Quality Connector

An Architectural Pattern to
Enhance QoS and Alleviate Dependenciesin
Distributed Real-time and Embedded Middleware

Joseph K. Cross Douglas C. Schmidt
Lockheed Martin Tactical Systems Electrical & Computer Engineering Dept.
PO. Box 64525, M.S. U2N29 University of California, Irvine
St. Paul, MN 55164-0525, USA Irvine, CA 92697-2625, USA
joseph.k.cross@lmco.com schmidt@uci.edu
Abstract

Comnercial off-the-shelf (COTS) middeware increasingly offers distributed real-time
and embedded (DRE) apgications functiond suppat for standad interfaces, alongwith
the ahility to opimize appication resource utili zation. For example, a Real-time CORBA
objed request broker (ORB) permits DRE apgication devdopers to configure server
thread poding pdicies. This flexbility makes it possble to use standad functiond
interfaces in appications where they were not appicable previousy. Howeve, the non
standad naure of the optimization medhansms — i.e., the "knols and dals' — acts
aganst the vey product-independence that standadized COTSinterfaces are intended to
provide. This paper presents an achitedural pattern called Quality Conredor, which is
a meta-programming tedhnique that enaldes apgications to speafy the QoStheyrequire
from their infrastructure, and then manages the operations that optimize the middieware
to implement thase QoSrequirements.

The Quadlity Connedor architedural pattern decouples applicaion components from the
QoS configuration medanisms provided by infrastructure components to permit the
infrastructure to evolve without requiring manual changes to applicaion component
functionality. The Quality Connedor mediates between the goplicaion and non-standard
middleware nfiguration and control interfaces.

Example

CORBA evat chanrels [2] decouple communicaion between supgiers and consumers
of data, as down in Figure 1. An event channel logicdly mediates the communicaion
from ead suppier to al consumers, where by “logicd” mediation we mean that the
adua communicaion may use any type of unicast, broadcast, or multicast protocol. In
many implementations, however, the erent channel objed physically mediates these
communications, i.e., al events are routed through a process where the event channel

objed resides. In either case, the comnmunicaion between suppiers and consumers is
dewupled in the sense that
* |t is asynchronous, i.e., consumers will recave data some time dter a supdier has
completed itspush() operation, and
» The supdiers and consumers must be avare of the event channel’s identity, but need
not be avare of ead other' sidentities.

push()
Proxy

push() m
(9]
)
" Proy N\ PUShO. e 2
Sg:? Supplier
push()
A Proxy -
Supplier Corsumer 3

Figure 1. A Simple CORBA Event Channel

There is no pre-defined limit on the number of suppiers and consumers that can be
conneded to a CORBA event channel at any time. Moreover, they can conned and
disconred a any time. There may be many event channels adive & one time in a
distributed system.®

The CORBA spedfication intentionally leaves many aspeds of event channel behavior
unspedfied. For example, the following properties of event delivery are not spedfied:

« Latency of event delivery

» Where and how often event data ae pied

» Threaling and synchronization policies for event dispatching

» What communicaion medianism is used to convey the event data from the suppier

to the mnsumers; e.g., which of several radio channels will be used

» How and where event data ae buffered, and how large the event data buffers are

» What happens when an event data buffer overflows

 Reliability of event delivery

® Our discusson focuses on the “push” model of event delivery, where a supglier invokes apush(dat a)
operation to supdy any type of data, and the event channel causes push(dat a) operations to be invoked
on the mnsumers registered with that event channel. In additi on to the “push” model, thereisasoa“pull”
model of event delivery, which we do not addressin this paper.

» Whether events from one supgier will be delivered to eat consumer in the order in
which they were supgied

* |f supdier Alpha suppies an event E1 to an event channel, and only after consuming
E1 does Beta, who is both a supdier and consumer, supfdy an event E2 to the same
event channel, and if consumer Omega cnsumes both events, must Omega receve
E1l before E27?

* |f a mnsumer conneds to an event channel, and if an event is suppied to that channel
one minute later, will that consumer receve that event? Does the answer depend on
whether the supgier and consumer are on different continents?

Consider a distributed red-time and embedded (DRE) applicaion that uses the CORBA
Event Service and that will med or not med its requirements depending on the value of
one or more or the event delivery properties outlined above. It should be possble to
determine whether a given Event Service implementation will succesdully support the
applicaion. It should also be posshble to port the gplicaion easly from one
implementation of the service implementation to another. Finally, it should be possble to
modify the service implementation — including making changes to hardware and revising
support software — and retain confidence that the gplicaion will continue to function
corredly and with the gopropriate quality of service

Context

The Quality Connedor pattern can be gplied in a DRE applicaion that has the following
charaderigtics:
* It uses components via standardized functional interfaces,
» The quadlities of the services provided by those @mponents are aiticd to the
applicaion’s conformanceto its requirements, and
» Long-term meintainability and portability are necessary for the success of the
application.

Problem

Implementations of services that are available through standardized functional interfaces
expose only non-standard medianisms for controlling the qualities of the services
provided, such as throughput, latency, jitter, scdability, dependability, and seaurity.
When an application uses 2uch a service implementation, threeforces arise:

» A quality-sensitive gpplication should be &le to monitor and control the qualities of
its supporting services. The required qualities sould be permitted to depend on the
current system mode (seeSidebar 1).

* A long-lived applicaion should be cgable of exeauting without manual
modifications on multiple implementations of infrastructure services with standard
functional interfaces.

» For time-criticd mode trangtions, infrastructure resources, by which we mean
resources such as ATM virtual circuits, processors, or radios, must be redlocaed
quickly to provide the services required in the new mode.

Solution

Implement a Quality Connector object for each infrastructure component” that provides
only a non-standard QoS-control interface. The Quality Connector object configures the
infrastructure component to provide, if possible, the requested QoS in the specified
system modes. The interface between the application and the Quality Connector object
should be independent of the choice of infrastructure component implementation and
should be concerned only with

* The qualities of the service provided

 Theload that will be imposed on the service and

» The modes of the system.

In detail: Before the application source code is compiled, a static application connector
acts on that code (or on some higher-level representation of it, such as a model), inserting

* An “infrastructure component” is any hardware or s oftware component of the depl oyable system whose
function is to provide infrastructure services to the application; an ORB together with its supporting
computing and communication hardware is an example.

hooks through which the dynamic connector will ad at applicaion run-time to configure
the infrastructure components. In addition, a static infrastructure connector seleds and
configures the implementations of infrastructure services before the system is linked.

If a new infrastructure component implementation is employed, then a crresponding
Quality Conredor objed will be required that provides the same interface to the
applicaion as before. The gplicaion will therefore not require manual changes to its
functionality. The runtime interface between the Quality Connedor objed and the
component implementation depends on the infrastructure cmponent’s QoS-control
interface

Structure
A Quality Connedor consists of three @mponents:

» The Satic Application Connector component ads on the gplicaion source @de
before it is compiled and may operate smilarly to “asped weaving” toadls, such as
AspedJ [12]. For example, the Static Application Connedor scans the applicaion
source ®de to deted statements and dedarations that are related to the service being
provided. This detedion process may be & phisticaed as that used in globally
optimizing compilers or as smple & the detedion of flags embedded in comments.
The Static Application Connedor then modifies the source @de a certain of these
locaions, generating new source @de.

& For example, consider an application that intends to supply events to an Event
Service, as described above, and whose QoS requirements are known staticaly.
Such an application must first create an Event Service access point called a
ProxyPushConsunmer by invoking the sandard obtai n_push_
consuner () method. The Static Application Connector component of the
Quality Connector locates these method invocations in the application source
code, and inserts new code after each that will request the appropriate QoS.

Class Collaborator

Static A pplication Connector ! Application
I Dynamic Connector

Responsibility

I Accepts QoS specifications for
infrastructure services

I Modifies the application source
code as required by the Dynamic
Connector

» The Satic Infrastructure Connector component acts on the underlying middleware
components before they are linked into the deployed system. This action may be as
simple as selecting one of several implementations of an interface or it may be as
complex as re-compiling and relinking the middleware component using

appropriately chosen values for configuration parameters, such as include file search
paths, macro symbol definitions, and compiler options.

& For example, the TAO ORB [19], which we use for its Real-time Event Service
[31], is highly configurable by both runtime and compile-time mechanisms [2].
Specifically, we exploit the efficiencies available when the target system is known
to be homogeneous by enabling a macro in an include file that streamlines the
marshaling and demarshaling activities.

Class Collaborator
I Middleware Components
I Dynamic Connector

Static Infrastructure Connector

Responsibility

I Accepts QoS specifications for
infrastructure services

I Selects or modifies the
middleware components that will
be available to the Dynamic
Connector

» The Dynamic Connector component is linked in with the application and acts during
its operation. This component allocates infrastructure resources to data flows. When
the quality connector object receives a request for a specific QoS, it uses the
Configuration object (see below) or similar mechanism to discover the infrastructure
components that might be used to provide the requested service in the specified mode.
It then negotiates with the infrastructure resources in an attempt to obtain support for
the requested service. If these negotiations are successful, the quality connector object
records the successful strategy, and directs the resources involved to record their
commitment to this QoS in this mode.

& For example, since an Event Service is permitted by the CORBA specification to
use any mechanism to propagate events from suppliers to consumers, the
Dynamic Connector component can (and should) examine the available
communication resources to determine the best means to propagate events.

Class Collaborator
Dynamic Connector ! Application

I Infrastructure resources
(or their proxies)

I Middleware components

Responsibility

I Negotiates with infrastructure
resources (or their proxies)

I Allocates infrastructure resources
to data flows

I Configures middleware
components during application
execution

The class diagram for the Quality Connector pattern is shown in the following figure:

Static Application Connector

Static Infrastructure Connector

requireQoS() requireQoS()

| |

(- . |

i instruments configures

| |

| |

| |

Application | Runtime PR Build-time
Uses Infrastructure | gerives | Infrastructure

requests strategizes configures

A N
|
|
|
|
|
|
I

I
|
|
|
|
|
|
N4

Dynamic Connector

requireQoS()

In addition to the participants of the Quality Connector pattern described above, there are
several optional participants, including:
» Configuration tools that assist system builders in selecting compatible sets of
infrastructure components that implement required services,
» Simulation tools to determine whether locally specified qualities of service will
combine to meet system-level requirements, and
» A Configuration object that provides visibility at run-time of the set of configuration
items that currently comprise the executing system.
These optional participants are not addressed further in this paper.

Dynamics

The dynamic sof the Quality Connector pattern is illustrated in Figure 2. These
interactions can be divided into the three phases as described below:

1. Pre-runtime. When the identities of the services to which QoS requests will be made
are known, the application source code can be modified automatically to insert the
code that makes the runtime requests. Infrastructure components are selected and
constructed using whatever information is known about the QoS requirements and
load imposed on the service.

2. Runtime preparation. The runtime dynamics of the Quality Connector are illustrated
in Figure 2. At runtime, the application requests a QoS in a specified mode,
including the specification of a load. The code included by the Quality Connector
determines whether that request could be satisfied using the presently available
infrastructure, considering any extant QoS agreements. If the request would be
feasible, the QoS request is granted, and the strategy by which the service would be

provided is recorded. Moreover, listeners are dtadied to the anfiguration items
whose mode dhanges might signal transition to or from the relevant mode.

3. Runtime employment. After a QoS agreament has been established and the system
enters the mode in which that agreament applies, the code included by the Quality
Conredor recaves notification of the mode diange and redlocaes infrastructure
resources immediately acarding to its pre-computed strategy.

:Static Application :Application .Static Infrastructure :Build-time
Connector Connector Infrastructure

requestQoS() requestQoS()

[
\
\
\
service| QoS [service | QoS
\
\
|

modify()

|

|

\
<
\

\

| configure()
\

A

|
\
[
[
[
[
[
»l
Lal
[
\

:Dynamic :Runtime
Connector Infrastructure

service | QoS

requestQoS()

configure()

- - - ¥ _ _ _

Figure 2. Dynamics of the Quality Connector

Implementation

After a configurable infrastructure service has been seleded, a quality connedor for that
service can be implemented as follows:

1. Define a small language in which acceptable values (or sets of accetable values) of
the services qualities can be spedfied, depending on the system mode. This
language is the form in which data flows over the “Spedfies QoS’ arow in the
figure below. Consder defining this language using XML so that it can be
understood readily by humans and parsed easly by COTS tools. This adivity can
take place @en in advance of the system design; idedly the language will be defined
by an open standard, as are, for example, UML and XML.

2. Provide configuration-time tools to ched for feasbility and consistency of the
requested quality values, and to set the properties of the Runtime Components to
provide the required quelities, asiill ustrated below.

3. Implement the Dynamic Connector. This is the Dynamic Connector component of
the Quality Connector, described above; it carries out the runtime allocation of
resources. This function is performed in the Middleware Service box below.

The following figure outlines how these activities interact when implementing the
Quality Connector pattern:

Application Cross-.(‘,.utting
Specifies Policies
Requ ests/ Qos /
Service —

Middleware :
. uality Connector
Service Quality
/ selects
generates
Service Program Configuration
Implementation ~ Generation Parameters
N /| Specifications
¥ |
Aspgct / configures
Weaving
Tools -
Runtime
generates ™ Components

We describe each of these implementation activities below.
Step 1: Specify the Quality Connector QoS L anguage

Define a Quality Connector QoS language that is capable of specifying
* Vauesfor al qualities of the service that are of interest in the system
» Vaues for all relevant parameters of the load that the clients will impose on the
service
 Relative priorities of clients, for use when not all requests can be supported and
» System modes in which quality requests apply.

% A QoS language that applies to a CORBA Event Service is illustrated in Figure 3.
We have not used worst-case bounds for qualities such as latency, on the ground that
if ‘worst case’ is interpreted literally, then resource utilization may be too low to be
effective for production DRE applications. Rather, we assume that latencies will be
constrained by a conjunction of one or more conditions of the form “<proportion> of
latencies shall be less than or equal to <time-interval>." For example, a QoS
specification for latency might be “99% of latencies less than or equal to 1.0 seconds
and 99.99% of latencies less than or equal to 4.0 seconds.”®

® It should be noted that the preceding is a special case of amuch more general and powerful technique,
which we call density intervals. A density interval specifiesadistribution of values by the assertion that its
cumulative density function lies entirely between an upper bounding function and alower bounding
function. In the preceding example, only an upper bounding function is specified, and it is a step function.
Since the generality of density intervalsis not essential to the present discussion, this subject will not be
treated in detail here.

<proposal > L .
<node> L~ Proposal appliesin this
<or> mode
<ci nanme="radi oVHF" st at e="onLi ne"/>
<ci nanme="radi oUHF" st at e="onLine"/>
</ or>
</ mode> | o~ There are QoStypes other
<QoS type="1latency" . i
<upper Poi nt secs="1.0" ﬂg)?%tl)gt%?c%"/%’g” Jitter
<upper Poi nt secs="4.0" prob="0.9999"/>
</ QS>
<l oad type="interMessageTi ne"> Flowis periodic
<upper Poi nt secs="1.0" prob="0. 0001"% >
<| ower Poi nt secs="1.0" prob="0.9999"/>
</ | oad>
<l oad type="nessageSi ze" >
<upper Poi nt byt es="256" prob="1.0"/>
<upper Poi nt bytes="32" prob="0.5"/>
</l oad> <l oad type="priority">
<urgency val ="10"/>

" ;ngo”ance val ="2"/> priority determines how
thisrequest will compete
</ proposal > with othersfor resources

Figure 3. A QoS Request in XML

The load that will be imposed by the event service is specified in terms of a
distribution of event sizes, in bytes, and a distribution of the times between event-
push invocations.

Relative priorities of clients are specified by the following two integral values:

» The urgency of a request determines which of several eligible requests will get
access to a shared resource. For example, if either of two packets of data could be
sent over acommunication link, the packet with the higher urgency will be sent.

 The importance of arequest determines which of two requests not both of which
can be supported will be accepted. For example, if both of two requests for event
data propagation cannot be supported on the present infrastructure, then the
request with the higher importance will be accepted and the other will be rejected.
Moreover, if a new request for service is received, and that request can be
accommodated only if some currently operating, lower importance service is shut
down, then that will be done; in this case, we say that the lower importance
request is abrogated.

The proposa in Figure 3 applies only when either of a pair of tactical military or
emergency response team radios is on-line. In that case, the time between a supplier’ s
push() cal and al consumers correspondingpush() calls for every event are to
be less than 1.0 second 99% of the time and less than 4 seconds 99.99% of the time.
The sizes of the event data are always at most 256 bytes and 50% of the time are less
than or equal to 32 bytes. The supplier' ush() calls occur periodically, once per
second. Note that the priority of the request consists of the two integral values defined
above.

Step 2: Provide Configuration-time Tools

Procure or build tools to help the programmers conduct the @nfiguration-time and
runtime Quality Connedor adivities. The dedsions concerning which tools to use, if any,
are subjed to cost/benefit tradeoffs, such as the st to build or buy the toadl plus the tool
maintenance st vs. the anticipated productivity improvement and risk reduction from its
use. Consider using design toals, such as design-toal interfaces, QoS language deders,
simulators, and source ®de generators, such as AspedJ[12] or scripts.

& For our Event Channel service our QoS language is in XML, so schemas are a
natural mechanism for language dchedking. Our application is written in C++, s0
we explicitly mark locations in the source @de where modifications are to be
applied, and we use aPer| script to insert the QoS requests automaticaly.

Step 3: Implement the Dynamic Connector

The Dynamic Connedor component implements the runtime functionality of the Quality
Connedor. This component is therefore responsible for
* Receving QoS requests from the goplication,
» Negotiating with the available infrastructure resources for support,
* Replying to the goplicaion’s request for QoS with either acquiescence or an explicit
denia, and, if acquiesced, then
* Distributing strategies to the components that will employ them when the goplicable
mode is entered.

% Inour CORBA Event Service, QoS requests are made by the gplication through
the ProxyPushSuppl i er and ProxyPushConsuner objeds. These forward
the request to the event channel objed, which negotiates with the infrastructure
resources.

The event channdl objed first requests service from the infrastructure cmponents
with a parameter cdled pul | Rank set to f al se, which has the dfed of attempting
to provide the requested service without disrupting any existing QoS agreements. If
this negotiation fails, then the event channel objed tries the negotiation again but with
pul | Rank set to t r ue; which has the dfed that if this and round of negotiation
succeals, then at the time when the presently negotiated QoS is required, then
agreaments of lessimportance than the present request may be arogated.

If the negotiation process sicceels, then a wlledion of resources will be dlocaed for
the event flow in the spedfied mode. The event channel objed distributes drategy
objeds, represented as XML strings, to the dfeded service objeds. For example, the
strategy given to a Pr oxyPushConsuner might dired the immediate aedion of a
socket with spedfied parameters to which suppied events sould be written.

Example Resolved

We can apply the Quality Connedor pattern to enhance the CORBA Event Service so
applicaions can control qualities of the event service without being unduly affeded by its
implementation. To acoomplish this, we permit the gplication to submit a QoS request

of the form shown in Figure 3 with each consumer and supplier proxy. These requests
support the requirement that QoS be permitted to depend on system mode.

To avoid manua modifications to the application source code, we can apply automatic
tools possessing aspect-oriented programming (AOP) [4] capabilities to insert the
required calls to request QoSs, following the creation of each Event Service proxy. The
rejection of a QoS request raises an exception. As a result, no manual modification of
application code is required when a different event service implementation is used.

The runtime result of a QoS request is that the request is forwarded from the Event
Service proxy to the Event Channel object, where the negotiation for infrastructure
support takes place with the infrastructure resources or their proxies. If the mode
specified in the request is not the current mode, then the strategy for the specified mode is
retained in the proxy object, for use when the specified mode is entered. As aresult, the
infrastructure resources are reallocated quickly when the mode is entered, as required for
time-critical mode transitions. These interactions are shown in the following figure:

:Application :Dynamic -7 :Build-time .
(modified) Connector ‘. _Infrastructure .’

\
\
\
\
| transmit N
Ll

|
\ \
\ \
\ \
: Event Proxy Event Channel ‘
\
\ \ \ \
| \ \
QoS Request | | |
\ \ \ \
request QoS
| ! \ \
| | request QoS ‘ |
>
‘ ‘ ! request resources ‘
\ \ 1 g
\ \ \) \
acquiescence
\ \ g - - - _ N
! ! strategy !
\ «--—-—-—-—--———- -
‘ push event |
\
\
\

In summary, the following figure illustrates the tool interactions (e.g., the instrumentation
and weaving of aspects).

quality connector setsthe

attributes of the middlenare

components to provide
therequired QoS

Known Uses

Meta-INterface for Real-time Embedded Systems (MINERS). There is an ongoing
independent research and development project at Lockheed Martin Tactical Systems in
Eagan, Minnesota, USA, cadled MINERS. MINERS is investigating the use of meta-
programming techniques to provide DRE applications with an open interface through
which they can configure and control the underlying middleware as they require.

QuO. The BBN Quality Objects (QuO) framework [6] uses QoS definition languages [7]
that are based on the separation of concerns promoted by AOP [4]. In particular, QuO
includes the notion of a connection between a client and an object, which encapsulates
QoS requirements and intended usage patterns; this is analogous to MINERS QoS
requests. QuO provides system condition objects, which are similar to MINERS modes.
QuO provides a Quality Description Language (QDL) that includes three aspect
languages:
1. A contract description language (CDL) that describes contracts as outlined above,
2. A structure description language (SDL) that describes the internal structure of
object implementations and the amount of resources they require, and
3. A resource description language (RDL) that describes the available resources and
their status.
These languages perform functions similar to the MINERS QoS language described
above.

QuO has in the past emphasized reactive resource allocation [32], which monitors the
QoS being provided and acting to correct contract violations or anticipated violations.
There is nothing inherent in the structure of QuUO, however, that prohibits implementing
the proactive resource alocation style described in this paper.

Human uses. Applications behave analogoudly to an executive who gives a package to
his staff with direction that it must be delivered by a specified time. The Quality
Connector acts, analogoudly to the staff, by selecting mechanisms for transport and
setting the controllable parameters of those mechanisms.

Consequences

The Quality Connector pattern has the following benefits:

* Infrastructure independence. The Quality Connector pattern decouples an application
from dependencies on the infrastructure it executes upon, even when that
infrastructure requires explicit configuration to provide the QoS that the application
requires.

» Fast response to mode changes. The Quality Connector negotiates requests for
service in modes other than the current mode, and in so doing performs the possibly
long and difficult determination of the necessary resource alocations. When the new
mode in fact arises, the resources can then be reallocated quickly.

The Quality Connector pattern also has the following liabilities:
» Reimplementation. When a new infrastructure is deployed, a new Quality Connector
object may be required.
» Potential for low utilization. Resource utilization may be low if the Quality
Connector implementations are unduly conservative in rgjecting QoS requests.
* Requires source code. This pattern require access to the source code of the
application and/or infrastructure implementation in order to instrument it.

See Also

The Quality Connector pattern is related to the Component Configurator [26] and the
Virtual Component [37] patterns, which permit component implementations to be linked
into and unlinked from a running application without shutting down the application. Both
the Quality Connector pattern and these other two patterns provide a means to change the
behavior of a service during application execution. The Component Configurator and
Virtual Component patterns are concerned with one mechanism — dynamic linking — for
doing so, while the Quality Connector focuses on policies and mechanisms that ensure
rapid response to changing system state by switching present components among pre-
computed strategies.

The goal of the Quality Connector pattern is similar to that of the Interceptor pattern [26],
in that both adjust infrastructure behavior without modifying the application manually.
The Interceptor pattern accomplishes this by a highly flexible method of adding services
that are triggered automatically when specified events occur. The Interceptor pattern
applies to the design of a framework, specifying that it expose application-callback
interfaces, and that it open aspects of its internal state and behavior to control by the
application. The Quality Connector pattern imposes no design requirements on its
constituent components (athough if the service components expose only weak
configuration controls, then the Quality Connector will be unable to provide good
resource utilization.) The Quality Connector is concerned with service quality, while the
Interceptor pattern is more general, and can provide functions such as event logging.

The Reflection pattern [30] provides for the inclusion in a running application of meta-
objects that provide information about, and control over, the objects that implement the
application “ogic.” This pattern is clearly a basis on which the Quality Connector
pattern depends since the latter requires that the infrastructure services support reflective
capabilities.

The Proxy pattern [29] shields an application from details of the implementation of a
service, e.g., it hides the physical location of a service implementation from its clients.
The Quality Connector pattern serves to modify the behavior of existing, fully visible,
service-providing components.

References

[0] Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” Encyclopedia of
Software Engineering, Wiley and Sons, 2002.

[1] Guidelinesfor Successful Acquisition and Management of Software Intensive
Systems: Volume 1 -- Version 3.0, May 2000, Department of the Air Force, Software
Technology Support Center.
http://web2.deskbook.osd.mil/reflib/ DAF/035GZ/013/035GZ013DOC.HTM#T2

[2] CarlosO' RyanDouglas C. Schmidt, and J. Russell Noseworthy, “Patterns and
Performance of a CORBA Event Service for Large-scale Distributed Interactive
Simulations,” International Journal of Computer Systems Science and Engineering,
CRL Publishing, 2001.

[3] Genera Characterization Parameters for Integrated Service Network Elements,
TOKEN_BUCKET_TSPEC. IETF Integrated Services, RFC 2215 (section 3.6.)
http://www.ietf.org/rfc/rfc2215.txt 7number=2215.

[4] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin, “Aspect Oriented Programming.”
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997.
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/Kiczales ECOOP97/for-
web.pdf, and also http://www.parc.xerox.com/csl/projects/aop/.

[5] The Quorum Project, DARPA Information Technology Office.
http://www.darpa.mil/ito/research/quorumvindex.html

[6] Quality Objects website, BBN Technologies. http://www.dist-
systems.bbn.com/tech/QuO/

[7] Pal PP, Loyall JP, Schantz RE, Zinky JA, Shapiro R, Megquier J. “Using QDL to
Specify QoS Aware Distributed (QuO) Application Configuration. Proceedings of
ISORC 2000,” The Third IEEE | nternational Symposium on Object-Oriented Real-
time Distributed Computing, March 15-17, 2000, Newport Beach, CA.

[8] Definition of the Differentiated Services Field (DS Field) in the IPv4 and 1Pv6
Headers. |IETF Differentiated Services.
http://www.ietf.org/rfc/rfc2474.txtnumber=2474

[9] An Architecture for Differentiated Services. IETF Differentiated Services.
http://www.ietf.org/rfc/rfc2475.txt number=2475

[10] Specification of Guaranteed Quality of Service, IETF Integrated Services, RFC
2212. http://www?2.ietf.org/rfc/rfc2212.txt

[11] Real-Time CORBA (Chapter 24). Common Object Request Broker Architecture 2.5.
http://www.omg.org/cgi-bin/docormal/01-09-61

[12] The AspectJ website at http://aspectj.org.

[13] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N Degrees of Separation:
Multi-Dimensional Separation of Concerns." Proceedings of the International
Conference on Software Engineering (ICSE' 99), May, 1999.
http://www.acm.org/pubs/articles/proceedings/soft/302405/p107-tarr/pl07-tarr. pdf

[14] Robert E. Filman, Stuart Barrett, DianaD. Lee, Ted Linden, “Inserting Ilities by
Controlling Communications,” Communications of the ACM, in press.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final. pdf.

[15] Robert E. Filman, “Applying Aspect -Oriented Programming to Intelligent
Synthesis,” Research Institute for Advanced Computer Science, NASA Ames
Research Center. June 2000.

[16] The Demeter Project homepage at http://www.ccs.neu.edu/research/demeter/

[17] TRESE Aspects and advanced separation of concerns homepage
http://trese.cs.utwente.nl/aspects asoc/index.htm

[18] K. Czarnecki and U. Eisenecker, "Generative Programming : Methods, Tools, and
Applications." Addison-Wesley, June 2000.

[19] Douglas C. Schmidt, David Levine, and Sumedh Mungee "The Design and
Performance of Real-Time Object Request Brokers," Computer Communications,
Elsivier, Vol. 21, No. 4, April 1998.

[20] Chris Gill, David Levine, and Douglas C. Schmidt, “The Design and Performance of
a Real-time CORBA Scheduling Service,” Real -time Systems, Kluwer, Vol. 20, No.
2, March, 2001.

[21] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas, "An architecture for
next generation middleware,”" in Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Springer-Verlag,
London, 1998.

[22] Fabio M. Costaand Gordon S. Blair, "A Reflective Architecture for Middleware:
Design and Implementation,” in ECOOP 99 PhDOOS Workshop, Lisbon, Portugal
1999.

[23] F. Kon and R. H. Campbell, " Supporting Automatic Configuration of Component-
Based Distributed Systems," in Proceedings of the 5" Conference on Object-
Oriented Technologies and Systems, (San Diego, CA), USENIX, May 1999.

[24] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher,
“Towards a Reflective Middleware Framework for QoS-enabled CORBA
Component Model Applications,” IEEE Distributed Systems Online special issue on
Reflective Middleware, 2001.

[25] F. J. Hauck, U. Bedker, M. Geler, E. Meier, U. Rastofer, and M. Stedkermeier, “T he
AspedI X Approad to Quality-of-Service Integration into CORBA,” Tedhnicd
Report TR-14-99-09, Operating Systems Dept., Friedrich-Alexander University,
Erlangen-Nurnberg, Germany, 1999

[26] Douglas C. Schmidt, Michad Stal, Hans Rohrert, and Frank Buschmann, Pattern-
Oriented Software Architecture,: Patterns for Concurrent and Networked Objects,
Wiley and Sons, 2000Q

[27] The Programmable Composition of Embedded Software (PCES) Projed, DARPA
Information Tedhnology Office http://www.darpa.mil/ito/reseach/pces/index.html

[28] J. Clapp and A Taub, “A Management Guide to Software Maintenancein COTS-
Based Systems,” MP 98B0000069 The MITRE Corporation, Bedford, MA,
November 1998

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisgdes, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wedey, 1995

[30] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michad
Stal, Pattern-Oriented Software Architecture: A System of Patterns, Wiley and Sons,
1996

[31] Timothy H. Harrison and David L. Levine and Douglas C. Schmidt, “The Design
and Performance of a Red-time CORBA Event Service” Procealings of OOP3A
' 97, Atlanta, GA, October 1997

[32] Joseph K. Crossand Patrick J. Lardieri, Proactive and Reactive Resource
Reallocation in DoD DRE Systems, submitted to the 9" Annual Conferenceon
Pattern Languages of Programs focused topic sesson “Towards Patterns and Pattern
Languages,” Monticdlo, IL, September, 2002

[33] About Global Air Traffic Management, http://www.hanscom.af.mil/esc-
gat/aboutgatm.htm.

[34] Greg Bollella and James Godling, "The Red-Time Spedficaion for Java', IEEE
Computer, June, 200Q pp. 47-54.

[35] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika Parameswaran,
“Evaluating Meta-Programming Medhanisms for ORB Middeware,” IEEE
Communicaion Magazne, spedal issue on Evolving Communicaions Software:
Tedniques and Technologies, 2001

[36] Bill Galmeister, POS X.4 Programming for the Real World, O’ Rellly, 1995

[37] CarlosO' Ryan and Angelo Corsaro and Raymond Klefstad and Douglas C. Schmidit,
“Virtua Component : : a Design Pattern for Memory-Constrained Systems,”
submitted to the 9" Annual Conference on the Pattern Languages of Programs”,
focused topic sesson “Towards Patterns and Pattern Languages,” Monticdlo,

[llinois, September 2002

