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Abstract

This paper describes the design and performance of a real-
time I/O (RIO) subsystem that supports real-time applications
running on off-the-shelf hardware and software. This paper
provides two contributions to the study of real-time I/O sub-
systems. First, it describes how RIO supports end-to-end,
prioritized traffic to bound the I/O utilization of each prior-
ity class and eliminates the key sources of priority inversion
in I/O subsystems. Second, it illustrates how a real-time I/O
subsystem can reduce latency bounds on end-to-end communi-
cation between high-priority clients without unduly penalizing
low-priority and best-effort clients.

1 Introduction

This paper focuses on the design and performance of a real-
time I/O (RIO) subsystem that enhances the Solaris 2.5.1
kernel to enforce the QoS features of the The ACE ORB
(TAO) [1] endsystem. RIO provides QoS guarantees for ver-
tically integrated ORB endsystems in order to (1) increase
throughput, (2) decrease latency and (3) improve end-to-end
predictability. RIO supports periodic protocol processing,
guarantees I/O resources to applications, and minimizes the
effect of flow control in aSTREAM.

A novel feature of the RIO subsystem is its integration of
real-time scheduling and protocol processing, which allows
RIO to support guaranteed bandwidth and low-delay applica-
tions. To accomplish this, we extended the concurrency archi-
tecture and thread priority mechanisms of TAO into the RIO
subsystem. This design minimizes sources of priority inver-
sion that cause non-determinism.

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Sprint.

The paper is organized as follows: Section 2 describes
how the RIO subsystem enhances the Solaris 2.5.1 OS kernel
to support end-to-end QoS for TAO applications; Section 3
presents empirical results from systematically benchmarking
the efficiency and predictability of TAO and RIO over an ATM
network; and Section 4 presents concluding remarks.

2 The Design of TAO’s Real-time I/O
Subsystem on Solaris over ATM

Meeting the requirements of distributed real-time applications
requires more than defining QoS interfaces with CORBA IDL
or developing an ORB with real-time thread priorities. Instead,
it requires the integration of the ORB and the I/O subsystem
to provide end-to-end real-time scheduling and real-time com-
munication to CORBA applications. This section describes
how we have developed a real-time I/O (RIO) subsystem for
TAO by customizing the Solaris 2.5.1 OS kernel to support
real-time network I/O over ATM/IP networks [2].

Enhancing a general-purpose OS like Solaris to support the
QoS requirements of a real-time ORB endsystem like TAO
requires the resolution of the following design challenges:

1. Creating an extensible and predictable I/O subsystem
framework that can integrate seamlessly with a real-time
ORB.

2. Alleviating key sources of packet-based and thread-based
priority inversion.

3. Implementing an efficient and scalable packet classifier
that performs early demultiplexing in the ATM driver.

4. Supporting high-bandwidth network interfaces, such as
the APIC [3].

5. Supporting the specification and enforcement of QoS re-
quirements, such as latency bounds and network band-
width.

6. Providing all these enhancements to applications via the
standardSTREAMSnetwork programming APIs [4].
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Figure 1: Architecture of the RIO Subsystem and Its Relation-
ship to TAO

This section describes the RIO subsystem enhancements
we applied to the Solaris 2.5.1 kernel to resolve these de-
sign challenges. Our RIO subsystem enhancements provide
a highly predictable OS run-time environment for TAO’s inte-
grated real-time ORB endsystem architecture, which is shown
in Figure 1.

Our RIO subsystem enhances Solaris by providing QoS
specification and enforcement features that complement
TAO’s priority-based concurrency and connection architec-
ture [5]. The resulting real-time ORB endsystem contains user
threads and kernel threads that can be scheduled statically. As
described in [1], TAO’s static scheduling service runs off-line
to map periodic thread requirements and task dependencies to
a set of real-time global thread priorities. These priorities are
then used on-line by the Solaris kernel’s run-time scheduler to
dispatch user and kernel threads on the CPU(s).

To develop the RIO subsystem and integrate it with TAO,
we extended our prior work on ATM-based I/O subsystems to
provide the following features:

Early demultiplexing: This feature associates packets with
the correct priorities and a specificSTREAM early in the
packet processing sequence,i.e., in the ATM network inter-
face driver [3]. RIO’s design minimizes thread-based prior-
ity inversion by vertically integrating packets received at the
network interface with the corresponding thread priorities in
TAO’s ORB Core.

Schedule-driven protocol processing: This feature per-
forms all protocol processing in the context of kernel threads
that are scheduled with the appropriate real-time priorities [6,
7, 8, 9]. RIO’s design schedules network interface bandwidth
and CPU time to minimize priority inversion and decrease in-
terrupt overhead during protocol processing.

Dedicated STREAMS: This feature isolates request pack-
ets belonging to different priority groups to minimize FIFO
queueing and shared resource locking overhead [10]. RIO’s
design resolves resource conflicts that can otherwise cause
thread-based and packet-based priority inversions.

Below, we explore each of RIO’s features and explain how
they alleviate the limitations with Solaris’ I/O subsystem. Our
discussion focuses on how we resolved the key design chal-
lenges faced when building the RIO subsystem.

2.0.1 Early Demultiplexing

Context: ATM is a connection-oriented network protocol
that uses virtual circuits (VCs) to switch ATM cells at high
speeds [2]. Each ATM connection is assigned a virtual circuit
identifier (VCI)1 which is included as part of the cell header.

Problem: In Solaris STREAMS, packets received by the
ATM network interface driver are processed sequentially and
passed in FIFO order up to the IP multiplexor. Therefore, any
information containing the packets’ priority or specific con-
nection is lost.

Solution: The RIO subsystem uses a packet classifier [11] to
exploit the early demultiplexing feature of ATM [3] by verti-
cally integrating its ORB endsystem architecture, as shown in
Figure 2. Early demultiplexing uses the VCI field in a request
packet to determine its final destination thread efficiently.

Early demultiplexing helps alleviate packet-based priority
inversion because packets need not be queued in FIFO order.
Instead, RIO supportspriority-based queueing, where packets
destined for high-priority applications are delivered ahead of
low-priority packets. In contrast, the Solaris default network
I/O subsystem processes all packets at the same priority, re-
gardless of the destination user thread.

Implementing early demultiplexing in RIO: The RIO
endsystem can be configured so that protocol processing for
eachSTREAM is performed with appropriate thread priorities.
This design alleviates priority inversion when user threads run-
ning at different priorities perform network I/O. In addition,
the RIO subsystem minimizes the amount of processing per-
formed at interrupt level. This is necessary because Solaris
does not consider packet priority or real-time thread priority
when invoking interrupt functions.

At the lowest level of the RIO endsystem, the ATM driver
distinguishes between packets based on their VCIs and stores
them in the appropriate RIO queue (rQ for receive queue and
sQfor send queue). Each RIO queue pair is associated with ex-
actly oneSTREAM, but eachSTREAM can be associated with

1A virtual path identifier is also assigned but for this work we only consider
the VCI
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Figure 2: Early Demultiplexing in the RIO Subsystem

zero or more RIO queues,i.e., there is a many to one rela-
tionship for the RIO queues. The RIO protocol processing
kthread associated with the RIO queue then delivers the pack-
ets to TAO’s ORB Core, as shown in Figure 1.

Figure 1 also illustrates how all periodic connections are as-
signed a dedicatedSTREAM, RIO queue pair, and RIO kthread
for input protocol processing. RIO kthreads typically service
their associated RIO queues at the periodic rate specified by an
application. In addition, RIO can allocate kthreads to process
the output RIO queue.

For example, Figure 1 shows four active connections: one
periodic with a 10 Hz period, one periodic with a 5 Hz period,
and two best-effort connections. Following the standard rate
monotonic scheduling (RMS) model, the highest priority is
assigned to the connection with the highest rate (10 Hz). In
this figure, all packets received for the 10Hz connection are
placed in RIO queuerQ1. This queue is serviced periodically
by RIO kthreadrkt1, which runs at real-time priority 110.

After it performs protocol processing, threadrkt1 delivers
the packet to TAO’s ORB Core where it is processed by a pe-
riodic user thread with real-time priority 110. Likewise, the
data packets received for the 5 Hz connection are processed
periodically by RIO kthreadrkt2, which performs the proto-
col processing and passes the packets up to the user thread.

The remaining two connections handle best-effort network
traffic. The best-effort RIO queue (rQ3) is serviced by a rel-
atively low-priority kthreadrkt3. Typically, this thread will

be assigned a period and computation time2 to bound the total
throughput allowed on the best-effort connections, as describe
in the following section.

The packet classifier in TAO’s I/O subsystem can be con-
figured to consult its real-time scheduling service to determine
where the packet should be placed. This is required when mul-
tiple applications use a single VC, as well as when the link
layer is not ATM. In these cases, it is necessary to identify
packets and associate them with rates/priorities on the basis of
higher-level protocol addresses like TCP port numbers. More-
over, the APIC device driver can be modified to search the
TAO’s run-time scheduler [1] in the ORB’s memory. TAO’s
run-time scheduler maps TCP port numbers to rate groups in
constantO(1) time.

2.0.2 Schedule-driven Protocol Processing

Context: Many real-time applications require periodic I/O
processing [12]. For example, avionics mission computers
must process sensor data periodically to maintain accurate sit-
uational awareness [13]. If the mission computing system fails
unexpectedly, corrective action must occur immediately.

Problem: Protocol processing of input packets in Solaris
STREAMS is demand-driven[4], i.e., when a packet arrives
the STREAMS I/O subsystem suspends all user-level process-
ing and performs protocol processing on the incoming packet.
Demand-driven I/O can incur priority inversion, such as when
the incoming packet is destined for a thread with a priority
lower than the currently executing thread. Thus, the ORB end-
system may fail to meet the QoS requirements of the higher
priority thread.

When sending packets to another host, protocol processing
is typically performed within the context of the user thread
that performed thewrite operation. The resulting packet is
passed to the driver for immediate transmission on the network
interface link. With ATM, a pacing value can be specified for
each active VC, which allows simultaneous pacing of multiple
packets out the network interface. However, pacing may not
be adequate in overload conditions because output buffers can
overflow, thereby losing or delaying high-priority packets.

Solution: RIO’s solution is to performschedule-driven,
rather than demand–driven, protocol processing of network
I/O requests. We implemented this solution in RIO by
adding kernel threads that areco-scheduledwith real-time user
threads in the TAO’s ORB Core. This design vertically inte-
grates TAO’s priority-based concurrency architecture through-
out the ORB endsystem.

2Periodic threads must specify both a periodP and a per period computa-
tion timeT .
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Implementing Schedule-driven protocol processing in
RIO: The RIO subsystem uses athread pool [14] con-
currency model to implement its schedule-driven kthreads.
Thread pools are appropriate for real-time ORB endsystems
because they (1) amortize thread creation run-time overhead
and (2) place an upper limit on the total percentage of CPU
time used by RIO kthreads [15].

Figure 3 illustrates the thread pool model used in RIO. This
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Figure 3: RIO Thread Pool Processing of TCP/IP with QoS
Support

pool of protocol processing kthreads (RIO kthreads), is created
at I/O subsystem initialization. Initially these threads are not
bound to any connection and are inactive until needed.

Each kthread in RIO’s pool is associated with a queue. The
queue links the various protocol modules in aSTREAM. Each
thread is assigned a particularrate, based on computations
from TAO’s static scheduling service [1]. This rate corre-
sponds to the frequency at which requests are specified to ar-
rive from clients. Packets are placed in the queue by the ap-
plication (for clients) or by the interrupt handler (for servers).
Protocol code is then executed by the thread to shepherd the
packet through the queue to the network interface card or up
to the application.

An additional benefit of RIO’s thread pool design is its abil-
ity to bound the network I/O resources consumed by best-
effort user threads. Consider the case of an endsystem that
supports both real-time and best-effort applications. Assume
the best-effort application is a file transfer utility likeftp . If
an administrator downloads a large file to an endsystem, and
no bounds are placed on the rate of input packet protocol pro-
cessing, the system may become overloaded. However, with
RIO kthreads, the total throughput allowed for best-effort con-

nections can be bounded by specifying an appropriate period
and computation time.

In statically scheduled real-time systems, kthreads in the
pool are associated with differentrate groups. This design
complements theReactor -based thread-per-priority concur-
rency model described in Section 2.0.2. Each kthread corre-
sponds to a different rate of execution and hence runs at a dif-
ferent priority.

To minimize priority inversion throughout the ORB end-
system, RIO kthreads are co-scheduled with ORB Reactor
threads. Thus, a RIO kthread processes I/O requests in the
STREAMSframework and its user thread equivalent processes
client requests in the ORB. Figure 4 illustrates how thread-
based priority inversion is minimized in TAO’s ORB endsys-
tem by (1) associating a one-to-one binding between TAO user
threads andSTREAMS protocol kthreads and (2) minimizing
the work done at interrupt context.

INTR

High Priority I/O-bound thread

Interrupt thread (Packet Classification)

SYS

RT

TS

STREAMS thread

Depends On

Low-Priority CPU bound thread

Preempts

RIO thread at same priority

Figure 4: Alleviating Priority Inversion in TAO’s ORB End-
system

Both the ORB CoreReactor user thread and its associ-
ated RIO protocol kthread use Round-Robin scheduling. In
this scheme, after either thread has a chance to run, its associ-
ated thread is scheduled. For instance, if the protocol kthread
has packets for the application, theReactor ’s user thread
in the ORB Core will consume the packets. Similarly if the
application has consumed or generated packets, the protocol
kthread will send or receive additional packets.

2.0.3 DedicatedSTREAMs

Context: The RIO subsystem is responsible for enforcing
QoS requirements for statically scheduled real-time applica-
tions with deterministic requirements.

Problem: Unbounded priority inversions can result when
packets are processed asynchronously in the I/O subsystem
without respect to their priority.
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Solution: The effects of priority inversion in the I/O subsys-
tem are minimized by isolating data paths throughSTREAMS

such that resource contention is minimized. This is done in
RIO by providing adedicatedSTREAM connection path that
(1) allocates separate buffers in the ATM driver and (2) asso-
ciates kernel threads with the appropriate RIO scheduling pri-
ority for protocol processing. This design resolves resource
conflicts that can otherwise cause thread-based and packet-
based priority inversions.

Implementing DedicatedSTREAMs in RIO: Figure 1 de-
picts our implementation of DedicatedSTREAMS in RIO. In-
coming packets are demultiplexed in the driver and passed to
the appropriateSTREAM. A map in the driver’s interrupt han-
dler determines (1) the type of connection and (2) whether the
packet should be placed on a queue or processed at interrupt
context.

Typically, low-latency connections are processed in inter-
rupt context. All other connections have their packets placed
on the appropriateSTREAM queue. Each queue has an associ-
ated protocol kthread that processes data through theSTREAM.
These threads may have different priorities assigned by TAO’s
scheduling service.

A key feature of RIO’s DedicatedSTREAMSdesign is its use
of multiple output queues in the client’s ATM driver. With this
implementation, each connection is assigned its own transmis-
sion queue in the driver. The driver services each transmission
queue according to its associated priority. This design allows
RIO to associate low-latency connections with high-priority
threads to assure that its packets are processed before all other
packets in the system.

3 Empirical Benchmarking Results

This section presents empirical results that show how the RIO
subsystem decreases the upper bound on round-trip delay for
latency-sensitive applications and provides periodic process-
ing guarantees for bandwidth-sensitive applications. Other
work [16] combines RIO and TAO to quantify the ability of
the resulting ORB endsystem to support applications with real-
time QoS requirements.

3.1 Hardware Configuration

Our experiments were conducted using a FORE Systems
ASX-1000 ATM switch connected to two SPARCs: a uni-
processor 300 MHz UltraSPARC2 with 256 MB RAM and a
170 MHz SPARC5 with 64 MB RAM. Both SPARCs ran So-
laris 2.5.1 and were connected via a FORE Systems SBA-200e
ATM interface to an OC3 155 Mbps port on the ASX-1000.
The testbed configuration is shown in Figure 5.
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Figure 5: ORB Endsystem Benchmarking Testbed

3.2 Measuring the End-to-end Real-time Per-
formance of the RIO Subsystem

Below, we present results that quantify (1) the cost of us-
ing kernel threads for protocol processing and (2) the benefits
gained in terms of bounded latency response times and peri-
odic processing guarantees. RIO uses a periodic processing
model to provide bandwidth guarantees and to bound maxi-
mum throughput on each connection.

3.2.1 Benchmarking Configuration

Our experiments were performed using the testbed configura-
tion shown in Figure 5. To measure round-trip latency we use
a client application that opens a TCP connection to an “echo
server” located on the SPARC5. The client sends a 64 byte
data block to the echo server, waits on the socket for data to
return from the echo server, and records the round-trip latency.

The client application performs 10,000 latency measure-
ments, then calculates the mean latency, standard deviation,
and standard error. Both the client and server run at the same
thread priority in the Solaris real-time (RT) scheduling class.

Bandwidth tests were conducted using a modified version
of ttcp [17] that sent 8 KB data blocks over a TCP con-
nection from the UltraSPARC2 to the SPARC5. Threads that
receive bandwidth reservations are run in the RT scheduling
class, whereas best-effort threads run in the TS scheduling
class.

3.2.2 Measuring the Relative Cost of Using RIO kthreads

Benchmark design: This set of experiments measures the
relative cost of using RIO kthreads versus interrupt threads
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(the default Solaris behavior) to process network protocols.
The results show that it is relatively efficient to perform proto-
col processing using RIO kthreads in the RT scheduling class.

The following three test scenarios, used to measure the rel-
ative cost of RIO kthreads, are based on the latency test de-
scribed in Section 3.2.1:

1. The default Solaris network I/O subsystem.

2. RIO enabled with the RIO kthreads in the real-time
scheduling class with a global priority of 100.

3. RIO enabled with the RIO kthreads in the system
scheduling class with a global priority of 60 (system pri-
ority 0).

In all three cases, 10,000 samples were collected with the
client and server user threads running in the real-time schedul-
ing class with a global priority of 100.

Benchmark results and analysis: In each test, we deter-
mined the mean, maximum, minimum, and jitter (standard de-
viation) for each set of samples. The benchmark configuration
is shown in Figure 6 and the results are summarized in the

ATM DriverATM Driver

Ultra2 SPARC5

TCP

IP

TCP

IP

latency echo svr

INT/RIOINT/RIO

Figure 6: RIO kthread Test Configuration

table below:

Mean Max Min Jitter
Default behavior 653�s 807�s 613�s 19.6
RIO RT kthreads 665�s 824�s 620�s 18.8
RIO SYS kthreads 799�s 1014�s 729�s 38.0

As shown in this table, when the RIO kthreads were run in the
RT scheduling class the average latency increased by 1.8% or
12�s. The maximum latency value, which is a measure of the
upper latency bound, increased by 2.1% or 17�s. The jitter,
which represents the degree of variability, actually decreased
by 4.1%. The key result is that jitter was not negatively af-
fected by using RIO kthreads.

As expected, the mean latency and jitter increased more sig-
nificantly when the RIO kthreads ran in the system scheduling
class. This increase is due to priority inversion between the
user and kernel threads, as well as competition for CPU time
with other kernel threads running in the system scheduling
class. For example, theSTREAMS background threads, call-
out queue thread, and deferred bufcall processing all run with
a global priority of 60 in the system scheduling class.

Figure 7 plots the distribution of the latency values for the
latency experiments. This figure shows the number of samples
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Figure 7: Latency Measurements versus Priority of kthreads

obtained at a given latency value+=�5 �s. The distribution
of the default behavior and RIO with RT kthreads are virtually
identical, except for a shift of�12�s.

Our measurements reveal the effect of performing network
protocol processing at interrupt context versus performing it
in a RIO kthread. With the interrupt processing model, the
input packet is processed immediately up through the network
protocol stack. Conversely, with the RIO kthreads model, the
packet is placed in a RIO queue and the interrupt thread exits.
This causes a RIO kthread to wake up, dequeue the packet,
and perform protocol processing within its thread context.

A key feature of using RIO kthreads for protocol process-
ing is their ability to assign appropriate kthread priorities and
to defer protocol processing for lower priority connections.
Thus, if a packet is received on a high-priority connection, the
associated kthread will preempt lower priority kthreads to pro-
cess the newly received data.
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The results shown in Figure 7 illustrate that using RIO
kthreads in the RT scheduling class results in a slight increase
of 13-15�s in the round-trip processing times. This latency
increase stems from RIO kthread dispatch latencies and queu-
ing delays. However, the significant result is that latency jitter
decreases for real-time RIO kthreads.

3.2.3 Measuring Low-latency Connections with Compet-
ing Traffic

Benchmark design: This experiment measures the deter-
minism of the RIO subsystem while performing prioritized
protocol processing on a heavily loaded server. The results
illustrate how RIO behaves when network I/O demands ex-
ceed the ability of the ORB endsystem to process all requests.
The SPARC5 is used as the server in this test because it can
process only�75% of the full link speed on an OC3 ATM
interface usingttcp with 8 KB packets.

Two different classes of data traffic are created for this test:
(1) a low-delay, high-priority message stream and (2) a best-
effort (low-priority) bulk data transfer stream. The message
stream is simulated using the latency application described
in Section 3.2.1. The best-effort, bandwidth intensive traffic
is simulated using a modified version of thettcp program,
which sends 8 KB packets from the client to the server.

The latency experiment was first run with competing traffic
using the default Solaris I/O subsystem. Next, the RIO subsys-
tem was enabled, RIO kthreads and priorities were assigned to
each connection, and the experiment was repeated. The RIO
kthreads used for processing the low-delay, high-priority mes-
sages were assigned a real-time global priority of 100. The
latency client and echo server were also assigned a real-time
global priority of 100.

The best-effort bulk data transfer application was run in the
time-sharing class. The corresponding RIO kthreads ran in
the system scheduling class with a global priority of 60. In
general, all best effort connections use a RIO kthread in the
SYS scheduling class with a global priority of 60. Figure 8
shows the configuration for the RIO latency benchmark.

Benchmark results and analysis: The results from collect-
ing 1,000 samples in each configuration are summarized in the
table below:

Mean Max Min Jitter
Default 1072�s 3158�s 594�s 497�s
RIO 946�s 2038�s 616�s 282�s

This table compares the behavior of the default Solaris I/O
subsystem with RIO. It illustrates how RIO lowers the upper
bound on latency for low-delay, high-priority messages in the
presence of competing network traffic. In particular, RIO low-
ered the maximum round-trip latency by 35% (1,120�s), the
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Figure 8: RIO Low-latency Benchmark Configuration

average latency by 12% (126�s), and jitter by 43% (215�s).
The distribution of samples are shown in Figure 9. This figure
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Figure 9: Latency with Competing Traffic

highlights how RIO lowers the upper bound of the round-trip
latency values.

These performance results are particularly relevant for real-
time systems where ORB endsystem predictability is cru-
cial. The ability to specify and enforce end-to-end priorities
over transport connections helps ensure that ORB endsystems
achieve end-to-end determinism.

Another advantage of RIO’s ability to preserve end-to-end
priorities is that the overall system utilization can be increased.
For instance, the experiment above illustrates how the up-
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per bound on latency was reduced by using RIO to preserve
end-to-end priorities. For example, system utilization may
be unable to exceed 50% while still achieving a 2 ms upper
bound for high-priority message traffic. However, higher sys-
tem utilization can be achieved when an ORB endsystem sup-
ports real-time I/O. The results in this section demonstrate this:
RIO achieved latencies no greater than 2.038 ms, even when
the ORB endsystem was heavily loaded with best-effort data
transfers.

Figure 10 shows the average bandwidth used by the mod-
ified ttcp applications during the experiment. The dip in
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Figure 10: Bandwidth of Competing Traffic

throughput between sample numbers 10 and 20 occurred when
the high-priority latency test was run, which illustrates how
RIO effectively reallocates resources when high-priority mes-
sage traffic is present. Thus, the best-effort traffic obtains
slightly lower bandwidth when RIO is used.

3.2.4 Measuring Bandwidth Guarantees for Periodic
Processing

Benchmark design: RIO can enforce bandwidth guarantees
because it implements the schedule-driven protocol processing
model described in Section 2.0.2. In contrast, the default So-
laris I/O subsystem processes all input packets on-demand at
interrupt context,i.e., with a priority higher than all other user
threads and non-interrupt kernel threads.

The following experiment demonstrates the advantages and
accuracy of RIO’s periodic protocol processing model. The
experiment was conducted using three threads that receive spe-
cific periodic protocol processing,i.e., bandwidth, guarantees
from RIO. A fourth thread sends data using only best-effort
guarantees.

All four threads run thettcp program, which sends 8 KB
data blocks from the UltraSPARC2 to the SPARC5. For each

bandwidth-guaranteed connection, a RIO kthread was allo-
cated in the real-time scheduling class and assigned appro-
priate periods and packet counts,i.e., computation time. The
best-effort connection was assigned the default RIO kthread,
which runs with a global priority of 60 in the system schedul-
ing class. Thus, there were four RIO kthreads, three in the
real-time scheduling class and one in the system class. The
following table summarizes the RIO kthread parameters for
the bandwidth experiment.

RIO Config Period Priority Packets Bandwidth
kthread 1 10 ms 110 8 6.4 MBps
kthread 2 10 ms 105 4 3.2 MBps
kthread 3 10 ms 101 2 1.6 MBps
kthread 4 Async 60 Available Available
(best-effort)

The three user threads that received specific bandwidth
guarantees were run with the same real-time global priorities
as their associated RIO kthreads. These threads were assigned
priorities related to their guaranteed bandwidth requirements
– the higher the bandwidth the higher the priority. Thettcp
application thread and associated RIO kthread with a guaran-
teed 6.4 MBps were assigned a real-time priority of 110. The
application and RIO kernel threads with a bandwidth of 3.2
MBps and 1.6 MBps were assigned real-time priorities of 105
and 101, respectively.

As described in Section 2.0.1, the RIO kthreads are awak-
ened at the beginning of each period. They first check their
assigned RIO queue for packets. After processing their as-
signed number of packets they sleep waiting for the start of
the next period.

The best-effort user thread runs in the time sharing class. Its
associated RIO kthread, called the “best-effort” RIO kthread,
is run in the system scheduling class with a global priority
of 60. The best-effort RIO kthread is not scheduled period-
ically. Instead, it waits for the arrival of an eligible network
I/O packet and processes it “on-demand.” End-to-end priority
is maintained, however, because the best-effort RIO kthread
has a global priority lower than either the user threads or RIO
kthreads that handle connections with bandwidth guarantees.

Benchmark results and analysis: In the experiment, the
best-effort connection starts first, followed by the 6.4 MBps,
3.2 MBps, and 1.6 MBps guaranteed connections, respec-
tively. Figure 11 presents the results, showing the effect of
the guaranteed connection on the best-effort connection.

This figure clearly shows that the guaranteed connections
received their requested bandwidths. In contrast, the best-
effort connection loses bandwidth proportional to the band-
width granted to guaranteed connections. The measuring in-
terval was small enough for TCPs “slow start” algorithm [18]
to be observed.
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Figure 11: Bandwidth Guarantees in RIO

Periodic protocol processing is useful to guarantee band-
width and bound the work performed for any particular con-
nection. For example, we can specify that the best-effort con-
nection in the experiment above receive no more than 40% of
the available bandwidth on a given network interface.

3.3 Summary of Empirical Results

Our empirical results presented in Section 3 illustrate how RIO
provides the following benefits to real-time ORB endsystems:

1. Reduced latency and jitter: RIO reduces round-trip la-
tency and jitter for real-time network I/O, even during high
network utilization. RIO prioritizes network protocol process-
ing to ensure resources are available when needed by real-time
applications.

2. Enforced bandwidth guarantees: The RIO periodic pro-
cessing model provides network bandwidth guarantees. RIO’s
schedule-driven protocol processing enables an application to
specify periodic I/O processing requirements which are used
to guarantee network bandwidth.

3. Fine-grained resource control: RIO enables fine-
grained control of resource usage,e.g., applications can set
the maximum throughput allowed on a per-connection basis.
Likewise, applications can specify their priority and process-
ing requirements on a per-connection basis. TAO also uses
these specifications to create off-line schedules for statically
configured real-time applications.

4. End-to-end priority preservation: RIO preserves end-
to-end operation priorities by co-scheduling TAO’s ORB Re-
actor threads with RIO kthreads that perform I/O processing.

5. Supports best-effort traffic: RIO supports the four
QoS features described above without unduly penalizing best-
effort, i.e., traditional network traffic. RIO does not mo-
nopolize the system resources used by real-time applica-
tions. Moreover, because RIO does not use a fixed allocation
scheme, resources are available for use by best-effort applica-
tions when they are not in use by real-time applications.

4 Concluding Remarks

This paper focuses on the design and performance of a real-
time I/O (RIO) subsystem that enhances the Solaris 2.5.1 ker-
nel to enforce the QoS requirements of applications. RIO
supports a vertically integrated, high-performance endstation
from the network interface through software protocol process-
ing to the user application threads. Three classes of I/O, best-
effort, periodic and low latency, are supported in RIO.

A novel feature of the RIO subsystem is its integration of
real-time scheduling and protocol processing, which allows
RIO to support guaranteed bandwidth and low-delay applica-
tions. To accomplish this, we extended the concurrency archi-
tecture and thread priority mechanisms of the TAO real-time
ORB into the RIO subsystem. This design minimizes sources
of priority inversion that cause non-determinism.

RIO is designed to operate with high-performance inter-
faces such as the 1.2 Gbps ATM port interconnect controller
(APIC) [3]. The APIC supports (1) shared memory pools be-
tween user and kernel space, (2) per-VC pacing, (3) two lev-
els of priority queues, and (4) interrupt disabling on a per-VC
bases. The current RIO prototype has been developed using a
commercial Fore interface, as described in Section 3.

We learned the following lessons from the RIO project:

Vertical integration of endsystems is essential for end-to-
end priority preservation: Conventional operating systems
do not provide adequate support for the QoS requirements
of distributed, real-time applications. By vertically integrat-
ing the I/O subsystem, the endsystem can reduce the dura-
tion of priority inversions and maximize overall system uti-
lization. Consequently, effective throughput increases and up-
per bounds on latencies are reduced. Moreover, by combin-
ing RIO with the TAO rela-time ORB, QoS properties can be
preserved end-to-end in a distributed object, real-time environ-
ment [19].

Schedule-driven protocol processing reduces jitter signifi-
cantly: After integrating RIO with TAO, we measured a sig-
nificant reduction in average latency and jitter. Moreover, the
latency and jitter of low-priority traffic were not affected ad-
versely. Our results illustrate how configuring asynchronous
protocol processing [20] strategies in the Solaris kernel can
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provide significant improvements in ORB endsystem behav-
ior, compared with the conventional Solaris I/O subsystem.
As a result of our RIO enhancements to Solaris, TAO is the
first ORB to support end-to-end QoS guarantees over ATM/IP
networks [2].

Input livelock is a dominant source of ORB endsystem
non-determinism: During the development and experimen-
tation of RIO it became obvious that the dominant source of
non-determinism wasreceive livelock. Priority inversion re-
sulting from processing all input packets at interrupt context
is unacceptable for many real-time applications. Using RIO
kthreads for input packet processing yielded the largest gain
in overall system predictability.

The TAO and RIO integration focused initially on stati-
cally scheduled applications with deterministic QoS require-
ments. we have subsequently extended the TAO ORB end-
system to support dynamic scheduling [21] and applications
with statistical QoS requirements. The C++ source code
for ACE, TAO, and our benchmarks is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . The RIO
subsystem is available to Solaris source licensees.

The RIO research effort is currently directed toward inte-
gration with other platforms and in providing a standardized
API. We are developing a pluggable protocols [22] framework
for TAO that hides platform dependencies and extends RIO’s
functionality. TAO’s pluggable protocols framework supports
the addition of new messaging and transport protocols. Within
this framework are (1) connection concurrency strategies, (2)
endsystem/network resource reservation protocols, (3) high-
performance techniques, such as zero-copy I/O, shared mem-
ory pools, periodic I/O, and interface pooling, (4) enhance-
ment of underlying communications protocols,e.g., provision
of a reliable byte-stream protocol over ATM, and (5) tight cou-
pling between the ORB and efficient user-space protocol im-
plementations, such as Fast Messages [23]

The TAO research effort has influenced the OMG Realtime
CORBA specification [24], which was recently adopted as a
CORBA standard. We continue to track the process of this
standard and to contribute to its evolution.
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