
IKE 2—Implementing the Stateful Distributed Object Paradigm

J. Russell Noseworthy
Object Sciences Corporation

j.russell.noseworthy@objectsciences.com

Abstract—
This paper describes IKE 2, which is distributed object comput-

ing middleware that supports the creation of interoperable real-
time distributed applications. These applications appear in many
domains, such as telecom, aerospace, military testing and train-
ing ranges, and financial services. IKE 2 combines the concepts
of CORBA distributed objects and anonymous publish-subscribe
data dissemination to provide a programming abstraction known
as astateful distributed object(SDO).

Every SDO can have both aremote method interfaceand pub-
lication state. The remote method interface allows client applica-
tions to invoke methods on target objects efficiently without con-
cern for their location, programming language, OS platform, com-
munication protocols and interconnects, or hardware. The publi-
cation state of a givenSDO is disseminated to applications that
have expressed their interest by subscribing to certain character-
istics, such as the type of theSDO. Subscribers can read the pub-
lication state of an SDO as if it were a local object. TheSDOs
provided by the IKE 2 metaobject model support inheritance from
other SDOs, containment of otherSDOs, and references to other
SDOs.

IKE 2 is implemented in C++. The API relies heavily on
compile-time type-safety to help ensure reliable behavior at run-
time—a critical feature of any real-time system. Automatic code
generation is used to provide the high-level abstractions without
unduly burdening application programmers.

Keywords: Distributed Object, Middleware, Distributed Object
Middleware, Publish-Subscribe Middleware, SDO, Stateful Dis-
tributed Object, CORBA, Event Service

I. I NTRODUCTION

A. Distributed Communication Models

Distributed object computing (DOC) has been a popular par-
adigm for developing complex distributed systems for many
years, as witnessed by the success of JavaRMI (28) andCOR-
BA (20). Distributed objects combine powerful object-oriented
design and programming abstraction and decomposition con-
cepts with the illusion of location transparency. This combina-
tion yields objects whose interfaces expose methods that can be
invoked from any process in the distributed system in a man-
ner identical1 to how methods are invoked on objects that are
local to the process. Figure 1 illustrates the conventionalDOC
two-way synchronous communication model.

1It could be argued that the possibility of a run-time exception arising from
the invocation of a method on a distributed object due to the failure of some
component of the distributed system constitutes a marked difference between
programming with a distributed object and programming with a purely local ob-
ject. However, in general, even local method invocations can raise exceptions,
so in that sense, there is no difference.

Fig. 1. ConventionalDOC Communication Model.

While theDOC paradigm is a powerful tool to address the
challenges of developing distributed systems, it is not the only
approach. In particular, many data-centric distributed sys-
tems employ a technique known asanonymous publish and
subscribe data exchange, or, more tersely,publish-subscribe.
Publish-subscribe systems consist of the following compo-
nents:

• Publishersare event sources,i.e., they generate the events
that are propagated through the system. Publishers may
need to describe the specific type of events they generate
a priori or they can generate generic events.

• Subscribersare the event sinks of the system,i.e., they
receive the events sent by publishers. Some architecture
implementations require subscribers to declare filtering in-
formation to designate the events they are interested in re-
ceiving.

• Event channelsare components in the system that propa-
gate events from publishers to subscribers. In distributed
systems, event channels can propagate events across dis-
tribution domains to remote subscribers. Event channels
can perform event filtering, correlation, routing,QoS en-
forcement, and fault management.

Figure 2 illustrates the relationships and information flow be-
tween these three components.

In anonymouspublish-subscribe systems, publishers are un-
aware of which, if any, subscribers are receiving the data they
produce. Likewise, subscribers are unaware of which, if any,
publishers produce the data they desire. It is also possible to
construct publish-subscribe systems that are not anonymous.
Providing that additional information comes at a non-trivial ex-

 2002IEEE. Reprinted, with permission, from The 5th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2002).

Fig. 2. Relationships Between Components in a Publish-Subscribe Model

pense, however, in terms of system performance. Moreover, it
only adds marginal utility.

Publish-subscribe systems can disseminate data in many
ways, ranging from an individual publisher to an individual sub-
scriber to multiple publishers to multiple subscribers. Data dis-
semination is typically accomplished in a message- or event-
based fashion, meaning that the data arrives asynchronously
and is ephemeral,i.e., if users do not take it upon themselves
to store the data then it is lost since it is not stored persistently
by the event channel. Examples of publish-subscribe systems
includeNDDS (22), theCORBA Event Service (19; 21; 10),
the CORBA Notification Service (17; 9; 26), Sienna (4), and
theHLA RTI-NG (11).

In the standardCORBA Event Service, subscribers cannot
specify the type of data they are interested in receiving. In
most publish-subscribe systems, however, including theCOR-
BA Notification Service, subscribers can specify which types of
events they want to receive. This filtering capability provides a
richer programming paradigm to users, though it increases the
implementation complexity of the publish-subscribe system.

B. Combining the Distributed Object and Publish-Subscribe
Programming Paradigms

DOC systems and publish-subscribe systems both provide
users with powerful programming abstractions. Yet each pro-
vides something the other lacks. Traditional remote procedure
call (RPC) toolkits, such as Sun RPC (27), offer no direct sup-
port for disseminating data from a single source to multiple
destinations. Conversely, traditional publish-subscribe systems,
such asNDDS, do not provide the abstraction of objects with
a set of methods in their interface. Without direct support for
the powerful abstractions provided by object-oriented program-
ming, the difficulty of modeling complex concepts and design-
ing sophisticated systems is increased.

Combining the distributed object and publish-subscribe pro-
gramming paradigms yields a new paradigm that provides the
strengths of each. At the same time, the new paradigm frees the
programmer from the common chore of explicitly storing the
data that arrives as part of the publish-subscribe system. This
new programming paradigm introduces the concept of astateful
distributed object, or SDO, which is shown in Figure 3.

As shown in Figure 3, anSDO has two parts:
• An object interface that provides a location-transparent

Fig. 3. Fundamental Aspects of anSDO

interface to its methods. This interface is consistent with
the capabilities shown in Figure 1.

• Publication state, which is data that is disseminated from
the creator of an instance of anSDO to all parties that
have indicated their interest in thatSDO’s data through
a subscription. This capability of anSDO provides the
capabilities shown in Figure 2.

Interested subscribers can receive references to anSDO,
which they can use to invoke methods on its interface, as if
it were a reference to aCORBA distributed object. In addition,
anSDO reference provides programmers with the ability read
the publication state of theSDO as if it were local data, as can
be done in many distributed shared memory systems (15; 1).
Thus, anSDO is an object that are easily modeled inUML,
even though both the methods and attributes (publication state)
of an SDO are location independent. As modifications to a
given SDO’s publication state are disseminated from its pub-
lisher, subscribers are notified that new values of the publication
state data are available.

The abstract concept of theSDO has been implemented in a
middleware system known as IKE 2, which is the second mid-
dleware prototype of the Test and Training Range ENabling Ar-
chitecture (TENA) (6), an architecture being developed by the
Foundation Initiative 2010 (FI 2010) project (6). FI 2010 is
an interoperability initiative of the Director, Operational Test
and Evaluation (DOT&E), funded through the Central Test and
Evaluation Investment Program (CTEIP). TheFI 2010 vision
is to enable interoperability among ranges, facilities, and simu-
lations in a quick and cost-efficient manner, and to foster reuse
of range assets and of future range system developments. The

2

purpose of IKE 2 is to support the creation of interoperable
real-time object-oriented distributed system applications, such
as those needed by military testing and training range systems.

The remainder of this paper is organized as follows: Sec-
tion II describes theSDO concepts that underlie the IKE 2
metaobject model and theTENA definition language; Sec-
tion III describe the fundamental concepts used in IKE 2; Sec-
tion IV explores key aspects of IKE 2’s implementation; Sec-
tion V outlines future work on IKE 2; and Section VI presents
concluding remarks.

II. OVERVIEW OF IKE 2 AND TENA

Since IKE 2 provides an object-oriented programming para-
digm, its metaobject model is similar to the metaobject model
of CORBA, C++, and Java. As aDOC framework, IKE 2 re-
quires an interface definition language (IDL), which is similar
to CORBA IDL. These characteristics of IKE 2 are explained
below.

A. The IKE 2 Metaobject Model

Metaobject models describe the concepts and features that
are supported by a particular object system. For example,
CORBA has a metaobject model that describes howCOR-
BA interfaces may inherit from each other, have location-
transparent references, and support introspection.2 The IKE 2
metaobject model extends theCORBA metaobject model by
distinguishing between a pure interface and anSDO. In the
IKE 2 metaobject model, an interface has the same general
properties of aCORBA interface,i.e., it is a declaration of a
collection of methods. However, anSDO has publication state
as well as methods. Single inheritance betweenSDOs is sup-
ported. In addition, anSDO may multiply inherit from any
number of interfaces. This is analogous to theextends and
implements features of the Java metaobject model.

The publication state of anSDO may be composed of fun-
damental data types, as well as complex data types (e.g., struc-
tures). Moreover, anSDO maycontainotherSDOs. The IKE 2
metaobject model therefore supports theUML concept ofcom-
position (3).3 The publication state of anSDO is always up-
dated atomically, including the publication state of anySDOs
that are contained in theSDO whose publication state is be-
ing modified. By ensuring the atomicity of publication state
updates, IKE 2 subscribers are prevented from reading invalid
publication state,e.g., publication state composed of partly old
and partly new data.

In addition to composition ofSDOs, the IKE 2 metaobject
model provides the ability for anSDO to contain a reference
to anotherSDO. The semantics of this association between
SDOs is referred to inUML asaggregation(3) and in theC++

2Since describing the completeCORBA metaobject model is beyond the
scope of this paper, readers are referred to (20).

3At present, IKE 2 does not allows parts with non-fixed multiplicity, which
is allowable inUML.

metaobject model as a pointer. InC++, an object may con-
tain a pointer to another object. The pointer may be changed
to refer to a different object. Likewise, the pointer may some-
times be null. In IKE 2, a reference contained in anSDO may
be changed to refer to an differentSDO or even a special null
SDO. Since the referentSDO is only “pointed at” by the refer-
ring SDO, the referentSDO’s publication state is not updated
atomically with the referringSDO when state changes occur.

IKE 2’s metaobject model supports containment of fixed-
length arrays of fundamental and complex data types, as well
asSDOs. It also supports containment of variable-length se-
quences of fundamental and complex data types, as well as of
references toSDOs. Containment of variable-lengthSDOs
is not yet supported. Likewise, support for introspection, dy-
namic invocation of methods (as with theCORBA dynamic in-
vocation interface), and self-describing arbitrary types (e.g., the
CORBA Any) are envisioned as part of the IKE 2 metaobject
model, though they are not yet implemented.

B. TENA Definition Language

An interface definition language (IDL) provides a strongly
typed format for declaring interfaces, methods, types, con-
stants, and other information exchanged between clients and
servers. AnIDL is not a full-fledged programming language
and hence has no means to specify detailed implementation
logic, such as branching or control flow. This ensures that a
fundamental tenet of object-oriented programming is observed:
the separation of interface from implementation. AnIDL com-
piler also automates the generation and optimization of low-
level marshaling and demarshaling code, which can be tedious
and error-prone to write and debug manually (8).

Programmers ofCORBA systems provide specific declara-
tions ofCORBA objects usingCORBA IDL. In much the same
way, IKE 2 programmers express specific declarations ofSDOs
(and interfaces) using theTENA definition language (TDL). As
with the IKE 2 metaobject model,TDL extendsCORBA IDL
with new capabilities, such asclass , extends , andimple-
ments . Moreover,TDL uses theattribute keyword to in-
dicate elements of anSDO’s publication state4. Note that, as
is the case withCORBA IDL, TDL is not a complete program-
ming language. It is instead a language used to declareSDOs.

Figure 4 on the following page shows an example ofTDL.
In Figure 4,Participant implements theControllable
interface;Sensor inherits fromParticipant ; andPlat-
form inherits fromParticipant and contains aSensor .
Participant has no methods (beyond the method imple-
mented from theControllable interface), whileSensor
andPlatform each have one additional method.

TDL is not the first extension toCORBA IDL designed to ad-
dress issues of object state. TheCORBA Persistent State Ser-
vice (18) introduced the so-calledPersistent State Description

4Since the elements of the publication state can be inferred without theat-
tribute keyword, it may be removed in future versions ofTDL.

3

module Example

{
interface Controllable

{ string initialize(); };
class Participant

: implements Controllable

{
attribute string name;

attribute long ID;

};
class Sensor : extends Participant

{
attribute string state;

string point(in double azimuth);

};
class Platform : extends Participant

{
attribute double fuel;

attribute Sensor longRangeSensor;

void move(in double x);

};
};

Fig. 4. TDL example showing an interface and threeSDOs.

Language(PSDL). While TDL andPSDL are both concerned
with object state, they differ fundamentally in the aspects of ob-
ject state they address.PSDL targets the server-side storage of
object state, whileTDL describes objects whose active state is
disseminated to clients.

III. F UNDAMENTAL CONCEPTS INIKE 2

IKE 2 weaves together many concepts to form a coherent
system. This section describes the most important of those
concepts, namely theSDO servant, theSDO proxy, the user-
specifiable client-side callbacks, the publication state consis-
tency policies, and the concepts of executions and sessions.

A. SDO Servants and Proxies in IKE 2

IKE 2 defines servant and proxy constructs forSDO that are
analogous to the servant and proxy inCORBA. Below, the pur-
pose of these constructs is explained.

1) SDO Servants in IKE 2 : Servants in IKE 2 are the ob-
jects in the target programming language,i.e., C++, that imple-
mentSDOs. As is the case with aCORBA servant, anSDO
servant requires servant programmers to provide implementa-
tions of the methods on theSDO. However,SDO servants dif-
fer from CORBA servants in two important ways:SDO ser-
vants are created using a factory andSDO servants have publi-
cation state that can be modified. These differences are further
explained below.

a) CreatingSDO servants with a factory.: A CORBA
servant can be created in many ways,e.g., on the stack, on the
heap, by a servant locator interceptor, etc. In contrast, anSDO
servant is always created via afactory(7). This design ensures
that the publication state provided by the IKE 2 middleware
system and the implementation of the servant’s methods pro-
vided by the programmer can be combined properly to form a
completeSDO servant.

The structure imposed by using a factory also ensures that the
implementation of theSDO servant’s methods can access the
SDO servant’s publication state. To understand why this is im-
portant, consider thePlatform SDO shown in Figure 4. It is
reasonable to expect that most implementations of themove()
method on aPlatform would want to modify the value of the
Platform ’s fuel. The implementation of thePlatform ’s
methods therefore requires access to thePlatform ’s publica-
tion state.

b) Modification of anSDO servant’s publication state.:
As mentioned in Section I-B, the publication state of anSDO
servant is updated atomically. This concept is quite common
in distributed systems and concurrent systems. Without native
support for atomic modification of multiple publication state
attributes, it would be possible for IKE 2 applications to observe
inconsistent values of publication state that mixed old and new
values. Note that this atomicity must extend throughout any
chain of containedSDOs.

In addition to the atomicity of multi-attribute modifications,
there is another prominent characteristic of anSDO servant’s
publication state: only theSDO servant is capable of modifying
the publication state of theSDO.

2) SDO Proxies in IKE 2 : Proxies in IKE 2 are the ob-
jects in the target programming language that provide access
to remoteSDO servants as if they were local objects. The
IKE 2 middleware system implementsSDO proxies for use
by the IKE 2 programmer. AnSDO proxy provides location-
transparent access to both the correspondingSDO servant’s
methods and publication state.

As discussed above, only anSDO servant can modify the
publication state of theSDO. An SDO proxy may read the
SDO’s publication state, but may notmodify the SDO’s pub-
lication state. This constraint is not a significant limitation in
practice since anSDO proxycaninvoke anSDO’s methods. If
it were important that proxies to certainSDOs be able to mod-
ify the SDO’s publication state in a given IKE 2 application, a
mutator method could be provided on the particularSDO.

B. Asynchronous Notification ofSDO Events

Throughout the lifetime of anSDO, there are several note-
worthy events that are of potential interest to it’s subscribers.
These events include notification of the creation and destruc-
tion of the SDO, notification that theSDO no longer meets
(or once again meets) the interest criteria specified by the sub-
scriber, and notification that the publication state of theSDO
has changed. These various notifications are discussed below.

4

• SDO Discovery Notification—Instances ofSDO ser-
vants arediscoveredin response to a subscription, in keep-
ing with the publish-subscribe paradigm. The IKE 2 pro-
grammer declares their interest in particularSDO servants
to the IKE 2 middleware. The IKE 2 middleware in turn
provides individual notification to the IKE 2 programmer
of everySDO servant instance that matches their interest.
When a newSDO servant that matches a subscription is
instantiated in the system, the IKE 2 middleware generates
a new discovery notification. Each discovery notification
provides a newSDO proxy to the IKE 2 programmer.

• SDO Scope Notifications—Throughout the life of the ap-
plication, it is possible that the a given instance of anSDO
will cease to match the IKE 2 programmer’s interest, either
due to some change in theSDO or due to a change in the
programmer’s interest. When this occurs, the IKE 2 mid-
dleware provides notification to the programmer that the
particularSDO is out of scope. If that sameSDO sub-
sequently matches the programmer’s interest once again,
then the IKE 2 middleware delivers notification of this fact
via anin scopeevent.

• SDO Destruction Notification—In addition to being in-
stantiated,SDOs can also be destroyed. When this occurs,
the IKE 2 middleware generates a destruction notification
event. Note that destruction notification events pertaining
to SDOs that are not currently of interest to the IKE 2 pro-
grammer (i.e., are out of scope) are not generated.

• SDO Publication State Change Notification—TheSDO
programming paradigm is closely aligned with the concept
of distributed shared memory. Unlike classic message- or
event-based systems which deliver notification whenever
new data arrives, a classic distributed shared memory sys-
tem provides no notification when data changes. Indicat-
ing when anSDO’s publication state has been modified
is so useful, however, that the IKE 2 middleware provides
the programmer precisely this information for everySDO
presently in scope. This eliminate the necessity topoll the
publication state to determine if it had been modified—a
practice that is hard to program efficiently, scalably, and
correctly.

At present, subscription interests in IKE 2 are declared by
SDO type. For example, consider theTDL shown in Figure 4.
IKE 2 programmers could declare their interest inSDOs of type
Participant . The IKE 2 middleware system would then
generate discovery notifications for each instance of anSDO
servant of typeParticipant presently in the system, as well
as discovery notifications for any futureParticipant s that
are instantiated.

Moreover, the IKE 2 middleware would generate discovery
notifications for each instance of anSDO of type Sensor
and typePlatform —becauseSensor andPlatform in-
herit fromParticipant . TheSDO proxies provided to the
IKE 2 programmer in these cases would be of typePartic-
ipant , however, because that is what the IKE 2 programmer

requested by subscribing toParticipant s. If other IKE 2
programmers were to subscribe toSensor s, they would re-
ceive discovery notifications for eachSDO servant instance of
typeSensor in the system, including theSensor s contained
in anySDO servant instances of typePlatform .

Interests in IKE 2 are presently type-based, and it is not pos-
sible for anSDO to change its type. Thus, scope notifications
would currently only be generated as the result of unsubscrib-
ing to a type. Due to their limited utility at this time, scope
notifications are not implemented in this version of the IKE 2
middleware.

In addition to the ability to discoverSDOs based on their
type, IKE 2 provides the ability to obtainSDO proxies by
name, using the IKE 2SDO Naming Service. The IKE 2SDO
Naming Service is analogous to theCORBA Naming Service.
An IKE 2 user has the ability to register anSDO servant in
the IKE 2SDO Naming Service with some name. In so doing,
other IKE 2 users can then obtain anSDO proxy to thatSDO
servant using the name registered in the IKE 2SDO Naming
Service.

User applications are often more easily constructed if they
have the ability to control when the notification of asyn-
chronous events are delivered. To provide flexibility to the
IKE 2 users, IKE 2 uses the Half-Sync/Half-Async pattern (25)
to queue all asynchronous event notifications, delivering them
only when expressly requested by users.

C. SDO Publication State Consistency Policies

Whenever data (i.e., state) is replicated, the question of the
type and degree of data consistency must be addressed. This
question has been considered in the context of multi-processor
caching systems, in the context of distributed database systems,
and in the context of distributed shared memory systems. In all
cases, decisions about the data consistency guarantees made by
the system to the users of that system must be made. IKE 2 is
no exception, so its middleware is therefore designed to support
the following state consistency policies:
• Cached policy—In this policy, eachSDO proxy main-

tains a local cache of theSDO’s publication state. To re-
duce the latency in reading anSDO’s publication state,
IKE 2 transmits the publication state of anSDO from the
servant (where it is written) to each of the proxies (where it
can only be read). The proxies cache that publication state,
resulting in multiple copies of anSDO’s publication state
throughout the distributed system. If a version of the publi-
cation state older than the version presently cached was re-
ceived, the older version would simply be ignored in favor
of the newer version. This easy-to-understand implemen-
tation has been used for years in hardware systems, where
it is referred to asPRAM, for pipelinedRAM (13; 14).5

5PRAM systems do not restrict the ability to modify data to a single source,
thereby resulting in an even greater probability that the various caches do not
hold the identical value for any given moment in time.

5

Since the communication time in a distributed system is
not instantaneous and generally non-uniform, at any given
moment in time the various caches likely do not all hold a
consistent value. In particular, it is quite possible thatnone
of the caches hold the same value as the “master copy”
held by theSDO servant.

• Queued policy—This policy is similar to the cached pol-
icy, except that “late arriving” publication state updates are
not ignored. Instead they are appended to a queue of publi-
cation state updates. For certain applications, such as data
logging, a “late arriving” publication state (i.e., a version
of publication state older than the cached version currently
held) is still valuable and should not be ignored.
When the queued policy is enabled, each read of anSDO’s
publication state by anSDO proxy consumes an element
from the head of this queue. The only time a read doesnot
consume the head of the queue is when there are no other
versions of the publication state presently in the queue. If
a new version is received, the previously read version at
the head of the queue would be discarded. In this policy,
an application that repeatedly read the publication state of
anSDO would read—at least once—every version of the
publication state written by theSDO servant, although not
necessarily in the order written by theSDO servant.6

D. IKE 2 Executions and Sessions

Executions in IKE 2 are a grouping of participants with
some collection of common resources, such as theIP multi-
cast groups assigned to the particular execution. The unit of
participation in an execution is referred to as asession, which
are local to a single process. A session provides the context
for publishing and subscribing toSDOs. Moreover, sessions
are the logical place to explore future functionality, such as se-
curity credentials, user-specified threading policies, and user-
specified communication characteristics.

A single LAN can simultaneously support multiple execu-
tions. A single process can simultaneously support multiple
sessions, possibly from distinct executions. Figure 5 depicts
the relationships between executions, sessions, processes, and
hosts processors. Sessions in a single process may belong to
multiple Executions. In Figure 5, four hosts with one or two
processes are depicted. Each process has from one to three ses-
sions. Each process participates in from one to three distinct
executions.

IV. K EY POINTS OF THEIKE 2 IMPLEMENTATION

TheSDO concepts described in Section III paper have been
implemented in aDOC middleware framework called IKE 2.
This section describes key points of the IKE 2 implementation.

6In actuality, if the publication state updates were being delivered using an
unreliable transport mechanism, it is possible that some publication state up-
dates could be lost, and hencenot read by theSDO proxy.

Fig. 5. IKE 2 supports multiple Sessions in a process.

A. Compile-time Type-safety

The IKE 2 middlewareAPI relies heavily on compile-time
type-safety to help ensure reliable behavior at run-time. Relia-
bility is a critical feature of most systems, but is especially criti-
cal in a real-time system, such as many of those used at military
testing and training ranges. Strong compile-time type-safety
eliminates an entire class of run-time errors that can occur due
to dynamic type mismatch (e.g., bad cast exceptions).

B. DOC Middleware Infrastructure

Implemented entirely in standardC++, IKE 2 achieves cross-
platform portability over a variety ofUNIX and Windows plat-
forms usingACE+TAO (23; 5), which are freely-available
open-sourceDOC middleware.ACE is a highly-portable col-
lection of C++ classes and frameworks that implement many
useful patterns for the programming of distributed systems (25).
TAO is a popular real-timeCORBA ORB that is implemented
using the patterns and frameworks provided byACE. Figure 6
illustrates the relationship between IKE 2 andACE+TAO.

Fig. 6. Layers in the IKE 2 Middleware Architecture.

Given the strong grounding theSDO concept has in the
CORBA DOC middleware paradigm, using aCORBA ORB as

6

the foundation for the IKE 2 middleware is an obvious choice.
IKE 2 takes advantage of the following features ofTAO:

• IKE 2 usesCORBA valuetypes (16) to implementSDO
publication state.

• IKE 2 usesTAO’s real-timeCORBA event service (21) as
its data dissemination engine.

• IKE 2 uses theTAO Naming Service to allow users to ob-
tainSDO proxies by name.

• IKE 2 usesTAO’s buffered oneways to reduce blocking
during data writes in those cases where the readers are
heavily loaded.

• IKE 2 usesTAO’s optimizations for efficient copying of
sequences of octets to reduce memory copy overhead.

C. Automatic Code Generation

IKE 2 makes extensive use of automatic code generation.
This capability provides the high-level abstractions of theSDO
without unduly burdening application programmers who use
IKE 2. Just asCORBA automatically generates code using an
IDL file as input to anIDL compiler, IKE 2 automatically gen-
erates code using aTDL file as input to theTDL compiler. Au-
tomatic code generation makes the IKE 2 middleware practical
for use. Without the automatic code generation, implementing
anSDO would be tedious and error-prone.

For eachSDO declared in aTDL file, the IKE 2TDL com-
piler generates several dozenC++ classes as well as anIDL
file. Figure 7 shows an example of the automatically generated
IDL for theParticipant SDO shown in theTDL example
of Figure 4. In this figure, theCORBA interface used to pro-

#include <Participant/Participant.idl>
#include <Sensor/Sensor.idl>
module Example
{

module PlatformIDL
{

valuetype PublicationState
: ParticipantIDL::PublicationState

{
public double fuel;
public SensorIDL::PublicationState

longRangeSensor;
};
interface Servant : Participant::Servant
{

void move(in double x);
};

};
};

Fig. 7. Example of theIDL automatically generated fromTDL.

vide theSDO’s methods and theCORBA valuetype used
to implement theSDO’s publication state are clearly evident.

D. SDO Publication State Dissemination

The means by which the IKE 2 middleware disseminates
publication state from publishers to interested subscribers is an
implementation detail that is (theoretically) not visible to IKE 2
users. What must be guaranteed, however, is that updates to
multiple attributes of anSDO’s publication state occuratomi-
cally. One way to achieve this is to transmit every attribute of
the SDO’s publication state (including any containedSDOs)
any time a modification to one or more of the attributes is com-
mitted. This technique is used by the existing IKE 2 middle-
ware. Section V describes more sophisticated approaches.

The actual dissemination of theSDO publication state is per-
formed using theDistributed Interest-based Message Exchange
(DIME). DIME is an extensible anonymous publish-subscribe
message-passing framework. It decouples (1) the manner in
which interests in a publish-subscribe system are used to de-
scribe the desired data from (2) the means by which the desired
data is routed to its destinations.

As is the case with IKE 2,DIME is implemented inC++
using ACE+TAO as its foundation. To facilitate its publish-
subscribe data dissemination,DIME makes extensive use of
TAO’s real-timeCORBA event channel (21). Presently,DIME
supports distribution schemes based on reliableTCP/IP and un-
reliableUDP multicast/broadcast.

V. FUTURE WORK ON IKE 2

Future work planned for IKE 2 spans a broad range of topics.
Issues involvingquality of service(QoS) and other commu-
nication characteristics are being designed. User-customized
multi-threading support will be improved, as will IKE 2’s use of
real-timeCORBA (24). The features of real-timeCORBA will
provide the IKE 2 user with finer-grained control over the num-
bers and priorities of threads that handle theSDO servants than
is possible in the current versions. Likewise, the envisioned
QoS features will allows IKE 2 users to control the manner
in which data is delivered, adjusting characteristics such as la-
tency, bandwidth, and message delivery ordering.

Future versions of IKE 2 will also support a Java language
mapping, introspection, dynamic method invocation, a gener-
alized interceptor framework, a generic data logging mecha-
nism, support for in and out of scope notifications, the addi-
tion of data streams and messages, better diagnostic support,
and basic security features. Moreover, the addition of complex,
user-definable interests is planned to allow users to subscribe
to SDOs based not solely on type, but on other characteristics
as well, such as the ability to subscribe to all thePlatform s
within half a mile of a particular position.

A reliable multicast protocol suitable to disseminate publi-
cation state data is planned. In addition, the IKE 2 develop-
ment team is designing sophisticated implementations of publi-
cation state update data routing techniques, such as protocols
that transmit only update deltas,i.e., transmit only those at-
tributes of the publication state that actually were modified. In

7

general, that problem is quite challenging due to issues of mes-
sage loss and out-of-order message arrival. Moreover, the con-
tainment ofSDOs by otherSDOs, as well as the inheritance
of SDOs, complicates the decisions of where data should be
sent. In turn, this can result in the need to transmit multiple
small messages, as opposed to the one “large” message that is
transmitted in non-delta-based schemes.

Finally, the need for advancedSDO publication state consis-
tency policies is under consideration. IKE 2 does not presently
provide the ability to ensure any form of data consistency be-
tween multipleSDO instances. Consider two simpleSDOs,A
andB, whereB ideally is an exact duplicate ofA at all times.
Due to any number of reasons, such as network delay or pro-
cessor load, even a single host in an IKE 2 execution that sub-
scribes to bothA andB cannot be guaranteed to have the same
values ofA andB at the same time. Adding additional hosts that
subscribe toA andB only exacerbates the problem.

It may be necessary to implement a stronger form of publica-
tion state consistency in IKE 2, such asstrict causalconsistency
(15) orsequentialconsistency (12), and perhaps some from of
distributed transaction mechanism, such as virtual synchrony
and process groups (2).

VI. CONCLUDING REMARKS

Many real-time distributed applications can benefit from an
enhanced object-oriented communication model that provides a
location-transparent interface to object methodsand the notion
of publication state. The IKE 2 middleware combines the dis-
tributed object and publish-subscribe programming paradigms
to create a newstateful distributed object(SDO) model that
provides the strengths of each. The IKE 2SDO implemen-
tation described in this paper augments the standardCORBA
metaobject model and interface definition language (IDL) to
provide an object possessing both location transparent meth-
ods and location transparentpublication stateattributes. The
publication state of anSDO is disseminated to interested sub-
scribers who can observe changes anSDO’s publication state
using callbacks.

Beta testing of early IKE 2 releases is being conducted at nu-
merous military testing and training ranges and initial feedback
has been quite positive. Work for subsequent releases is under-
way. These releases will address such issues asQoS, multi-
threading, and the use of real-timeCORBA (24).

Experience to date indicates that theSDO programming par-
adigm is useful to not just the military testing and training range
community, but to a broad spectrum of other communities as
well. As a government-sponsored program, IKE 2 is not en-
cumbered by forces that tend to keep many commercial projects
closed. Continued success in the range community will hope-
fully increase the visibility of IKE 2 and lead to its broad adop-
tion.

ACKNOWLEDGMENTS

This work is sponsored by the Foundation Initiative 2010
Project Management Office (6). This paper describes the work
of a team of software professionals, including the author and
the following members of original IKE 2 development team:
Steve Bachinsky, Jon Franklin, Rob Head, Serge Kolgan, Mike
Mazurek, Sean Paus, Ed Powell, and Ed Skees, as well as two
new team members: Marvin Greenberg and Rodney Smith. The
entire IKE 2 development team would like to thank theFI 2010
project team, in particular George Rumford, Jason Lucas, Kurt
Lessmann, Larry Rothstein, and Kevin Alix. Thanks also to
Douglas C. Schmidt, who provided extensive comments on ear-
lier drafts of this paper.

REFERENCES

[1] H. E. Bal and M. F. Kaashoek. Object Distribution in Orca
using Compile-Time and Run-Time Techniques. InProc.
of the 8th Annual Conf. on Object Oriented Program-
ming Systems, Languages, and Applications, pp. 162–177,
Washington, D.C., Sep. 1993.

[2] K. Birman and R. van Renesse.Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Soci-
ety Press, Los Alamitos, 1994.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified
Modelling Language User Guide. Addison Wesley Long-
man, Inc., Reading, MA, 1999.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-
sign and Evaluation of a Wide-Area Event Notifica-
tion Service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

[5] Center for Distributed Object Computing. TAO: A High-
performance, Real-time Object Request Broker (ORB).
http://www.cs.wustl.edu/∼schmidt/TAO.html, Washing-
ton University.

[6] FI 2010. Foundation Initiative 2010. http://fi2010.jcs.mil/.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading, Massachusetts, 1995.

[8] A. Gokhale and D. C. Schmidt. Optimizing aCOR-
BA IIOP Protocol Engine for Minimal Footprint Multi-
media Systems.Journal on Selected Areas in Communi-
cations special issue on Service Enabling Platforms for
Networked Multimedia Systems, 17(9), Sep. 1999.

[9] P. Gore, R. K. Cytron, D. C. Schmidt, and C. O’Ryan. De-
signing and Optimizing a ScalableCORBA Notification
Service. InProceedings of the Workshop on Optimiza-
tion of Middleware and Distributed Systems, pp. 196–204,
Snowbird, Utah, June 2001.ACM SIGPLAN.

[10] K. S. Ho and H. V. Leong. An ExtendedCORBA
Event Service with Support for Load Balancing and Fault-
Tolerance. InProceedings of the International Sympo-
sium on Distributed Objects and Applications (DOA’99),
Antwerp, Belgium, Sep. 2000.OMG.

8

[11] F. Kuhl, R. Weatherly, and J. Dahmann.Creating Com-
puter Simulation Systems. Prentice Hall PTR, Upper Sad-
dle River, New Jersey, 1999.

[12] L. Lamport. How to Make a Multiprocessor that Correctly
Executes Multiprocess Programs.IEEE Trans. on Com-
puters, C-28(9):690–691, Sep. 1979.

[13] R. J. Lipton and J. S. Sandberg. PRAM: A Scalable
Shared Memory. Department of Computer Science Tech-
nical Report CS-TR-180-88, Princeton University, NJ,
Sep. 1988.

[14] R. J. Lipton and D. N. Serpanos. Uniform-Cost Commu-
nication in Scalable Multiprocessors. InProc. of the Int.
Conf. on Parallel Processing, vol. I, pp. 429–432, Aug.
1990.

[15] J. R. Noseworthy. A Novel and Efficient Distributed
Shared Memory Algorithm for Strict Causal Consistency.
ECSE Dept. Ph.D. thesis, Rensselaer Poly. Inst., Troy, NY,
Sep. 1996.

[16] Object Management Group.Objects-by-Value, OMG
Document orbos/98-01-18 edn., January 1998.

[17] Object Management Group.Notification Service Spec-
ification, OMG Document telecom/99-07-01 edn., July
1999.

[18] Object Management Group.Persistent State Service 2.0
Specification, OMG Document orbos/00-12-07 edn., Jan.
2000.

[19] Object Management Group.Event Service Specifica-
tion Version 1.1, OMG Document formal/01-03-01 edn.,
March 2001.

[20] Object Management Group.The Common Object Re-

quest Broker: Architecture and Specification, 2.5 edn.,
Sep. 2001.

[21] C. O’Ryan, D. C. Schmidt, and J. R. Noseworthy. Patterns
and Performance of aCORBA Event Service for Large-
scale Distributed Interactive Simulations.International
Journal of Computer Systems Science and Engineering,
2001.

[22] Real-Time Innovations.NDDS: The Real-Time Publish-
Subscribe Middleware. http://www.rti.com/products/ndds
/ndwp0899.pdf, 1999.

[23] D. C. Schmidt and S. D. Huston.C++ Network Program-
ming, Volume 1: Mastering Complexity With ACE and
Patterns. Addison-Wesley, Boston, 2002.

[24] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design
and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

[25] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

[26] Srinivasan Ramani and Balabrishnan Dasarathy and
Kishor S. Trivedi. Reliable Messaging Using theCOR-
BA Notification Service. InProceedings of the 3rd Inter-
national Symposium on Distributed Objects and Applica-
tions (DOA 2001), Sep. 2001.

[27] Sun Microsystems.Open Network Computing: Transport
Independent RPC, June 1995.

[28] A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object
Model for the Java System.USENIX Computing Systems,
9(4), November/December 1996.

9

