
Object Lifetime Manager

A Complementary Pattern for Controlling Object Creation and Destruction

David L. Levine and Christopher D. Gill Douglas C. Schmidt
flevine,cdgillg@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Electrical & Computer
Washington University Engineering Department
St. Louis, MO, USA University of California, Irvine, USA�

This paper appeared as a chapter in the bookDesign Pat-
terns in Communications, (Linda Rising, ed.), Cambridge Uni-
versity Press, 2000. Abridged versions of the paper appeared
at the Pattern Languages of Programming Conference, Aller-
ton Park, Illinois, USA, 15 – 18 August 1999 and in the C++
Report magazine, January, 2000.

1 Introduction

Creational patterns such as Singleton and Factory Method [1]
address object construction and initialization, but do not con-
sider object destruction. In some applications, however, object
destruction is as important as object construction. TheObject
Lifetime Managerpattern addresses issues associated with
object destruction. Object Lifetime Manager is also an ex-
ample of acomplementary pattern, which completes or ex-
tends other patterns. In particular, the Object Lifetime Man-
ager pattern completes creational patterns by considering the
entire lifetime of objects.

This paper is organized as follows: Section 2 describes the
Object Lifetime Manager pattern in detail using the Siemens
format [2]. and Section 3 presents concluding remarks.

2 The Object Lifetime Manager Pat-
tern

2.1 Intent

The Object Lifetime Managerpattern can be used to govern
the entire lifetime of objects, from creating them prior to their
first use to ensuring they are destroyed properly at program ter-
mination. In addition, this pattern can be used to replace static
object creation/destruction with dynamic object preallocation/

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Nortel.

deallocation that occurs automatically during application ini-
tialization/termination.

2.2 Example

Singleton [1] is a common creational pattern that provides a
global point of access to a unique class instance and defers
creation of the instance until it is first accessed. If a singleton
is not needed during the lifetime of a program, it will not be
created. The Singleton pattern does not address the issue of
when its instance is destroyed, however, which is problematic
for certain applications and operating systems.

To illustrate why it is important to address destruction se-
mantics, consider the following logging component that pro-
vides a client programming API to a distributed logging ser-
vice [3]. Applications use the logging component as a front-
end to the distributed logging service to report errors and gen-
erate debugging traces.

class Logger
{
public:

// Global access point to Logger singleton.
static Logger *instance (void) {

if (instance_ == 0)
instance_ = new Logger;

return instance_;
}

// Write some information to the log.
int log (const char *format, ...);

protected:
// Default constructor (protected to
// ensure Singleton pattern usage).
Logger (void);

static Logger *instance_;
// Contained Logger singleton instance.

// . . . other resources that are
// held by the singleton . . .

};

1

// Initialize the instance pointer.
Logger *Logger::instance_ = 0;

The Logger constructor, which is omitted for brevity, allo-
cates various OS endsystem resources, such as socket handles,
shared memory segments, and/or system-wide semaphores,
that are used to implement the logging service client API.

To reduce the size and improve the readability of its logging
records, an application may choose to log certain data, such as
timing statistics, in batch mode rather than individually. For
instance, the following statistics class batches timing data for
individual identifiers:

class Stats
{
public:

// Global access point to the
// statistics singleton.
static Stats *instance (void) {

if (instance_ == 0)
instance_ = new Stats;

return instance_;
}

// Record a timing data point.
int record (int id,

const timeval &tv);

// Report recorded statistics
// to the log.
void report (int id) {

Logger::instance ()->
log ("Avg timing %d: "

"%ld sec %ld usec\n",
id,
average_i (id).tv_sec,
average_i (id).tv_usec);

}

protected:
// Default constructor.
Stats (void);

// Internal accessor for an average.
const timeval &average_i (void);

// Contained Stats singleton instance.
static Stats *instance_;

// . . . other resources that are
// held by the instance . . .

};

// Initialize the instance pointer.
Stats *Stats::instance_ = 0;

After recording various statistics, a program calls the
Stats::report method, which uses theLogger single-
ton to report average timing statistics for an identifier.

Both theLogger andStats classes provide distinct ser-
vices to the application: theLogger class provides general
logging capabilities, whereas theStats class provides spe-
cialized batching and logging of time statistics. These classes

are designed using the Singleton pattern, so that a single in-
stance of each is used in an application process.

The following example illustrates how an application might
use theLogger andStats singletons.

int main (int argc, char *argv[])
{

// Interval timestamps.
timeval start_tv, stop_tv;

// Logger, Stats singletons
// do not yet exist.

// Logger and Stats singletons created
// during the first iteration.
for (int i = 0; i < argc; ++i) {

::gettimeofday (&start_tv);
// do some work between timestamps . . .
::gettimeofday (&stop_tv);
// then record the stats . . .
timeval delta_tv;
delta_tv.sec = stop_tv.sec - start_tv.sec;
delta_tv.usec = stop_tv.usec - start_tv.usec;
Stats::instance ()->record (i, delta_tv);

// . . . and log some output.
Logger::instance ()->

log ("Arg %d [%s]\n", i, argv[i]);
Stats::instance()->report (i);

}

// Logger and Stats singletons are not
// cleaned up when main returns.
return 0;

}

Note that theLogger and Stats singletons are not con-
structed or destroyed explicitly by the application,i.e., their
lifetime management is decoupled from the application logic.
It is common practice to not destroy singletons at program
exit [4].

Several drawbacks arise, however, from the fact that the
Singleton pattern only addresses thecreationof singleton in-
stances and does not deal with their destruction. In partic-
ular, when themain program above terminates, neither the
Logger nor theStats singletons are cleaned up. At best,
this can lead to false reports of leaked memory. At worst, im-
portant system resources may not be released and destroyed
properly.

For instance, problems can arise if theLogger and/or
Stats singletons hold OS resources, such as system-scope
semaphores, I/O buffers, or other allocated OS resources. Fail-
ure to clean up these resources gracefully during program
shutdown can cause deadlocks and other synchronization haz-
ards. To alleviate this problem, each singleton’s destructor
should be called before the program exits.

One way of implementing the Singleton pattern that at-
tempts to ensure singleton destruction is to employ the Scoped
Locking C++ idiom [5] that declares a static instance of

2

the class at file scope [4]. For example, the following
Singleton Destroyer template provides a destructor
that deletes the singleton.

template <class T>
Singleton_Destroyer
{
public:

Singleton_Destroyer (void): t_ (0) {}
void register (T *) { t_ = t; }
˜Singleton_Destroyer (void) { delete t_; }

private:
T *t_; // Holds the singleton instance.

};

To use this class, all that’s necessary is to modify theLogger
and Stats classes by defining a static instance of the
Singleton Destroyer , such as the following example
for Logger :

static Singleton_Destroyer<Logger>
logger_destroyer;

// Global access point to the
// Logger singleton.
static Logger *instance (void) {

if (instance_ == 0) {
instance_ = new Logger;
// Register the singleton so it will be
// destroyed when the destructor of
// logger_destroyer is run.
logger_destroyer.register (instance_);

}
return instance_;

}

// . . . similar changes to Stats class . . .

Note how logger destroyer class holds the single-
ton and deletes it when the program exits. A similar
Singleton Destroyer could be used by theStats sin-
gleton, as well.

Unfortunately, there are several problems with explicitly
instantiating staticSingleton Destroyer instances. In
C++, for example, eachSingleton Destroyer could be
defined in a different compilation unit. In this case, there is
no guaranteed order in which their destructors will be called,
which can lead to undefined program behavior. In particular, if
singletons in different compilation units share resources, such
as socket handles, shared memory segments, and/or system-
wide semaphores, the program may fail to exit cleanly. The
undefined order of singleton destruction in C++ makes it hard
to ensure these resources are released by the OS before (1) the
last singleton using the resource is completely destroyed, but
not before (2) a singleton that is still alive uses the resource(s).

In summary, the key forces that are not resolved in these ex-
amples above are: (1) resources allocated by a singleton must
ultimately be released when a program exits, (2) unconstrained
creation and destruction order of static instances can result in

serious program errors, and (3) shielding software developers
from responsibility for details of object lifetime management
can make systems less error-prone.

2.3 Context

An application or system where full control over the lifetime
of the objects it creates is necessary for correct operation.

2.4 Problem

Many applications do not handle the entire lifetime of their
objects properly. In particular, applications that use creational
patterns, such as Singleton, often fail to address object destruc-
tion. Similarly, applications that use static objects to provide
destruction often suffer from inconsistent initialization and ter-
mination behavior. These problems are outlined below.

Problems with singleton destruction: Singleton instances
may be created dynamically.1 A dynamically allocated sin-
gleton instance becomes a resource leak if it is not destroyed,
however. Often, singleton leaks are ignored because (1) they
aren’t significant in many applications and (2) on most multi-
user general-purpose operating systems, such as UNIX or
Windows NT, they are cleaned up when a process terminates.

Unfortunately, resource leaks can be troublesome in the fol-
lowing contexts:

� When graceful shutdown is required [4]: Singletons
may be responsible for system resources, such as system-
wide locks, open network connections, and shared memory
segments. Explicit destruction of these singletons may be
desirable to ensure these resources are destroyed at a well-
defined point during program termination. For instance, if
the Logger class in Section 2.2 requires system-wide locks
or shared memory, then it should release these resources after
they are no longer needed.

� When singletons maintain references to other single-
tons: Explicitly managing the order of destruction of sin-
gletons may be necessary to avoid problems due to dangling
references during program termination. For example, if the
Stats class in the example above uses theLogger instance
in its report method, this method could be invoked during
theStats instance destruction, which renders the behavior of
the program undefined. Likewise, to support useful behaviors,
such as logging previously unreported values during program
shutdown, the termination ordering of these singletons must
be controlled.

1Singleton is used as an example in much of this pattern description be-
cause (1) it is a popular creational pattern and (2) it highlights challenging
object destruction issues nicely. However, Object Lifetime Manager can com-
plement other creational patterns, such as Factory Method, and does not as-
sume that its managed objects are singletons or of homogeneous types.

3

� When checking for memory leaks: Memory leak de-
tection tools,e.g., NuMega BoundsCheck, ParaSoft Insure++,
and Rational Purify, are useful for languages such as C and
C++ that require explicit allocation and deallocation of dy-
namic memory. These tools identify singleton instances as
leaked memory, reports of which obscure important memory
leaks.

For instance, if many identifiers are used to recordStats
data in our running example, it may appear that a sizable
amount of memory is leaking during program operation. In
large-scale applications, these “leaks” can result in numerous
erroneous warnings, thereby obscuring real memory leaks and
hindering system debugging.

� Dynamic memory allocation may be from a global
pool: Some real-time operating systems, such as Vx-
Works [6] and pSOS [7], have only a single, global heap for
all applications. Therefore, application tasks must release dy-
namically allocated memory upon task termination; otherwise,
it cannot be reallocated to other applications until the OS is
rebooted. Failure to explicitly release memory that was allo-
cated dynamically by theLogger andStats singletons in
our running example represents real resource leaks on such
platforms.

Problems with static object lifetime: Some objects must
be created prior to any use. In C++, such instances tradition-
ally have been created asstatic objects, which are intended to
be constructed prior to invocation of the main program entry
point and destroyed at program termination. However, there
are several important drawbacks to static objects:

� Unspecified order of construction/destruction. C++
only specifies the order of construction/destruction of static
objectswithin a compilation unit (file); the construction or-
der matches the declaration order and destruction is the re-
verse order [8]. However, there is no constraint specified on
the order of construction/destructionbetweenstatic objects
in different files. Therefore, construction/destruction order-
ing is implementation-dependent. For example, the versions
of theLogger andStats classes that use theSingleton
Destroyer in Section 2.2 illustrate problems that arise from
the undefined order of destruction of theStats andLogger
singleton instances.

It is hard to write portable C++ code that uses static objects
possessing initialization dependencies. Often, it is simpler to
avoid using static objects altogether, rather than trying to an-
alyze for, and protect against, such dependencies. This ap-
proach is particularly appropriate for reusable components and
frameworks [9], which should avoid unnecessary constraints
on how they are used and/or initialized.

Explicit singleton management is necessary for correct pro-
gram operation on some platforms because they destroy sin-

gletons prematurely. For instance, the garbage collector in
older Java Development Kits (JDKs) may destroy an object
when there are no longer any references to it, even if the object
was intended to be a singleton [10]. Though this deficiency has
been fixed in later JDKs, the Object Lifetime Manager could
solve it, under application control, by maintaining singleton
references.

Another problem in Java applications is the sharing of
namespaces, which allow sharing (intended or otherwise) be-
tween singletons in separate applets [11]. Again, the Object
Lifetime Manager can be used to register singleton instances.
Applets would then access their singletons from this registry.

� Poor support by embedded systems. Embedded
systems have historically used C. Therefore, they do not al-
ways provide seamless support for OO programming language
features. For instance, the construction/destruction of static
objects in C++ is one such feature that often complicates em-
bedded systems programming. The embedded OS may have
support for explicit invocation of static constructor/destructor
calls, but this is not optimal from a programmer’s perspective.

Some embedded operating systems do not support the no-
tion of a program that has a unique entry point. For exam-
ple, VxWorks supports multipletasks, which are similar to
threads because they all share one address space. However,
there is no designatedmain task for each application. There-
fore, these embedded systems platforms can be configured
to call static constructors/destructors at module (object file)
load/unload time, respectively. On such platforms, it is not
otherwise necessary to unload and load between repeated exe-
cutions. To properly destroy and construct static objects, how-
ever, the static object destructors/constructors must either be
called manually, or the module unloaded and loaded again,
which hinders repeated testing.

In addition, placement of data in read-only memory (ROM)
complicates the use of static objects [12]. The data must be
placed in ROM prior to run-time; however, static constructors
are called at run-time. Therefore, embedded systems some-
times do not support calls of static constructors and destruc-
tors. Moreover, if they are supported it may be under explicit
application control, instead of by implicit arrangement of the
compiler and run-time system.

� Static objects extend application startup time. Static
objects may be constructed at application startup time, prior
to invocation of the main entry point. If these objects are not
used during a specific execution, then application construction
(and destruction) times are needlessly extended. One way to
eliminate this waste is to replace each such static object with
one that is allocated on demand,e.g., by using the Singleton
pattern.

Replacement of a static object with a singleton also can
be used to delay construction until the first use of the object.

4

Again, this reduces startup time. Some real-time applications
may find it advantageous to construct the singletons at a spe-
cific time, after the main entry point has been entered, but be-
fore the objects are needed.

One or more of these drawbacks of static objects typically
provides sufficient motivation for removing them from a pro-
gram. Often, it is better not use them in the first place, but to
apply the following solution instead.

2.5 Solution

Define anObject Lifetime Manager, which is a singleton that
contains a collection ofPreallocated Objectsand Managed
Objects. The Object Lifetime Manager is responsible for con-
structing and destroying the Preallocated Objects at program
initialization and termination, respectively. It is further re-
sponsible for ensuring all of its Managed Objects are destroyed
properly at program termination.

2.6 Applicability

Use Object Lifetime Manager when:

Singletons and other dynamically created objects must be
removed without application intervention at program ter-
mination: Singleton and other creational patterns do not
typically address the question of when the objects they create
should be removed, or who should remove them. In contrast,
Object Lifetime Manager provides a convenient, global object
that deletes dynamically created objects. Creational pattern
objects can then register with the Object Lifetime Manager for
deletion, which usually occurs at program termination.

Static objects must be removed from the application: As
described in Section 2.4, static objects can be troublesome,
especially in some languages and on some platforms. Object
Lifetime Manager provides a mechanism to replace static ob-
jects with Preallocated Objects. Preallocated Objects are dy-
namically allocated before the application uses them, and deal-
located at program termination.

The platform does not support static object construc-
tion/destruction: Some embedded platforms, such as Vx-
Works and pSOS, do not always construct static objects at pro-
gram initialization and destroy them at program termination.2

In general, it is best to remove all static objects,e.g., to support
repeated testing of a program. Another situation where static
objects can cause difficulty is when they are placed in ROM.

2On VxWorks and pSOS, static objects can be constructed when the mod-
ule is loaded and destroyed when it is unloaded. After loading, an entry point
can be called more than once before unloading. Therefore, aprogramcan be
run more than once after constructing static objects, without ever destroying
them. Conversely, static object constructors and destructors can be invoked
explicitly.

Objects in ROM cannot be initialized at run-time, because they
cannot be modified at all.

The underlying platform does not provide a notion of a
main program, although the application needs it: The
lack of support for static object construction/destruction on
some platforms stems from their lack of support for the no-
tion of a program, as discussed in Section 2.4. The Object
Lifetime Manager pattern can be used to emulate programs
by partitioning this address space. The scope of each Object
Lifetime Manager delineates a program, from an application’s
perspective.

Destruction order must be specified by the application:
Dynamically created objects can beregisteredwith the Object
Lifetime Manager for destruction. The Object Lifetime Man-
ager can be implemented to destroy objects in any desired or-
der.

The application requires explicit singleton management:
As described in Section 2.4, singletons may be destroyed pre-
maturely, for example, on earlier Java platforms. The Object
Lifetime Manager delays singleton destruction until program
termination.

2.7 Structure and Participants

The structure and participants of the Object Lifetime Manager
pattern are shown using UML in the following figure and de-
scribed below.

Manager
Object Lifetime

fini ()
static starting_up ()
static shutting_down ()
static at_exit ()
static instance ()
at_exit_i ()

init ()

static instance_

Application

Preallocated Object

Object
Managed*

*
*

*

Object Lifetime Manager: Each Object Lifetime
Manager is a singleton that contains collections ofManaged
Objects andPreallocated Objects .

Managed Objects: Any object may beregisteredwith an
Object Lifetime Manager , which is responsible for
destroying the object. Object destruction occurs when the

5

Object Lifetime Manager itself is destroyed, typi-
cally at program termination.

Preallocated Objects: An object may be hard-coded for
construction and destruction by anObject Lifetime
Manager . Preallocated Objects have the same life-
time as theObject Lifetime Manager , i.e., the life-
time of the process that executes the program.

Application: The Application initializes and destroys
its Object Lifetime Manager s, either implicitly or
explicitly. In addition, the Application registers
its Managed Objects with an Object Lifetime
Manager , which may also containPreallocated
Objects .

2.8 Dynamics

The dynamic collaborations among participants in the Object
Lifetime Manager pattern are shown in the following figure.
The diagram depicts four separate activities:

AApppplliiccaattiioonn MMaannaaggeedd
OObbjjeecctt

OObbjjeecctt
LLiiffeeccyyccllee
MMaannaaggeerr

init ()
SSTTAACCKK IINNIITT,, EEXXPPLLIICCIITT IINNIITT

PPrreeaallllooccaatteedd
OObbjjeecctt

PPRREEAALLLLOOCCAATTEEDD OOBBJJEECCTTSS

OOBBJJEECCTT OOPPEERRAATTIIOONN
method ()

create ()

DDLLLL OOPPEENN,, SSTTAATTIICC IINNIITT,,

create ()

at_exit ()

MMAANNAAGGEEDD OOBBJJEECCTTSS
instance ()

OOBBJJEECCTT CCLLEEAANNUUPP

method ()

destroy ()

destroy ()fini ()

instance ()

1. Object Lifetime Manager creation and initial-
ization, which in turn creates thePreallocated
Objects ;

2. Managed Object creation by theApplication ,
and registration with the Object Lifetime
Manager ;

3. Use ofPreallocated andManaged Objects by
theApplication ; and

4. Destruction of theObject Lifetime Manager ,
which includes destruction of all theManaged and
Preallocated Objects it controls.

Within each activity, time increases down the vertical axis.

2.9 Implementation

The Object Lifetime Manager pattern can be implemented us-
ing the steps presented below. This implementation is based on
theObject Manager provided in the ACE framework [9],
which motivates many interesting issues discussed in this sec-
tion. Some of the steps discussed below are language-specific
because ACE is written in C++. Appendix A illustrates even
more concretely how the Object Lifetime Manager pattern has
been implemented in ACE.

1. Define the Object Lifetime Manager component. This
component provides applications with an interface with which
to register objects whose lifetime must be managed to ensure
proper destruction upon program termination. In addition,
this component defines a repository that ensures proper de-
struction of its managed objects. TheObject Lifetime
Manager is a container for thePreallocated Object s
and for theManaged Object s that are registered to be de-
stroyed at program termination.

The following substeps can be used to implement the
Object Lifetime Manager .

� Define an interface for registering Managed Ob-
jects: One way to registerManaged Objects with the
Object Lifetime Manager would be to use the C-
library atexit function to invoke the termination func-
tions at program exit. However, not all platforms support
atexit . Furthermore,atexit implementations usually
have a limit of 32 registered termination functions. Therefore,
theObject Lifetime Manager should support the fol-
lowing two techniques for registeringManaged Objects
with a container that holds these objects and cleans them up
automatically at program exit:

1. Define a cleanup function interface– The Object
Lifetime Manager allows applications to register
arbitrary types of objects. When a program is shut
down, theObject Lifetime Manager cleans up
these objects automatically.

The following C++ class illustrates a specialized
CLEANUPFUNCused in ACE to register an object or ar-
ray for cleanup:

typedef void (*CLEANUP_FUNC)(void *object,
void *param);

class Object_Lifetime_Manager
{
public:

// . . .
static int at_exit (void *object,

CLEANUP_FUNC cleanup_hook,
void *param);

// . . .
};

6

The staticat exit method registers an object or ar-
ray of objects for cleanup at process termination. The
cleanup hook argument points to a global function or
static method that is called at cleanup time to destroy
the object or array. At destruction time, theObject
Lifetime Manager passes theobject andparam
arguments to thecleanup hook function. Theparam
argument contains any additional information needed by
thecleanup hook function, such as the number of ob-
jects in the array.

2. Define a cleanup base class interface– This inter-
face allows applications to register for destruction with
the Object Lifetime Manager any object whose
class derives from aCleanup base class. The
Cleanup base class should have a virtual destructor and
a cleanup method that simply callsdelete this ,
which in turn invokes all derived class destructors. The
following code fragment illustrates how this class is im-
plemented in ACE:
class Cleanup
{
public:

// . . .

// Destructor.
virtual ˜Cleanup (void);

// By default, simply deletes this.
virtual void cleanup (void *param = 0);

};

The following code fragment illustrates theObject
Lifetime Manager interface used to register objects
derived from theCleanup base class in ACE:
class Object_Lifetime_Manager
{
public:

// . . .
static int at_exit (Cleanup *object,

void *param = 0);
// . . .

};

This static at exit method registers aCleanup
object for cleanup at process termination. At destruc-
tion time, theObject Lifetime Manager calls the
Cleanup object’s cleanup method, passing in the
param argument. Theparam argument contains any
additional information needed by thecleanup method.

� Define a singleton adapter: Although it is possible to
explicitly code singletons to use theObject Lifetime
Manager methods defined above, this approach is te-
dious and error-prone. Therefore, it is useful to de-
fine a Singleton adapter class template that encapsu-
lates the details of creating singleton objects and register-
ing them with theObject Lifetime Manager . In

addition, theSingleton adapter can ensure the thread-
safe Double-Checked Locking Optimization pattern [13] is
used to construct and access an instance of the type-specific
Singleton .

The following code fragment illustrates how a singleton
adapter is implemented in ACE:

template <class TYPE>
class Singleton : public Cleanup
{
public:

// Global access point to the
// wrapped singleton.
static TYPE *instance (void) {

// Details of Double Checked
// Locking Optimization omitted . . .
if (singleton_ == 0) {

singleton_ = new Singleton<TYPE>;

// Register with the Object Lifetime
// Manager to control destruction.
Object_Lifetime_Manager::

at_exit (singleton_);
}
return &singleton_->instance_;

}

protected:
// Default constructor.
Singleton (void);

// Contained instance.
TYPE instance_;

// Instance of the singleton adapter.
static Singleton<TYPE> *singleton_;

};

The Singleton class template is derived from the
Cleanup class. This allows theSingleton instance to reg-
ister itself with theObject Lifetime Manager . The
Object Lifetime Manager then assumes responsibil-
ity for dynamically deallocating theSingleton instance and
with it the adaptedTYPEinstance.

� Define an interface for registering Preallocated Ob-
jects: Preallocated Objects must always be created before
the application’s main processing begins. For instance,
in some applications, synchronization locks must be cre-
ated before their first use in order to avoid race conditions.
Thus, these objects must be hard-coded into eachObject
Lifetime Manager class. Encapsulating their creation
within theObject Lifetime Manager ’s own initializa-
tion phase ensures this will occur, without adding complexity
to application code.

The Object Lifetime Manager should be able to
preallocate objects or arrays. TheObject Lifetime
Manager can either perform these preallocations statically
in global data or dynamically on the heap. An efficient im-
plementation is to store each Preallocated Object in an ar-
ray. Certain languages, such as C++, do not support arrays

7

of heterogeneous objects, however. Therefore, in these lan-
guages pointers must be stored instead of the objects them-
selves. The actual objects are allocated dynamically by the
Object Lifetime Manager when it is instantiated, and
destroyed by theObject Lifetime Manager destruc-
tor.

The following substeps should be used to implement
Preallocated Objects :

1. Limit exposure– To minimize the exposure of header
files, identify the Preallocated Objects by macros or enu-
merated literals,e.g.,

enum Preallocated_Object_ID
{

ACE_FILECACHE_LOCK,
ACE_STATIC_OBJECT_LOCK,
ACE_LOG_MSG_INSTANCE_LOCK,
ACE_DUMP_LOCK,
ACE_SIG_HANDLER_LOCK,
ACE_SINGLETON_NULL_LOCK,
ACE_SINGLETON_RECURSIVE_THREAD_LOCK,
ACE_THREAD_EXIT_LOCK,

};

The use of an enumerated type is appropriate when all
preallocated objects are knowna priority.

2. Use cleanup adapters– TheCleanup Adapter class
template is derived from theCleanup base class and
wraps types not derived from theCleanup base class so
that they can be managed by theObject Lifetime
Manager . Use template functions or macros for alloca-
tion/deallocation,e.g.,
#define PREALLOCATE_OBJECT(TYPE, ID) {\

Cleanup_Adapter<TYPE> *obj_p;\
obj_p = new Cleanup_Adapter<TYPE>;\
preallocated_object[ID] = obj_p;\

}

#define DELETE_PREALLOCATED_OBJECT(TYPE, ID)\
cleanup_destroyer (\

static_cast<Cleanup_Adapter<TYPE> *>\
(preallocated_object[ID]), 0);\

preallocated_object[ID] = 0;

The Cleanup Adapter adapts any object to use
the simplerObject Lifetime Manager registra-
tion interface, as discussed in Appendix A. Similarly,
Cleanup Destroyer uses theCleanup Adapter
to destroy the object.

An analogous array, enum, and macro pair can be sup-
plied for preallocated arrays, if necessary.

3. Define an accessor interface to the Preallocated Objects
– Applications need a convenient and typesafe interface
to access preallocated objects. Because theObject
Lifetime Manager supports preallocated objects of
different types, it is necessary to provide a separate class
template adapter with a member function that takes the id

under which the object was preallocated in theObject
Lifetime Manager , and returns a correctly typed
pointer to the preallocated object.

The following code fragment illustrates how this inter-
face is provided via a class template adapter in ACE:
template <class TYPE>
class Preallocated_Object_Interface
{
public:

static TYPE *
get_preallocated_object

(Object_Lifetime_Manager::
Preallocated_Object_ID id)

{
// Cast the return type of the object
// pointer based on the type of the
// function template parameter.
return

&(static_cast<Cleanup_Adapter<TYPE> *>
(Object_Lifetime_Manager::

preallocated_object[id]))->object ();
}
// . . . other methods omitted.

};

� Determine the destruction order of registered ob-
jects: As noted in Section 2.6, theObject Lifetime
Manager can be implemented to destroy registered objects
in any desired order. For example, priority levels could be as-
signed and destruction could proceed in decreasing order of
priority. An interface could be provided for objects to set and
change their destruction priority.

We have found that destruction in reverse order of regis-
tration has been a sufficient policy for ACE applications. An
application can, in effect, specify destruction order by control-
ling the order in which it registers objects with theObject
Lifetime Manager .

� Define a termination function interface: Lifetime
management functionality has been discussed so far in terms
of destruction of objects at program termination. However, the
Object Lifetime Manager can provide a more general
capability – the ability to call a function at program termina-
tion – using the same internal implementation mechanism.

For example, to ensure proper cleanup of open Win32
WinSock sockets at program termination, theWSACleanup
function must be called. A variation of the Scoped Locking
C++ idiom [5] could be applied, by creating a special wrapper
facade [14] class whose constructor calls the API initialization
functions, and whose destructor calls the API cleanup func-
tions. The application can then register an instance of this class
with the Object Lifetime Manager so that the object
is destroyed and API termination methods are called during
Object Lifetime Manager termination.

However, this design may be overkill for many applications.
Moreover, it can be error-prone because the application must

8

ensure the class is used only as a singleton so that the API
functions are only called once. Finally, this design may in-
crease the burden on the application to manage object destruc-
tion order, so that the singleton is not destroyed before another
object that uses the API in its destructor.

Instead, the API termination functions can be called
as part of the termination method of theObject
Lifetime Manager itself. This latter approach
is illustrated by the socket fini call in the
Object Lifetime Manager::fini method in Ap-
pendix A. Thesocket fini function provides a platform-
specific implementation that calls WSACleanup on Win32
platforms, and does nothing on other platforms.

� Migrate common interfaces and implementation de-
tails into a base class: Factoring common internal details
into an Object Lifetime Manager Base class can
make theObject Lifetime Manager implementation
simpler and more robust. Defining anObject Lifetime
Manager Base class also supports the creation of multiple
Object Lifetime Manager s, each of a separate type.
To simplify our discussion, we only touch on the use of mul-
tiple Object Lifetime Manager s briefly. They do not
add consequences to the pattern, but are useful for partitioning
libraries and applications.

2. Determine how to manage the lifetime of the Object
Lifetime Manager itself. The Object Lifetime
Manager is responsible for initializing other global and
static objects in a program. However, that begs the important
bootstrapping question of how this singleton initializes
and destroys itself. The following are the alternatives for
initializing the Object Lifetime Manager singleton
instance:

� Static initialization: If an application has no static ob-
jects with constraints on their order of construction or de-
struction, it’s possible to create theObject Lifetime
Manager as a static object. For example, ACE’sObject
Lifetime Manager can be created as a static object. The
ACE library has no other static objects that have constraints
on order of construction or destruction.

� Stack initialization: When there is a main program
thread with well defined points of program entry and ter-
mination, creating theObject Lifetime Manager on
the stack of the main program thread can simplify program
logic for creating and destroying theObject Lifetime
Manager . This approach to initializing theObject
Lifetime Manager assumes that there is one unique
main thread per program. This thread defines the program:
i.e., it is running if, and only if, the main thread is alive.
This approach has a compelling advantage: theObject

Lifetime Manager instance is automatically destroyed
via any path out ofmain .3

Stack initialization is implemented transparently in ACE
via a preprocessor macro namedmain . The macro renames
themain program entry point to another, configurable name,
such asmain i . It provides amain function that creates the
Object Lifetime Manager instance as a local object
(on the run-time stack) and then calls the renamed application
entry point.

There are two drawbacks to the Stack initialization ap-
proach:

1. main (int, char *[]) must be declared with ar-
guments, even if they’re not used. All of ACE uses this
convention, so only applications must be concerned with
it.

2. If there are any static objects depending on those that
are destroyed by theObject Lifetime Manager ,
their destructors might attempt to access the destroyed
objects. Therefore, the application developer is respon-
sible for ensuring that no static objects depend on those
destroyed by theObject Lifetime Manager .

� Explicit initialization: In this approach, create the
Object Lifetime Manager explicitly under applica-
tion control. TheObject Lifetime Manager init
andfini methods allow the application to create and destroy
the Object Lifetime Manager when desired. This option allevi-
ates complications that arise when using dynamic link libraries
(DLL)s.

� Dynamic link library initialization: In this approach,
create and destroy the Object Lifetime Manager when its DLL
is loaded and unloaded, respectively. Most dynamic library fa-
cilities include the ability to call (1) an initialization function
when the library is loaded and (2) a termination function when
the library is unloaded. However, see Section 2.13 for a dis-
cussion of the consequences of managing singletons from an
Object Lifetime Manager in a different DLLs.

2.10 Example Resolved

The discussion in Section 2.9 demonstrates how the Object
Lifetime Manager pattern can be used to resolve key design
forces related to managing object lifetimes. In particular, the
unresolved forces described in Section 2.2 can be satisfied by
applying the Object Lifetime Manager pattern.

The following example shows how the Object Lifetime
Manager pattern can be applied to the originalLogger and

3On platforms such as VxWorks and pSOS that have no designatedmain
function, the main thread can be simulated by instantiating theObject
Lifetime Manager on the stack of one thread, which is denoted by con-
vention asthemain thread.

9

Stats examples from Section 2.2. Using theSingleton
adapter template described in Section 2.9 greatly simplifies
managed object implementations by encapsulating key imple-
mentation details, such as registration with the Object Life-
time Manager. For instance, the originalStats class can be
replaced by a managedStats class, as follows.

class Stats
{
public:

friend class Singleton<Stats>;

// Destructor: frees resources.
˜Stats (void);

// Record a timing data point.
int record (int id,

const timeval &tv);

// Report recorded statistics
// to the log.
void report (int id) {

Singleton<Logger>::instance ()->
log ("Avg timing %d: "

"%ld sec %ld usec\n",
id,
average_i (id).tv_sec,
average_i (id).tv_usec);

}

protected:
// Default constructor.
Stats (void)
{

// Ensure the Logger instance
// is registered first, and will be
// cleaned up after, the Stats
// instance.
Singleton<Logger>::instance ();

}

// Internal accessor for an average.
const timeval &average_i (void);

// . . . other resources that are
// held by the instance . . .

};

Notice that the singleton aspects have been factored out
of the original Stats class and are now provided by the
Singleton adapter template. Similar modifications can
be made to the originalLogger class so that it uses the
Singleton adapter template.

Finally, the following example shows how an application
might use theLogger andStats classes.

int main (int argc, char *argv[])
{

// Interval timestamps.
timeval start_tv, stop_tv;

// Logger and Stats singletons
// do not yet exist.

// Logger and then Stats singletons
// are created and registered on the first
// iteration.
for (int i = 0; i < argc; ++i) {

::gettimeofday (&start_tv);
// do some work between timestamps ...
::gettimeofday (&stop_tv);
// then record the stats ...
timeval delta_tv;
delta_tv.sec = stop_tv.sec - start_tv.sec;
delta_tv.usec = stop_tv.usec - start_tv.usec;
Singleton<Stats>::instance ()->

record (i, delta_tv);

// . . . and log some output.
Singleton<Logger>::instance ()->

log ("Arg %d [%s]\n", i, argv[i]);
Singleton<Stats>::instance()->report (i);

}

// Logger and Stats singletons are
// cleaned up by Object Lifetime Manager
// upon program exit.
return 0;

}

The following key forces are resolved in this example: (1)
ensuring resources allocated by an instance are subsequently
released, (2) managing the order of creation and destruction
of singletons, and (3) providing a framework that encapsulates
these details within a well-defined interface.

2.11 Known Uses

Object Lifetime Manager is used in the Adaptive Communi-
cation Environment (ACE) [9] to ensure destruction of sin-
gletons at program termination and to replace static objects
with dynamically allocated, managed objects. ACE is used
on many different OS platforms, some of which do not sup-
port static object construction/destruction for every program
invocation. ACE can be configured to not contain any objects
whose initialization is necessary prior to program invocation.

Gabrilovich [15] augmented the Singleton pattern to per-
mit applications to specify destruction order. A local static
auto ptr 4 is responsible for the destruction of each single-
ton instance. Destruction of singleton instances proceeds by
application-defined phases; an application may optionally reg-
ister its singleton instances for destruction in a specific phase.

An interesting example of a “small” Object Lifetime Man-
ager is thestrong pointer[16, 17].5 A strong pointer manages
just one object; it destroys the object when its scope is ex-
ited, either normally or via an exception. There can be many
strong pointers in a program, behaving as Function-as-Owner
(or Block-as-Owner) (see Section 2.12. Moreover, the strong

4Theauto ptr is a local static object in the singleton instance accessor
method.

5A C++ auto ptr is an implementation of a strong pointer.

10

pointers themselves have transient lifetimes,i.e., that of their
enclosing blocks.

In contrast, there is typically just one Object Lifetime Man-
ager per program (or per large-scale component). And, Object
Lifetime Managers live for the duration of the program invo-
cation. This reflects the specific intent of the Object Lifetime
Manager to destroy objects at program termination, but not
sooner. Such objects may be used after the current block or
function has been exited, and destruction/creation cycles are
not possible or desired.

2.12 See Also

The Object Lifetime Manager pattern is related to the Man-
ager [18] pattern. In both patterns, a client application uses a
collection of objects, relying upon a manager to encapsulate
the details of how the objects themselves are managed. This
separation of concerns makes the application more robust, be-
cause management aspects that are potentially error-prone are
hidden behind a type-safe interface. Using these managers
also makes the application more extensible, because certain
details of the managed objects can be varied independent of
the manager implementation. For example, a manager for a
certain class can be used to manage objects of classes derived
from that base class.

The Object Lifetime Manager pattern differs from the Man-
ager pattern in the types of the managed objects. Whereas
the Manager pattern requires that the managed objects have a
common base type, the Object Lifetime Manager pattern al-
lows objects of unrelated types to be managed. The Manager
pattern relies on inheritance for variations in the manager and
managed object classes. In contrast, the Object Lifetime Man-
ager relies on object composition and type parameterization to
achieve greater decoupling of the manager from the managed
objects.

The Object Lifetime Manager pattern further differs from
the Manager pattern in the details of the object management
services it provides to applications. The Manager pattern pro-
vides both key-based and query-based search services,e.g.,
ISBN lookup or finding a list of books by an author [18], while
the Object Lifetime Manager pattern supports a simpler, more
generic key-based lookup service. The Manager pattern sup-
ports fine-grained control of object creation and destruction
by the application, while the Object Lifetime Manager pattern
only supports destruction of its registered objects at the end of
the program.

The application canregistera pre-existing object with the
Object Lifetime Manager, which then assumes responsibility
for the remaining lifetime of the managed object. The Man-
ager pattern only allows on-demand creation of objects, so that
the lifetime of objects is managed in an all-or-none manner.

These distinctions in object types and service details re-
flect the different intents of the two patterns. Fundamentally,
the Manager pattern focuses on the search structure aspects
of object management, whereas the Object Lifetime Manager
pattern emphasizes the lifetime aspects instead. The Manager
pattern should be used to provide tailored object lifetime ser-
vices for a well defined collection of related objects. The
Object Lifetime Manager pattern should be used tocomple-
mentcreational patterns, providing more generic object life-
time services for a wider collection of possibly unrelated ob-
jects.

Object Lifetime Manager complements creational patterns,
such as Singleton, by managing object instance destruction.
Singleton addresses only part of the object lifetime because it
just manages instance creation. However, destruction is usu-
ally not an important issue with Singleton because it does not
retainownershipof created objects [4]. Ownership conveys
the responsibility for managing the object, including its de-
struction. Singleton is the prototypical example of a creational
pattern that does not explicitly transfer ownership, yet does
not explicitly arrange for object destruction. Object Lifetime
Manager complements Singleton by managing the destruction
portion of the object lifetime.

Object Lifetime Manager can complement other creational
patterns, such as Abstract Factory and Factory Method. Im-
plementations of these patterns could register dynamically al-
located objects for deletion at program termination. Alterna-
tively (or additionally), they could provide interfaces for object
destruction, corresponding to those for object creation.

Cargill presented a taxonomy of the dynamic C++ object
lifetime [19]. The Localized Ownership pattern language
includes patterns, such as Creator-as-Owner, Sequence-of-
Owners, and Shared Ownership, which primarily address
object ownership. Ownership conveys the responsibility for
destruction.

Creator-as-Owner is further subdivided into Function-as-
Owner, Object-as-Owner, and Class-as-Owner. The Single-
ton destruction capability of Object Lifetime Manager may
be viewed as new category of Creator-as-Owner: Program-as-
Owner. It is distinct from Function-as-Owner, because static
objects outlive the program entry point (main). Object Life-
time Manager’s Preallocated Objects similarly can be viewed
logically, at least, as outliving the main program function.

When Singleton is used on multi-threaded platforms, a mu-
tex should be used to serialize access to the instance pointer.
Double-Checked Locking [13] greatly reduces the use of this
mutex by only requiring it prior to creation of the singleton.
However, the mutex is still required, and it must be initial-
ized.6 Object Lifetime Manager solves the chicken-and-egg

6POSIX 1003.1c [20] mutexes can be initialized without calling a static
constructor. However, they are not available on all platforms.

11

problem of initialization of the mutex by preallocating one for
each singleton, or group of singletons.

Object Lifetime Manager uses Adapter for type-safe stor-
age of objects of any class. By using inline func-
tions, the Managed Object Adapter should have no
size/performance overhead. We confirmed this with the
GreenHills 1.8.9 compiler for VxWorks on Intel targets. How-
ever, some compilers do not inline template member functions.
Fortunately, the size overhead ofManaged Object is very
small,i.e., we measured 40 to 48 bytes with g++ on Linux and
LynxOS. The ACECleanup Adapter template class has
slightly higher size overhead, about 160 bytes per instantia-
tion.

2.13 Consequences

Thebenefitsof using Object Lifetime Manager include:

Destruction of Singletons and other Managed Objects at
program termination: The Object Lifetime Manager pat-
tern allows a program to shut down cleanly, releasing mem-
ory for Managed Objects , along with the resources they
hold at program termination. All heap-allocated memory can
be released by the application. This supports repeated testing
on platforms where heap allocations outlive the program.7 It
also eliminates the memory-in-use warnings reported for sin-
gletons by memory access checkers at program termination.

Specification of destruction order: The order of destruc-
tion of objects can be specified. The order specification mech-
anism can be as simple or as complex as desired. As noted
in Section 2.9, simple mechanisms are generally sufficient in
practice.

Removal of static objects from libraries and applica-
tions: Static objects can be replaced byPreallocated
Objects . This prevents applications from relying on the or-
der in which static objects are constructed/destructed. More-
over, it allows code to target embedded systems, which some-
times have little or no support for constructing/destroying
static objects.

However, the followingliabilities must be considered when
using the Object Lifetime Manager pattern:

Lifetime of the manager itself: The application must en-
sure that is respects the lifetime of the Object Lifetime Man-
ager, and does not attempt to use its services outside that life-
time. For example, the application must not attempt to access
Preallocated Objects prior to the complete initial-
ization of theObject Lifetime Manager . Similarly,

7On some operating systems, notably some real-time operating systems,
there is no concept of aprogram. There are tasks,i.e., threads, but no one
task has any special, main identity. Thus, there is no cleanup of dynamically
allocated memory, open files,etc., at task termination.

the application must not destroy theObject Lifetime
Manager prior to the application’s last use of aManaged
or Preallocated Object . Finally, the implementation
of theObject Lifetime Manager is simplified if it can
assume that it will be initialized by only one thread. This pre-
cludes the need for a static lock to guard its initialization.

Use with shared libraries: On platforms that support load-
ing and unloading shared libraries at run-time, the applica-
tion must bevery careful of platform-specific issues that im-
pact the lifetime of theObject Lifetime Manager it-
self. For example, on Windows NT, theObject Lifetime
Manager should be initialized by the application or by a DLL
that contains it. This avoids a potential deadlock situation due
to serialization within the OS when it loads DLLs.

A related issue arises with singletons that are created in
DLLs, but managed by anObject Lifetime Manager
in the main application code. It the DLL is unloaded before
program termination, theObject Lifetime Manager
would try to destroy it using code that is no longer linked into
the application. For this reason, we have added an unman-
aged Singleton class to ACE. An unmanaged Singleton is of
the conventional design,i.e., it does not provide implicit de-
struction. ACE uses a managed Singleton by default because
we found the need for unmanaged Singletons to be very un-
usual.

3 Concluding Remarks

Many creational patterns specifically address only objectcre-
ation. They do not consider when or how todestroyobjects
that are no longer needed. The Object Lifetime Manager pat-
tern provides mechanisms for object destruction at program
termination. Thus, it complements many creational patterns
by covering the entire object lifetime.

The Singleton pattern provides a notable example where co-
ordinated object lifetime management is important. In partic-
ular, deletion at program termination ensures that programs
have no memory leaks of singleton objects. Moreover, ap-
plications that employ the Object Lifetime Manager pattern
do not require use of static object constructors and destruc-
tors, which is important for embedded systems. In addition,
the Object Lifetime Manager pattern supports replacement of
static objects with dynamicallyPreallocated Object s,
which is useful on embedded platforms and with OO lan-
guages, such as C++.

One of the Object Lifetime Manager pattern’s more inter-
esting aspects is that it addresses weaknesses of another pat-
tern, at least in some contexts. Our initial motivation was to
remedy these weaknesses by registering and deleting single-
tons at program termination. The utility, applicability, novelty,
and complexity of the ACEObject Lifetime Manager

12

class seemed to be on par with those of the ACESingleton
adapter template class, so we felt that it deserved considera-
tion as a pattern. Because it can address just part of the object
lifetime, however, we consider Object Lifetime Manager to be
a complementarypattern.

Another interesting question was: “How do we categorize
Object Lifetime Manager?” It was not (originally) a Cre-
ational pattern, because it handled only object destruction,
not creation. Again, it seemed appropriate to refer to the
Object Lifetime Manager pattern as complementing the Sin-
gleton pattern.

In addition, we realized thatObject Lifetime
Manager had another use that was related to destroying sin-
gletons. Static objects create problems similar to those of
singletons,i.e., destruction, especially on operating systems
that have no notion of a program, and order of construc-
tion/destruction.Preallocated Object s were added to
support removal of static objects. Our firstPreallocated
Object was the mutex used for Double-Checked Lock-
ing [13] in the ACE implementation of . . . theSingleton
adapter template.

Current development efforts include breaking the one in-
stance into multipleObject Lifetime Manager s, to
support subsetting. Each layer of ACE,e.g., OS, logging,
threads, connection management, sockets, interprocess com-
munication, service configuration, streams, memory manage-
ment, and utilities, will have its ownObject Lifetime
Manager . When any Object Lifetime Manager
is instantiated, it will instantiate each dependentObject
Lifetime Manager , if not already done. And similar,
configured-in cooperation will provide graceful termination.

A highly portable implementation of the Object Life-
time Manager pattern and theSingleton adapter
template is freely available and can be downloaded from
www.cs.wustl.edu/ �schmidt/ACE-obtain.html .

Acknowledgments

Thanks to Matthias Kerkhoff, Per Andersson, Steve Hus-
ton, Elias Sreih, and Liang Chen for many helpful discus-
sions on the design and implementation of ACE’sObject
Manager . Thanks to Brad Appleton, our PLoP ’99 shep-
herd and C++ Report Patterns++ section editor, Evgeniy
Gabrilovich, Kevlin Henney, and our PLoP ’99 workshop
group for many helpful suggestions on the content and pre-
sentation of the Object Lifetime Manager pattern. And thanks
to Bosko Zivaljevic for pointing out that static object construc-
tion can extend application startup time.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-

ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Patterns. Wiley
and Sons, 1996.

[3] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concur-
rent Event Demultiplexing and Event Handler Dispatching,” inPattern
Languages of Program Design(J. O. Coplien and D. C. Schmidt, eds.),
pp. 529–545, Reading, MA: Addison-Wesley, 1995.

[4] J. Vlissides,Pattern Hatching: Design Patterns Applied. Reading, MA:
Addison-Wesley, 1998.

[5] D. C. Schmidt, “Strategized Locking, Thread-safe Interface, and Scoped
Locking: Patterns and Idioms for Simplifying Multi-threaded C++
Components,”C++ Report, vol. 11, Sept. 1999.

[6] Wind River Systems, “VxWorks 5.3.” http://www.wrs.com/products/-
html/vxworks.html.

[7] Integrated Systems, Inc., “pSOSystem.” http://www.isi.com/products/-
psosystem/.

[8] Bjarne Stroustrup,The C++ Programming Language, 3rd Edition.
Addison-Wesley, 1998.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for Develop-
ing Distributed Applications,” inProceedings of the6th USENIX C++
Technical Conference, (Cambridge, Massachusetts), USENIX Associa-
tion, April 1994.

[10] E. Shea, “Java Singleton,” June 7, 2000.http://www.c2.com/
cgi/wiki?JavaSingleton .

[11] D. McNicol, “Another Java Singleton Problem,” June 7, 2000.
http://www.c2.com/cgi/wiki?AnotherJavaSingletonProblem.

[12] D. Saks, “Ensuring Static Initialization in C++,”Embedded Systems
Programming, vol. 12, pp. 109–111, Mar. 1999.

[13] D. C. Schmidt and T. Harrison, “Double-Checked Locking – An Object
Behavioral Pattern for Initializing and Accessing Thread-safe Objects
Efficiently,” in Pattern Languages of Program Design(R. Martin,
F. Buschmann, and D. Riehle, eds.), Reading, MA: Addison-Wesley,
1997.

[14] D. C. Schmidt, “Wrapper Facade: A Structural Pattern for Encapsulating
Functions within Classes,”C++ Report, vol. 11, February 1999.

[15] E. Gabrilovich, “Destruction-Managed Singleton: A Compound Pat-
tern for Reliable Deallocation of Singletons,”C++ Report, vol. 12, Jan.
2000.

[16] B. Milewski, “Strong Pointers and Resource Management in C++,”C++
Report, vol. 10, pp. 23–27, Sept. 1998.

[17] B. Milewski, “Strong Pointers and Resource Management in C++, Part
2,” C++ Report, vol. 11, pp. 36–39,50, Feb. 1999.

[18] P. Sommerland and F. Buschmann, “The Manager Design Pattern,” in
Proceedings of the3rd Pattern Languages of Programming Conference,
September 1996.

[19] T. Cargill, “Localized Ownership: Managing Dynamic Objects in C++,”
in Pattern Languages of Program Design 2(J. M. Vlissides, J. O.
Coplien, and N. L. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[20] “Information Technology – Portable Operating System Interface
(POSIX) – Part 1: System Application: Program Interface (API) [C
Language],” 1995.

A Detailed Implementation

This section provides an example of a concrete Object Life-
time Manager implementation in C++ described in Sec-
tion 2.9. It is based on the ACE [9] Object Lifetime Man-
ager implementation. The ACE implementation reveals some

13

interesting design issues. Its most visible purpose is to man-
age cleanup of singletons at program termination, and cre-
ate/destroy Preallocated Objects. In addition, it performs other
cleanup actions, such as shutdown of services provided by the
ACE library, at program termination.

The Object Lifetime Manager Base abstract
base class, shown in Figure 1, provides the initialization and
finalization mechanisms for an Object Lifetime Manager.
Subclasses must specialize and provide implementations,
described below.

In addition,Object Lifetime Manager Base sup-
ports chaining of Object Lifetime Managers. Object Lifetime
Managers are Singletons, each with its own locus of interest.
An application may have a need for more than one Object Life-
time Manager,e.g., one per major component. Chaining per-
mits ordered shutdown of the separate components.

Figure 2 shows an exampleObject Lifetime
Manager class. It is a Singleton, so it provides a static
instance accessor. In addition, it provides static
starting up and shutting down state accessors.
An enumeration lists identifiers for the Preallocated Objects
that it owns.

An interesting detail is the (boolean) reference count logic
provided by the derived classinit andfini methods. There
are several alternatives for constructing an Object Lifetime
Manager, discussed in Section 2.9. The reference count en-
sures that an Object Lifetime Manager is only constructed
once, and destroyed once.

The implementations of theinstance , init , andfini
methods are shown in Figure 3 and Figure 4. Theinstance
method is typical of Singleton instance accessors, but includes
logic to support static placement instead of dynamic alloca-
tion. In addition, it is not thread safe, requiring construction
before the program spawns any threads. This avoids the need
for a lock to guard the allocation.

The init and fini methods show creation and de-
struction of Preallocated Objects, respectively. They show
application-specific startup and shutdown code. Finally, they
show maintenance of the Object Lifetime Manager state.8

8This should be moved up to the base class.

class Object_Lifetime_Manager_Base
{
public:

virtual int init (void) = 0;
// Explicitly initialize. Returns 0 on success,
// -1 on failure due to dynamic allocation
// failure (in which case errno is set to
// ENOMEM), or 1 if it had already been called.

virtual int fini (void) = 0;
// Explicitly destroy. Returns 0 on success,
// -1 on failure because the number of <fini>
// calls hasn’t reached the number of <init>
// calls, or 1 if it had already been called.

enum Object_Lifetime_Manager_State {
OBJ_MAN_UNINITIALIZED,
OBJ_MAN_INITIALIZING,
OBJ_MAN_INITIALIZED,
OBJ_MAN_SHUTTING_DOWN,
OBJ_MAN_SHUT_DOWN

};

protected:
Object_Lifetime_Manager_Base (void) :

object_manager_state_ (OBJ_MAN_UNINITIALIZED),
dynamically_allocated_ (0),
next_ (0) {}

virtual ˜Object_Lifetime_Manager_Base (void) {
// Clear the flag so that fini
// doesn’t delete again.
dynamically_allocated_ = 0;

}

int starting_up_i (void) {
return object_manager_state_ <

OBJ_MAN_INITIALIZED;
}
// Returns 1 before Object_Lifetime_Manager_Base
// has been constructed. This flag can be used
// to determine if the program is constructing
// static objects. If no static object spawns
// any threads, the program will be
// single-threaded when this flag returns 1.

int shutting_down_i (void) {
return object_manager_state_ >

OBJ_MAN_INITIALIZED;
}
// Returns 1 after Object_Lifetime_Manager_Base
// has been destroyed.

Object_Lifetime_Manager_State object_manager_state_;
// State of the Object_Lifetime_Manager;

u_int dynamically_allocated_;
// Flag indicating whether the
// Object_Lifetime_Manager instance was
// dynamically allocated by the library.
// (If it was dynamically allocated by the
// application, then the application is
// responsible for deleting it.)

Object_Lifetime_Manager_Base *next_;
// Link to next Object_Lifetime_Manager,
// for chaining.

};

Figure 1: Object Lifetime Manager Base Class
14

class Object_Lifetime_Manager :
public Object_Lifetime_Manager_Base

{
public:

virtual int init (void);

virtual int fini (void);

static int starting_up (void) {
return instance_ ?

instance_->starting_up_i () : 1;
}

static int shutting_down (void) {
return instance_ ?

instance_->shutting_down_i () : 1;
}

enum Preallocated_Object
{

if defined (MT_SAFE) && (MT_SAFE != 0)
OS_MONITOR_LOCK,
TSS_CLEANUP_LOCK,

else
// Without MT_SAFE, There are no
// preallocated objects. Make
// sure that the preallocated_array
// size is at least one by declaring
// this dummy.
EMPTY_PREALLOCATED_OBJECT,

endif /* MT_SAFE */
// This enum value must be last!
PREALLOCATED_OBJECTS

};
// Unique identifiers for Preallocated Objects.

static Object_Lifetime_Manager *instance (void);
// Accessor to singleton instance.

public:
// Application code should not use these
// explicitly, so they’re hidden here. They’re
// public so that the Object_Lifetime_Manager
// can be onstructed/destructed in main, on
// the stack.
Object_Lifetime_Manager (void) {

// Make sure that no further instances are
// created via instance.
if (instance_ == 0)

instance_ = this;
init ();

}

˜Object_Lifetime_Manager (void) {
// Don’t delete this again in fini.
dynamically_allocated_ = 0;
fini ();

}

private:
static Object_Lifetime_Manager *instance_;
// Singleton instance pointer.

static void *
preallocated_object[PREALLOCATED_OBJECTS];

// Array of Preallocated Objects.
};

Figure 2: Object Lifetime Manager Class

Object_Lifetime_Manager *
Object_Lifetime_Manager::instance_ = 0;
// Singleton instance pointer.

Object_Lifetime_Manager *
Object_Lifetime_Manager::instance (void)
{

// This function should be called during
// construction of static instances, or
// before any other threads have been created
// in the process. So, it’s not thread safe.
if (instance_ == 0) {

Object_Lifetime_Manager *instance_pointer =
new Object_Lifetime_Manager;

// instance_ gets set as a side effect of the
// Object_Lifetime_Manager allocation, by
// the default constructor. Verify that . . .
assert (instance_pointer == instance_);

instance_pointer->dynamically_allocated_ = 1;
}
return instance_;

}

int
Object_Lifetime_Manager::init (void)
{

if (starting_up_i ()) {
// First, indicate that this
// Object_Lifetime_Manager instance
// is being initialized.
object_manager_state_ = OBJ_MAN_INITIALIZING;

if (this == instance_) {
if defined (MT_SAFE) && (MT_SAFE != 0)

PREALLOCATE_OBJECT (mutex_t,
OS_MONITOR_LOCK)

// Mutex initialization omitted.

PREALLOCATE_OBJECT (recursive_mutex_t,
TSS_CLEANUP_LOCK)

// Recursive mutex initialization omitted.
endif /* MT_SAFE */

// Open Winsock (no-op on other
// platforms).
socket_init (/* WINSOCK_VERSION */);

// Other startup code omitted.
}

// Finally, indicate that the
// Object_Lifetime_Manager instance
// has been initialized.

object_manager_state_ = OBJ_MAN_INITIALIZED;
return 0;

} else {
// Had already initialized.
return 1;

}
}

Figure 3: Object Lifetime Method Implementations

15

int
Object_Lifetime_Manager::fini (void)
{

if (shutting_down_i ())
// Too late. Or, maybe too early. Either
// <fini> has already been called, or
// <init> was never called.
return object_manager_state_ ==

OBJ_MAN_SHUT_DOWN ? 1 : -1;

// Indicate that the Object_Lifetime_Manager
// instance is being shut down.
// This object manager should be the last one
// to be shut down.
object_manager_state_ = OBJ_MAN_SHUTTING_DOWN;

// If another Object_Lifetime_Manager has
// registered for termination, do it.
if (next_) {

next_->fini ();
// Protect against recursive calls.
next_ = 0;

}

// Only clean up Preallocated Objects when
// the singleton Instance is being destroyed.
if (this == instance_) {

// Close down Winsock (no-op on other
// platforms).
socket_fini ();

// Cleanup the dynamically preallocated
// objects.

if defined (MT_SAFE) && (MT_SAFE != 0)
// Mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (mutex_t,

MONITOR_LOCK)

// Recursive mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (

recursive_mutex_t,
TSS_CLEANUP_LOCK)

endif /* MT_SAFE */
}

// Indicate that this Object_Lifetime_Manager
// instance has been shut down.
object_manager_state_ = OBJ_MAN_SHUT_DOWN;

if (dynamically_allocated_)
delete this;

if (this == instance_)
instance_ = 0;

return 0;
}

Figure 4: Object Lifetime Method Implementations, cont’d.

16

