Object Lifetime Manager

A Complementary Pattern for Controlling Object Creation and Destruction

David L. Levine and Christopher D. Gill Douglas C. Schmidt
{levine,cdgill} @cs.wustl.edu schmidt@uci.edu
Department of Computer Science Electrical & Computer
Washington University Engineering Department
St. Louis, MO, USA University of California, Irvine, USA

This paper appeared as a chapter in the bbekign Pat- deallocation that occurs automatically during application ini-
terns in CommunicationgLinda Rising, ed.), Cambridge Uni-tialization/termination.
versity Press, 2000. Abridged versions of the paper appeared
at the Pattern Languages of Programming Conference, Allgro Example
ton Park, Illinois, USA, 15 — 18 August 1999 and in the C++
Report magazine, January, 2000. Singleton [1] is a common creational pattern that provides a
global point of access to a unique class instance and defers
. creation of the instance until it is first accessed. If a singleton
1 Introduction is not needed during the lifetime of a program, it will not be
created. The Singleton pattern does not address the issue of
Creational patterns such as Singleton and Factory MethodyHen its instance is destroyed, however, which is problematic
address object construction and initialization, but do not cdor certain applications and operating systems.
sider object destruction. In some applications, however, objecTo illustrate why it is important to address destruction se-
destruction is as important as object construction. Oh@ect mantics, consider the following logging component that pro-
Lifetime Managerpattern addresses issues associated wiiles a client programming API to a distributed logging ser-
object destruction. Object Lifetime Manager is also an ewce [3]. Applications use the logging component as a front-
ample of acomplementary pattefrwhich completes or ex-end to the distributed logging service to report errors and gen-
tends other patterns. In particular, the Object Lifetime Magrate debugging traces.
ager pattern completes creational patterns by considering the
L . class Logger
entire lifetime of objects. {
This paper is organized as follows: Section 2 describes thelic:
Object Lifetime Manager pattern in detail using the Siemeng/ Global access point to Logger singleton.
. . static Logger *instance (void) {
format [2]. and Section 3 presents concluding remarks. if (instance_ == 0)
instance_ = new Logger;
return instance_;

2 The Object Lifetime Manager Pat- !

tern /I Write some information to the log.
int log (const char *format, ...);

2.1 Intent protected:
/I Default constructor (protected to

/I ensure Singleton pattern usage).

The Object Lifetime Managepattern can be used to govern Logger (void):

the entire lifetime of objects, from creating them prior to their
first use to ensuring they are destroyed properly at program testatic Logger *instance_; _
mination. In addition, this pattern can be used to replace statié Contained Logger singleton instance.

object creation/destruction with dynamic object preallocation/; . . . other resources that are
1 held by the singleton . . .

*This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Nortel.

/I Initialize the instance pointer. are designed using the Singleton pattern, so that a single in-
Logger *Logger:instance_ = 0; stance of each is used in an application process.
The following example illustrates how an application might

TheLogger constructor, which is omitted for brevity, allo-)
99 y gheLogger andStats singletons.

cates various OS endsystem resources, such as socket hartfig

shared memory segments, and/or system-wide semaphores,

that are used to implement the logging service client API. int main (int argc, char *argv(])
To reduce the size and improve the readability of its loggifig _

L. . //_Interval timestamps.
records, an application may choose to log certain data, such asheval start_tv, stop_tv;
timing statistics, in batch mode rather than individually. For _
instance, the following statistics class batches timing data fof/ Logger. Stats singletons
S . e /I do not yet exist.
individual identifiers:

/I Logger and Stats singletons created
/I during the first iteration.

class Stats for (int i = 0; i < argc; ++) {
E)ubliC' :gettimeofday (&start_tv);

/I do some work between timestamps . . .
:gettimeofday (&stop_tv);

/I then record the stats . . .

timeval delta_tv;

/I Global access point to the
/I statistics singleton.
static Stats *instance (void) {

if (instance_ = 0) Stats: delta_tv.sec = stop_tv.sec - start_tv.sec;
|nsta_nce_ = new Stats; delta_tv.usec = stop_tv.usec - start_tv.usec;
return instance_;

Stats::instance ()->record (i, delta_tv);

}

/I Record a timing data point.
int record (int id,
const timeval &tv);

/I . . . and log some output.
Logger::instance ()->

log ("Arg %d [%s]\n", i, argv[i]);
Stats::instance()->report (i);

}

/I Logger and Stats singletons are not
/I cleaned up when main returns.

/I Report recorded statistics

/I to the log.

void report (int id) {
Logger::instance ()->

log ("Avg timing %d: " } return 0;
"%Ild sec %Id usec\n”,
id, .
average_i (id).tv_sec, Note that theLogger and Stats singletons are not con-
average_i (id).tv_usec); structed or destroyed explicitly by the applicatioe,, their
} lifetime management is decoupled from the application logic.
protected: It is common practice to not destroy singletons at program
/I Default constructor. exit [4].
Stats (void); .
Several drawbacks arise, however, from the fact that the
/I Internal accessor for an average. Singleton pattern only addresses tieationof singleton in-
const timeval &average_i (void); stances and does not deal with their destruction. In partic-
/I Contained Stats singleton instance. ular, when themain program above terminates, neither the
static Stats *instance_; Logger nor theStats singletons are cleaned up. At best,
p " hat this can lead to false reports of leaked memory. At worst, im-
. . . other resources at are
I held by the instance . . . portant system resources may not be released and destroyed
8 properly.

For instance, problems can arise if thegger and/or
Stats singletons hold OS resources, such as system-scope
semaphores, I/O buffers, or other allocated OS resources. Fail-
After recording various statistics, a program calls thee to clean up these resources gracefully during program
Stats::report method, which uses thieogger single- shutdown can cause deadlocks and other synchronization haz-
ton to report average timing statistics for an identifier. ards. To alleviate this problem, each singleton’s destructor

Both theLogger andStats classes provide distinct sershould be called before the program exits.
vices to the application: theogger class provides general One way of implementing the Singleton pattern that at-
logging capabilities, whereas tl8tats class provides spe-tempts to ensure singleton destruction is to employ the Scoped
cialized batching and logging of time statistics. These classegking C++ idiom [5] that declares a static instance of

/I Initialize the instance pointer.
Stats *Stats::instance_ = 0;

the class at file scope [4]. For example, the followinggrious program errors, and (3) shielding software developers

Singleton Destroyer template provides a destructofrom responsibility for details of object lifetime management

that deletes the singleton. can make systems less error-prone.

template <class T>

Singleton_Destroyer 2.3 Context

{

public: icati ifati
Singleton._Destroyer (void): ¢ (0) { An apphqaﬂonl or system where full control over the I|f§t|me
void register (T *) {t_ = t } of the objects it creates is necessary for correct operation.
“Singleton_Destroyer (\70id) { delete t_; }

private:
T *t_; // Holds the singleton instance. 2.4 Problem

h

Many applications do not handle the entire lifetime of their
To use this class, all that’s necessary is to modifylihgger objects properly. In particular, applications that use creational
and Stats classes by defining a static instance of thgatterns, such as Singleton, often fail to address object destruc-
Singleton Destroyer , such as the following exampletion. Similarly, applications that use static objects to provide
for Logger : destruction often suffer from inconsistent initialization and ter-

o mination behavior. These problems are outlined below.
static Singleton_Destroyer<Logger>

logger_destroyer; Problems with singleton destruction: Singleton instances
/I Global access point to the may bg created dynamicafty.A dynamlcall'y.a'llocated sin-

Il Logger singleton. gleton instance becomes a resource leak if it is not destroyed,
sta_tflc(_ Lotgger *mstar(l)():e{ (void) { however. Often, singleton leaks are ignored because (1) they
if (instance_ == e g

instance = new Logger: aren’t significant in many appl_lcatlons and (2) on most multi-
Il Register the singleton so it will be user general-purpose operating systems, such as UNIX or
/I destroyed when the destructor of Windows NT, they are cleaned up when a process terminates.

/I logger_destroyer is run.

logger_destroyer.register (instance): Unfortunately, resource leaks can be troublesome in the fol-

} lowing contexts:
return instance_;]))
} e When graceful shutdown is required [4]: Singletons
/I . simiar changes to Stats class . . . may be responsible for system resources, such as system-

wide locks, open network connections, and shared memory

segments. Explicit destruction of these singletons may be
sirable to ensure these resources are destroyed at a well-

defined point during program termination. For instance, if

the Logger class in Section 2.2 requires system-wide locks
shared memory, then it should release these resources after
ey are no longer needed.

Note how logger _destroyer class holds the single-
ton and deletes it when the program exits. A simil
Singleton _Destroyer could be used by thStats sin-
gleton, as well.

Unfortunately, there are several problems with explicit
instantiating staticSingleton _Destroyer instances. In

C++, for example, eacBingleton _Destroyer couldbe o \When singletons maintain references to other single-
defined in a different Compilation unit. In this case, there li§ns: Exp||c|t|y managing the order of destruction of sin-
no guaranteed order in which their destructors will be callegletons may be necessary to avoid problems due to dangling
which can lead to undefined program behavior. In particulariéferences during program termination. For example, if the
singletons in different compilation units share resources, susfats class in the example above usesltiogger instance
as socket handles, shared memory segments, and/or sysffigs report method, this method could be invoked during
wide semaphores, the program may fail to exit cleanly. TheStats instance destruction, which renders the behavior of
undefined order of singleton destruction in C++ makes it haftk program undefined. Likewise, to support useful behaviors,
to ensure these resources are released by the OS before (19188 as logging previously unreported values during program
last singleton using the resource is completely destroyed, Siitdown, the termination ordering of these singletons must
not before (2) a singleton that is still alive uses the resourcefg).]

In summary, the key forces that are not resolved in these exiSingleton is used as an example in much of this pattern description be-

. ; E]%ie (1) it is a popular creational pattern and (2) it highlights challenging
amples above are: (1) resources allocated by a smgleton nﬁ) Ct destruction issues nicely. However, Object Lifetime Manager can com-

) . . 0D
Umm_ately be releaseq when a program e'-XItS, () UnconStra"Bﬁ_ea]ent other creational patterns, such as Factory Method, and does not as-
creation and destruction order of static instances can resuluiie that its managed objects are singletons or of homogeneous types.

¢ When checking for memory leaks: Memory leak de- gletons prematurely. For instance, the garbage collector in
tection toolse.g, NuMega BoundsCheck, ParaSoft Insure+#)der Java Development Kits (JDKs) may destroy an object
and Rational Purify, are useful for languages such as C amiten there are no longer any referencesto it, even if the object
C++ that require explicit allocation and deallocation of dywas intended to be a singleton [10]. Though this deficiency has
namic memory. These tools identify singleton instances lz=en fixed in later JDKs, the Object Lifetime Manager could
leaked memory, reports of which obscure important memaylve it, under application control, by maintaining singleton
leaks. references.

For instance, if many identifiers are used to recBtalts Another problem in Java applications is the sharing of
data in our running example, it may appear that a sizalbl@mespaces, which allow sharing (intended or otherwise) be-
amount of memory is leaking during program operation. tween singletons in separate applets [11]. Again, the Object
large-scale applications, these “leaks” can result in numeradifetime Manager can be used to register singleton instances.
erroneous warnings, thereby obscuring real memory leaks amglets would then access their singletons from this registry.

hindering system debugging. e Poor support by embedded systems.Embedded

e Dynamic memory allocation may be from a global systems have historically used C. Therefore, they do not al-
pool: Some real-time operating systems, such as Myays provide seamless support for OO programming language
Works [6] and pSOS [7], have only a single, global heap fésatures. For instance, the construction/destruction of static
all applications. Therefore, application tasks must release djjects in C++ is one such feature that often complicates em-
namically allocated memory upon task termination; otherwisgsdded systems programming. The embedded OS may have
it cannot be reallocated to other applications until the OSggpport for explicit invocation of static constructor/destructor
rebooted. Failure to explicitly release memory that was allgalls, but this is not optimal from a programmer’s perspective.
cated dynamically by theogger andStats singletons in Some embedded operating systems do not support the no-
our running example represents real resource leaks on sish of a programthat has a unique entry point. For exam-
platforms. ple, VxWorks supports multipléasks which are similar to

threads because they all share one address space. However,

Problems with static object lifetime: Some objects mustthere is no designatedaintask for each application. There-
be created prior to any use. In C++, such instances tradititere, these embedded systems platforms can be configured
ally have been created asatic objectswhich are intended to to call static constructors/destructors at module (object file)
be constructed prior to invocation of the main program entigad/unload time, respectively. On such platforms, it is not
point and destroyed at program termination. However, thé&igerwise necessary to unload and load between repeated exe-
are several important drawbacks to static objects: cutions. To properly destroy and construct static objects, how-

- . . ever, the static object destructors/constructors must either be

e Unspecified order of construction/destruction. C++ .
only specifies the order of construction/destruction of staﬁal!ed ”.‘a”“a”y' or the quule unloaded and loaded again,

Which hinders repeated testing.

objectswithin a compilation unit (file); the construction or- . .
der matches the declaration order and destruction is the rel-n addition, placement of data in read-only memory (ROM)

verse order [8]. However, there is no constraint specified complicates the use of static objects [12]. The data must be

0, . . o .
the order of construction/destructidietweenstatic objects plréced in ROM prior to run-time; however, static constructors

S i . : are called at run-time. Therefore, embedded systems some-
in different files. Therefore, construction/destruction ordet- .
R . -times do not support calls of static constructors and destruc-
ing is implementation-dependent. For example, the versiQns

of theLogger andStats classes that use tigingleton ors. Moreover, if they are supported it may be under explicit

Destroyer in Section 2.2 illustrate problems that arise fror%ppllcatmn control, instead of by implicit arrangement of the

the undefined order of destruction of tBtats andLogger compiler and run-time system.
singleton instances. o Static objects extend application startup time. Static

Itis hard to write portable C++ code that uses static objecisjects may be constructed at application startup time, prior
possessing initialization dependencies. Often, it is simplerteoinvocation of the main entry point. If these objects are not
avoid using static objects altogether, rather than trying to arsed during a specific execution, then application construction
alyze for, and protect against, such dependencies. This @md destruction) times are needlessly extended. One way to
proach is particularly appropriate for reusable components atlithinate this waste is to replace each such static object with
frameworks [9], which should avoid unnecessary constraiotse that is allocated on demaralg, by using the Singleton
on how they are used and/or initialized. pattern.

Explicit singleton managementis necessary for correct proReplacement of a static object with a singleton also can
gram operation on some platforms because they destroy bi@-used to delay construction until the first use of the object.

Again, this reduces startup time. Some real-time applicatiddbjects in ROM cannot be initialized at run-time, because they
may find it advantageous to construct the singletons at a spgrnot be modified at all.
cific time, after the main entry point has been entered, but

fore the objects are needed. I;r‘:t"fe underlying platform does not provide a notion of a

main program, although the application needs it: The
One or more of these drawbacks of static objects typicalfick of support for static object construction/destruction on

provides sufficient motivation for removing them from a prcsome platforms stems from their lack of support for the no-

gram. Often, it is better not use them in the first place, buttion of a program, as discussed in Section 2.4. The Object

apply the following solution instead. Lifetime Manager pattern can be used to emulate programs
by partitioning this address space. The scope of each Object

25 Solution Lifetime Manager delineates a program, from an application’s
perspective.

Define anObject Lifetime Managemhich is a singleton that Destruction order must be specified by the application:

contains a collection oPreallocated Objects&ind Managed Dynamically created objects can tagisteredwith the Object

Objec_ts The Object Lifetime Manager is requnsible for COMlfetime Manager for destruction. The Object Lifetime Man-
structing and destroying the Preallocated Obijects at progr r can be implemented to destroy objects in any desired or-
initialization and termination, respectively. It is further re3er

sponsible for ensuring all of its Managed Objects are destroyed’
proper|y at program termination. The application requires explicit Singleton management:

As described in Section 2.4, singletons may be destroyed pre-
. . maturely, for example, on earlier Java platforms. The Object
2.6 Applicability Lifetime Manager delays singleton destruction until program

Use Object Lifetime Manager when: termination.

Singletons and other dynamically created objects must be o
removed without application intervention at program ter- 2.7 Structure and Participants
mmaﬂon: Singleton and 'other creational patterns do "Phe structure and participants of the Object Lifetime Manager
typically address the question of when the objects they crea Sern are shown using UML in the following figure and de-
should be removed, or who should remove them. In contradgt.

. o . . . s%hbed below.
Object Lifetime Manager provides a convenient, global objec
that deletes dynamically created objects. Creational pattern _'
objects can then register with the Object Lifetime Manager for Application

deletion, which usually occurs at program termination.

Static objects must be removed from the application: As ;
described in Section 2.4, static objects can be troublesompg, Object Lifetime .l
especially in some languages and on some platforms. Object M anager v
Lifetime Manager provides a mechanism to replace static o "y | Manag
jects with Preallocated Objects. Preallocated Objects are dyg 0 Object
namically allocated before the application uses them, and deagatic starting_up ()

located at program termination. =

static shutting_down () O

The platform does not support static object construc- |static at_exit () N N
tion/destruction: Some embedded platforms, such as Vx- static instance () | Preallocated Object
Works and pSOS, do not always construct static objects at proat_exit_i ()
gram initialization and destroy them at program terminafion.| stafic instance
In general, it is best to remove all static objeets}, to support ~
repeated testing of a program. Another situation where static

objects can cause difficulty is when they are placed in ROlbject Lifetime Manager: Each Object Lifetime
nager is a singleton that contains collectiondanaged
jects andPreallocated Objects

- M
20n VxWorks and pSOS, static objects can be constructed when the m
ule is loaded and destroyed when it is unloaded. After loading, an entry p

can be called more than once before unloading. Therefgymgramcan be Managed Objects: Any object may beegisteredwith an

run more than once after constructing static objects, without ever destroying. e
them. Conversely, static object constructors and destructors can be inv(ﬁSsEUeCt _L|fet|me Manager S which IS responsible for
explicitly. destroying the object. Object destruction occurs when the

Object Lifetime Manager itself is destroyed, typi- 2.9 Implementation

cally at program termination.) o)
The Object Lifetime Manager pattern can be implemented us-

Preallocated Objects: An object may be hard-coded foling the steps presented below. This implementation is based on
construction and destruction by a@bject Lifetime theObject Manager provided in the ACE framework [9],
Manager . Preallocated Objects have the same life- yyhich motivates many interesting issues discussed in this sec-
time as theObject Lifetime Manager , i.e, the life- {jon, Some of the steps discussed below are language-specific
time of the process that executes the program. because ACE is written in C++. Appendix A illustrates even
Application: The Application initializes and destroys more concretely how the Object Lifetime Manager pattern has
its Object Lifetime Manager s, either implicity or Peenimplemented in ACE.

explicitly. In addition, the Application registers
its Managed Objects with an Object Lifetime
Manager, which may also containPreallocated

1. Define the Object Lifetime Manager component. This
component provides applications with an interface with which
to register objects whose lifetime must be managed to ensure

Objects . L -
proper destruction upon program termination. In addition,
) this component defines a repository that ensures proper de-
2.8 Dynamics struction of its managed objects. Tject Lifetime

M?nager is a container for th@reallocated Obiject s

The dynamic collaborations among participants in the Obj%%d for theManaged Object s that are registered to be de-

Lifetime Manager pattern are shown in the following figure

The diagram depicts four separate activities: stroyed at program termination.
9 P P ' The following substeps can be used to implement the

Application ~ Object Managed Preallocated ObJECt Lifetime Manager
Lifecycle Object Object . . o
Manager e Define an interface for registering Managed Ob-
DLL OPEN, STATIC INIT, ;init i instance (; jects: One way to registeManaged Objects with the
STACKINIT, EXPLICITINIT | i N | Object Lifetime Manager would be to use the C-
PREALLOCATED OBJECTS | i g library atexit function to invoke the termination func-
Y i tions at program exit. Hovv.ever,. not all platforms support
| in instance () || atexit . Furthermore,atexit implementations usually
| i at exit() | have a limit of 32 registered termination functions. Therefore,
‘ . the Object Lifetime Manager should support the fol-
onsECT opERATION |-Method O ! =$ onving two tgchniques for registeririganaged Objects
| method (=ﬁ | with a container that holds these objects and cleans them up
‘ ! automatically at program exit:
OBJECT CLEANUP HiniQ — p destro ! }
! destion Q ! 1. Define a cleanup function interface The Object
| estioy. ; g Lifetime Manager allows applications to register
arbitrary types of objects. When a program is shut
down, theObject Lifetime Manager cleans up
1. Object Lifetime Manager creation and initial- these objects automatically.
ngcr:,s V\,'h'Ch in turn creates thereallocated The following C++ class illustrates a specialized
) ' CLEANUPBFUNCused in ACE to register an object or ar-
2. Managed Object creation by theApplication , ray for cleanup:
and registration with the Object Lifetime typedef void (*CLEANUP_FUNC)(void *object,
Manager ; void *param);
3. Use ofPreallocated andManaged Objects by class Object_Lifetime_Manager
theApplication ;and {
. . e ublic:
4. Destruction of theObject Lifetime Manager , P 0o
which includes destruction of all thtlanaged and static int at_exit (void *object,
Preallocated Objects it controls. S;EﬁNpg;ﬁ';gNC cleanup_hook,
I"n. ..
Within each activity, time increases down the vertical axis. h

The staticat _exit method registers an object or araddition, theSingleton adapter can ensure the thread-
ray of objects for cleanup at process termination. Tkafe Double-Checked Locking Optimization pattern [13] is
cleanup _hook argument points to a global function oused to construct and access an instance of the type-specific
static method that is called at cleanup time to destr@ngleton

the object or array. At destruction time, ti@bject The following code fragment illustrates how a singleton
Lifetime Manager passesthebject andparam adapteris implemented in ACE:

arguments to thgleanup _hgpk function. Theparam template <class TYPE>

argument contains any additional information needed Byss Singleton : public Cleanup

thecleanup _hook function, such as the number of obt

. . public:
Jectsin the array. /I Global access point to the

2. Define a cleanup base class interfaee This inter- //t \;vrapTr;egEsir_lgI?ton. woid) ¢
. static *instance (voi
face allows applications to register for destruction with ™" petails of Double Checked

the Object Lifetime Manager any object whose Il Locking Optimization omitted . . .
class derives from aCleanup base class. The if (singleton_ == 0) {

Cleanup base class should have a virtual destructor and singleton_ = new Singleton<TYPE>;
acleanup method that simply callglelete this Il Register with the Object Lifetime

which in turn invokes all derived class destructors. The // Manager to control destruction.
following code fragment illustrates how this class is im- Object_Lifetime_Manager::

9 . g at_exit (singleton_);
plemented in ACE:

. o _
class Cleanup return &singleton_->instance_;

}
puk/)/llc?: o protected:

/I Default constructor.

/I Destructor. Singleton (void);

virtual “Cleanup (void); /I Contained instance.

/I By default, simply deletes this. TYPE instance_;

irtual void o o . .
¥ viual void cleanup (void *param = 0); /I Instance of the singleton adapter.

static Singleton<TYPE> *singleton_;
The following code fragment illustrates th@bject %

Lifetime Manager interface used to register objects

derived from theCleanup base class in ACE: The Singleton class template is derived from the

Cleanup class. This allows th8ingleton instance to reg-

f'ass Object_Lifetime_Manager ister itself with theObject Lifetime Manager . The
public: Object Lifetime Manager then assumes responsibil-
//t e it atexit (G bioct ity for dynamically deallocating th8ingleton instance and
static int at_exi eanup *object, i ;
void *param = 0): with it the adapted YPEinstance.
. .. ¢ Define an interface for registering Preallocated Ob-

}; jects: Preallocated Objects must always be created before
This static at .exit method registers &Cleanup the application’s main processing begins. For instance,
object for cleanup at process termination. At destruigr some applications, synchronization locks must be cre-
tion time, theObject Lifetime Manager callsthe ated before their first use in order to avoid race conditions.
Cleanup object’s cleanup method, passing in theThus, these objects must be hard-coded into ealoject
param argument. Theparam argument contains anyl ifetime Manager class. Encapsulating their creation
additional information needed by tlsteanup method. within theObject Lifetime Manager 's own initializa-
tion phase ensures this will occur, without adding complexity
¢ Define a singleton adapter: Although it is possible to to application code.
explicitly code singletons to use th@bject Lifetime The Object Lifetime Manager should be able to
Manager methods defined above, this approach is tpreallocate objects or arrays. TH@bject Lifetime
dious and error-prone. Therefore, it is useful to d®édanager can either perform these preallocations statically
fine a Singleton adapter class template that encapsim global data or dynamically on the heap. An efficient im-
lates the details of creating singleton objects and registglementation is to store each Preallocated Object in an ar-
ing them with theObject Lifetime Manager . In ray. Certain languages, such as C++, do not support arrays

of heterogeneous objects, however. Therefore, in these lan- under which the object was preallocated in Gigject
guages pointers must be stored instead of the objects them- Lifetime Manager , and returns a correctly typed
selves. The actual objects are allocated dynamically by the pointer to the preallocated object.

Object Lifetime Ma.mager') when itis instantiated, and The following code fragment illustrates how this inter-
:Jloerstroyed by thébject Lifetime Manager destruc- face is provided via a class template adapter in ACE:

template <class TYPE>

The following substeps should be used to implement jass preallocated Object_Interface

Preallocated Objects

1.

L
public:
static TYPE *

Limit exposure— To minimize the exposure of header get_preallocated_object

files, identify the Preallocated Objects by macros or enu- (Object_Lifetime_Manager::
merated literalse.g, (Preallocated_Object_ID id)
enum Preallocated_Object_ID /I Cast the return type of the object
{ /I pointer based on the type of the
ACE_FILECACHE_LOCK, I/ function template parameter.
ACE_STATIC_OBJECT_LOCK, return
ACE_LOG_MSG_INSTANCE_LOCK, &(static_cast<Cleanup_Adapter<TYPE> *>
ACE_DUMP_LOCK, (Object_Lifetime_Manager::
ACE_SIG_HANDLER_LOCK, preallocated_object[id]))->object ();
ACE_SINGLETON_NULL_LOCK, }
ACE_SINGLETON_RECURSIVE_THREAD_LOCK, Il . other methods omitted.
ACE_THREAD_EXIT_LOCK, .

¥

The use of an gnumerated type. IS appropriate when aII. Determine the destruction order of registered ob-
preallocated objects are knowrpriority.

jects: As noted in Section 2.6, th®bject Lifetime

. Use cleanup adaptersTheCleanup Adapter class Manager can be implemented to destroy registered objects

template is derived from th€leanup base class andin any desired order. For example, priority levels could be as-
wraps types not derived from ti@eanup base class sosigned and destruction could proceed in decreasing order of

that they can be managed by tBbject Lifetime priority. An interface could be provided for objects to set and

Manager . Use template functions or macros for allocahange their destruction priority.

tion/deallocatione.qg, We have found that destruction in reverse order of regis-

#define PREALLOCATE_OBJECT(TYPE, ID) {\ tration has been a sufficient policy for ACE applications. An
gt';?a”“f—nAgviptcelr:;LPE; d;o?ie_rg%\'YPE>'\ application can, in effect, specify destruction order by control-
prégﬁocated_object[,,)?—: Oé)j_p;\ ’ Iir_1g Fhe order in which it registers objects with tRibject

} Lifetime Manager

#define DELETE_PREALLOCATED_OBJECT(TYPE, ID)\ e Define a termination function interface: Lifetime
cleanup_destroyer (\ i i i i

ctatic_cast<Cleanup, Adapter<TYPE> >\ managemgnt funct!onahty has been d|sgus§ed so far in terms
(preallocated_object[ID]), 0):\ of d_estruc_no_n of objects at program termination. However, the

preallocated_object[ID] = 0; Object Lifetime Manager can provide a more general

The Cleanup Adapter adapts any object to useCapability — the ability to call a function at program termina-
the simplerObject Lifetime Manager registra- tion — using the same internal implementation mechanism.

tion interface, as discussed in Appendix A. Similarlxl,\/_':Or example, to ensure proper cleanup of open Win32
Cleanup Destroyer usestheCleanup Adapter inSock sockets at program termination, iMSACleanup
to destroy the object. function must be called. A variation of the Scoped Locking

. C++ idiom [5] could be applied, by creating a special wrapper
An analogous array, enum, and macro pair can be SHfk, je 114] class whose constructor calls the API initialization
plied for preallocated arrays, if necessary. functions, and whose destructor calls the API cleanup func-

. Define an accessor interface to the Preallocated Objetigns. The application can then register an instance of this class

— Applications need a convenient and typesafe interfawih the Object Lifetime Manager so that the object

to access preallocated objects. BecauseQ@bgect is destroyed and API termination methods are called during
Lifetime Manager supports preallocated objects oObject Lifetime Manager termination.

different types, it is necessary to provide a separate classlowever, this design may be overkill for many applications.
template adapter with a member function that takes theNitbreover, it can be error-prone because the application must

ensure the class is used only as a singleton so that the Bifdtime Manager instance is automatically destroyed
functions are only called once. Finally, this design may imia any path out ofain .2

crease the burden on the application to manage object destrutack initialization is implemented transparently in ACE
tion order, so that the singleton is not destroyed before anothiera preprocessor macro nammeéin . The macro renames

object that uses the API in its destructor. themain program entry point to another, configurable name,
Instead, the API termination functions can be callesich asnain _i . It provides amain function that creates the

as part of the termination method of th®bject Object Lifetime Manager instance as a local object

Lifetime Manager itself. This latter approach(on the run-time stack) and then calls the renamed application

is illustrated by the socket fini call in the entry point.

Object _Lifetime _Manager::fini method in Ap- There are two drawbacks to the Stack initialization ap-

pendix A. Thesocket _fini function provides a platform- proach:
specific implementation that calls WSACleanup on Win32

. 1. main (int, char *[]) must be declared with ar-
platforms, and does nothing on other platforms. guments, even if they're not used. All of ACE uses this
» Migrate common interfaces and implementation de- convention, so only applications must be concerned with
tails into a base class: Factoring common internal details It.
into an Object Lifetime Manager Base class can 2. If there are any static objects depending on those that
make theObject Lifetime Manager implementation are destroyed by th®bject Lifetime Manager ,
simpler and more robust. Defining &bject Lifetime their destructors might attempt to access the destroyed

Manager Base class also supports the creation of multiple objects. Therefore, the application developer is respon-
Object Lifetime Manager s, each of a separate type. sible for ensuring that no static objects depend on those
To simplify our discussion, we only touch on the use of mul- destroyed by th©bject Lifetime Manager
tiple Object Lifetime Manager s briefly. They do not
add consequences to the pattern, but are useful for partitioning Explicit initialization: In this approach, create the
libraries and applications. Object Lifetime Manager explicitly under applica-

) o . tion control. TheObject Lifetime Manager init
2. Determine how to manage the lifetime of the Object gnqfinj methods allow the application to create and destroy
Lifetime ~Manager itself. The Object Lifetime the Object Lifetime Manager when desired. This option allevi-

Manager is responsible for initializing other global andyieg complications that arise when using dynamic link libraries
static objects in a program. However, that begs the mport@g}_l_)s_

bootstrapping question of how this singleton initializes

and destroys itself. The following are the alternatives for® Dynamic link library initialization: In this approach,
initializing the Object Lifetime Manager singleton Create and destroy the Object Lifetime Manager when its DLL

instance: is loaded and unloaded, respectively. Most dynamic library fa-
cilities include the ability to call (1) an initialization function

e Static initialization: If an application has no static ob-when the library is loaded and (2) a termination function when
jects with constraints on their order of construction or d#he library is unloaded. However, see Section 2.13 for a dis-
struction, it's possible to create th@bject Lifetime cussion of the consequences of managing singletons from an
Manager as a static object. For example, ACEXbject Object Lifetime Manager in a different DLLSs.
Lifetime Manager can be created as a static object. The
ACE library has no other static objects that have constraints) o Example Resolved

on order of construction or destruction.
The discussion in Section 2.9 demonstrates how the Object

e Stack initialization: When there is a main program_ifetime Manager pattern can be used to resolve key design
thread with well defined points of program entry and teforces related to managing object lifetimes. In particular, the
mination, creating th@bject Lifetime Manager on unresolved forces described in Section 2.2 can be satisfied by
the stack of the main program thread can simplify progragpplying the Object Lifetime Manager pattern.
logic for creating and destroying th@bject Lifetime The following example shows how the Object Lifetime
Manager. This approach to initializing theObject Manager pattern can be applied to the origibagiger and

Lifetime Manager assumes that there is one unique
30n platforms such as VxWorks and pSOS that have no designséd

main thread per program. This thread defines the pmgr%m(::tion, the main thread can be simulated by instantiating Qbgect

i-e-_' it is running if, and only if., the main thread i_s alive. | ifetime Manager on the stack of one thread, which is denoted by con-
This approach has a compelling advantage: @igect vention ashemain thread.

Stats examples from Section 2.2. Using tBingleton

adapter template described in Section 2.9 greatly simplifieéﬁ
managed object implementations by encapsulating key impley
mentation details, such as registration with the Object Life-for (int i

time Manager. For instance, the origirgthts class can be
replaced by a manag&tats class, as follows.

class Stats

public:
friend class Singleton<Stats>;

/I Destructor: frees resources.
“Stats (void);

/I Record a timing data point.
int record (int id,
const timeval &tv);

/I Report recorded statistics
/I to the log.
void report (int id) {
Singleton<Logger>::instance ()->
log ("Avg timing %d: "
"%Ild sec %ld usec\n",
id,
average_i (id).tv_sec,
average_i (id).tv_usec);

}

protected:
/I Default constructor.
Stats (void)

/I Ensure the Logger instance
Il is registered first, and will be
/I cleaned up after, the Stats
/I instance.
Singleton<Logger>::instance ();

}

/I Internal accessor for an average.
const timeval &average_i (void);

I/
I

. other resources that are
held by the instance . . .

Notice that the singleton aspects have been factored
of the original Stats class and are now provided by th
Singleton adapter template.
be made to the originalogger
Singleton adapter template.

class so that it uses th

Finally, the following example shows how an application

might use thé_.ogger andStats classes.

int main (int argc, char *argv[])
{
/I Interval timestamps.
timeval start_tv, stop_tv;

/I Logger and Stats singletons
/I do not yet exist.

Similar modifications ca
e

Logger and then Stats singletons
are created and registered on the first
iteration.

0; i < argc; ++) {
:gettimeofday (&start_tv);
/I do some work between timestamps ...
::gettimeofday (&stop_tv);
/I then record the stats ...
timeval delta_tv;
delta_tv.sec = stop_tv.sec - start_tv.sec;
delta_tv.usec = stop_tv.usec - start_tv.usec;
Singleton<Stats>::instance ()->

record (i, delta_tv);

/I . . . and log some output.
Singleton<Logger>::instance ()->

log ("Arg %d [%s]\n", i, argV[i]);
Singleton<Stats>::instance()->report (i);

}

/I Logger and Stats singletons are

/I cleaned up by Object Lifetime Manager
/I upon program exit.

return O;

The following key forces are resolved in this example: (1)
ensuring resources allocated by an instance are subsequently
released, (2) managing the order of creation and destruction
of singletons, and (3) providing a framework that encapsulates
these details within a well-defined interface.

2.11 Known Uses

Object Lifetime Manager is used in the Adaptive Communi-
cation Environment (ACE) [9] to ensure destruction of sin-
gletons at program termination and to replace static objects
with dynamically allocated, managed objects. ACE is used
on many different OS platforms, some of which do not sup-
port static object construction/destruction for every program
invocation. ACE can be configured to not contain any objects
whose initialization is necessary prior to program invocation.
Gabrilovich [15] augmented the Singleton pattern to per-
%tt applications to specify destruction order. A local static
uto _ptr #is responsible for the destruction of each single-
on instance. Destruction of singleton instances proceeds by
application-defined phases; an application may optionally reg-
Ister its singleton instances for destruction in a specific phase.
An interesting example of a “small” Object Lifetime Man-
ager is thestrong pointe[16, 17]° A strong pointer manages
just one obiject; it destroys the object when its scope is ex-
ited, either normally or via an exception. There can be many
strong pointers in a program, behaving as Function-as-Owner
(or Block-as-Owner) (see Section 2.12. Moreover, the strong

4Theauto _ptr is a local static object in the singleton instance accessor
method.
SAC++auto _ptr is an implementation of a strong pointer.

10

pointers themselves have transient lifetimes, that of their ~ These distinctions in object types and service details re-
enclosing blocks. flect the different intents of the two patterns. Fundamentally,
In contrast, there is typically just one Object Lifetime Marthe Manager pattern focuses on the search structure aspects
ager per program (or per large-scale component). And, Objetobject management, whereas the Object Lifetime Manager
Lifetime Managers live for the duration of the program invageattern emphasizes the lifetime aspects instead. The Manager
cation. This reflects the specific intent of the Object Lifetimgattern should be used to provide tailored object lifetime ser-
Manager to destroy objects at program termination, but ndges for a well defined collection of related objects. The
sooner. Such objects may be used after the current blockodject Lifetime Manager pattern should be usedomple-
function has been exited, and destruction/creation cycles Ba@ntcreational patterns, providing more generic object life-

not possible or desired. time services for a wider collection of possibly unrelated ob-
jects.
Object Lifetime Manager complements creational patterns,
2.12 See Also such as Singleton, by managing object instance destruction.

Singleton addresses only part of the object lifetime because it

The Object Lifetime Manager pattern is related to the Majs; manages instance creation. However, destruction is usu-

ager [18] pattern. In both patterns, a client application US€§g, ot an important issue with Singleton because it does not
collection of objects, relying upon a manager to encapsulalg,in ownershipof created objects [4]. Ownership conveys
the details of how the objects themselves are managed. QIS responsibility for managing the object, including its de-
separation of concerns makes the application more robust, §;ction. Singleton is the prototypical example of a creational
cause management aspects that are potentially error-prong gt that does not explicitly transfer ownership, yet does
hidden behind a type-safe interface. Using these manag@Sexpiicitly arrange for object destruction. Object Lifetime

also makes the application more extensible, because cerf@ihaqer complements Singleton by managing the destruction
details of the managed objects can be varied mdepende%&ftion of the object lifetime.

the manager implementation. For example, a manager for d

certain class can be used to manage objects of classes deB'yi ms, such as Abstract Factory and Factory Method. Im-
from that F’ase 9Ia§s.) plementations of these patterns could register dynamically al-
The Object Lifetime Manager pattern differs from the Matjsated objects for deletion at program termination. Alterna-
ager pattern in the types of the managed objects. Whergas, or additionally), they could provide interfaces for object
the Manager pattern requires that the managed objects hayg&ction, corresponding to those for object creation.
common base type, the Object Lifetime Manager pattern aI-Cargill presented a taxonomy of the dynamic C++ object
lows objegts of u_nreIaFed types to pe .ma”‘f"geo'- e Manalﬂ%fime [19]. The Localized Ownership pattern language
pattern relies on inheritance for variations in the manager é}ﬂgludes patterns, such as Creator-as-Owner, Sequence-of-
managed object classes. In contrast, the Object Lifetime M@ﬂﬂ/ners, and Sh,ared Ownership, which prim,arily address

ager relies on object composition and type parameterizatior& ct ownership. Ownership conveys the responsibility for
achieve greater decoupling of the manager from the managed; | tion

objects. . - . Creator-as-Owner is further subdivided into Function-as-
The Object Llfetlmg Manager.pattern further differs frorE)wner, Object-as-Owner, and Class-as-Owner. The Single-
the Manager pattem in the details of the object manage destruction capability of Object Lifetime Manager may

sgrvices it provides to applications. The Manager pattern PRy iewed as new category of Creator-as-Owner: Program-as-
vides both key-based and query-based search senas, o ey |t js distinct from Function-as-Owner, because static

ISBN lookup or finding a list of books by an author [18], Wh"%bjects outlive the program entry poimhéin). Object Life-

the Opject Lifetime Manager p"’?“em supports a simpler, Mefhe Manager's Preallocated Objects similarly can be viewed
generic key-based lookup service. The Manager pattern srdlg\]N

ject Lifetime Manager can complement other creational

) . ; : ogically, at least, as outliving the main program function.
ports fine-grained control of object creation and destructio y g prog

by the application, while the Object Lifetime Manager pattern hen Singleton is “Sed.of‘ multi-threaded p!atforms, amu-
. . . . e>% should be used to serialize access to the instance pointer.
only supports destruction of its registered objects at the en

Quble-Checked Locking [13] greatly reduces the use of this

the program. A i .

h licati i L bi ith th mutex by only requiring it prior to creation of the singleton.
OJ € ?_F.)fp |_cat|0Mn camegste;g E rt;—emstlng object wit t.be.IHowever, the mutex is still required, and it must be initial-

ject Litetime Manager, which then assumes responsibiiif, 46 opject Lifetime Manager solves the chicken-and-egg
for the remaining lifetime of the managed object. The Man-
ager paﬁern Only_ allOV\(S On'deman'd creation of objects, so thatposix 1003.1c [20] mutexes can be initialized without calling a static
the lifetime of objects is managed in an all-or-none mannerconstructor. However, they are not available on all platforms.

11

problem of initialization of the mutex by preallocating one fahe application must not destroy tt@bject Lifetime

each singleton, or group of singletons. Manager prior to the application’s last use of Managed
Object Lifetime Manager uses Adapter for type-safe starr Preallocated Object . Finally, the implementation
age of objects of any class. By using inline fun®ftheObject Lifetime Manager is simplified if it can

tions, the Managed Object Adapter should have noassume that it will be initialized by only one thread. This pre-
size/performance overhead. We confirmed this with tbkides the need for a static lock to guard its initialization.

GreenHills 1.8.9 compiler for VxWorks on Intel targets. HQWL'Jse with shared libraries: On platforms that support load-

ever, some compi!ers do notinline template membgrfuncnomb and unloading shared libraries at run-time, the applica-
Fortunately, the size overheadidinaged Object isVery i, myst bevery careful of platform-specific issues that im-
small,i.e., we measured 40 to 48 bytes with g++ on Linux al ct the lifetime of thebject Lifetime Manager it-

LynxOS. The ACECleanup Adapter template class hasse”_ For example, on Windows NT, ti@bject Lifetime

slightly higher size overhead, about 160 bytes per instaniigsnager should be initialized by the application or by a DLL

tion. that contains it. This avoids a potential deadlock situation due
to serialization within the OS when it loads DLLs.

2.13 Consequences A related issue arises with singletons that are created in

DLLs, but managed by a®bject Lifetime Manager

in the main application code. It the DLL is unloaded before

Destruction of Singletons and other Managed Objects at program termination, th@bject Lifetime Manager

program termination: The Object Lifetime Manager pat-would try to destroy it using code that is no longer linked into

tern allows a program to shut down cleanly, releasing methe application. For this reason, we have added an unman-

ory for Managed Objects , along with the resources theyaged Singleton class to ACE. An unmanaged Singleton is of

hold at program termination. All heap-allocated memory c#ime conventional desigmne. it does not provide implicit de-

be released by the application. This supports repeated tessingction. ACE uses a managed Singleton by default because

on platforms where heap allocations outlive the progfatn. we found the need for unmanaged Singletons to be very un-

also eliminates the memory-in-use warnings reported for susual.

gletons by memory access checkers at program termination.

Thebenefitsof using Object Lifetime Manager include:

Specification of destruction order: The order of destruc—3 Concluding Remarks
tion of objects can be specified. The order specification mech-

anism can be as simple or as complex as desired. As nQigghy creational patterns specifically address only olzjest
in Section 2.9, simple mechanisms are generally sufficientifion. They do not consider when or how testroyobjects

practice. that are no longer needed. The Object Lifetime Manager pat-
Removal of static objects from libraries and applica- tern provides mechanisms for object destruction at program
tions: Static objects can be replaced Byeallocated termination. Thus, it complements many creational patterns

Objects . This prevents applications from relying on the oY covering the entire object lifetime.
der in which static objects are constructed/destructed. MoreThe Singleton pattern provides a notable example where co-
over, it allows code to target embedded systems, which sor@&linated object lifetime management is important. In partic-

times have little or no support for constructing/destroyitdar, deletion at program termination ensures that programs
static objects. have no memory leaks of singleton objects. Moreover, ap-

N , plications that employ the Object Lifetime Manager pattern
However, the followindiabilities must be considered whery, ot require use of static object constructors and destruc-
using the Object Lifetime Manager pattern: tors, which is important for embedded systems. In addition,
Lifetime of the manager itself: The application must en-the Object Lifetime Manager pattern supports replacement of
sure that is respects the lifetime of the Object Lifetime Ma#tatic objects with dynamicallpreallocated Object s,
ager, and does not attempt to use its services outside that Wfbich is useful on embedded platforms and with OO lan-
time. For example, the application must not attempt to acc@s@ges, such as C++.

Preallocated Obijects prior to the complete initial- One of the Object Lifetime Manager pattern’s more inter-
ization of theObject Lifetime Manager . Similarly, esting aspects is that it addresses weaknesses of another pat-
- - _ _ tern, at least in some contexts. Our initial motivation was to

On some operating systems, notably some real-time operating systerrafnedy these weaknesses by registering and deleting single-
there is no concept of program There are tasks,e,, threads, but no one

task has any special, main identity. Thus, there is no cleanup of dynamiciS at program termination-_ The Ultilit_y, applicability, novelty,
allocated memory, open filesic, at task termination. and complexity of the ACBbject Lifetime Manager

12

class seemed to be on par with those of the Abfgleton References

adapter template class, so we felt that it deserved conside B E. Gamma, R. Helm, R. Johnson, and J. Viissidssign Patterns: El-

tion as a pattern. Because it can address just part of the objecCtements of Reusable Object-Oriented Softw&eading, MA: Addison-
lifetime, however, we consider Object Lifetime Manager to be Wesley, 1995.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
acomplementamaﬁem' Pattern-Oriented Software Architecture - A System of Pattekivdey

Another interesting question was: “How do we categorize and Sons, 1996.

i Lifetime Man " It w n riginall re-[3] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concur-
OpJECtl etime b anage it h t d?sd Otl (O l:? a)é) acC e rent Event Demultiplexing and Event Handler Dispatching,Paitern
ational pattern, because it handled only object destruction, [anguages of Program Desigd. O. Coplien and D. C. Schmidt, eds.),

not creation. Again, it seemed appropriate to refer to the Pp.529-545, Reading, MA: Addison-Wesley, 1995.

Object Lifetime Manager pattern as complementing the Sid] J. Vlissides Pattern Hatching: Design Patterns ApplieReading, MA:
leton pattern Addison-Wesley, 1998.

9 ' [5] D.C. Schmidt, “Strategized Locking, Thread-safe Interface, and Scoped

In addition, we realized thatObject Lifetime Locking: Patterns and Idioms for Simplifying Multi-threaded C++

. . ++ R .11 .1 .
Manager had another use that was related to destroying sin- CF’mpo',”ems‘t e'of’rt Vo ‘Sef’t 999
. . L gsf] Wind River Systems, “VxWorks 5.3." http://www.wrs.com/products/-
gletons. Static objects create problems similar to those html/vxworks.html.

singletons,i.e., destruction, especially on operating Systemg] integrated Systems, Inc., “pSOSystem.” http://www.isi.com/products/-
that have no notion of a program, and order of construc- psosystem/.

tion/destruction.Preallocated Object s were added to [8] Bjé:léne Strou?trura,ggg C++ Programming Language, "4 Edition.
support removal of static objects. Our figteallocated Addison-Wesley, 1998.

. [9] D. C. Schmidt, “ACE: an Object-Oriented Framework for Develop-
Object was the mutex used for Double-Checked Lock ing Distributed Applications,” ifProceedings of thé* USENIX C++

ing [13] in the ACE implementation of . . . tH&ingleton Technical ConferencgCambridge, Massachusetts), USENIX Associa-

adapter template. tion, April 1994.
. . [10] E. Shea, “Java Singleton,” June 7, 2008ttp://www.c2.com/
Current development efforts include breaking the one in-" cgi/wiki?JavaSingleton

stance into multipleObject Lifetime Manager S, t0 [11] D. McNicol, “Another Java Singleton Problem,” June 7, 2000.
support subsetting. Each |ayer of ACEg, OS, Iogging, http://www.cZ.com/cgl/W|I_(l’?Ar_u_)tr_lerJ_ava_SlngletonProbIem.
threads, connection management, sockets, interprocess é%_D. Saks, “Ensuring Static Initialization in C++Embedded Systems

Programmingvol. 12, pp. 109-111, Mar. 1999.

munication, service conflguratlon, streams, memory manaﬁg]- D. C. Schmidt and T. Harrison, “Double-Checked Locking — An Object

ment, and utilities, will have its ow®bject Lifetime Behavioral Pattern for Initializing and Accessing Thread-safe Objects
i At Efficiently,” in Pattern Languages of Program DesigiR. Martin,

!\/Iapager ; When ,ar!y Obje,Ct Lifetime Manager_ F. Buschmann, and D. Riehle, eds.), Reading, MA: Addison-Wesley,

is instantiated, it will instantiate each dependétiject 1997.

Lifetime Manager , if not already done. And similar,[14] D.C. Schmidt, “Wrapper Facade: A Structural Pattern for Encapsulating

configured-in cooperation will provide graceful termination. ~ Functions within ClassesC++ Report vol. 11, February 1999.

. [15] E. Gabrilovich, “Destruction-Managed Singleton: A Compound Pat-
A highly portable implementation of the Object Life- tern for Reliable Deallocation of Singleton&*+ Report, vol. 12, Jan.

time Manager pattern and theSingleton adapter 2000. _ _
template is freely available and can be downloaded frd#l B- Milewski, “Strong Pointers and Resource Management in C&+3#

. . Report vol. 10, pp. 23-27, Sept. 1998.
www.cs.wustl.edu/ ~schmid/ACE-obtain.htm| [17] B. Milewski, “Strong Pointers and Resource Management in C++, Part

2,” C++ Report vol. 11, pp. 36—39,50, Feb. 1999.

[18] P. Sommerland and F. Buschmann, “The Manager Design Pattern,” in
Proceedings of thg"¢ Pattern Languages of Programming Conference
September 1996.

ACkﬂOWledg ments [19] T. Cargill, “Localized Ownership: Managing Dynamic Objects in C++,’
in Pattern Languages of Program Design(2. M. Vlissides, J. O.
Coplien, and N. L. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

Thanks to Matthias Kerkhoff, Per Andersson, Steve HuUg6] “Information Technology — Portable Operating System Interface
ton, Elias Sreih, and Liang Chen for many helpful discus- (L'Zﬁ:déég]’l:fggéf System Application: Program Interface (API) [C
sions on the design and implementation of ACBbject

Manager. Thanks to Brad Appleton, our PLoP '99 shep-

herd and C++ Report Patterns++ section editor, Evgefly Detailed Implementation

Gabrilovich, Kevlin Henney, and our PLoP '99 workshop

group for many helpful suggestions on the content and piiétis section provides an example of a concrete Object Life-
sentation of the Object Lifetime Manager pattern. And thantisie Manager implementation in C++ described in Sec-
to Bosko Zivaljevic for pointing out that static object construd¢ion 2.9. It is based on the ACE [9] Object Lifetime Man-
tion can extend application startup time. ager implementation. The ACE implementation reveals some

13

class Object_Lifetime_Manager_Base

{
public:
interesting design issues. Its most visible purpose is to many"ual int init (void) = 0;

. . . /I Explicitly initialize. Returns O on success,
age cleanup of singletons at program termination, and Crey _1 on failure due to dynamic allocation
ate/destroy Preallocated Objects. In addition, it performs other failure (in which case errno is set to
cleanup actions, such as shutdown of services provided by thé ENOMEM), or 1 if it had already been called.
ACE I|brary,_ at program termination. virtual int fini (void) = O:

The Object L|fe.t|m(_3 Manager I_Base . _.a_bstract /I Explicitly destroy. Returns 0 on success,
base class, shown in Figure 1, provides the initialization and/ -1 on failure because the number of <fini>
finalization mechanisms for an Object Lifetime Manager. x Ca::s hasri't _f“??crf]‘eg ”I‘e ré“mé’ef of <“'”g>
Subclasses must specialize and provide implementationd, “@'> ° & ' 1t had aiready been cafed.
described below. enum Object_Lifetime_Manager_State {

In addition,Object Lifetime Manager Base sup- OBJ_MAN_UNINITIALIZED,
ports chaining of Object Lifetime Managers. Object Lifetime ggﬂ‘mﬁ‘:m:ﬁﬂ?gﬁ
Managgrs are Singletons, each with its own locus of. mtergst. OBJ_M AN:SHUTTING_bOWM
An application may have a need for more than one Object Life- oBJ_MAN_SHUT _DOWN
time Managerg.g, one per major component. Chaining per- }

mits ordered shutdown of the separate components.

. . e . protected:
Figure 2 shows. an _exampIeObJeq Llfe_t|me " Object_Lifetime_Manager_Base (void) :
Manager class. It is a Singleton, so it provides a static object_manager_state_ (OBJ_MAN_UNINITIALIZED),
instance accessor. In addition, it provides static dynami(%ﬁ)l"?}_allocated_ (0),
next_

starting _up and shutting _down state accessors.
An gnumeration lists identifiers for the Preallocated Objectsyirtyal ~Object_Lifetime_Manager Base (void) {
that it owns. /I Clear the flag so that fini

An interesting detail is the (boolean) reference count logic z does_”'t” de'ﬁfe agj“”-_ _
provided by the derived clagsit andfini methods. There ynamically_allocated = 0;
are several alternatives for constructing an Object Lifetime
Manager, discussed in Section 2.9. The reference count efnt starting_up_i (void) {
sures that an Object Lifetime Manager is only constructed return object manager_state <
once, and destroyed once OBJ_MAN_INITIALIZED;

The implementations of thestance , init , andfini Il Returns 1 before Object_Lifetime_Manager_Base
methods are shown in Figure 3 and Figure 4. ifis¢ance /I has been constructed. This flag can be used
method is typical of Singleton instance accessors, butinclude’ﬁ to determine if the program is constructing
logic t t stati | t instead of d . I static objects. If no static object spawns
ogic to support static placement instead of dynamic allocay; 5ny threads, the program will be
tion. In addition, it is not thread safe, requiring constructiony single-threaded when this flag returns 1.
before the program spawns any threads. This avoids the need _ o
for a lock to guard the allocation. int shutting_down_i (void) {

. - . return object_manager_state_ >
Thg init and fini methods show creation and de- OBJ_MAN_INITIALIZED:
struction of Preallocated Objects, respectively. They show
application-specific startup and shutdown code. Finally, they/ Returns 1 after Object_Lifetime_Manager_Base
show maintenance of the Object Lifetime Manager state. ~ // 1as been destroyed.
Object_Lifetime_Manager_State object_manager_state_;
/I State of the Object_Lifetime_Manager;

u_int dynamically_allocated_;

/I Flag indicating whether the

/I Object_Lifetime_Manager instance was
/I dynamically allocated by the library.

/I (If it was dynamically allocated by the
/I application, then the application is

/I responsible for deleting it.)

Object_Lifetime_Manager_Base *next_;
/I Link to next Object_Lifetime_Manager,
/I for chaining.

8This should be moved up to the base class.

14 Figure 1: Object Lifetime Manager Base Class

class Object_Lifetime_Manager :

public Object_Lifetime_Manager_Base

public:

virtual int init (void);
virtual int fini (void);

static int starting_up (void) {
return instance_ ?
instance_->starting_up_i () : 1;

}

static int shutting_down (void) {
return instance_ ?
instance_->shutting_down_i () : 1;

}

enum Preallocated_Object

Object_Lifetime_Manager *
Object_Lifetime_Manager::instance_ = O;
/I Singleton instance pointer.

Object_Lifetime_Manager *
Object_Lifetime_Manager::instance (void)
{
/I This function should be called during
/I construction of static instances, or

/I before any other threads have been created

/I in the process. So, it's not thread safe.

if (instance_ == 0) {
Object_Lifetime_Manager *instance_pointer =
new Object_Lifetime_Manager;

/I instance_ gets set as a side effect of the

/I Object_Lifetime_Manager allocation, by
/I the default constructor. Verify that . . .

{ _ ;)

if defined (MT_SAFE) && (MT_SAFE != 0) assert (instance_pointer == instance_);
OS_MONITOR_LOCK,)))
TSS_CLEANUP LOCK, instance_pointer->dynamically_allocated_ =

else } .)
/I Without MT_SAFE, There are no return instance_;
/I preallocated objects. Make }
/I sure that the preallocated_array .
Il size is at least one by declaring it o o)
/I this dummy. Object_Lifetime_Manager::init (void)
EMPTY_PREALLOCATED_OBJECT, i)]

endif /* MT_SAFE ¥/ if (starting_up_i () {

/I This enum value must be last!
PREALLOCATED_OBJECTS
h

/I Unique identifiers for Preallocated Objects.

static Object_Lifetime_Manager *instance (void);
/I Accessor to singleton instance.

public:

/I Application code should not use these
/I explicitly, so they’re hidden here. They're
/I public so that the Object_Lifetime_Manager
/I can be onstructed/destructed in main, on
/I the stack.
Object_Lifetime_Manager (void) {
/I Make sure that no further instances are
/I created via instance.

/I First, indicate that this
/I Object_Lifetime_Manager instance
/I is being initialized.

object_manager_state_ = OBJ_MAN_INITIALIZING;

if (this == instance_) {
if defined (MT_SAFE) && (MT_SAFE != 0)
PREALLOCATE_OBJECT (mutex_t,
OS_MONITOR_LOCK)
/I Mutex initialization omitted.

PREALLOCATE_OBJECT (recursive_mutex_t,

TSS_CLEANUP_LOCK)
/I Recursive mutex initialization omitted.
endif /¥ MT_SAFE */

/I Open Winsock (no-op on other

if (instance_ == 0) " platfo_rr_ns).* N
instance_ = this; socket_init (/* WINSOCK_VERSION */);
init ();

“Object_Lifetime_Manager (void) {
/I Don't delete this again in fini.
dynamically_allocated_ = 0;

/I Other startup code omitted.

/I Finally, indicate that the
/I Object_Lifetime_Manager instance
/I has been initialized.

fini ();
0 object_manager_state_ = OBJ_MAN_INITIALIZED;
return O;
private: } else { o
static Object_Lifetime_Manager *instance_; /I' Had a'tlready initialized.
/I Singleton instance pointer. } return 1;
static void * }
preallocated_objectfPREALLOCATED_OBJECTS];
/I Array of Preallocated Obijects. .) o]
h Figure 3: Object Lifetime Method Implementations

Figure 2: Object Lifetime Manager Class
15

int
Object_Lifetime_Manager::fini (void)

if (shutting_down_i ())
/I Too late. Or, maybe too early. Either
/I <fini> has already been called, or
/I <init> was never called.
return object_manager_state ==
OBJ_MAN_SHUT_DOWN ? 1 : -1;

/I Indicate that the Object_Lifetime_Manager

/I instance is being shut down.

/I This object manager should be the last one

/I to be shut down.

object_manager_state_ = OBJ_MAN_SHUTTING_DOWN;

/I If another Object_Lifetime_Manager has
/I registered for termination, do it.
if (next) {

next_->fini ();

/I Protect against recursive calls.

next_ = 0;

/I Only clean up Preallocated Objects when
/I the singleton Instance is being destroyed.
if (this == instance_) {

/I Close down Winsock (no-op on other

/I platforms).

socket_fini ();

/I Cleanup the dynamically preallocated
/I objects.
if defined (MT_SAFE) && (MT_SAFE != 0)
/I Mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (mutex_t,
MONITOR_LOCK)

/I Recursive mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (
recursive_mutex _t,
TSS_CLEANUP_LOCK)
endif /* MT_SAFE */

}

/I Indicate that this Object_Lifetime_Manager
/I instance has been shut down.
object_manager_state_ = OBJ_MAN_SHUT_DOWN;

if (dynamically_allocated_)
delete this;

if (this == instance_)
instance_ = 0;

return O;

Figure 4: Object Lifetime Method Implementations, cont'd.

16

