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Abstract

To write, maintain, and optimize efficient, predictable, and
scalable real-time systems, developers of real-time applica-
tions must know how to use the quality of service (QoS) fea-
tures defined by CORBA specifications for real-time and asyn-
chronous messaging. The proposedReal-time CORBA De-
velopers Guidedescribed in this document will explain these
specifications in detail, as well as provide many concrete pro-
gramming examples that illustrate how to apply the features
of the Real-time CORBA and CORBA Messaging specifica-
tions effectively in practice. All the examples in this document
will be implementable in the TAO real-time ORB. Thus, real-
time application developers can use this developers guide to
learn about advanced CORBA features, understand good de-
sign techniques and patterns for writing and optimizing real-
time CORBA applications, as well as get hands-on practice
writing such applications using TAO.

1 Introduction

A growing class of real-time systems require end-to-end sup-
port for various quality of service (QoS) aspects, such as band-
width, latency, jitter, and dependability. These systems include
command and control systems [1], manufacturing process con-
trol systems, videoconferencing [2], large-scale distributed in-
teractive simulations [3], and testbeam data acquisition sys-
tems [4, 5]. In addition to requiring support for stringent QoS
requirements, these systems have becomeenabling technolo-
giesfor companies in markets where deregulation, global com-
petition, and budget restrictions necessitate increased software
productivity and quality.

Requirements for increased software productivity and qual-
ity motivate the use ofdistributed object computing (DOC)
middleware, such as CORBA [6], which is an industry stan-
dard being defined by the Object Management Group (OMG).

DOC middleware resides between applications and the un-
derlying operating systems, protocol stacks, and hardware in
complex real-time systems [7]. CORBA helps to decrease the
cycle-time and effort required to develop high-quality systems
by composing applications out of reusable software compo-
nent services, rather than building them entirely from scratch.

Over the past two years, the use of CORBA middleware
has increased significantly in domains, such as aerospace,
telecommunications, medical systems, and distributed inter-
active simulations, that are characterized by stringent QoS
requirements. The acceptance of CORBA in these domains
stems from the following two factors:

1. Maturation of patterns and frameworks: Over the
past decade, a substantial amount of R&D effort has focused
on patterns and frameworks for high-performance and real-
time applications and middleware. For instance, research con-
ducted as part of the DARPA Quorum project [8], the QuO
project at BBN [9], and the TAO [10] and TMO [11] projects
at Washington University and UC Irvine, have identified key
design patterns [12], optimization principle patterns [13], and
frameworks [14, 15] that instantiate these patterns into high-
quality, QoS-enabled DOC middleware components [16].

2. Maturation of standards: Over the past decade, the
OMG’s suite of standards has matured considerably, partic-
ularly with respect to high-performance and real-time sys-
tems. For instance, the OMG has recently adopted the Min-
imum CORBA [17], CORBA Messaging [18], and Real-time
CORBA [19] specifications. Minimum CORBA removes fea-
tures from the complete OMG CORBA specification that are
not required by real-time and embedded systems. The Mes-
saging specification defines several asynchronous method in-
vocation models and exports QoS policies to applications. The
Real-time CORBA specification includes features to manage
CPU, network, and memory resources. This article describes
the key features of the Real-time CORBA specification that
are most relevant to researchers and developers of distributed
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real-time and embedded systems.

Unfortunately, programmers currently lack comprehensive
and comprehensible sources of information on how to develop
real-time applications using advanced CORBA specifications.
Although the CORBA Real-time [19] and Messaging [18]
specifications do an effective job of defining a standard set
of APIs, they are woefully inadequate as a means for learning
how to write, maintain, and optimize efficient, predictable, and
scalable real-time systems. In particular, developers of real-
time applications must understand how to master the patterns
and principles associated with applying the quality of service
(QoS) features defined by advanced CORBA specifications.

To address the lack of good documentation, we propose to
write aReal-time CORBA Developers Guidethat will demys-
tify key advanced CORBA specifications related to program-
ming real-time CORBA applications. This developers guide
will provide many concrete examples that illustrate how to
program key features of the Real-time CORBA and CORBA
Messaging specifications. Therefore, real-time application de-
velopers can use this developers guide to learn more about ad-
vanced CORBA features, as well as gain a firm understanding
of good design techniques and patterns for writing and opti-
mizing real-time CORBA applications.

All examples in the developers guide will be distributed on-
line along with the TAO real-time ORB [20]. Therefore, de-
velopers can interactively work through the many examples in
the document in order to get hands-on practice writing, config-
uring, and optimizing real-time applications using TAO. How-
ever, since the examples in the book will be based on OMG
standards, the knowledge and material will be transferable to
any ORB that complies with advanced CORBA specifications.

The remainder of this document is organized as follows:
Section 2 presents an overview of the Real-time CORBA spec-
ification in order to give a sense of the topics that will be cov-
ered in theReal-time CORBA Developers Guide. Naturally,
the final version of the document will explore each of these
topics in much greater detail, along with many concrete exam-
ples that can be programmed and tested using TAO. Section 3
presents a statement of work, which outlines the tasks, sched-
ule, and budget for the proposed project.

2 Overview of Real-time CORBA

The Real-time CORBA (RT-CORBA) specification defines
standard features that support end-to-end predictability for op-
erations infixed-priority1 CORBA applications. This specifi-
cation extends the existing CORBA standard [6] and the re-
cently adopted OMG Messaging specification [18]. In partic-

1Subsequent OMG specifications are standardizing dynamic scheduling
[21] techniques, such as deadline-based [22] or value-based [23] scheduling.

ular, RT-CORBA leverages features from GIOP/IIOP version
1.1 and the Messaging specification’s QoS policy framework.
All these features and specifications are being integrated into
the forthcoming CORBA 3.0 standard [24].

As shown in Figure 1 an ORB endsystem [10] consists
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Figure 1: ORB Endsystem Features for Real-Time CORBA

of network interfaces, operating system I/O subsystems and
communication protocols, and CORBA-compliant middle-
ware components and services. The RT-CORBA specifica-
tion identifies capabilities that must bevertically (i.e., network
interface$ application layer) andhorizontally(i.e., peer-to-
peer) integrated and managed by ORB endsystems to ensure
end-to-end predictable behavior foractivities2 that flow be-
tween CORBA clients and servers. Below, we outline these
capabilities, starting from the lowest level of abstraction and
building up to higher-level services and applications.

1. Communication infrastructure resource management:
An RT-CORBA endsystem must leverage policies and mech-
anisms in the underlying communication infrastructure that
support resource guarantees. This support can range from (1)
managing the choice of connection for a particular invocation
to (2) exploiting advanced QoS features, such as controlling
the ATM virtual circuit cell pacing rate [25].

2. OS scheduling mechanisms: ORBs exploit OS mecha-
nisms to schedule application-level activities end-to-end. Be-
cause RT-CORBA targets fixed-priority real-time systems,
these mechanisms correspond to managing OS thread schedul-
ing priorities. The RT-CORBA specification focuses on op-
erating systems that allow applications to specify scheduling

2An activity represents the end-to-end flow of information between a client
and its server that includes the request when it is in memory, within the trans-
port, as well as one or more threads.
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priorities and policies. For example, the real-time extensions
in IEEE POSIX 1003.1c [26] define a static priority FIFO
scheduling policy that meets this requirement.

3. Real-Time ORB endsystem: ORBs are responsible for
communicating requests between clients and servers transpar-
ently. A real-time ORB endsystem must provide standard in-
terfaces that allow applications to specify their resource re-
quirements to the ORB. The policy framework defined by the
OMG Messaging specification [18] allows applications to con-
figure ORB endsystem resources, such as thread priorities,
buffers for message queueing, transport-level connections, and
network signaling, in order to control ORB behavior.

4. Real-time services and applications: Having a real-time
ORB manage endsystem and communication resources only
provides a partial solution. Real-time CORBA ORBs must
also preserve efficient, scalable, and predictable behavior end-
to-end for higher-level services and application components.
For example, a global scheduling service [10, 27] can be used
to manage and schedule distributed resources. Such a schedul-
ing service can interact with an ORB to provide mechanisms
that support the specification and enforcement of end-to-end
operation timing behavior. Application developers can then
structure their programs to exploit the features exported by the
real-time ORB and its associated higher-level services.

To manage these capabilities, RT-CORBA defines standard
interfaces and QoS policies that allow applications to con-
figure and control (1)processor resourcesvia thread pools,
priority mechanisms, intra-process mutexes, and a global
scheduling service, (2)communication resourcesvia pro-
tocol properties and explicit bindings, and (3)memory re-
sourcesvia buffering requests in queues and bounding the
size of thread pools. Applications typically specify these
real-time QoS policies along with other policies when they
call standard ORB operations, such ascreate POA or
validate connection . For instance, when an object ref-
erence is created using a QoS-enabled POA, the POA ensures
that any server-side policies that affect client-side requests are
embedded within atagged component3 in the object reference.
This enables clients who invoke operations on such object ref-
erences to honor the policies required by the target object.

Figure 1 illustrates how the various RT-CORBA features re-
late to the existing CORBA standard. Below, we describe how
RT-CORBA features can be used to manage (1) processor re-
sources and (2) inter-ORB communication. We also outline
RT-CORBA features for managing memory resources, though
the specification is less explicit on this topic, so we merge our
memory management discussion with the two main topics.

3Tagged components are name/value pairs that can be used to export at-
tributes, such as security or QoS values, from a server to its clients within
object references [6].
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Figure 2: Mapping CORBA Priorities to Native Priorities

2.1 Managing Processor Resources

Strict control over the scheduling and execution of processor
resources is essential for many fixed-priority real-time applica-
tions. Therefore, the RT-CORBA specification enables client
and server applications to (1) determine the priority at which
CORBA invocations will be processed, (2) allow servers to
pre-define pools of threads, (3) bound the priority of ORB
threads, and (4) ensure that intra-process thread synchronizers
have consistent semantics in order to minimize priority inver-
sion [28].

It is important to recognize that RT-CORBA’s priority
mechanisms cannot work miracles. In particular, ORB mid-
dleware cannot magically imbue a non-real-time OS or com-
munication infrastructure with completely deterministic be-
havior [29]. When used in the appropriate environment, how-
ever, certain RT-CORBA features help application developers
and integrators configure heterogeneous systems to preserve
priorities end-to-end, as described below.

2.1.1 Priority Mechanisms

Conventional [6] CORBA ORBs provide no standard way for
clients to indicate the relative priorities of their requests to
ORB endsystems. This feature is necessary, however, to mini-
mize end-to-end priority inversion, as well as to bound latency
and jitter for applications with deterministic real-time QoS re-
quirements. Therefore, the RT-CORBA specification defines
the following platform-independentmechanisms to control the
priority of operation invocations.

Priority type system: The RT-CORBA specification defines
two types of priorities –CORBAandnative– to handle OS
heterogeneity. Each one-way or two-way CORBA operation
can be assigned a CORBA priority, which ranges in value be-
tween 0 and 32767. Each ORB endsystem along an activity
path can be customized to map CORBA priorities to native
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priorities, which may be unique on different endsystems. Fig-
ure 2 illustrates how CORBA priorities can be mapped onto
two different native ORB endsystem priorities.

Priority models: The RT-CORBA specification defines a
PriorityModel policy with two values,SERVER DECLARED

and CLIENT PROPAGATED, as shown in Figure 3 and de-
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Figure 3: Real-time CORBA Priority Models

scribed below.

� Server declared priorities: This model allows a server
to dictate the priority at which an invocation made on a par-
ticular object will execute. In the server declared model, the
priority is designateda priori by a server based on the value of
thePriorityModelpolicy in the POA where the object was ac-
tivated. A single priority is encoded into the object reference,
which is then published to the client as a tagged component in
an object reference, as shown in Figure 3 (A).

Although the server declares the priority, the client ORB is
aware of the selected priority model policy and can use this
information internally. For example, priority-banded connec-
tions can be implemented on the client by matching invoca-
tion priorities and priority-bands with priorities advertised by
a server. Thus, the ORB can guarantee that client invocations
on a particular object are performed at the designated priority
on the server.

� Client propagated priorities: Although the server de-
clared model is useful for certain real-time applications, it is
not suited for all application use-cases. For instance, one way
for a server to avoid priority inversions is to process incom-
ing requests at a priority equivalent to the client thread that
invoked the operation originally [28]. The RT-CORBA client

propagated model allows clients to declare invocation priori-
ties that must be honored by servers. In this model, each invo-
cation carries the CORBA priority of the operation in the ser-
vice context list that is tunneled with its GIOP request. Each
ORB endsystem along the activity path between the client and
server maps this end-to-end CORBA priority to a native OS
priority and processes the request at this priority. Moreover,
if the client invokes a two-way operation, its CORBA priority
will determine the priority of the reply.

Figure 3 (B) depicts the case where an invocation from a
client on ORB endsystemA to a server on ORB endsystem
C results in an invocation on an intervening ORB endsys-
temB, each running operating systems with different native
thread priority ranges. The CORBA priority of the client is
propagated with the request. Each intervening server along
the activity path maps the client’s CORBA priority to a native
priority that is appropriate for its host platform and end-to-
end global priority. For example, on Windows NT the global
CORBA priority can be mapped to a native OS priority of 26.
Likewise, on Solaris, the same global CORBA priority can be
mapped to a real-time thread with a priority of 135.

Priority transforms: The client propagated and server de-
clared priority models described above are not sufficient for
all applications. For instance, the server declared model only
maps priorities to objects, which may be too coarse-grained for
more dynamic use-cases. Likewise, although the client propa-
gated model is more dynamic, there are use-cases where appli-
cations require additional control over the ultimate priority at
which a given invocation is processed. For example, different
priority ceiling protocols may be required in a server to handle
inbound invocations, i.e., before the upcall is performed, and
outbound invocations, i.e., before a client or servant performs
a remote method invocation.

To support these uses-cases, therefore, the RT-CORBA
specification permits a server application to definepriority
transformsthat set the priority at which particular invocations
are performed,e.g., based on external factors, such as current
server load, operation criticality [10], or the state of a global
scheduling service [27]. Transforms are implemented ashooks
that are applied as requests are received or sent. A transform
hook is passed the current CORBA priority and target object id
and can change the invocation priority, potentially by calling
out to application-supplied code. The following two priority
transform models are defined in RT-CORBA:

� Inbound transforms: These transforms are applied
during the invocation upcall,i.e., after reception by the ORB
Core, but before the servant operation is dispatched in a server.

� Outbound transforms: These transforms are per-
formed when anonwardoperation is invoked from a servant.
An onward operation occurs whenever a servant invokes an
operation on an object.
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2.1.2 Thread Pools

Many embedded systems use multi-threading to (1) distin-
guish between different types of service, such as high-priority
vs. low-priority tasks [1] and (2) support thread preemption to
prevent unbounded priority inversion. Prior to the RT-CORBA
specification, however, there was no standard API for pro-
gramming multi-threaded CORBA servers. Thus, it was not
possible to use CORBA to program multi-threaded real-time
systems without using proprietary ORB features.4

One way to implement a server ORB without threads is to
use areactiveconcurrency model [30]. In this approach, a
server ORB reads each request from the underlying commu-
nication mechanism, processes it to completion, and then re-
trieves the next request and so forth. If all requests require
a fixed, relatively short amount of processing, a reactive con-
currency model may be feasible. However, many distributed
applications have complex object implementations that run for
variable and/or long durations. Moreover, to avoid unbounded
priority inversion and deadlock, real-time applications often
require some form of pre-emptive multi-threading.

To address these concurrency issues, therefore, the
RT-CORBA specification defines a standardthread pool
model [30]. This model allows server developers to pre-
allocate pools of threads and to set certain thread attributes,
such as default priority levels. Thread pools are useful for real-
time ORB endsystems and applications that want to leverage
the benefits of multi-threading, while bounding the amount of
memory resources, such as stack space, they consume. More-
over, thread pools can be optionally configured to buffer or not
buffer requests, which provides further control over memory
usage.

Thread pools can be defined and associated with POAs in
an RT-CORBA server. Each POA must be associated with
one thread pool, although a thread pool can be associated with
multiple POAs. Figure 4 illustrates the creation and associa-
tion of thread pools in a server.
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ThreadpoolId id =
create_threadpool
   (static_threads,
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Figure 4: Server Thread Pools in RT-CORBA

The RT-CORBA specification defines two different thread

4Strictly speaking, the RT-CORBA specification is an optional part of the
CORBA standard, though ORBs that implement it are obliged to adhere to its
interfaces and policies.

pool styles,with andwithout lanes, as described below.

Thread pools: The simplest RT-CORBA thread pool model
allows developers to control the overall concurrency level
within server ORBs and applications. A thread pool is cre-
ated with a fixed number of statically allocated threads that
an ORB uses to process client messages. These pre-allocated
threads will consume system resources even if they are not
used, however. Therefore, RT-CORBA provides an interface
that allows server developers to pre-allocate an initial number
of so-calledstatic threads, while allowing this pool to grow
dynamically to handle bursts of client requests.

Server applications can use thecreate threadpool
API to specify (1) the default number of static threads that
are created initially, (2) the maximum number of threads that
can be created dynamically, and (3) the default5 priority of all
these threads. If a request arrives and all existing threads are
busy, a new thread may be created to handle the request. No
additional thread will be created, however, if the maximum
number of threads in the pool have been spawned.

A pool can be optionally pre-configured for a maximum
buffer size or number of requests. If buffering is enabled for
the pool, the request will be queued until a thread is available
to process it. If no queue space is available or request buffering
was not specified the ORB should raise aTRANSIENT excep-
tion, which indicates a temporary resource shortage. When
the client receives this exception it can reissue the request at a
later point.

Thread pools with lanes: Many real-time and embedded
systems applications statically associate global CORBA pri-
orities to pools of threads. For example, a telecommunica-
tions application may select three distinct priorities to rep-
resent low-latency, high-throughput, and best-effort request
classes. Alternatively, a fixed set of rate-groups with cor-
responding global CORBA priorities are a convenient model
for applications, such as avionics mission computing [1], with
real-time periodic processing requirements. In these scenar-
ios, it is desirable to partition the threads in a thread pool into
different subsets, each with different priorities. Therefore, RT-
CORBA defines athread pool with lanesmodel, which en-
ables developers to bound both the overall concurrency of a
server and the amount of work performed at a given priority
level.

For each lane in this thread pool model, the server specifies
the CORBA priority, static thread count, and dynamic thread
count. Dynamic threads are assigned the lane priority. Thread
pools with lanes can be configured to allow lanes with higher
priorities to borrow threads from lanes with lower priorities. If
a thread is borrowed, its priority is temporarily raised to that

5Threads within a pool may have their priorities changed dynamically in
accordance with the priority models or priority transforms described in Sec-
tion 2.1.1.
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of the lane that borrows it. When the invocation processing
is complete, its priority reverts to its previous value and the
thread returns to its original lane. Thread pools with lanes also
can be configured to support request buffering if no threads are
available to process incoming requests.

2.1.3 Standard Synchronizers

As mentioned in Section 2.1.2, the CORBA specification [6]
does not define a threading model. Thus, there is no stan-
dard, portable API that CORBA applications can use to ensure
semantic consistency between their synchronization mecha-
nisms and the internal synchronization mechanisms used by
an ORB. Real-time applications, however, require this consis-
tency to enforce priority inheritance and priority ceiling proto-
cols [28].

To ensure semantic consistency, therefore, the RT-CORBA
specification defines a standard set oflocality constrainedmu-
tex operations. Figure 5 illustrates the mutex interface defined
by RT-CORBA.
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Figure 5: Standard Synchronizers

2.1.4 Global Scheduling Service

The scheduling abstractions defined by real-time operating
systems such as VxWorks, LynxOS, and POSIX 1003.1c [26]
implementations are relatively low-level. For instance, they
require developers to map their high-level application QoS re-
quirements into lower-level OS mechanisms, such as thread
priorities and virtual circuit bandwidth/latency parameters.
This manual mapping step is non-intuitive for many applica-
tion developers, who prefer to design in terms of object inter-
faces and object operations.

To allow applications to specify their scheduling require-
ments in a higher-level, more intuitive manner, the RT-
CORBA specification defines a global scheduling service [19].
This service is a CORBA object that is responsible for allocat-
ing system resources to meet the QoS needs of the applica-
tions that share the ORB endsystem. Applications can use the

real-time scheduling service to specify the processing require-
ments of their operations in terms of various parameters, such
as worst-case execution time or period, as shown in Figure 6.
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2.2 Managing Inter-ORB Communication

Historically, the CORBA specification and conventional ORBs
have supportedlocation transparency, i.e., applications cannot
detect whether components are distributed or collocated in the
same process [31]. Moreover, the features of the underlying
OS, network, and/or bus are considered a black box. Although
this encapsulation is useful for applications with best-effort
QoS requirements, it is inadequate for applications with more
stringent QoS requirements.

To allow applications to control the underlying communi-
cation protocols and endsystem resources, therefore, the RT-
CORBA specification defines standard interfaces that can be
used to select and configure certainprotocol properties. In ad-
dition, client applications canexplicitly bindto server objects
using priority-bands and private connections, as described be-
low.

2.2.1 Selecting and Configuring Protocol Properties

CORBA uses inter-ORB communication mechanisms [32] to
exchange requests between clients and servers. These mecha-
nisms are built upon lower level protocols that provide various
types of QoS. Inter-ORB protocol (IOP) instances are com-
posed of both an ORB protocol and a mapping to a specific
underlying transport protocol. For example, the Internet Inter-
ORB Protocol (IIOP) is a mapping of the General Inter-ORB
Protocol (GIOP) onto TCP/IP. Thus, an IOP contains two pro-
tocol layers –ORBandtransport– each having its own set of
protocol properties.
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RT-CORBA defines an interface that permits applications
to specify ORB- and transport-specific protocol properties
that control various communication protocol features, such
as ATM virtual circuits or Internet RSVP [33] traffic speci-
fication. Each ORB/transport protocol properties tuple is de-
fined by aProtocol struct that ultimately resides in a
sequence structs called aProtocolList , as defined by the
following CORBA IDL:

interface ProtocolProperties {};

typedef struct {
IOP::ProfileId protocol_type;
ProtocolProperties

orb_protocol_properties;
ProtocolProperties

transport_protocol_properties;
} Protocol;
typedef sequence <Protocol> ProtocolList;

The order in which protocol properties appear in the
ProtocolList is significant – it allows applications to in-
dicate the order of their protocol preferences. For example,
a client may specify that IIOP is more preferable than other
protocol combinations.

To allow applications to select and configure their desired
ORB/transport protocol properties, RT-CORBA defines the
following pair of QoS policies,ClientProtocolandServerPro-
tocol.

Server-side protocol properties: CORBA servers can use
the ServerProtocolpolicy to select which protocols to con-
figure into an object reference. This policy can be passed
with other POA policies when thecreate POAoperation
is invoked on thePortableServer::POA interface. The
ServerProtocolpolicy has two purposes: it (1) publishes a list
of available protocols to clients and (2) defines protocol con-
figuration attributes for server connections.

The POA ensures that the ordering of profiles in object ref-
erences conforms to the ordering of protocols specified in the
ServerProtocolpolicy. Thus, a server can export its proto-
col preferences to clients by passing them in object references
whose profiles are arranged in a particular order. When a client
receives the object reference, it can either accept the server’s
preference or use different selection criteria.

Client-side protocol properties: Client applications can
use theClientProtocolpolicy to select which protocols to use
when they connect to objects. This policy is applied when a
client obtains a binding to an object. TheClientProtocolpol-
icy indicates the protocol properties a client is interested in, as
well as the ordering of its preferences.

The ClientProtocolpolicy can be set either by a client or
server, but not both for the same object reference. Servers
can publish particular protocol requirements and preferences

on a per-object basis. In contrast, clients can use this policy
to change protocol policies on a per-invocation basis. If set on
the server, theClientProtocol policy is propagated to the
client in the object reference, as shown in Figure 7. This figure
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Figure 7: Configuring and Selecting Protocol Properties

illustrates how a server can designate the protocols available
to the client. The server publishes the VME, ATM, or RTP
protocols, in that order, in a tagged component in the object
reference. The client then must abide by theClientProtocol
policy propagated by the server and select from one of these
three protocols. This feature allows a server to enforce specific
inter-ORB protocol requirements on clients.

The particular properties for specific protocols can be de-
fined via interface inheritance. For example, the standard TCP
protocol properties are shown below:

interface TCPProtocolProperties
: ProtocolProperties

{
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};

This protocol property interface permits applications to set
common attributes of TCP endpoints. For example, the send
and receive buffer size attributes can set the size of endpoint
socket queues. Many TCP implementations use these values
to determine the TCP window size, which in turn affects end-
to-end throughput. If thekeep alive attribute is enabled
TCP will send a probe on inactive connections to verify that
they are still valid. Finally, theno delay attribute disables
TCP’s Nagle algorithm so that small requests can be sent even
if earlier requests have not yet been acknowledged.

2.2.2 Explicit Binding

The original CORBA specification only supportedimplicit
binding [34]. In this model, resources along the activity
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path between a client and its server object are establishedon-
demand, e.g., after a client’s first invocation on the server.
Implicit binding helps preserve location transparency by al-
lowing clients to access remote objects or collocated objects
using a common programming model. In addition, it helps
conserve OS and networking resources, such as socket han-
dles and ATM virtual circuits, by (1) deferring network con-
nections until they are actually used and (2) allowing multiple
client threads in a process to be multiplexed through shared
network connections to their corresponding servers.

Unfortunately, implicit binding is inadequate for real-time
applications with deterministic QoS requirements. In partic-
ular, deferring object/server activation and resource alloca-
tion until run-time can increase latency and jitter significantly.
Moreover, the use of connection multiplexing can yield sub-
stantial priority inversion [30] due to head-of-line blocking as-
sociated with connection queues that are processed in FIFO
order.

To avoid these problems, the RT-CORBA specifica-
tion defines an explicit binding mechanism that uses
the validate connection operation defined on the
CORBA::Object interface in the CORBA Messaging spec-
ification. This mechanism enables clients to (1) pre-establish
connections to servers and (2) control how client requests are
sent over these connections. The following two policies –
priority-bandedandprivate connections– are defined to sup-
port explicit binding in RT-CORBA.

Priority-banded connections: Priority-banded connections
allow clients to (1) specify explicit priorities for each network
connection and (2) select the appropriate connection at run-
time based on the CORBA priority of the thread that invoked
an operation. Clients are responsible for specifying policies
that define one or more priority-bands when they establish
connections explicitly.

Priority-band information is exported to the server within
the service context of the first invocation sent across the
connection. For instance, explicit binding information is
passed in a request forbind priority band , which
is an implicit operation.6 When a server receives a
bind priority band request, which includes the re-

quested priority in the service context, it allocates resources
to the connection. Subsequent requests on this connection are
then processed at the requested priority.

In the absence of anbind priority band operation,
an implicit bind is performed when the first invocation is sent
over the connection. The service context of this request must
contain the CORBA priority range,i.e., minimum and maxi-
mum values, for the banded connection. The server then al-

6Implicit operations are implemented by an ORB, not by an application
object, and are typically used for internal inter-ORB communication and con-
figuration.

locates any necessary resources to ensure subsequent requests
arriving on this connection will be processed at the desired
priority.

Private connections: Many ORBs supportmultiplexedcon-
nections, which yield better utilization of connections and
other limited OS resources [30]. However, real-time applica-
tions often require private,i.e., non-multiplexed, connections,
which are well-suited for applications that possess determin-
istic QoS requirements. In this case, a connection cannot be
reused for another two-way request until the reply for the pre-
vious request is received. To support this feature, RT-CORBA
provides a policy,PrivateConnection, that allows clients to
select private connections that minimize the duration of any
end-to-end priority inversions. Oddly, there is no API in RT-
CORBA to explicitly request a multiplexed connection,i.e.,
this is considered an ORB implementation detail.

Figure 8 illustrates the use of priority-banded, private con-
nections between a client and server. In Figure 8 private con-

_validate_connection  (out CORBA::PolicyList
inconsistent_policies);

CLIENT
ORB  CORE

P1-5 P10-20 P21-100

SERVER
ORB  CORE

          PRIORITY-BANDED
PRIVATE  CONNECTIONS

P1-5 P10-20 P21-100

Figure 8: Explicit Binding

nections are combined with priority banding. Thus, each client
operation is sent to the server over a pre-allocated connection
that is assigned to a fixed priority range. The server ORB then
processes the servant upcall at the specified priority and sends
the reply across the same non-multiplexed connection. This
combination of features ensures that end-to-end priorities are
maintained and that key sources of priority inversion are elim-
inated.

3 Statement of Work

The scope of this effort is to create aReal-time CORBA De-
velopers Guidethat describes the key advanced features of
the Real-time CORBA [19] and CORBA Messaging [18] that
are relevant to programmers writing and optimizing real-time
applications. This section describes the specific tasks to be
performed and the deliverables to be produced during the 6
months of the proposed project, as well as the planned sched-
ule and budget for the activities.
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Task 1: Motivate, Describe, and Illustrate Key
Real-time CORBA Features

The features of Real-time CORBA will include the following:

1. Portable priorities

2. End-to-end priority propagation

3. Protocol properties

4. Thread pools

5. Explicit binding

6. Standard synchronizers

The deliverables for Task 1 will be contained in a compre-
hensive document that will be released for review 2 months
after the start of the project.

Task 2: Motivate, Describe, and Illustrate Key
CORBA Messaging Features

These features will include the following:

1. QoS Policiesfor the ORB,e.g.:

� Timeouts

� Priority

� Reliable one-ways

2. Asynchronous Method Invocation (AMI) models

� Poller model

� Callback model

The deliverables for Task 2 will be contained in a compre-
hensive document that will be released for review 4 months
after the start of the project.

Task 3: Develop Online Tutorial Examples

These examples will illustrate concretely how to program real-
time applications using the advanced features of Real-time
CORBA and CORBA Messaging documented in Tasks 1 and
2. The deliverables for Task 3 will be distributed online in
HTML format along with the TAO real-time ORB [20]. There-
fore, developers can interactively work through the many ex-
amples in the document in order to get hands-on practice writ-
ing, configuring, and optimizing real-time applications using
TAO. The tutorial examples will be released incrementally as
they are completed. All examples will be finished by the end
of the 6 month period of performance.

Budget

The participants in this effort include the following personnel:

1. Faculty members (i.e., Dr. Douglas C. Schmidt – Ph.D.,
Associate Professor, UC Irvine and Dr. David Levine
– Ph.D., Director of the Center for Distributed Object
Computing, Washington University) at 10% during the
6 month period of performance.

2. Graduate student (i.e., Carlos O’Ryan, Ph.D. candidate
UC Irvine) at 100% during the period of performance.

The total cost of the proposed 12 month effort is$52,500.
The following table provides a cost breakdown for this project.

Description Amount
2 faculty members at 10% 20,000
1 graduate research assistant at 100%15,000
University overhead at 50% 17,500
Total budget 52,500
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