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Abstract DOC middleware resides between applications and the un-

) o o o . derlying operating systems, protocol stacks, and hardware in
To write, malntaln, and optimize efficient, predu;table, a%mplex real-time systems [7]. CORBA helps to decrease the
scalable real-time systems, developers of real-time appliggaje-time and effort required to develop high-quality systems
tions must know how to use the quality of service (Q0S) fegy composing applications out of reusable software compo-

tures defined by CORBA specifications for real-time and asyjysnt services, rather than building them entirely from scratch.
chronous messaging. The proposeeal-time CORBA De- ey the past two years, the use of CORBA middleware

velopers Guidelescribed in this document will explain thesg,q increased significantly in domains, such as aerospace,

specifications in detail, as well as provide many concrete pfQracommunications, medical systems, and distributed inter-
gramming examples that illustrate how to apply the featurgs;ve simulations, that are characterized by stringent QoS

of the Real-time CORBA and CORBA Messaging specificfisquirements. The acceptance of CORBA in these domains
tions effectively in practice. All the examples in this documegtems from the following two factors:

will be implementable in the TAO real-time ORB. Thus, real-

time application developers can use this developers guide td. Maturation of patterns and frameworks: Over the
learn about advanced CORBA fea‘[ures’ understand good wt decade, a substantial amount of R&D effort has focused
sign techniques and patterns for writing and optimizing re®0 patterns and frameworks for high-performance and real-

time CORBA applications, as well as get hands-on practié@e applications and middleware. For instapce, research con-
writing such applications using TAO. ducted as part of the DARPA Quorum project [8], the QuO

project at BBN [9], and the TAO [10] and TMO [11] projects

at Washington University and UC Irvine, have identified key
1 Introduction design patterns [12], optimization principle patterns [13], and

frameworks [14, 15] that instantiate these patterns into high-

A growing class of real-time systems require end-to-end SL%'-a”ty’ QoS-enabled DOC middleware components [16].

port for various quality of service (QoS) aspects, such as band2. Maturation of standards: Over the past decade, the
width, latency, jitter, and dependability. These systems incluB®G’s suite of standards has matured considerably, partic-
command and control systems [1], manufacturing process cally with respect to high-performance and real-time sys-
trol systems, videoconferencing [2], large-scale distributed tems. For instance, the OMG has recently adopted the Min-
teractive simulations [3], and testbeam data acquisition sigum CORBA [17], CORBA Messaging [18], and Real-time
tems [4, 5]. In addition to requiring support for stringent QOSORBA [19] specifications. Minimum CORBA removes fea-
requirements, these systems have becenabling technolo- tures from the complete OMG CORBA specification that are
giesfor companies in markets where deregulation, global conpt required by real-time and embedded systems. The Mes-
petition, and budget restrictions necessitate increased softvgaiging specification defines several asynchronous method in-
productivity and quality. vocation models and exports QoS policies to applications. The
Requirements for increased software productivity and quRleal-time CORBA specification includes features to manage
ity motivate the use oflistributed object computing (DOC)CPU, network, and memory resources. This article describes
middleware such as CORBA [6], which is an industry starthe key features of the Real-time CORBA specification that
dard being defined by the Object Management Group (OM@)e most relevant to researchers and developers of distributed



real-time and embedded systems. ular, RT-CORBA leverages features from GIOP/IIOP version

1.1 and the Messaging specification’s QoS policy framework.

Unfortunately, programmers gurrently_lack comprehensi {l these features and specifications are being integrated into
and comprehensible sources of information on how to deve AR forthcoming CORBA 3.0 standard [24]

real-time applications using advanced CORBA specifications: g .
Although the CORBA Real-time [19] and Messaging [18] As shown in Figure 1 an ORB endsystem [10] consists
specifications do an effective job of defining a standard set END-TO-END PRIORITY
of APIs, they are woefully inadequate as a means for learning PROPAGATION
how to write, maintain, and optimize efficient, predictable, and in args
scalable real-time systems. In particular, developers of real- operation()
time applications must understand how to master the patterns
and principles associated with applying the quality of service STUBS
(QoS) features defined by advanced CORBA specifications. STANDARD
To address the lack of good documentation, we propose to EXPLICIT ~SYNCHRONIZERS
write aReal-time CORBA Developers Guithat will demys- BINDING _ >

tify key advanced CORBA specifications related to program- [ §§ J
GIOP

out args + return value

+-—O0

OBJECT ADAPTER

ming real-time CORBA applications. This developers guide
will provide many concrete examples that illustrate how to PROTOCOL
program key features of the Real-time CORBA and CORBA PROPERTIES
Messaging specifications. Therefore, real-time application de-
velopers can use this developers guide to learn more about ad-
vanced CORBA features, as well as gain a firm understanding —
. . . . NETWORK ADAPTERS,
of good design techniques and patterns for writing and opti-
mizing real-time CORBA applications.
All examples in the developers guide will be distributed on
line along with the TAO real-time ORB [20]. Therefore, de-

velopers can interactively work through the many examplesdhnetwork interfaces, operating system I/O subsystems and

the documentin order to get hands-on practice writing, confgMmmunication protocols, and CORBA-compliant middle-

uring, and optimizing real-time applications using TAO. How/Yare components and services. The _RT'CQRBA specifica-
ever, since the examples in the book will be based on O,\}jlén identifies ca.pab.llltles that must Iqertlcally(!.e., network
standards, the knowledge and material will be transferabldEsrface« application layer) andiorizontally(i.e., peer-to-
any ORB that complies with advanced CORBA specificatioRE€r) integrated and managed by ORB endsystems to ensure
The remainder of this document is organized as follow?d-to-end predictable behavior factivities that flow be-
Section 2 presents an overview of the Real-time CORBA spa€en CORBA clients and servers. Below, we outline these
ification in order to give a sense of the topics that will be co@Pabilities, starting from the lowest level of abstraction and
ered in theReal-time CORBA Developers Guiddaturally, Puilding up to higher-level services and applications.
the final version of the document will explore each of thede Communication infrastructure resource management:
topics in much greater detail, along with many concrete exaAn RT-CORBA endsystem must leverage policies and mech-
ples that can be programmed and tested using TAO. Sectian&ms in the underlying communication infrastructure that
presents a statement of work, which outlines the tasks, schmgbport resource guarantees. This support can range from (1)
ule, and budget for the proposed project. managing the choice of connection for a particular invocation
to (2) exploiting advanced QoS features, such as controlling
the ATM virtual circuit cell pacing rate [25].

2 Overview of Real-time CORBA 2. OS scheduling mechanisms: ORBs exploit OS mecha-
nisms to schedule application-level activities end-to-end. Be-
The Real-time CORBA (RT-CORBA) specification definesaguse RT-CORBA targets fixed-priority real-time systems,
Standard features that Support end-to-end predICtablllty for qﬁbse mechanisms Correspond to managing oS thread Schedu|_
erations infixed-priority' CORBA applications. This specifi-ing priorities. The RT-CORBA specification focuses on op-

cation extends the existing CORBA standard [6] and the &ating systems that allow applications to specify scheduling
cently adopted OMG Messaging specification [18]. In partic-
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Figure 1: ORB Endsystem Features for Real-Time CORBA

NETWORK

2An activity represents the end-to-end flow of information between a client
1Subsequent OMG specifications are standardizing dynamic scheduting its server that includes the request when it is in memory, within the trans-
[21] techniques, such as deadline-based [22] or value-based [23] scheduliport, as well as one or more threads.



priorities and policies. For example, the real-time extensions ORB ENDSYSTEM A

in IEEE POSIX 1003.1c [26] define a static priority FIFO
scheduling policy that meets this requirement.

32767

3. Real-Time ORB endsystem: ORBs are responsible for
communicating requests between clients and servers transpar-
ently. A real-time ORB endsystem must provide standard in-
terfaces that allow applications to specify their resource re-
guirements to the ORB. The policy framework defined by the
OMG Messaging specification [18] allows applications to con-

fuoud::vga0od.Ld

figure ORB endsystem resources, such as thread priorities, )
buffers for message queueing, transport-level connections, and _:J 0
network signaling, in order to control ORB behavior. ORB ENDSYSTEM B

4. Real-time services and applications: Having a real-time ~ Figure 2: Mapping CORBA Priorities to Native Priorities
ORB manage endsystem and communication resources only

provides a partial solution. Real-time CORBA ORBs mu .

also preserve efficient, scalable, and predictable behavior eﬁé" Managing Processor Resources

to-end for higher-level services and application componenggsict control over the scheduling and execution of processor
For example, a global scheduling service [10, 27] can be ugggources is essential for many fixed-priority real-time applica-
to manage and schedule distributed resources. Such a schggyk. Therefore, the RT-CORBA specification enables client
ing service can interact with an ORB to provide mechanismgd server applications to (1) determine the priority at which
that support the specification and enforcement of end-to-endRBA invocations will be processed, (2) allow servers to
operation timing behavior. Application developers can theRe-define pools of threads, (3) bound the priority of ORB
structure their programs to exploit the features exported by thgeads, and (4) ensure that intra-process thread synchronizers
real-time ORB and its associated higher-level services.  have consistent semantics in order to minimize priority inver-

To manage these capabilities, RT-CORBA defines stand3y’ [28,]' . , .
interfaces and QoS policies that allow applications to con-'t r']s Important to recEgn_lze lthat RT'CQRIBAS pnontyd
figure and control (1)processor resourcegia thread pools, mechanisms cannot work miracles. In particular, ORB mid-

priority mechanisms, intra-process mutexes, and a g|og|‘.9w.are.can.not magically |mbue a non-real-time OS or com-
scheduling service, (2rommunication resourcesia pro- munication infrastructure with completely deterministic be-

tocol properties and explicit bindings, and @emory re- havior [29]. When used in the appropriate environment, how-

sourcesvia buffering requests in queues and bounding tRyer, certain RT-CORBA features help application developers

size of thread pools. Applications typically specify the@d integrators configure hetgrogeneous systems to preserve

real-time QoS policies along with other policies when th&firities end-to-end, as described below.

call standard ORB operations, such aseate _POA or

validate _connection . Forinstance, when an objectref2.1.1 Priority Mechanisms

erence is created using a QoS-enabled POA, the POA ensures . ,

that any server-side policies that affect client-side requests GRiventional [6] CORBA ORBs provide no standard way for

embedded within tagged comonent in the object reference.clients to indicate thg relative prlorltles of their requests t'o.

This enables clients who invoke operations on such object (@B endsystems. This feature is necessary, however, to mini-

erences to honor the policies required by the target object. Mize end-to-end priority inversion, as well as to bound latency
Figure 1 illustrates how the various RT-CORBA features r@nd jitter for applications with deterministic real-time QoS re-

late to the existing CORBA standard. Below, we describe h@ifirements. Therefore, the RT-CORBA specification defines

RT-CORBA features can be used to manage (1) processor”f'g-fc,’"OWing plat.form-independentmechanisms to control the
sources and (2) inter-ORB communication. We also outliRETty Of operation invocations.

RT-CORBA features for managing memory resources, thousfiority type system: - The RT-CORBA specification defines
the specification is less gpr|C|t_ on tr_us topic, so we merge Qyfo types of priorities -CORBAand native— to handle OS
memory management discussion with the two main topics. heterogeneity. Each one-way or two-way CORBA operation
3Tagged components are name/value pairs that can be used to expo%%li1 be assigned a CORBA priority, which ranges in value .b?_
tributes, such as security or QoS values, from a server to its clients with¥E€N O and 32767. Each ORB endsystem along an activity

object references [6]. path can be customized to map CORBA priorities to native




priorities, which may be unique on different endsystems. Figropagated model allows clients to declare invocation priori-

ure 2 illustrates how CORBA priorities can be mapped onties that must be honored by servers. In this model, each invo-
two different native ORB endsystem priorities. cation carries the CORBA priority of the operation in the ser-
o o i vice context list that is tunneled with its GIOP request. Each

Priority models: The RT-CORBA specification defines gypp endsystem along the activity path between the client and
PriorityModel policy with two values,SERVERDECLARED ' garyer maps this end-to-end CORBA priority to a native OS

and CLIENT_-PROPAGATED as shown in Figure 3 and deyiqrity and processes the request at this priority. Moreover,
if the client invokes a two-way operation, its CORBA priority

(A) SERVER (2) PrIORITY IS Msever il determine the priority of the reply.
DECLARED oo wmeser | Figure 3 (B) depicts the case where an invocation from a
MODEL (3) CLIRNT'S PRIORITY | client on ORB endsystem to a server on ORB endsystem
BY INVOCATION C results in an invocation on an intervening ORB endsys-
tem B, each running operating systems with different native
thread priority ranges. The CORBA priority of the client is
propagated with the request. Each intervening server along
(B) CLIENT GLOBAL CORBA PRIORITY = 100 the activity path maps the client's CORBA priority to a native
PROPAGATED SERVICE _+ SERVICE j priority that is appropriate for its host platform and end-to-
MODEL A Rt end global priority. For example, on Windows NT the global
CORBA priority can be mapped to a native OS priority of 26.
Likewise, on Solaris, the same global CORBA priority can be
LYNXOS WINNT SOLARIS mapped to a real-time thread with a priority of 135.

PRIORITY PRIORITY PRIORITY
=100 [} =5 Priority transforms:  The client propagated and server de-
clared priority models described above are not sufficient for
Current::priority(100)  Current::priority(100)  Current::priority100)  all applications. For instance, the server declared model only
to_native(100) => 100 to_native(100)=>5  to_native(100)=>1356 maps priorities to objects, which may be too coarse-grained for
Figure 3: Real-time CORBA Priority Models more dynamic use-cases. Likewise, although the client propa-
gated model is more dynamic, there are use-cases where appli-
cations require additional control over the ultimate priority at
which a given invocation is processed. For example, different
e Server declared priorities: This model allows a serverpriority ceiling protocols may be required in a server to handle
to dictate the priority at which an invocation made on a panbound invocations.e., before the upcall is performed, and
ticular object will execute. In the server declared model, thetbound invocations.e., before a client or servant performs
priority is designated priori by a server based on the value cd remote method invocation.
thePriorityModel policy in the POA where the object was ac- To support these uses-cases, therefore, the RT-CORBA
tivated. A single priority is encoded into the object referencgpecification permits a server application to defpréority
which is then published to the client as a tagged componentrensformsthat set the priority at which particular invocations
an object reference, as shown in Figure 3 (A). are performede.g, based on external factors, such as current
Although the server declares the priority, the client ORB &rver load, operation criticality [10], or the state of a global
aware of the selected priority model policy and can use tlsisheduling service [27]. Transforms are implementdubaks
information internally. For example, priority-banded connethat are applied as requests are received or sent. A transform
tions can be implemented on the client by matching invodasok is passed the current CORBA priority and target object id
tion priorities and priority-bands with priorities advertised bgnd can change the invocation priority, potentially by calling
a server. Thus, the ORB can guarantee that client invocations$ to application-supplied code. The following two priority
on a particular object are performed at the designated priotignsform models are defined in RT-CORBA:

on the server. e Inbound transforms: These transforms are applied
during the invocation upcall,e., after reception by the ORB
(ore, but before the servant operation is dispatched in a server.

scribed below.

¢ Client propagated priorities:  Although the server de-
clared model is useful for certain real-time applications, it
not suited for all application use-cases. For instance, one way Outbound transforms: These transforms are per-
for a server to avoid priority inversions is to process incorfermed when ammnwardoperation is invoked from a servant.
ing requests at a priority equivalent to the client thread thah onward operation occurs whenever a servant invokes an
invoked the operation originally [28]. The RT-CORBA clienbperation on an object.



2.1.2 Thread Pools pool styleswith andwithout lanesas described below.

Many embedded systems use multi-threading to (1) distifread pools:  The simplest RT-CORBA thread pool model
guish between different types of service, such as high-priorﬂl‘lDWS developers to control the overall concurrency level
vs. low-priority tasks [1] and (2) support thread preemption ¥ithin server ORBs and applications. A thread pool is cre-
prevent unbounded priority inversion. Prior to the RT-CORBAted with a fixed number of statically allocated threads that
specification, however, there was no standard API for pR? ORB uses to process client messages. These pre-allocated
gramming multi-threaded CORBA servers. Thus, it was niéfeads will consume system resources even if they are not
possible to use CORBA to program multi-threaded real-tirdéed, however. Therefore, RT-CORBA provides an interface
systems without using proprietary ORB featufes. that allows server developers to pre-allocate an initial number
One way to implement a server ORB without threads is @6 so-calledstatic threads, while allowing this pool to grow
use areactiveconcurrency model [30]. In this approach, dynamically to handle bursts of client requests.
server ORB reads each request from the underlying commuServer applications can use tieeeate _threadpool
nication mechanism, processes it to completion, and thenA&) to specify (1) the default number of static threads that
trieves the next request and so forth. If all requests requivé€ created initially, (2) the maximum number of threads that
a fixed, relatively short amount of processing, a reactive c&&n be created dynamically, and (3) the defapitority of all
currency model may be feasible. However, many distributitese threads. If a request arrives and all existing threads are
applications have complex object implementations that run R8sy, & new thread may be created to handle the request. No
variable and/or long durations. Moreover, to avoid unbound@@ditional thread will be created, however, if the maximum
priority inversion and deadlock, real-time applications oftéfimber of threads in the pool have been spawned.
require some form of pre-emptive multi-threading. A pool can be optionally pre-configured for a maximum
To address these concurrency issues, therefore, byfer size or number of requests. If buffering is enabled for
RT-CORBA specification defines a standatfaread pool the pool, the request will be queued until a thread is available
model [30]. This model allows server developers to prgz processit. If no queue space is available or request buffering
allocate pools of threads and to set certain thread attribut¥ds not specified the ORB should raisgRANSIENT excep-
such as default priority levels. Thread pools are useful for rein, which indicates a temporary resource shortage. When
time ORB endsystems and applications that want to Ieveré@% cllent receives this exception it can reissue the request at a
the benefits of multi-threading, while bounding the amount Ger point.
memory resources, such as stack space, they consume. Mptiead pools with lanes: Many real-time and embedded
over, thread pools can be optionally configured to buffer or ngfstems applications statically associate global CORBA pri-
buffer requests, which provides further control over memagyities to pools of threads. For example, a telecommunica-
usage. tions application may select three distinct priorities to rep-
Thread pools can be defined and associated with POAgdBent low-latency, high-throughput, and best-effort request
an RT-CORBA server. Each POA must be associated wiflasses. Alternatively, a fixed set of rate-groups with cor-
one thread pool, although a thread pool can be associated wé#ponding global CORBA priorities are a convenient model
multiple POAs. Figure 4 illustrates the creation and assocfar applications, such as avionics mission computing [1], with

tion of thread pools in a server. real-time periodic processing requirements. In these scenar-
ios, it is desirable to partition the threads in a thread pool into
( 2 _)2»2 2 _)29 different subsets, each with different priorities. Therefore, RT-
> POA > CORBA defines ahread pool with lanesnodel, which en-
THREAD LD L ables developers to bound both the overall concurrency of a
\__POOL Root POA ) Threadpooltd id = server and the amount of work performed at a given priority
4 ) e hreadpon level.
é _)2 ;‘:Q’C‘E“;{Z‘*j’ds’ For each lane in this thread pool model, the server specifies
L > ) default_priority); the CORBA priority, static thread count, and dynamic thread
count. Dynamic threads are assigned the lane priority. Thread
Figure 4: Server Thread Pools in RT-CORBA pools with lanes can be configured to allow lanes with higher

o _ . priorities to borrow threads from lanes with lower priorities. If
The RT-CORBA specification defines two different threagthread is borrowed, its priority is temporarily raised to that

4Strictly speaking, the RT-CORBA specification is an optional part of the 5Threads within a pool may have their priorities changed dynamically in
CORBA standard, though ORBs that implement it are obliged to adhere toait€ordance with the priority models or priority transforms described in Sec-
interfaces and policies. tion 2.1.1.



of the lane that borrows it. When the invocation processingal-time scheduling service to specify the processing require-
is complete, its priority reverts to its previous value and timents of their operations in terms of various parameters, such
thread returns to its original lane. Thread pools with lanes aB®worst-case execution time or period, as shown in Figure 6.

can be configured to support request buffering if no threads are
available to process incoming requests.

3: POPULATE OFF-LINE
RT_INFO SCHEDULER

— %

RT_INFO
REPOSITORY

struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;
Importance importance_;

b

As mentioned in Section 2.1.2, the CORBA specification [6]: cowmver o
does not define a threading model. Thus, there is no stan<™n® o KTOPERATIONS
dard, portable API that CORBA applications can use to ensuperemry e
semantic consistency between their synchronization mec

N
NN
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EXECUTES AFTER

2.1.3 Standard Synchronizers

4: ASSESS
SCHEDULABILITY

5: ASSIGN OS THREAD
PRIORITIES AND
DISPATCH QUEUE

RT RT

nisms and the internal synchronization mechanisms used |°"°”‘“"“ Optenton| |Opeenion| &S0 S‘é‘ﬁg&f& -
an ORB. Real-time applications, however, require this cons(___OBJECT ADAPTER ] o om Priority
ioritv i i iori ili | Subpriori

:;r:;:)[/ 2tg]enforce priority inheritance and priority ceiling protc [C)@ C)] ubpriority

' ] —_ = Mode

To ensure semantic consistency, therefore, the RT-COR /O SUBSYSTEM

specification defines a standard seloaflity constrainednu-
tex operations. Figure 5 illustrates the mutex interface defined ] . ]
by RT-CORBA. Figure 6: Real-Time CORBA Global Scheduling Service

Mutex
lock()
unlock()
try_lock()

2.2 Managing Inter-ORB Communication

(SERVANT)

Historically, the CORBA specification and conventional ORBs
have supportelibcation transparency.e., applications cannot
detect whether components are distributed or collocated in the
same process [31]. Moreover, the features of the underlying

OBJECT
ADAPTER

!

>> ) OS, network, and/or bus are considered a black box. Although
(mutexzj this encapsulation is useful for applications with best-effort
QoS requirements, it is inadequate for applications with more
Figure 5: Standard Synchronizers stringent QoS requirements.

To allow applications to control the underlying communi-
cation protocols and endsystem resources, therefore, the RT-
CORBA specification defines standard interfaces that can be
2.1.4 Global Scheduling Service used to select and configure certpintocol propertiesin ad-
dition, client applications caexplicitly bindto server objects

The scheduling abstractions defined by real-time operatiigng priority-bands and private connections, as described be-
systems such as VxWorks, LynxOS, and POSIX 1003.1c [3§]y,

implementations are relatively low-level. For instance, they
require developers to map their high-level application QoS S
guirements into lower-level OS mechanisms, such as thréad
priorities and virtual circuit bandwidth/latency parameterSORBA uses inter-ORB communication mechanisms [32] to
This manual mapping step is non-intuitive for many applicaxchange requests between clients and servers. These mecha-
tion developers, who prefer to design in terms of object intgfisms are built upon lower level protocols that provide various
faces and object operations. types of QoS. Inter-ORB protocol (IOP) instances are com-

To allow applications to specify their scheduling requirggosed of both an ORB protocol and a mapping to a specific
ments in a higher-level, more intuitive manner, the RUnderlying transport protocol. For example, the Internet Inter-
CORBA specification defines a global scheduling service [18]RB Protocol (IlOP) is a mapping of the General Inter-ORB
This service is a CORBA object that is responsible for alloc&rotocol (GIOP) onto TCP/IP. Thus, an IOP contains two pro-
ing system resources to meet the QoS needs of the applioael layers -ORBandtransport— each having its own set of
tions that share the ORB endsystem. Applications can usephgtocol properties.

1 Selecting and Configuring Protocol Properties



RT-CORBA defines an interface that permits applications a per-object basis. In contrast, clients can use this policy
to specify ORB- and transport-specific protocol propertiéschange protocol policies on a per-invocation basis. If set on
that control various communication protocol features, suttte server, th€lientProtocol policy is propagated to the
as ATM virtual circuits or Internet RSVP [33] traffic speciclient in the object reference, as shown in Figure 7. This figure
fication. Each ORB/transport protocol properties tuple is de-
fined by aProtocol struct that ultimately resides in a 2: PASS +—©
sequence structs calledPaotocolList , as defined by the
following CORBA IDL: EEE

OBJECT

(SERVANT)
i : . 4: INVOKE OPERATION 1: CREATE OBJECT
interface ProtocolProperties {}; 3: SELECT o , REFERENCE |

PROTOCOL
typedef struct { v OBJECT ADAPTER

I0P::Profileld protocol_type; %
ProtocolProperties

orb_protocol_properties;
ProtocolProperties

=

transport_protocol_properties; NETWORK
} Protocol;
typedef sequence <Protocol> ProtocolList; Figure 7: Configuring and Selecting Protocol Properties

The order in which protocol properties appear in theustrates how a server can designate the protocols available
ProtocolList is significant — it allows applications to in-to the client. The server publishes the VME, ATM, or RTP
dicate the order of their protocol preferences. For exampgdeotocols, in that order, in a tagged component in the object
a client may specify that I1OP is more preferable than othesference. The client then must abide by @igentProtocol
protocol combinations. policy propagated by the server and select from one of these
To allow applications to select and configure their desirg@ttee protocols. This feature allows a server to enforce specific
ORB/transport protocol properties, RT-CORBA defines thater-ORB protocol requirements on clients.
following pair of QoS policiesClientProtocolandServerPro-

tocol The particular properties for specific protocols can be de-

fined via interface inheritance. For example, the standard TCP

Server-side protocol properties: CORBA servers can useprotocol properties are shown below:

the ServerProtocc_)Ipohcy to select wr_uch protocols to con- rface TCPProtocolProperties

figure into an object reference. This policy can be passe(f ProtocolProperties

with other POA policies when thereate _POAoperation {

is invoked on thePortableServer::POA interface. The  attribute long send_buffer_size;

ServerProtocopolicy has two purposes: it (1) publishes a list attribute long recv_buffer_size;

of available protocols to clients and (2) defines protocol Con_agr!guie Eoo:ean Eee?—a'“{ef

figuration attributes for server connections. gtt::bﬂtg bgglggﬂ ngnd—er%;;e’
The POA ensures that the ordering of profiles in object rgf- -

erences conforms to the ordering of protocols specified in the ] ) o
ServerProtocolpolicy. Thus, a server can export its protoTh'S protocol property interface permits applications to set

col preferences to clients by passing them in object referene@dimon attributes of TCP endpoints. For example, the send
whose profiles are arranged in a particular order. When a cligRfl receive buffer size attributes can set the size of endpoint

receives the object reference, it can either accept the send@gket queues. Many TCP implementations use these values
preference or use different selection criteria. to determine the TCP window size, which in turn affects end-

) . ] ] o to-end throughput. If th&eep _alive attribute is enabled
Client-side protocol properties: Client applications can Tcp will send a probe on inactive connections to verify that
use theClientProtocolpolicy to select which protocols to useney are still valid. Finally, theo delay attribute disables
when they connect to objects. This policy is applied whenrgp's Nagle algorithm so that small requests can be sent even
client obtains a binding to an object. TtdientProtocolpol- it earlier requests have not yet been acknowledged.
icy indicates the protocol properties a client is interested in, as

well as the ordering of its preferences. o
. ) . . 2.2.2 Explicit Bindin
The ClientProtocolpolicy can be set either by a client or xplcit Binding
server, but not both for the same object reference. ServEng original CORBA specification only supportéahplicit
can publish particular protocol requirements and preferenbegding [34]. In this model, resources along the activity



path between a client and its server object are establishedlocates any necessary resources to ensure subsequent requests

demandl e.g, after a client’s first invocation on the servemrriving on this connection will be processed at the desired

Implicit binding helps preserve location transparency by gdriority.

lowing clients to access remote objects or collocated objects

using a common programming model. In addition, it helg¥ivate connections: Many ORBs suppomultiplexedcon-

conserve OS and networking resources, such as socket h&ations, which yield better utilization of connections and

dles and ATM virtual circuits, by (1) deferring network conether limited OS resources [30]. However, real-time applica-

nections until they are actually used and (2) allowing multiplions often require private,e., non-multiplexedconnections,

client threads in a process to be multiplexed through shawgdich are well-suited for applications that possess determin-

network connections to their corresponding servers. istic QoS requirements. In this case, a connection cannot be
Unfortunately, implicit binding is inadequate for real-timéeused for another two-way request until the reply for the pre-

applications with deterministic QoS requirements. In parti¢ious request is received. To support this feature, RT-CORBA

ular, deferring object/server activation and resource alloggovides a policyPrivateConnectionthat allows clients to

tion until run-time can increase latency and jitter significanti§elect private connections that minimize the duration of any

Moreover, the use of connection multiplexing can yield supnd-to-end priority inversions. Oddly, there is no APl in RT-

stantial priority inversion [30] due to head-of-line blocking as~ORBA to explicitly request a multiplexed connectidre,,

sociated with connection queues that are processed in FIR® is considered an ORB implementation detail.

order. Figure 8 illustrates the use of priority-banded, private con-
To avoid these problems, the RT-CORBA specificaections between a client and server. In Figure 8 private con-

tion defines anexplicit binding mechanism that uses

the validate _connection operation defined on the _validate_connection (out CORBA::PolicyList

CORBA::Object interface in the CORBA Messaging spec- inconsistent_policies);

ification. This mechanism enables clients to (1) pre-establish

connections to servers and (2) control how client requests are

—>,
sent over these connections. The following two policies — —>2 2 —>§ _)2 —>§
priority-bandedandprivate connections are defined to sup-
port explicit binding in RT-CORBA. T A A

PRIORITY-BANDED
PRIVATE CONNECTIONS

Priority-banded connections: Priority-banded connections

allow clients to (1) specify explicit priorities for each network ) -~

connection and (2) select the appropriate connection at run- Figure 8: Explicit Binding

time based on the CORBA priority of the thread that invoked

an operation. Clients are responsible for specifying policiegctions are combined with priority banding. Thus, each client

that define one or more priority-bands when they establigperation is sent to the server over a pre-allocated connection

connections explicitly. that is assigned to a fixed priority range. The server ORB then
Priority-band information is exported to the server withigrocesses the servant upcall at the specified priority and sends

the service context of the first invocation sent across tthe reply across the same non-multiplexed connection. This
connection. For instance, explicit binding information igombination of features ensures that end-to-end priorities are

passed in a request fabind _priority  _band, which maintained and that key sources of priority inversion are elim-
is an implicit operation® When a server receives dnated.

_bind _priority  _band request, which includes the re-

guested priority in the service context, it allocates resources

to the connection. Subsequent requests on this connectior@re Statement of Work

then processed at the requested priority.

In the absence of arbind _priority ~ _band operation, The scope of this effort is to createReal-time CORBA De-
an implicit bind is performed when the first invocation is seQklopers Guidethat describes the key advanced features of
over the connection. The service context of this request M Real-time CORBA [19] and CORBA Messaging [18] that
contain the CORBA priority rangé.e., minimum and maxi- are relevant to programmers writing and optimizing real-time
mum values, for the banded connection. The server thengplications. This section describes the specific tasks to be

SImplicit operations are implemented by an ORB, not by an applicati nerforrned and the deliverables to be produced during the 6

object, and are typically used for internal inter-ORB communication and cdhonths of the proposed p'rc')j'ect, as well as the planned sched-
figuration. ule and budget for the activities.




Task 1. Motivate, Describe, and lllustrate Key Budget

Real-time CORBA Features

The participants in this effort include the following personnel:
The features of Real-time CORBA will include the following: 1

Faculty members.€., Dr. Douglas C. Schmidt — Ph.D.,
Associate Professor, UC Irvine and Dr. David Levine

1. Portable priorities — Ph.D., Director of the Center for Distributed Object
2. End-to-end priority propagation Computing, Washington University) at 10% during the
3. Protocol properties 6 month period of performance.
4. Thread pools 2. Gradugte student.é., C_arlos O’Ryan, Ph.D. candidate
' UC Irvine) at 100% during the period of performance.
5. Explicit binding
) The total cost of the proposed 12 month effor$E2,500
6. Standard synchronizers The following table provides a cost breakdown for this project.
The deliverables for Task 1 will be contained in a compre- Description Amount
hensive document that_will be released for review 2 monthg— faculty members at 10% 20.000
after the start of the project. 1 graduate research assistant at 100%15,000
University overhead at 50% 17,500
Task 2: Motivate, Describe, and lllustrate Key Total budget 52,500
CORBA Messaging Features
References

These features will include the following:

(1
1. QoS Policiedor the ORB,e.qg:
e Timeouts (2]
e Priority
¢ Reliable one-ways 3]
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e Poller model [4]
e Callback model
[5]

The deliverables for Task 2 will be contained in a compre-
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Task 3: Develop Online Tutorial Examples
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These examples will illustrate concretely how to program real-
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ing, configuring, and optimizing real-time applications using
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of the 6 month period of performance.
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