The Object-Oriented Design and Performance of JAWS
A High-performance Web Server Optimized for High-speed Networks

James C. Hu, Irfan Pyarali, Douglas C. Schmidt
{jxh,irfan,schmidt }@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis, Missotiri

This paper appeared in tliRarallel and Distributed Com- be adaptive, i.e., choosing to use different mechanisms (such
puting Practicegournal, special issue on Distributed Objectas TransmitFile) to handle requests for large files, while
Oriented Systems, edited by Maria Cobb, 1999. using alternative 1/0O mechanisms (such as synchronous event

dispatching) on requests for small files.

Abstract

This paper provides two contributions to the study of higl:l'- Introduction

erformance object-oriented (OO) Web servers. First, it out: i .
P J (00) ‘é‘ e emergence of the World Wide Web (Web) as a mainstream

lines the design principles and optimizations necessary to

velop efficient and scalable Web servers and illustrates h W var develobers. who must provide hiah quality of service
we have applied these principles and optimizations to o _developers, ‘P emghq Y
application users. Strategies for improving client perfor-

ate JAWS. JAWS is a high-performance Web server that istge-

signed to alleviate overheads incurred by existing Web serv, nee include client-side caching and caching proxy servers

on high-speed networks. In addition to its highly extendf]. However, performance bottlenecks persist on the server-

sjde due to factors such as inappropriate choice of concurrency

ble OO design, it is also highly efficient, consistently outperjh dispatching strateqies. excessive filesvstem access. and
forming existing Web servers, such as Apache, Java Ser@e?I 'SP ing gies, ex ve tliesy '
lecessary data copying.

PHTTPD, Zeus, and Netscape Enterprise, over 155 MbLb% . .
ATM networks on UNIX platforms. As high-speed networks (such as ATM) and high-

Second, this paper describes how we have customizedpf‘r;"lreformance /O subsystems (such as RAID) become ubiqui-

JAWS OO design to leverage advanced features of V\ﬁndct)ws’ the bottler)ecks of ex.|st|ng Web servers become increas
. . ' y problematic. To alleviate these bottlenecks, Web servers
NT on multi-processor platforms linked by high-speed A . . . o
. . must utilize an integrated approach that combines optimiza-
networks. The Windows NT features used in JAVS Irmllflloes at multiple levels. Figure 1 illustrates the general archi
asynchronous mechanisms for connection establishment finaure of sucf)h 2 Web éys'?em 9

data transfer. Our previous benchmarking studies demonstraté - < © . . .
his diagram provides a layered view of the architectural

that once the overhead of disk 1/O is reduced to a negligible : . .
constant factor (e.g., via memory caches), the primary det »r_mponents required for T TP clientto retrieve an HTML

ﬁyelopment platform has yielded many hard problems for

minants of Web server performance are its concurrency a | from an H.TTP server Through GUI mtgractlons, f[he
client application user instructs the HTTP client to retrieve a

event dispatching strategies. ! . . .
Our performance results over a 155 Mbps ATM network iIt{l_e. Therequesteris the active component of the client that

. . ._communicates over theetwork It issues a request for the file
dicate that certain Windows NT asynchronous I/O mechanis . .

: . . . 0the server with the appropriate syntax of thensfer proto-
(i.e., TransmitFile) provide superior performance for

. . . cal, in this case HTTP. Incoming requests to HiETP server
large file transfers compared with conventional synchronous

i ge received by thdispatcher which is the request demulti-
multi-threaded servers. Conversely, synchronous event djs- . : : . .
exing engine of the server. It is responsible for creating new

patching performed better for files less than 50 Kbytes. Th{js .
. . . reads or processes (for concurrent Web servers) or managing
to provide optimal performance, a Web server design should” " :
descriptor sets (for single-threaded concurrent servers). Each

“This work was supported in part by grants from OTI, Kodak, an€duestis pr'ocessed byhandler VYhiCh goes through Hf?- '
Siemens. cycleof parsing the request, logging the request, fetching file

Distributed

GET /i xh HITRIL. 0 Servers (i.e., Windows NT and Windows '95), most versions of UNIX

HTTe . HTTe Prioritized (e.g, SunOS 4.x and 5.x, SGI IRIX, HP-UX, DEC UNIX,
Client] <HVelcomes/H> | Server Mg AlX, Linux, and SCO), and MVS OpenEdition.
l Handlers ,/ Delavering and The need for dynamic and static adaptivity in JAWS can be
yering
«— Parallelization i .
HTML Reques | T motivated as follows:

col S Lifecycle sy \ Filesystem The need for dynamic adaptivity: On many OS platforms,
o \ cacingfle under different workloads, a single, statically configured con-

— PSR Adaptive tent tranefer rnechanism cannot provide optimal performance.
[eg,HTTP } gt?gg;mcy Results in this paper show that the performance of.drffere.nt
Adapive QS level I/O mechanrsm_s varies considerably according to file

Subsystem Protacols size. For instance, on Windows NT 4.0, synchronous I/O pro-
N Egnsggi‘; . vides the best performance for transferring small files, whereas

Delayeringand theTransmitFile operation provides the best performance

Zggﬁizzﬂon for transferring large files under heavy loads.
petwerk Hardware The need for static adaptivity: To achieve high perfor-

)]) _ . mance, Web servers must be adapted statically to use native
Figure 1: Overview of a Typical Web System and Optimizg;jgh-performance mechanisms provided by the OS platform.
tions For example, different OS platforms may provide specialized

I/0 mechanisms, such as asynchronous I/O or bulk data trans-
fer, or specialized devices, such as high-speed ATM network
status information, updating the cache, sending the file, antgrfaces [3]. Therefore, simply porting a Web server to use
cleaning up after the request is done. When the responseccgamon OS mechanisms and APIs, such as BSD sockets,
turns to the client with the requested file, it is parsed by aalect ,and POSIX threads, is not sufficient to achieve max-
HTML parserso that the file can be rendered. At this staginal performance on different OS platforms.
therequestemay issue other requests on behalf of the client
e.g, in order to fill a client-side cache. 0
Our experience developing Web servers for multiple OD

"The results in this paper are based on extensions to JAWS’
iginal synchronous event dispatching model, which was

- .) sed on the POSIX threading model and BSD sockets.
platforms indicates that the effort required to improve perfof'hese extensions support the asynchronous event dispatch-
mance can be simplified significantly by leveraging OS fea-

- o . f?\g and communication mechanisms available on Windows
tures explicitly. For example, an optimized file I/O syste

. Lo . T (JAWS-NT). The Windows NT mechanisms incorporated
that automatically caches open files in main memory helps

red latency. Likewi it for nchron vent ?_o JAWS-NT include overlapped 1/O, I/O completion ports,
educe fatency. LIkewise, support forasynchronous eve ansmitFile , GetQueueCompletionStatus , and

patching [9] and the .Proactor pattern [8.] can increase Serx%EeptEx 1 It was fairly straightforward to customize JAWS
throughput by reducing the context switching and synChrt%'support the new asynchronous mechanisms because JAWS

nrzatron overhead incurred from multi-threading. . was developed as an extensible OO Web server framework.
This paper presents two complementary strategies for deve

oping optimized Web servers. First, we present empirical r.
sults demonstrating that to achieve optimal performance,

As shown in Section 4, the performance measurements of
ﬁ’WS—NT over a~155 Mbps ATM link indicate significant

. o " oughput and latency variance between the synchronous and
servers must _sur‘)‘poc.iyn?mrcadaptrvrty (e, the aprlrty to- asynchronous event dispatching and concurrency models on
updare behavior “online” to aceount for changes in run_tm?/\?'ndows NT. In addition, our experience with the Windows
eondrt;]enrs]:). Sfecond, wev\c/jescnbe ourjreclent e&‘for’rs.at ﬁ‘d “asynchronous event dispatching mechanisms has revealed
ing a high-performance Web server (developed originally ther benefits besides improved throughput and latency. For

U'\.“X) to Ieve.rage the asynehronoue event dlspatr:hrng meg Stance, asynchronous event dispatching allows Web servers
anisms on Windows NT. This work illustrates the |mportan?

.) . § significantly reduce the number of threading resources re-
of an extensible Web server design that suppstdsic adap- quired to handle client requests concurrently.

tivity, I.e., changing the behavior of trle.Web server “off-line The remainder of this paper is organized as follows: Sec-
to account for OS pletform characterrstrcs. . tioP 2 provides an overview of the JAWS’ OO server frame-
Our research vehicle for demonstrating the eﬁectrvenesw

. : : . ork design and explains the optimizations we have applied to
dynamic and static adaptationlaWS JAWS is both an adalo"é'bSection 3 outlines the concurrency strategies supported by

tive Web server and an OO development framework for V\/|
servers that run on multiple OS platforms, including Win32 1These Windows NT mechanisms are described in Section 3.3.2.

JAWS-NT and describes the key differences between the syan be avoided, by allowing developers to leverage reuse of
chronous and asynchronous event dispatching models; Sfssign and code.

tion 4 analyzes our performance measurements of JAWS-NTFigure 2 illustrates the major structural components and de-
over an ATM network; Section 5 compares a highly optimizesign patterns that comprise the JAWS Adaptive Web Server
JAWS implementation against Netscape Enterprise and NIAWS) framework. JAWS is designed to allow the customiza-
crosoft Internet Information Server (11S); Section 6 compares
JAWS with related work; and Section 7 presents concluding

Reactor/Proactor Strategy Singleton

B4l |/O Strategy Cached Virtual
remarks. N Framework % ,%\ Filesystem

2 S)

d 6 9 ,6°

2 The Object-Oriented Design of
JAWS ‘Protocol % J

Handler

Tilde ~

Expander /home/
Event Dispatcher

mC

Concurrency @

Strategy
Framework

Active Object

Asynchronous Completion Token

The UNIX version of JAWS (described in [6]) consistently Eﬂ?é?wl @_
outperforms other servers in our test suite of Web servers ov

155 Mbps ATM networks. This section briefly outlines the
design principles and optimizations used by JAWS to achieve
such high performance.

Service Configurator

Service Configurator NN

Protocol Pipeline
Framework

Pipes and Filters

Strategy

2.1 Determinants of Web Server Performance

JAWS is both a Web server and an OO framework [26] written

in C++ that facilitates the development of flexible and adapFigure 2: Architectural Overview of the JAWS Framework
tive high-performance Web systems. The optimizations, OO

design principles, and patterns used in JAWS are guided byti@n of various Web server strategies in response to environ-
sults from our empirical analysis [6, 7, 8] of Web server perfdnental factors. These factors inclugtaticfactors, such as the
mance bottlenecks over high-speed ATM networks. Assufitmber of available CPUs, support for kernel-level threads,
ing sufficiently high network bandwidth and large file syste@nd availability of asynchronous 1/O in the OS asfiyhamic
caching, our experiments have identified the following detdactors, such as Web traffic patterns and workload characteris-
minants of Web server performance: tics.

Concurrency strategy and event dispatching: Request .
dispatching occupies a large portidre(, ~50%) of non-1/0O 2.3 Components and Patterns in JAWS

related Web server overhead. Therefore, the choice of congaws is structured as faamework of frameworksThe over-
rency strategy, such as thread/process pool vs. thread/proGgsgAwS framework contains the following components and
per-request, and dispatching strategy, such as asynchromieworks based on the referenced patterns:

vs. synchronous, has a major impact on performance.
o . _ ¢ the Event Dispatcherpredominantly follows thé\ccep-
Avoiding the filesystem: Web servers that implement so- tor pattern,

phisticated file data and file stats caching strategies, such as _ _ _
PHTTPD and JAWS, perform much better than those that de® @ Concurrency Strategyusing Stateand Active Object

not, such as earlier versions of Apache [6]. patterns,

¢ anl/O StrategyincorporatingReactorandProactor pat-
2.2 Applying Patterns and Frameworks terns,

Developers of Web servers strive to build fast, scalable, an¢ aProtocol Pipelingwhich implements thPipes and Fil-
configurable systems. However, there are some common pit- terspattern,

falls encounte_:red k_)y thes_e developers. Common pitfalls in-, the Protocol Handlerswhich adopt theAdapterpattern,
clude (1) coping with tedious and error-prone low-level pro- and

gramming details, (2) lack of portability, and (3) the complex-

ity of navigating the wide range of server design alternativese Cached Virtual Filesystenwhich uses thé&trategypat-

By carefully utilizing patterns and frameworks, these hazards tern.

jects implemented using componentsin ACE [23]. The colla htt p_request ()
orations among JAWS components and frameworks are guidgd ‘;;p-f fg“ﬁztsg z)
by a family of patterns, which are listed along the borders in P S

Each framework is structured as a set of collaborating iE Protocol Handler

Figure 2. An outline of the key frameworks, components, ai Scheduler Activation Queue
patterns in JAWS is presented below, along with illustratiol Ehttpr equest () Of-=--=---7 insert()

of how the patterns are implemented withing JAWS. These Ltnﬁ};r fg:ﬁztsg z) remve()

lustrations should be regarded as example implementation di spatch() O-----
these patterns by JAWAS. Resource Representation [Ly
Event Dispatcher: This componentis responsible for coor- for (::) { |
dinating JAWS’ Concurrency Strategwith its I/O Strategy m = ag->renove();
As illustrated in Figure 3, the passive establishment of con- di spatch(m; ‘ .
} aqg->i nsert (http) H
' Protocol Handler . . _ .
”””””””” ,ete | Protocol Handler Figure 4: Structure of the Active Object Pattern in JAWS
Acceptor e{ Task ‘<> ffffff = peer _stream_
open()
peer _acceptor _
accept () ‘ InputOutput é‘; InputOutput Handler \e{ Protocol Pipeline ‘

45N
Event Dispatcher }%‘ Concurrency ‘ notifies

olf |- ==| Filecache Handle
2] |
3|12 [Proact | il =1 Proactive |0 Handl
. . . g © I oactor ‘ roactive andler
Figure 3: Structure of the Acceptor Pattern in JAWS £//Z [sendtite() el e rem b el
£ §||recvfile() |[AsynchOp handl e_write_file()
x| |send_data() open()
. . . recv_dat a() cancel ()
nection evgnts Wl_th Web clients follows tbﬁe:ceptorpgttern oD e Timer Queue
[25]. New incoming HTTP request events are serviced by a handl e_event s() schedul e_ti mer (h)
concurrency strategy. As events are processed, they are dis- ||regi ster_handl er (h) cancel _timer(h)
renove_handl er (h) expire_timers(h)

patched to thé’rotocol Handler which is parameterized by
an I/O strategy. JAWS ability to dynamically bind to a par- . .
ticular concurrency strategy and I/O strategy from a range of Figure 5: Structure of the Proactor Pattern in JAWS
alternatives follows th&trategypattern [4].

Concurrency Strategy: This framework implements Con'through theReactompattern [24]. Reactive 1/O utilizes thde-

currency mechanisms, such as single-threaded, thr'"?ad'R1eerr'1topattern [4] to capture and externalize the state of a re-
request, or thread pool, that can be selected adaptively

) .) qfi‘ést so that it can be restored at a later time.
run-time using theState pattern [4] or pre-determined at
initialization-time. TheService Configuratopattern [10] is Protocol Handler: This framework allows system develop-
used to configure a particular concurrency strategy intce to apply the JAWS framework to a variety of Web system
Web server at run-time. When concurrency involves mul@Pplications. AProtocol Handleris parameterized by a con-

ple threads, the strategy creates protocol handlers that folfd¥irency strategy and an I/O strategy. These strategies are de-

the Active Objecpattern [12], as illustrated in Figure 4. coupled from the protocol handler using thdapter[4] pat-
tern. In JAWS, this component implements the parsing and

I/O Strategy: This framework implements various |/Ohandling of HTTP/1.0 request methods. The abstraction al-
mechanisms, such as asynchronous, synchronous and Heass for other protocols, such as HTTP/1.1, DICOM, and SFP
tive I/O. Multiple I/O mechanisms can be used simultaneoud$8], to be incorporated easily into JAWS. To add a new pro-
In JAWS, asynchronous I/O is implemented using &syn- tocol, developers simply write a neéirotocol Handlerimple-

chronous Completion Tokgh9] pattern andProactor[9] pat- mentation, which is then configured into the JAWS framework.

tern, as illustrated in Figure 5. Reactive I/O is accomplishggy.o| pipeline: This framework allows filter operations

2Due to space limitations it is not possible to describe each pattern in L e-be mcorporated eaSIIy with the data belng processed by the

tail. The references provide additional information on each pattern mentiona¢Ptocol Handler This in.teglration is aChieYed by employing
in this section. the Adapter pattern. Pipelines follow tipes and Filters

pattern [1] for input processing. Pipeline components candech as thread pool and thread-per-request. The initial de-
linked dynamically at run-time using tt&ervice Configurator sign of JAWS used aynchronougvent dispatching model be-

pattern, as shown in Figure 6. cause it was developed on Solaris 2.5, which does not provide
efficient asynchronous I/O support. This section describes
how the JAWS framework was enhanced to supporitham-
Zh(;onousevent dispatching model provided by Windows NT
/ init() . . .
fini() 3.1 Event Dispatching Strategies
- - suspend()
resume() . .
[Cache Sirategy Repository | i nfo() 3.1.1 Synchronous Event Dispatching

A common Web server architecture uses synchronous event
[Protocol Pipeline |[DLL |- [CacheStrategy | dispatching. This architecture consists of two layers: It@e
Subsystemand theProtocol Handlers as shown in Figure 7.
| Read Request | [Filter | [LRU Strategy |[LFU Strategy | The 1/0 Subsystem typically resides in the kernel and is imple-

\ParseRequ&st \ \LogRequ&st \

Protocol Handlers (HTTP)

Figure 6: The Service Configurator Pattern in JAWS @ @ @ @ @ @

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of filesys- (¢
tem access. Various caching strategies, such as LRU, LFU,
Hinted, and Structured, can be selected followingStrategy
pattern [4]. This allows different caching strategies to be pro-
filed and selected based on their performance. Moreover, opti-
mal strategies to be configured statically or dynamically using
the Service Configuratopattern, as shown in Figure 6. The
cache for each Web server is instantiated usingSingleton
pattern [4].

i

_—— e

d() write() realld() write() read() read() accept()

— |
=—1---+

Tilde Expander: This component is another cache compo-
nent that uses a perfect hash table [22] to map abbreviated
user login namese(g, ~schmidt) to user home directo-
ries .9, /home/cs/faculty/schmidt). When per-
sonal Web pages are stored in user home directories, and Ws

directories do not reside in one common root, this compongii i 5 factory that creates new data sockets. Protocol Han-

substantially reduces the disk I/O overhead required to access. having its own thread of control, reads and processes the

\a/li;zztirthiséeérmizrrgggﬁnJ:f{ S;;Z:?%Za_?ﬁg: Ex. a?c/jerdata coming from the socket that was created from a newly ac-
guratop ' P cepted connection. Synchronous event dispatching dedicates

can be unllnked and relinked dynamically into the server Whﬁ] selected thread to the new client for the duration of the file
a new user is added to the system. transfer

Figure 7: Synchronous Event Dispatching

SHited with sockets. One socket plays the role of the acceptor,

3 Event Dispatching and Concurrency 3.1.2 Asynchronous Event Dispatching

Strategies for Web Servers The asynchronous event dispatching architecture also consists
of both 1/0 subsystem and protocol handler layers, as shownin
The JAWSEvent Dispatcher is a flexible component Figure 8. However, in asynchronous I/O, each I/O operation is

that can be configured to use multiple Concurrency Strategitsnded off” to the kernel, where it runs to completion. Thus,

Protocol Handlers (HTTP) applications. In general, applying this pattern enables devel-

opers to leverage the performance benefits of executing oper-
ations concurrently, without exposing the complexity of I/O
completion ports and asynchronous I/O directly. In our ex-

perience, applying the Proactor pattern to the JAWS Web OO

N ' 7 server framework made it considerably easier to design, de-
WaitRorCompletion() velop, test, and maintain.
/0 N
Subsystem /O Campletion 3.2 Concurrency Strategies

Existing Web servers use a wide range of concurrency strate-

gies. These strategies include single-threaded concurrency

(e.g, Roxen), process concurren®.q, Apache), and thread

concurrency €.g, PHTTPD and Zeus). Single-threaded

servers cannot take advantage of multi-CPU hardware con-

‘x\l///' currency. Likewise, servers that use multiple processes in-
cur higher process creation overhead. Our discussion focuses

33 @ES%EM on threading strategies because process qreation incurs signif-

icantly greater overhead than thread creation.

For instance, our measurements revealed that the time re-
quired to create a thread on a 180 MHz, dual-CPU Pentium
PRO2 running Windows NT 4.0 is0.4ms. However, the time
required to create a process~gl.5ms, which is an order of
the initiating thread does not block. When the kernel has comagnitude higher. As a result, JAWS implements concurrency
pleted the operation, the kernel notifies the process througtyinthe threading strategies described below.

I/O completion port An 1/0O completion port is a kernel-level
thread—sgfe gueue of. I/0 completion notifica.tions. . 3.2.1 Thread-per-Request
The primary benefits of using 1/0 completion ports include
the following: In the thread-per-request model, a new thread is spawned to
handle each incoming request. As shown in Figure 9, one
Increased flexibility and scalability: - The thread initiating thread blocks on the acceptor socket. This acceptor thread is a
the asynchronous I/0 operation and the thread dequeueingiiory that creates a new handler thread to interact with each
completion status from the port can be different. This makegijient.
possible to tune the level of concurrency in an application byafter creating a new handler thread, the acceptor thread
simply increasing the number of completion handler threadgentinues to wait for new connections on the acceptor socket.
In contrast, the handler thread reads the HTTP request, ser-

Fewer threads and less overhead: The asynchronous
. O vices it, and transmits the result to the client. The lifecycle of
thread pool requires significantly fewer threads than the syn;

chronous thread pool because threads no longer block O”f.{,@fﬁgfr thread completes after the data transfer operation is

operations. The reduction of threads in the system reduce_Tsh hread-per- deli ful for long-durati i
context switching and synchronization overhead. e threa per requ'estmo €11s usetu foriong uratloq re
guests from multiple clients. It is less useful for short-duration
The primary drawback of I/O completion ports is the confiequests due to the overhead of creating a new thread for each
plexity of the asynchronous programming model. Servers pfgguest. In addition, it can consume a large number of OS re-
grammed to use 1/O completion ports directly require extpaurces if many clients simultaneously perform requests dur-
data structures in addition to the run-time stack. These dig periods of peak load.
structures are used to save and restore state explicitly when
event completio.ns are dispatched asynchronously. 32,2 Thread Pool
The complexity of asynchronous I/O and I/O completion
ports can be alleviated by applying the Proactor pattern [B].the thread pool model, a group of threads are pre-spawned
This pattern supports both efficient and flexible asynchronaliging Web server initialization, as shown in Figure 10. Pre-
event dispatching strategies for high-performance concurrgpawning eliminates the overhead of creating a new thread for

read() write() read() write() read() read@ccept()

=
|-—]
E=I
=
| —>]
[—> |

Figure 8: Asynchronous Event Dispatching

Protocol Handlers (HTTP)

3: read() \
4: serve_request()
5: write() \

1,3: accept()

1 [l 1Ii

I/O Subsystenp

Figure 9: Thread-per-Request

Protocol Handlers (HTTP)

DD

2: read()
3: serve_request()
4: write()

1, 5 accept()

Figure 10: Thread Pool

each request. Each thread blocksatept waiting for con-
nection requests to arrive from clients. When a new connec-
tion arrives, the OS selects a thread from the poaldcept

it and return a data socket handle.

The thread then performs a synchroneead from the
newly connected data socket handle. Once the entire HTTP
request has been read, the thread performs the necessary com-
putation and filesystem operations to service the request. The
requested data is then transmitted synchronously to the client.
The thread returns to the thread pool and reinvaasept
after the data transmission completes.

Synchronous thread pool is useful for bounding the num-
ber of OS resources consumed by a Web server. Client re-
guests can execute concurrently until the number of simulta-
neous requests exceeds the number of threads in the pool. At
this point, additional requests must be queued until a thread
becomes available. This queue is typically maintained in the
OS kernel's TCP layer.

To reduce latency, the thread pool can be configured to al-
ways have threads available to service new requests. The num-
ber of threads needed to support this policy can be very high
during peak loads because threads block in long-duration syn-
chronous I/O operations. The asynchronous thread pool ap-
proach (described in Section 3.2.3) improves this model by
considerably reducing the number of threads in the system.

Incidentally, in some operating systems, such as versions of
Solaris before 2.6, it is not possible to have multiple threads in
a process all blocking simultaneouslyancept onthe same
acceptor socket. Therefore, on these OS platforms, it is nec-
essary to protecccept with a mutex lock in a thread pool
Web server. In contrast, Windows NT 4.0 supports simulta-
neousaccept calls, so additional synchronization is not re-
quired in JAWS-NT.

3.2.3 Asynchronous Thread Pool

Figure 8 shows the asynchronous thread pool model. Like
the synchronous model, the asynchronous thread pool is cre-
ated during Web server initialization. Unlike the synchronous
model, however, the threads wait ow@mpletion portrather

than waiting onaccept . The OS queues up results on the
completion port from all asynchronous operations, such as
asynchronous accepts, reads, and writes.

The result of each asynchronous operation is handled by a
thread the OS selects from the pool of threads waiting on the
completion port. This asynchronous model is useful because
the same programming model works for a single thread, as
well as multiple threads. The thread that initiated the asyn-
chronous operation need not be the one selected to handle
its completion, however. Therefore, it is hard to implement
concurrency strategies other than thread pool with an asyn-
chronous event dispatching model.

3.2.4 Thread-per-Connection “signaled” state. Subsequently, Win32 demultiplex-
functions, such asWaitForSingleObject or

itForMultipleObjects , can be used to detect the

%naled state of the Win32 event object. These functions in-
ate when an outstanding asynchronous operation has com-

In the thread-per-connection model the newly created hancij:%
thread is responsible for the lifetime of the client connectio
rather than just a single request from the client. Therefore,
new thread may serve multiple requests before terminati
Thread-per-connection is not suitable for HTTP 1.0 becatpse

it establishes a new connection for each request. This cgn- . . .

currency models applicable, however, in HTTP 1.1, whict3-3-2 Overview of Windows NT Functions Relevant to

supports persistent connections [15, 20]. Web Servers

Thread-per-connection provides good support for prioritizehe following Win32 functions are particularly relevant for

tion of client requests. For instance, h|gher priority clients Caeve|opers of asynchronous Web Servers on Windows NT:

be associated with higher priority threads. Thus, request from

high priority clients will be served ahead of other requests b etQueueCompletionStatus: The function GetQueue-

cause the OS can preempt lower priority threads. CompletionStatus attempts to dequeue an I/O comple-

One drawback to thread-per-connection is that if certe{iﬂn resglt from a specified completion port. If Fhere are no
connections receive considerably more requests than oth&? 'pletlon result.s.queued on the port, the funghon bIock§ the
they can become a performance bottleneck. In contrast, thr&3g"9 thread waiting for asynchronous operations associated

pool and thread-per-request provide better support for Io%ﬁ the completion portto fln_lsh. The blocklngth_read returns
balancing. rom the GetQueuedCompletionStatus function when

(2) it can dequeue a completion packet or (2) when the func-
o _ tion times out.
3.3 Optimizing JAWS for Windows NT Windows NT selects the thread that has executed most re-

The performance results presented in Section 4 were cC%ntly from among the waiter threads on the completion port

ducted using a version of JAWS that was customized for wig.handle the new connection. This reduces context switching

- AR ._qverhead because it increases the likelihood that thread con-
dows NT (JAWS-NT). The NT-specific optimizations aIOpIIeﬁext information is still cached in the CPU and OS
in JAWS are described below.)

AcceptEx: The AcceptEx function combines several
socket functions into a single APl/kernel transition. When

it completes successfullyycceptEx performs the follow-

The Windows NT asynchronous I/0 model suppertsactive ing three tasks: (1) a new connection is accepted, (2) both
semantics, which allow applications to actively initiate 1/Ghe local and remote addresses for the connection are returned,
related operations, such &eadFile , WriteFile , and and (3) the first block of data sent by the remote client is re-
TransmitFile . The following steps are required to proeeived. Microsoft [14] claims that programs establishing con-
gram asynchronous I/O on Windows NT: nections withAcceptEx will perform better than those using

1. Create /O and event handles: First, aHANDLES cre- theaccept function. However, our results in Section 4 show

ated that corresponds to an I/O channel for the type of nté}(gt over high-speed networks there is not much difference in

working mechanism, such as a socket or named pipe, usedBjormance.
the application. TransmitFile: TransmitFile is a custom Win32 func-
Next, an application creates-BANDLEo a Win32 event ob- tion that sends file data over a network connection, either syn-
ject and uses this event objedd®ANDLEo initialize an over- chronously or asynchronously. The function uses the Win-
lapped I/O structure. The event object will be signaled whdnws NT virtual memory cache manager to retrieve the file
asynchronous operations on tHANDLEcomplete. data. As shown in Section 4, the asynchronous form of
TransmitFile is the most efficient mechanism for trans-

2. Asynchronous operation invocation: The HANDLE ferring large amounts of data over sockets on Windows NT.
to the 1/0O channel and the overlapped I/O structure are I o . o
n addition to transmitting filesTransmitFile allows

then passed to the asynchronous I/O operation, such a: '
WriteFile ReadFile , or AcceptEx . The initiated op- dafa to be prepended and appended before and after the file

eration proceeds asynchronously and does not block the caﬂa'fa’ respectively. This IS particularly well-suited for _Web
S&lvers because they typically sed@TP header and trailer

3. Asynchronous operation completion: When an asyn- data with the requested file. Hence, all the data to the client

chronous operation completes, the event object speamn be sent in a single system call, which minimizes mode

fied inside the overlapped 1/O structure is set to thsvitching overhead.

3.3.1 Overview of Windows NT Asynchronous I/O

The Windows NTServeroptimizesTransmitFile for transmit the file data to the client, it memory maps the re-
high performance; all our benchmarks were run on NT Servguested file first. After initiating the asynchronous transfer
The Windows NTWorkstatioroptimizes the function for min- usingWriteFile or TransmitFile , the handler thread
imum memory and resource utilization. Our measuremebtecks on the completion port. When the asynchronous trans-
confirm that thatfTransmitFile on Windows NTServer fer completes, the result is queued up at the completion port.
substantially outperform&ransmitFile on Windows NT The OS then selects a thread from those waiting on the com-
Workstation pletion port. This thread dequeues the result and performs the

necessary cleanup.g, closes the data socket) to finalize the
3.3.3 Customizing JAWS for Windows NT Asynchronous HTTP transaction.
/0 It is possible that the thread initiatingcceptEx , the

» o o) thread initiatingWriteFile or TransmitFile , and the
We modified the original Solaris implementation of JAWS tgaad dequeueing the completion status from the port might

use the Windows NT asynchronous event dispatching mogglgifferent. This increases the adaptivity of JAWS because
described abpve. Flgurg 11 shows the interactions betwggg possible to tune the level of concurrency simply by in-
components in the resulting JAWS-NT model. creasing the number of completion handler threads. Moreover,
due to the patterns-oriented OO design of the JARYS&Nt
Protocol Handlers (HTTP) Dispatcher framework, these changes do not require any

@ @ modifications to its concurrency architecture.
I
N

4 Benchmarking Testbed and Results

1: AcceptEx() 3: serve_request() ‘6: GetQueued

4: WriteFile() Ci)mpletionStatus() 4.1 Hardware Testbed
v
Our benchmarking hardware testbed is shown in Figure 12.

ie ng‘rft"EtiOE This testbed consists of two Micron Millennia PRO2 plus

2: accept 5: write §

completed completedl TS . O
l l T . T 3‘ Requests Lifecycle t
! = i
\ /O Subsysten V//ATM SNitchN

=R =

Figure 11: Asynchronous Event Dispatching (Windows NT

/x

Micron Millennia
Pro2

When a JAWS Web server process begins execution,
the main thread initiates multipldcceptEx calls asyn- Figure 12: Benchmarking Testbed Overview
chronously. All threads in the process block on the com-
pletion port by callingGetQueuedCompletionStatus . _
When a new connection arrives, the kernel places the red{ffkstations. Each PRO2 has 128 MB of RAM and is
from AcceptEx onto the completion port. If the initial €quipped with 2 PentiumPro processors. The client machine
data block received bjcceptEx does not contain the en-has a clock speed of 200 MHz, while the server machine runs
tire HTTP request, the selected handler thread must initiatel&® MHz. In addition, each PRO2 has an ENI-155P-MF-S
asynchronous read usiRgadFile . ATM card made by Efficient Networks, Inc. and is driven by

After the entire HTTP request is received from the client; 3 th — - .

e server is usingransmitFile , there is no need to memory map

the har]dler threa.d services the reqyeSt py |Pcat_ing the ﬁIQhEprequested file becauFeansmitFile uses the operating system’s vir-
transmit to the client. If the server is usingriteFile to tual memory cache manager to retrieve the file data.

Orca 3.01 driver software. The two workstations were conn R —
nected via an ATM network running through a FORE Sy§ |~
tems ASX-200BX, with a maximum bandwidth of 622 Mbpsya
However, due to limitations of LAN emulation mode, the peak:
bandwidth of our testbed is approximately 120 Mbps.) °§

Latency (msec)

1 5 10 15 1 5 10 15
Concurrent Clients Concurrent Clients

4.2 Software Request Generator

We used the WebSTONE [5] v2.0 benchmarking software to
collect client- and server-side metrics. These metrics include
average server throughpuandaverage client latencyWeb- % :
STONE is a standard benchmarking utility, capable of genér—
ating load requests that simulate typical Web server file acceg:
patterns. Our experiments used WebSTONE to generate load
and gather statistics for particular file sizes in order to deter- = couremciens Y cocumencions
mine the impacts of different concurrency and event dispatch-
ing strategies.

The file access pattern used in the tests is shown in Tablem“)l

W Thread Pool

Figure 13: Experiment Results from 500 Byte File

@ Thread/Request
 Thread Pool
O TransmitFile

Latency (msec)

Figure 14: Experiment Results from 5K File

O TransmitFile
50

Document Size| Frequency E:

500 bytes 35%

5 Kbytes 50% T

50 Kbytes 14% R S e

5 MbyteS 1% Concurrent Clients Concurrent Clients

Figure 15: Experiment Results from 50K File

Table 1: File Access Patterns

1000
900 +
7 80

This table represents actual load conditions on popular servers
based on a study of file access patterns conducted by SPEC;[g

800
700
600
500
400
300
200
100

0
1 5 10 15 1 5 10 15

Concurrent Clients Concurrent Clients

Latency (msec)

4.3 Experimental Results

The results presented below compare the performance of sev- i i i
eral different adaptations of the JAWS Web server. We dis- igure 16: Experiment Results from 500K File
cuss the effect of different event dispatching and I/O models
onthroughputandlatency which are measured as follows: 7™

Throughputis defined as the average number of bits ré-
ceived per second by the client. A high-resolution timer f@r
throughput measurement was started before the client berck
marking software sent the HTTP request. The high-resolution == n . . n n . .
timer stops just after the connection is closed at the client end. Concurrent Clients Concurrent Clients
The number of bits received includes the HTML headers sent
by the server.

Latencyis defined as the average amount of delay in mil-
liseconds seen by the client from the time it sends the request
to the time it completely receives the file. It measures how
long an end user must wait after sending an HTGET re-

9000

8000 g Thread/Request
7000 4| B Thread Pool
o O TransmitFile

8

3 6000

E 5000

2

2 w0

£ 3000

5
2000
1000

Figure 17: Experiment Results from 5M File

guest to a Web server, and before the content begins to arriv€he five graphs shown for each of throughput and la-

at the client. The timer for latency measurement is started jtesicy represent different file sizes used in each experiment,
before the client benchmarking software sends the HTTP B80 bytes through 5 Mbytes by factors of 10. These files sizes
guest and stops just after the client receives the first respaepeesent the spectrum of files sizes used in our experiments

from the server. to discover what impact file size has on performance.

10

4.3.1 Throughput Comparisons small files, the synchronous thread pool strategy provides

. , better overall performance. Under moderate loads, the syn-
Figures 13-17 demonstrate the variance of throughput as {ig,nous event dispatching model provides slightly better la-

size of the requested file and the server hit rate are increat%%y than the asynchronous model. Under heavy loads and
systematically. As expected, the throughput for each cofsh |arge file transfers, however, the asynchronous model us-
nection generally degrades as the connections per secong\llTransmitFile provides better quality of service. Thus,
creases. This stems from the growing number of simultanegiiyer windows NT, an optimal Web server should adapt it-
connections being maintained, which decreases the througlagytlys ejther synchronous or asynchronous event dispatching

per connection. and file 1/0 model, depending on the server’s workload and
As shown in Figure 15, the throughput of thread-per-requggtiripution of file requests.

can degrade rapidly for smaller files as the connection load
increases. In contrast, the throughput of the synchronous

thread pool implementation degrade more gracefully. The ré- Comparing JAWS With Other High_
son for this difference is that thread-per-request incurs higher

thread creation overhead because a new thread is spawned for performance Web Servers on Win-

eachGETrequest. In contrast, thread creation overhead in dows NT
the thread pool strategy is amortized by pre-spawning threads

when the server begins execution. This section compares a highly optimized JAWS implemen-

The results in figures 13-17 illustrate tAaansmitFile tation against Netscape Enterprise and Microsoft Internet In-
performs poorly for small filesi.e., < 50 Kbytes). Our ex- formation Server (IIS). The results shown in Figures 18-22.
periments indicate that the performanceToansmitFile demonstrate that JAWS is competitive with state-of-the-art

depends directly upon the number of simultaneous requegginmercial Web server implementations. The figures reveal
We believe that during heavy server loads.(high hit rates), that JAWS does not perform as well as Enterprise or IIS for
TransmitFile is forced to wait while the kernel servicesmall files. However, as the file size grows, JAWS overtakes
incoming requests. This creates a high number of simultafige other servers in performance.

ous connections, degrading server performance. Two conclusions can be drawn from these results. First,

As the size of the file grows, howevéfransmitFile there are still performance issues beyond the scope of this pa-

rapidly outperforms the synchronous dispatching models. fffr that require research to determine how to improve JAWS
instance, at heavy loads with the 5 Mbyte file (shown ferformance for transferring small files. Second, it affirms our

Figure 17), it outperforms the next closest model by neaHypothesis that a Web server can only achieve optimal perfor-
40%. TransmitFile is optimized to take advantage ofnance by employing adaptive techniques.
Windows NT kernel features, thereby reducing the number of

data copies and context switches.
6 Related Work

4.3.2 Latency Comparisons - .
y P As shown in Figure 1, the JAWS framework focuses on opti-

Figures 13-17 demonstrate the variance of latency perforizing a range of layers in a Web system. Therefore, it is in-
mance as the size of the requested file and the server hit flaenced by a variety of related efforts. This section describes
increase. As expected, as the connections per second increxssijng work that is most relevant to JAWS.

the latency generally increases as well. This reflects the ad-

dltlonal load pl_aced on the server, which reduces its abllltyéa_l Performance Evaluation

service new client requests.

As before, TransmitFile performs extremely poorly The need for high-capacity servers has spurred commercial
for small files. However, as the file size grows, its latenggctor activity and many server implementations are available
rapidly improves relative to synchronous dispatching during the market [27]. The growing number of Web servers has
light loads. prompted the need for assessing their relative performance.
The current standard benchmarks available are WebStone [5]
(by SGI) and SPECweb96 [2] (by SPEC), both heavily influ-
enced by the design of LADDIS [31].

As illustrated in the results presented above, there is sigWebStone and SPECweb96 are designed to measure overall
nificant variance in throughput and latency depending parformance. They rate the performance of a server with a
the concurrency and event dispatching mechanisms. Bimgle number (a higher number indicates better performance).

4.3.3 Summary of Benchmark Results

11

6.2 Optimization Strategies

An important goal of benchmarking Web servers is to discover
bottlenecks that require optimization to improve performance.

One way to improve performance is by removing overhead
Concurrent Glsets " cmamencins in the protocol itself. The WC is currently standardizing
HTTP/1.1, which multiplexes multiple requests over a single
connection. This “connection-caching” strategy can signifi-
cantly enhance the performance over HTTP/1.0 by reducing
unnecessary connection set up and termination [28, 20]. The
need for persistent connections to improve latency has been
noted in [15].

Latency can be improved by using caching proxies and
o L e caching clients, although the removal policy must be consid-

ered carefully [30]. The efforts presented in this paper are or-
Figure 19: Performance Results from 5K File thogonal to work on client-side caching. Our attempts to op-
timize performance have focused on (1) server-side caching,
e.g.,via JAWS’ Cached Virtual File system and (2) utilizing
concurrency and event dispatching processing routines that are
customized for the OS platform to reduce server load and im-
prove end-to-end quality of service.

Throughput (Mbps)

Figure 18: Performance Results from 500 Byte File

60

s g
g8 &8 8

Latency (msec)
8w

Throughput (Mbps)

HIAWS
W Microsoft
ONetscape

Throughput (Mbps)
Latency (msec)
3

1 5 10 15 1 5 10 15
Concurrent Clients Concurrent Clients

Figure 20: Performance Results from 50K File

6.3 Web Server Design and Implementation

ONetscape

Design patterns are re-usable software abstractions that have
been observed to occur many times in actual solutions [4]. A
design pattern is intended to solve a general design problem

for a specific context. Many patterns have been observed in the
concarrentGlents " s context of concurrent, parallel and distributed systems. Many
of these ideas are applicable to Web server design.

Throughput (Mbps)

Figure 21: Performance Results from 500K File

Katz presents an NCSA prototype of a scalable Web server
design [11]. This design was prompted by the growing num-
ber of requests being made to the NCSA server machine.
Many commercial server implementations arose to meet the
demand for high-performance Web servers. Higher end im-
plementations, such as Netscape Enterprise and Zeus, use
et Gl L i multi-threading to scale for high-end architectures with mul-

tiple CPUs. Other implementations.¢, Roxen, BOA and

thttpd) use a single thread of control to optimize performance
on single CPU architectures. Yeager and McGrath of NCSA
discuss the tradeoffs of some Web server designs and their per-
formance in [17].

8000

7000
& 6000
$ s000
£
>, 4000
3

3000

Throughput (Mbps)

— 2000

1000

Figure 22: Performance Results from 5M File

Our work attempts to apply design patterns and concurrency
These benchmarks are based on a process-based concurstratggies to provide a design which is both scalable and adap-
model and utilize multiple machines to simulate heavy loadise. We achieve static adaptation through start-up time con-
We have found that a thread-based concurrency model alldigaration options, and dynamic adaptation through use of dy-
a single client machine to generate higher loads, thus requinragnically loadable modules which alter the behavior of the
fewer machines in the benchmarking testbed. server.

12

6.4 Concurrency Strategies 7 Concluding Remarks

A concurrency strategy specifies the policies and mechanisrhgs paper describestatic and dynamicadaptations that can
for allowing multiple tasks to execute simultaneously. F@e applied to develop high-performance Web servers. Com-
Web servers, a task is an object that encapsulates servepign static adaptations include configuring an event dispatch-
quest handling. There are four general classes of Web sefMgrmodel that is customized for OS platform-specific fea-
concurrency strategies: tures, such as the 1/0O completion ports damdnsmitFile
on Windows NT. Common dynamic adaptations include pri-
lterative: An iterative server is a server that has neritized request handling, caching strategies, and threading
application-level concurrency: each task that begins runsstgategies. We illustrate the results of adapting the JAWS
completion. Web server framework to leverage the native asynchronous
dispatching mechanisms provided by Windows NT.
Single-threaded concurrent: A single-threaded concurrent Qur results demonstrate that to alleviate bottlenecks, Web
server has one thread of control, but only partially serves eaelivers must utilize an integrated approach that combines op-
unfinished task until a pre-determined amount of work is donignizations at multiple levels of a Web endsystem. For exam-
or until a timer has expired. ple, a Web server should take advantage of special I/O system
calls, specialized hardware and knowledge of the file access
Thread-per-Request: The thread-per-request strategy apatterns.
lows each task to execute in its own thread of control. As illustrated in Section 4, there is significant variance
in throughput and latency under different server load condi-
Thread Pool: A thread pool approach fixes the number afons. For small files, the synchronous thread pool strategy
executing threads and assigns tasks to available threads. provides better overall performance. However, under heavy
loads and with large file transfers, the asynchronous model us-
Surprisingly, Web server literature contains relatively litng TransmitFile ~ provides more consistent quality of ser-
tle information on the performance of alternative concurrengye Thus, under Windows NT, an optimal Web server should
strategies. This may result from the fact that most Weljapt itself dynamically to either event dispatching and file /0

server implementations tightly couple their concurrency stra{pdel, depending on the server's workload.
egy with the other components in the server. In contrast, con-

currency strategies have been studied extensively in the con-
text of parallel protocol stacks that run on shared memory p'ﬁcknowledgements
forms.

[13] measured the impact of synchronization on thread-p&fhe authors thank the reviewers for their thoughtful comments
request implementations of TCP and UDP transport protocatsd suggestions for improvement. We would also like to thank
built within a multi-processor version of thekernel; [16] Chris Dawson and Dan Swanger of FORE Systems, Inc., for
examined performance issues in parallelizing TCP-based @néviding the ATM cards and ATM switch used for our bench-
UDP-based protocol stacks using a thread-per-request stratagyking testbed. In addition, we would like to thank Sumedh
in a different multi-processor version of tkekernel; and [21] Mungee, Darrell Brunsch, Everett Anderson, Tim Harrison,
measured the performance of the TCP/IP protocol stack usér@l John DeHart for helping to develop our ATM Web server
a thread-per-connection strategy in a multi-processor versigstbed.
of System V STREAMS.

The results presented in this paper extend existing research
on protocol stack parallelism in several ways. First, we mda€ferences

sure the performance of a variety of representative ConCliI:Qt Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som
rency strategies. Second, our eXpenmen.tS repo.” the imp .__merlad, and Micha’el StaPattern-Oriénted Software’Architec-
of synchronous and asynchronous event dispatching strategiesy e - A System of Patternsviley and Sons, 1996.

n W rver performance, wher xisting work on para)-
0 eb server performance, whereas existing work o . pa Alexander Carlton. An Explanation of the SPECweb96 Bench-
lel protocol stacks has focused on synchronous event dispatch- mark. Standard Performance Evaluation Corporation whitepa-
ing. Our results illustrate how operating systems like Windows per, 1996. www.specbench.org/.
NT that support asynchronous event dispatching strategies aég

.) . . FZubin D. Dittia, Guru M. Parulkar, and Jerome R. Cox, Jr. The
customized file/network transfer operations can perform sig-" p|c Approach to High Performance Network Interface De-

nificantly better than purely synchronous strategies under var- sign: Protected DMA and Other TechniquesPioceedings of
ious workloadsé€.g, transfers involving large files). INFOCOM '97, Kobe, Japan, April 1997. IEEE.

13

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John VI{g9] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

sides. Design Patterns: Elements of Reusable Object-Oriented
Software Addison-Wesley, Reading, MA, 1995.

Gene Trent and Mark Sake. WebSTONE: The First Generation
in HTTP Server Benchmarking. Silicon Graphics, Inc. whitepa-
per, February 1995. ww.sgi.com/. [20]

James Hu, Sumedh Mungee, and Douglas C. Schmidt. Prin-
ciples for Developing and Measuring High-performance Web
Servers over ATM. InProceeedings of INFOCOM 98 [21]
March/April 1998.

James Hu, Irfan Pyarali, and Douglas C. Schmidt. Measuring
the Impact of Event Dispatching and Concurrency Models on
Web Server Performance Over High-speed NetworksPrin
ceedings of the™® Global Internet ConferencéEEE, Novem- [22]
ber 1997.

James Hu, Irfan Pyarali, and Douglas C. Schmidt. Applyin%
the Proactor Pattern to High-Performance Web ServeBrdn [
ceedings of the 10th International Conference on Parallel and
Distributed Computing and Systenh8STED, October 1998.

Prashant Jain and Douglas C. Schmidt. Dynamically Config-
uring Communication Services with the Service Configuratt#4]
Pattern.C++ Report, 9(5), June 1997.

Prashant Jain and Douglas C. Schmidt. Service Configurator:
A Pattern for Dynamic Configuration of Services. Rroceed-
ings of the3"® Conference on Object-Oriented Technologies
and System&JSENIX, June 1997. [25

Eric Dean Katz, Michelle Butler, and Robert McGrath. A Scal-
able HTTP Server: The NCSA Prototype. Rmoceedings of
the First International Conference on the World-Wide Wdhy
1994,

R. Greg Lavender and Douglas C. Schmidt.

3]

[26]

Active Object:
an Object Behavioral Pattern for Concurrent Programming. [’|
James O. Coplien, John Vlissides, and Norm Kerth, edito ,]
Pattern Languages of Program Desigkddison-Wesley, Read- [28]
ing, MA, 1996.

Mats Bjorkman and Per Gunningberg. Locking Strategies in
Multiprocessor Implementations of Protocol&ansactions on [29]
Networking 3(6), 1996.

Microsoft Developers Studio, Version 4.2 - Software Develop-
ment Kit 1996.

Jeffrey C. Mogul. The Case for Persistent-connection HTTP.géb]
Proceedings of ACM SIGCOMM '95 Conference in Computer
Communication Reviewpages 299-314, Boston, MA, USA,
August 1995. ACM Press.

Erich M. Nahum, David J. Yates, James F. Kurose, and Don

Towsley. Performance Issues in Parallelized Network Protoc l§1]
In Proceedings of the®* Symposium on Operating System
Design and ImplementatioSENIX Association, November
1994.

Nancy J. Yeager and Robert E. McGrathVeb Server Tech-
nology: The Advanced Guide for World Wide Web Information
Providers Morgan Kaufmann, 1996.

Object Management GroupControl and Management of Au-
dio/Video Streams: OMG RFP Submissidr? edition, March
1997.

14

Asynchronous Completion Token: an Object Behavioral Pattern
for Efficient Asynchronous Event Handling. In Robert Martin,
Frank Buschmann, and Dirk Riehle, editdPattern Languages

of Program DesignAddison-Wesley, Reading, MA, 1997.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. Standards Track RFC
2068, Network Working Group, January 1997. www.w3.0rg/.

Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma, and
Mohan Krishnan. Pitfalls in Multithreading SVR4 STREAMS
and other Weightless Processes.Phoceedings of the Winter
USENIX Conferengepages 85-106, San Diego, CA, January
1993.

Douglas C. Schmidt. GPERF: A Perfect Hash Function Genera-
tor. In Proceedings of the"? C++ Conference pages 87-102,
San Francisco, California, April 1990. USENIX.

Douglas C. Schmidt. ACE: an Object-Oriented Framework
for Developing Distributed Applications. IRroceedings of
the6'® USENIX C++ Technical Conferenc€ambridge, Mas-
sachusetts, April 1994. USENIX Association.

Douglas C. Schmidt. Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event Handler Dis-
patching. In James O. Coplien and Douglas C. Schmidt, ed-
itors, Pattern Languages of Program Desigoages 529-545.
Addison-Wesley, Reading, MA, 1995.

] Douglas C. Schmidt. Acceptor and Connector: Design Patterns

for Initializing Communication Services. In Robert Martin,
Frank Buschmann, and Dirk Riehle, editdPattern Languages
of Program DesignAddison-Wesley, Reading, MA, 1997.

Douglas C. Schmidt and James Hu. Developing Flexible and
High-performance Web Servers with Frameworks and Patterns.
ACM Computing Survey80, 1998.

David Strom. Web Compare. webcompare.iworld.com/, 1997.

T. Berners-Lee, R. T. Fielding, and H. Frystyk. Hypertext
Transfer Protocol — HTTP/1.0. Informational RFC 1945, Net-
work Working Group, May 1996. www.w3.org/.

Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghalleb Abdulla, and Edward A. Fox. Removal Policies in Net-
work Caches for World Wide Web Documents. Rroceedings

of SIGCOMM '96 pages 293-305, Stanford, CA, August 1996.
ACM.

Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghalleb Abdulla, and Edward A. Fox. Removal Policies in Net-
work Caches for World Wide Web Documents. Rroceedings

of SIGCOMM '96 pages 293-305, Stanford, CA, August 1996.
ACM.

Mark Wittle and Bruce E. Keith. LADDIS: The Next Genera-
tion in NFS File Server Benchmarking. USENIX Association
Conference Proceedings "98pril 1993.

