.

Just as it is necessary to provide control over processing resources, i.e. threadpools, so
it assists developers if control can be exercised over storage resources. In particular the
storage resources directly associated with the passage of an actviity through an ORB.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 35

3

These resources are the buffers in which requests may be held prior to being given to a
thread but after being received from a communications end-point. The characteristics
of systems to which Real-time CORBA will be applied can vary greatly. Some systems
will be sensitive to response times and hence the latency implied by queues (even
prioritized queues) would not be a natural choice. Other systems will be sensitive to
throughput. Such systems may wish to trade-off latency for a better utilization of
resources.

For a system where the frequency of arrival of requests is statistical rather than precise,
it is inevitable that load will be uneven, with peaks and troughs. Often it is not
practical to allocate a thread to every request as soon as it is received form the end-
point and then leave it to the RTOS’s scheduler to manage the requests. Such a policy
would be too profligate with relatively expensive thread resources.

Neither is it satisfactory to adopt a "lazy consumer" policy with respect to the end-
point. Leaving the storage of requests as the sole responsibility of the end-point forfeits
the chance to share storage resources across multiple end-points. Only by sharing
resources can some systems deal with a distribution of load on those end-points, that
varies with time, in a predictable fashion.

Treating request buffers as a manageable resource provides a developer with control
over the handling of an activity following a message being received from an end-point
and prior to a thread being allocated.

36 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

3

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 37

Realtime CORBA Scheduling Service 4

4.1 Introduction

This section describes the Realtime CORBA Scheduling Service. The Scheduling
Service uses the primitives of the Realtime ORB to facilitate enforcing various fixed-
priority realtime scheduling policies across the Realtime CORBA system in a way that
abstracts away from the application some of the low-level realtime constructs. The
Scheduling Service does not impose any new requirements on Realtime or non-
Realtime ORBs beyond what appears in the RT CORBA specification or CORBA
specification respectively.

The primitives added in Realtime CORBA to create a Realtime ORB are sufficient to
achieve realtime scheduling, but effective realtime scheduling is complicated. For
applications to ensure that their execution is scheduled according to a uniform policy,
such as global Rate Monotonic Scheduling, requires that the RT ORB primitives be
used properly and that their parameters be set properly in all parts of the CORBA
system.

Not only is determining the proper use and correct parameters difficult, but once it is
done, the application code becomes substantially more complex - making analysis and
modification very difficult. The Scheduling Service specified in this section addresses
these problems because an instance of the Scheduling Service embodies a uniform
scheduling policy, and because the simple Scheduling Service interface abstracts away
much of the complexity from application code.

An application that uses an implementation of the Scheduling Service is assured of
having a uniform realtime scheduling policy, such as global rate-monotonic scheduling
with priority ceiling, enforced in the entire system. That is, a Scheduling Service
implementation will choose CORBA priorities, POA policies, and priority mappings in
such a way to realize a uniform realtime scheduling policy. Different implementations
of the Scheduling Service can provide different realtime scheduling policies.

38 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

4

The Scheduling Service abstraction of scheduling parameters (such as CORBA
Priorities) is through the use of "names". The application code uses names (strings) to
specify CORBA Activities and CORBA objects. The Scheduling Service internally
associates those names with scheduling parameters and policies for the named Activity
or the named CORBA object. This abstraction improves portability with regard to
realtime features, eases uses of the realtime features, and reduces the chance for errors.

Each name used by the Scheduling Service method invocations must be unique. The
Scheduling Service is designed to work in a "closed" CORBA system where fixed
priorities are needed for a static set of clients and servers. Therefore, it is assumed that
the system designer has identified a static set of CORBA Activities, the CORBA
objects that the Activities use, and has determined scheduling parameters, such as
CORBA priorities, for those Activities and objects. In that process, names are
uniquely assigned to those Activities and Objects and the names are associated to
scheduling parameters. This association of names to scheduling parameters is then
used to configure the Scheduling Service.

The capabilities provided by the Scheduling Service are not orthogonal to the
primitives provided by the Realtime ORB. In fact, most of the capabilities provided by
the Scheduling Service are expected to be implemented by the Scheduling Service
invoking the Realtime CORBA primitives in a way that ensures a uniform realtime
scheduling policy is enforced.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 39

4

4.2 IDL
module RTScheduling {

 exception UnknownName {};

 // locality constrained interface
 interface ClientScheduler {

 void schedule_activity(in string name)
 raises(UnknownName);

 };

 // locality constrained interface
 interface ServerScheduler {

 PortableServer::POA create_POA (
 in PortableServer::POA parent,
 in string adapter_name,
 in PortableServer::POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises (PortableServer::POA::AdapterAlreadyExists,
 PortableServer::POA::InvalidPolicy);

 void schedule_object(in Object obj, in string name)
 raises(UnknownName);

 };

};

4.3 Semantics

A CORBA client obtains a local reference to a ClientScheduler object. Whenever the
client begins a region of code with a new deadline or priority (indicating a new
CORBA Activity), it invokes "schedule_activity" with the name of the new activity.
The Scheduling Service associates a CORBA priority with this name (assuming the
name is valid--otherwise an exception is thrown), and it invokes appropriate RT ORB
and RTOS primitives to schedule this activity.

The "create_POA" method accepts parameters allowing it to create a POA. This POA
will enforce all of the non-realtime policies in the Policy List input parameter. All
realtime policies for the returned POA will be set internally by this scheduling service
method. This ensures a selection of realtime policies that is consistent with the
scheduling policy being enforced by the Scheduling Service implementation. The
Scheduling Service implementation should clearly document what POA RT policies it
will use under various conditions.

40 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

4

"Schedule_object" is provided to allow the Scheduling Service to achieve object-level
control over scheduling of the object. RT POA policies in the RT ORB allow some
control over the scheduling of object invocations, but must do so for all objects
managed by each POA. Some realtime scheduling, such as priority ceiling
concurrency control, requires object-level scheduling. The "schedule_object" call will
install object-level scheduling with scheduling parameters, such as, for example, the
priority ceiling for the object. These scheduling parameters are derived internally by
the Scheduling Service using the name passed into the call.

4.4 Example

Assume a CORBA object with "method1" and "method2". A client wishes to call
method1 under one deadline and method2 under a different deadline. Here is sketch
psuedocode of what the client and server (main) would look like with the Scheduling
Service.

Step 0

Assume that at system startup an implementation of the Scheduling Service is started
and that Scheduling Service instance installs a mapping object using the RT ORB
install_priority_mapping call.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 41

4

Client

 1 RTScheduling::ClientScheduler sched;

 2 obj = bind to server object

 3 sched->schedule_activity ("activity1");

 4 obj->method1(params);

 5 sched->schedule_activity ("activity2");

 6 obj->method2(params);

Server Main

 1 RTScheduler::ServerScheduler sched;

 2 PortableServer::POA poa1;

 3 PolList = make a policy list of non-RT policies for a POA

 4 poa1 = sched->create_POA(parent_poa, "adapter1", a_POAManager, PolList);

 5 obj = poa1->creat_object (params);

 6 sched->schedule_object(obj, "Object1");

 ...

Explanation of Example

In Step 0 the Scheduling Service installs a priority mapping that is consistent with the
policy that implementation of the Scheduling Service is enforcing. For instance, a
priority mapping for an analyzable Deadline Monotonic policy might be different than
the priority mapping for an analyzable Rate Monotonic policy. Thus we assume that
the Scheduling Service will want to install a mapping that it has configured to be
suitable for the policy that the Scheduling Service implementation is enforcing.

There are no RT ORB calls in the example. We expect that it is possible (but not
required) that there will be no direct calls to RT ORB primitives if the Scheduling
Service is used.

Note that there are no CORBA priorities specified only names for the two CORBA
Activities in the client. This facilitates plugging in different fixed priority scheduling
policies by choosing a implementation of the Scheduling Service to use. Recall that
the Scheduling Service implementation associates the names "activity1" and

42 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

4

"activity2" in the schedule_activity calls in the client (lines 3 and 5 respectively in the
client outline) with CORBA priorities. The use of names instead of actual CORBA
priorities in application code has two major advantages.

First, the use of names instead of priority numbers allows changing of scheduling
policy (e.g. from Deadline Monotonic to Rate Monotonic) without changing or re-
compiling application code. If the chosen Scheduling Service was enforcing Deadline
Monotonic Scheduling it might, for instance, internally use CORBA priority 10 for
"activity1" and CORBA priority 12 for "activity2". If a different implementation of the
Scheduling Service were being used, it might internally use completely different
CORBA priorities for these two CORBA activities to realize a different scheduling
policy (e.g. Rate Monotonic instead).

Second, the use of names instead of priority numbers allows changing *any* CORBA
priority without having to find and possibly re-order CORBA priority numbers in
application code. The Scheduling Service is the central place to change CORBA
priorities. Again, changes in priority can be made without re-compiling application
code.

The server in the example has two Scheduling Service calls. The first call accepts the
normal parameters to create a POA, except that line 3 of the server example above
states that the policy list input parameter has only non-RT policies. This is because the
Scheduling Service will set the RT policies itself when it creates the POA in the
Scheduling Service call in line 4. This way, the Scheduling Service can select RT
policies (thread pools, protocols, concurrency, server priority, etc) that make sense
under the uniform scheduling policy that the implementation of that Scheduling
Service is enforcing. It also relieves the application programmer from having to
determine all of those (relatively complicated) policies themselves.

The second Scheduling Service call in the server is the "schedule_object" call in line 6.
This call allows the Scheduling Service to associate a name with the object. Any RT
scheduling parameters for this object, such as the priority ceiling for the object, are
assumed to be internally associated with the object's name by the Scheduling Service
implementation. Thus, the call in Line 6 associates the scheduling parameters (e.g.
priority ceiling) with the object reference, perhaps to enforce priority ceiling
concurrency control on that object.

10/18/98 orbos/98-10-05: Realtime CORBA Joint Revised Submission 43

Conformance Issues 5

5.1 Introduction

This section specifies the points that must be met for a compliant implementation of
Realtime CORBA.

5.2 Compliance

An ORB implementation compliant with Realtime CORBA must implement all of
Realtime CORBA, as defined in section 3. Hence there is a single mandatory
compliance point.

The Realtime CORBA Scheduling Service, as defined in section 4, is a separate and
optional compliance point. An ORB implementation compliant with Realtime CORBA
may or may not choose to offer an implementation of the Realtime CORBA
Scheduling Service.

END OF DOCUMENT

44 orbos/98-10-05: Realtime CORBA Joint Revised Submission 10/18/98

5

