IKE 2—Implementing the Stateful Distributed Object Paradigm

J. Russell Noseworthy
Object Sciences Corporation
j-russell.noseworthy@objectsciences.com

Abstract— obiccty L- Thread of Control

This paper describes IKE 2, which is distributed object comput-
ing middleware that supports the creation of interoperable real-
time distributed applications. These applications appear in many
domains, such as telecom, aerospace, military testing and train-
ing ranges, and financial services. IKE 2 combines the concepts

Object 2

of CORBA distributed objects and anonymous publish-subscribe Shjscte

data dissemination to provide a programming abstraction known

as astateful distributed objec(SDO). —) (}
Every SDO can have both aremote method interfacand pub- -

lication state The remote method interface allows client applica- T L/

tions to invoke methods on target objects efficiently without con-
cern for their location, programming language, OS platform, com-
munication protocols and interconnects, or hardware. The publi-
cation state of a givenSDO is disseminated to applications that
have expressed their interest by subscribing to certain character-
istics, such as the type of th&&DO. Subscribers can read the pub-
lication state of an SDO as if it were a local object. TheSDOs
provided by the IKE 2 metaobject model support inheritance from While the DOC paradigm is a powerful tool to address the
other SDOs, containment of otherSDOs, and references to other challenges of developing distributed systems, it is not the only

SDOs. approach. In particular, many data-centric distributed sys-

IKE 2 is implemented in C++. The API relies heavily on : :
compile-time type-safety to help ensure reliable behavior at run- tems employ a technique known asonymous publish and

time—a critical feature of any real-time system. Automatic code Subs.cribe data_ exchanger, more _terselypublish-sgbscribe
generation is used to provide the high-level abstractions without Publish-subscribe systems consist of the following compo-

Process 1 Process 2

Fig. 1. ConventionaDOC Communication Model.

unduly burdening application programmers. nents:

Keywords: Distributed Object, Middleware, Distributed Object ~ * Ph“b"Shersare e"e”(; Sﬁ”rcef]e"hthey generate tg‘f ﬁ"e”ts
Middleware, Publish-Subscribe Middleware, SDO, Stateful Dis- that are propagated through the system. Publishers may
tributed Object, CORBA, Event Service need to describe the specific type of events they generate

a priori or they can generate generic events.
o Subscribersare the event sinks of the systeng., they

. INTRODUCTION receive the events sent by publishers. Some architecture
A. Distributed Communication Models implementations require subscribers to declare filtering in-
Distributed object computindXOC) has been a popular par- formation to designate the events they are interested in re-
adigm for developing complex distributed systems for many ~ ceiving.
years, as witnessed by the success of RiM&(28) andCOR- ¢ Event channelsare components in the system that propa-

BA (20). Distributed objects combine powerful object-oriented ~ gate events from publishers to subscribers. In distributed
design and programming abstraction and decomposition con- Systems, event channels can propagate events across dis-
cepts with the illusion of location transparency. This combina- tribution domains to remote subscribers. Event channels
tion yields objects whose interfaces expose methods that can be ¢an perform event filtering, correlation, routir@pS en-
invoked from any process in the distributed system in a man- forcement, and fault management.
ner identical to how methods are invoked on objects that arfgigure 2 illustrates the relationships and information flow be-
local to the process. Figure 1 illustrates the conventi@@C tween these three components.
two-way synchronous communication model. In anonymougpublish-subscribe systems, publishers are un-

L1t could be argued that the possibility of a run-time exception arising frofVare of Whmh'_'f any, SUb_SC“berS are recewing th? dat_a they
the invocation of a method on a distributed object due to the failure of sorfoduce. Likewise, subscribers are unaware of which, if any,
component of the distributed system constitutes a marked difference bﬂW@ijlishers produce the data they desire. It is also possible to
programming with a distributed object and programming with a purely local ob- . .

nstruct publish-subscribe systems that are not anonymous.

ject. However, in general, even local method invocations can raise exceptionS i e) " -
so in that sense, there is no difference. Providing that additional information comes at a non-trivial ex-

0 2002IEEE. Reprinted, with permission, from Th&BEEE International Symposium on Object-Oriented Real-Time
Distributed ComputinglSORC 2002).

opffonal opffonal
distribufion distribufion
houndary houndary

P 2
Process 1 Thread of Control rocess
sho

Servant
A
Method
Implemen

tation

Publication
State

Publisher
Publisher
Publisher

Fig. 2. Relationships Between Components in a Publish-Subscribe Mode

Event
Channel

SDO
Proxy
A
Cached
Publication

State

Remote Metho

Subscriber :
Invocation

events

Subscriber

Process 3

SDO

SDO Proxy
B

pense, however, in terms of system performance. Moreovel| / seivant
only adds marginal utility. - - Pulicat
Publish-subscribe systems can disseminate data in m State \Lstate
ways, ranging from an individual publisher to an individual sut
scriber to multiple publishers to multiple subscribers. Data di
semination is typically accomplished in a message- or eve
based fashion, meaning that the data arrives asynchronot
and is ephemeral,e,, if users do not take it upon themselve: Cached
to store the data then it is lost since it is not stored persisten P e
by the event channel. Examples of publish-subscribe syste
includeNDDS (22), theCORBA Event Service (19; 21; 10),
the CORBA Notification Service (17; 9; 26), Sienna (4), and Fig. 3. Fundamental Aspects of SDO
theHLA RTI-NG (11).
In the standardCORBA Event Service, subscribers cannot
Specify the type of data they are interested in receiving_ In interface to its methods. This interface is consistent with
most publish-subscribe systems, however, includingXB&- the capabilities shown in Figure 1.
BA Notification Service, subscribers can specify which types of « Publication state which is data that is disseminated from
events they want to receive. This filtering capability provides a the creator of an instance of &DO to all parties that
richer programming paradigm to users, though it increases the have indicated their interest in th8DO’s data through
implementation complexity of the publish-subscribe system. a subscription. This capability of aBDO provides the
capabilities shown in Figure 2.
L o i) . Interested subscribers can receive references t&RO,
B. Combining the Distributed Object and Publish-Subscriignic, they can use to invoke methods on its interface, as if
Programming Paradigms it were a reference to @ORBA distributed object. In addition,
DOC systems and publish-subscribe systems both provide SDO reference provides programmers with the ability read
users with powerful programming abstractions. Yet each prthe publication state of th8DO as if it were local data, as can
vides something the other lacks. Traditional remote proceduse done in many distributed shared memory systems (15; 1).
call (RPC) toolkits, such as Sun RPC (27), offer no direct supFhus, anSDO is an object that are easily modeled UML,
port for disseminating data from a single source to multipkeven though both the methods and attributes (publication state)
destinations. Conversely, traditional publish-subscribe systeraf,an SDO are location independent. As modifications to a
such asfNDDS, do not provide the abstraction of objects witlgiven SDO’s publication state are disseminated from its pub-
a set of methods in their interface. Without direct support fdisher, subscribers are notified that new values of the publication
the powerful abstractions provided by object-oriented programstate data are available.
ming, the difficulty of modeling complex concepts and design- The abstract concept of tf#DO has been implemented in a
ing sophisticated systems is increased. middleware system known as IKE 2, which is the second mid-
Combining the distributed object and publish-subscribe prdleware prototype of the Test and Training Range ENabling Ar-
gramming paradigms yields a new paradigm that provides tbkitecture TENA) (6), an architecture being developed by the
strengths of each. At the same time, the new paradigm frees Bueindation Initiative 2010R] 2010) project (6). FI 2010 is
programmer from the common chore of explicitly storing than interoperability initiative of the Director, Operational Test
data that arrives as part of the publish-subscribe system. Taisl Evaluation@OT&E), funded through the Central Test and
new programming paradigm introduces the conceptsthteful Evaluation Investment Prograr@TEIP). The FI 2010 vision
distributed objegtor SDO, which is shown in Figure 3. is to enable interoperability among ranges, facilities, and simu-
As shown in Figure 3, aBDO has two parts: lations in a quick and cost-efficient manner, and to foster reuse
« An object interface that provides a location-transparenbf range assets and of future range system developments. The

Modification

Process 4

purpose of IKE 2 is to support the creation of interoperablaetaobject model as a pointer. G+, an object may con-
real-time object-oriented distributed system applications, sutdin a pointer to another object. The pointer may be changed
as those needed by military testing and training range systertsrefer to a different object. Likewise, the pointer may some-
The remainder of this paper is organized as follows: Setimes be null. In IKE 2, a reference contained in&bO may
tion Il describes theSDO concepts that underlie the IKE 2be changed to refer to an differeBDO or even a special null
metaobject model and th€ENA definition language; Sec- SDO. Since the referer8DO is only “pointed at” by the refer-
tion 11l describe the fundamental concepts used in IKE 2; Segng SDO, the referenSDO’s publication state is not updated
tion IV explores key aspects of IKE 2's implementation; Seatomically with the referringDO when state changes occur.
tion V outlines future work on IKE 2; and Section VI presents IKE 2’s metaobject model supports containment of fixed-
concluding remarks. length arrays of fundamental and complex data types, as well
asSDOs. It also supports containment of variable-length se-
guences of fundamental and complex data types, as well as of
Il. OVERVIEW OF IKE 2 AND TENA references t&D0Os. Containment of variable-lengtBDOs
Since IKE 2 provides an object-oriented programming pargs not yet supported. Likewise, support for introspection, dy-
digm, its metaobject model is similar to the metaobject modghmic invocation of methods (as with tBORBA dynamic in-
of CORBA, C++, and Java. As ®0C framework, IKE 2 re- yocation interface), and self-describing arbitrary typeg,(the

quires an interface definition languad®), which is similar CORBA Any) are envisioned as part of the IKE 2 metaobject
to CORBA IDL. These characteristics of IKE 2 are explaineghodel, though they are not yet implemented.

below.

B. TENA Definition Language

A. The IKE 2 Metaobject Model _ o)
. . An interface definition languagdXL) provides a strongly
Metaobject models describe the concepts and features y%ted format for declaring interfaces, methods, types, con-
are supported by a particular object system. For examp) ' '

. . ftants, and other information exchanged between clients and
COR.BA has a meta_obje(_:t model that describes I[b@R-_ servers. AnIDL is not a full-fledged programming language
BA interfaces may inherit from each other, have locatio

¢ rof d Cint 2ii5he IKE 2 Und hence has no means to specify detailed implementation
ransparent reterences, and support introspectiohe logic, such as branching or control flow. This ensures that a

met_aobj.ect_ model extends tl@D_RBA metaobject model by fundamental tenet of object-oriented programming is observed:
distinguishing between a pure interface andSipO. In the th

IKE 2 bi del terf h h iseparation of interface from implementation. & com-
metao ject mo . an |nt'er ace has the same genngﬂ r also automates the generation and optimization of low-
properties of &CORBA interface,i.e.,

. itis a declgrat_ion ofa level marshaling and demarshaling code, which can be tedious
collection of methods. However, 8DO has publication state error-prone to write and debug manually (8)

as well as methqu. Single mherltanc_e be.twsa.Os IS Sup- Programmers o€ORBA systems provide specific declara-
ported. In .addItIOI’I, arSD_O_ may multiply inherit from any tions of CORBA objects usinfCORBA IDL. In much the same
purr:ber 01; mtefrfa::es. T?Iti lsJanalogotus tt)o ﬁz@engsl and way, IKE 2 programmers express specific declaratior@ds
Implements — teatures of fhe Java metaobject mode'. (and interfaces) using tNEENA definition languageTDL). As

. The f‘ﬂ"ia“to” state of "’}IBDO may be;"tm‘t’osed ‘zf fun-\ith the IKE 2 metaobject modeTDL extendsCORBA IDL
amental data types, as well as complex data types étruc- with new capabilities, such atass , extends , andimple-

tures). Moreover, aBDO maycontainotherSDOs. The IKE 2 ments . Moreover TDL uses theattribute keyword to in-
met_a_objectgmodel ther_efor_e supports tidL co_ncept okcom- dicate elements of aBDO’s publication staté Note that, as
posmon(3)._ The_publlc_anon state pf a_BDO Is always up- is the case wittCORBA IDL, TDL is not a complete program-
dated atomically, including the publication state of &HOs ming language. It is instead a language used to deSIB@s.

that are contained in th8DO whose publication state is be- _. .
ing modified. By ensuring the atomicity of publication stati: Figure 4 on the following page shows an examplerbi..

: o Figure 4 Participant implements th&€ontrollable
updates, IKE 2 subscribers are prevented from reading inv; g9 P P

ublication stat ublication state composed of partly ol 'll’iCEerface;Sensor inherits fromParticipant ; andplat-
P €.9. p P Party Ol%srm inherits fromParticipant and contains &ensor .
and partly new data.

7 " . Partici h h h hod imple-
In addition to composition 08DOs, the IKE 2 metaobject articipant as no methods (beyond the method imple

del ides the ability for aBDO t tai f mented from theControllable interface), whileSensor
model provides the ability for a O contain a reterence 5, qpjatform each have one additional method.

e e pemantcs of fis assoation eMWeeh TDL s not the fist extension BORBA IDL designed o ad-
9greg dress issues of object state. TRORBA Persistent State Ser-

2Since describing the comple®ORBA metaobject model is beyond the vice (18) introduced the so-calldRkrsistent State Description
scope of this paper, readers are referred to (20).

3At present, IKE 2 does not allows parts with non-fixed multiplicity, which “4Since the elements of the publication state can be inferred withoattthe
is allowable inUML. tribute keyword, it may be removed in future versionsTddL.

a) CreatingSDO servants with a factory.: A CORBA
module - Example servant can be created in many wagg), on the stack, on the
{ _ heap, by a servant locator interceptor, etc. In contrasg2@

interface Controllable servant is always created vidactory (7). This design ensures

{ string initialize(); b that the publication state provided by the IKE 2 middleware

class Participant system and the implementation of the servant’s methods pro-
- Implements Controllable vided by the programmer can be combined properly to form a

{ _ _ completeSDO servant.
attribute string name; The structure imposed by using a factory also ensures that the
attribute long ID; implementation of théSDO servant's methods can access the

b . SDO servant’s publication state. To understand why this is im-

class Sensor : extends Participant portant, consider thBlatform SDO shown in Figure 4. It is

{ reasonable to expect that most implementations ofrtbee()
attribute string state; method on @latform would want to modify the value of the
sting point(in double azimuth); Platform s fuel. The implementation of th@latform s

b methods therefore requires access toRlaform s publica-

class Platform : extends Participant tion state.

{ b) Moadification of anSDO servant's publication state.:
attribute double fuel; As mentioned in Section I-B, the publication state of$DO
atibute Sensor longRangeSensor; servant is updated atomically. This concept is quite common
void - move(in double x); in distributed systems and concurrent systems. Without native

b support for atomic modification of multiple publication state

b attributes, it would be possible for IKE 2 applications to observe

inconsistent values of publication state that mixed old and new
values. Note that this atomicity must extend throughout any
chain of containe@®DOs.

In addition to the atomicity of multi-attribute modifications,
Language(PSDL). While TDL andPSDL are both concerned there is another prominent characteristic of$DO servant’s

with object state, they differ fundamentally in the aspects of opublication state: only th8DO servant is capable of modifying
ject state they addresBSDL targets the server-side storage ofhe publication state of th&DO.

object state, whil@DL describes objects whose active state is 2) SDO Proxies in IKE 2 : Proxies in IKE 2 are the ob-
disseminated to clients. jects in the target programming language that provide access
to remoteSDO servants as if they were local objects. The
IKE 2 middleware system implemen&DO proxies for use

by the IKE 2 programmer. ASDO proxy provides location-

IKE 2 weaves together many concepts to form a coher nsparent access to both the correspon@B servant's
system. This section describes the most important of tha$ghods and publication state.

concepts, namely th6DO servant, theSDO proxy, the user- ag giscussed above, only &DO servant can modify the
specifiable client-side callbacks, the publication state Consfﬁjblication state of th&DO. An SDO proxy mayread the
tency policies, and the concepts of executions and sessions.gpg publication state, but may natodifythe SDO’s pub-
lication state. This constraint is not a significant limitation in
practice since aBDO proxy caninvoke anSDO’s methods. If

it were important that proxies to certa8DOs be able to mod-
ify the SDQO’s publication state in a given IKE 2 application, a
mutator method could be provided on the particg&O0.

Fig. 4. TDL example showing an interface and th&20s.

IIl. FUNDAMENTAL CONCEPTS INIKE 2

A. SDO Servants and Proxies in IKE 2

IKE 2 defines servant and proxy constructs&@O that are
analogous to the servant and proxy@RBA. Below, the pur-
pose of these constructs is explained.

1) SDO Servants in IKE 2 : Servants in IKE 2 are the ob- -
jects in the target programming language, C++, thatimple- B. Asynchronous Notification &DO Events
mentSDOs. As is the case with @ORBA servant, arSDO Throughout the lifetime of a®DO, there are several note-
servant requires servant programmers to provide implementarthy events that are of potential interest to it's subscribers.
tions of the methods on tHeDO. However,SDO servants dif- These events include notification of the creation and destruc-
fer from CORBA servants in two important waysSDO ser- tion of the SDO, natification that theSDO no longer meets
vants are created using a factory 8O servants have publi- (or once again meets) the interest criteria specified by the sub-
cation state that can be modified. These differences are furtheriber, and notification that the publication state of #i2O
explained below. has changed. These various notifications are discussed below.

« SDO Discovery Notification—Instances ofSDO ser- requested by subscribing Barticipant s. If other IKE 2
vants araliscoveredn response to a subscription, in keepprogrammers were to subscribe $&nsor s, they would re-
ing with the publish-subscribe paradigm. The IKE 2 proeeive discovery notifications for ea&DO servant instance of
grammer declares their interest in particl80 servants typeSensor in the system, including th8ensor s contained
to the IKE 2 middleware. The IKE 2 middleware in turnin any SDO servant instances of typg&latform
provides individual notification to the IKE 2 programmer Interests in IKE 2 are presently type-based, and it is not pos-
of everySDO servant instance that matches their interesgible for anSDO to change its type. Thus, scope notifications
When a newSDO servant that matches a subscription isvould currently only be generated as the result of unsubscrib-
instantiated in the system, the IKE 2 middleware generatieg) to a type. Due to their limited utility at this time, scope
a new discovery notification. Each discovery notificationotifications are not implemented in this version of the IKE 2
provides a nevEDO proxy to the IKE 2 programmer. middleware.

« SDO Scope Notifications—Throughout the life of the ap- In addition to the ability to discove8DOs based on their
plication, itis possible that the a given instance oS00 type, IKE 2 provides the ability to obtaiSDO proxies by
will cease to match the IKE 2 programmer’s interest, eith@rame, using the IKE 3DO Naming Service. The IKE 3DO
due to some change in ti&DO or due to a change in the Naming Service is analogous to ti®RBA Naming Service.
programmer’s interest. When this occurs, the IKE 2 midan IKE 2 user has the ability to register 8DO servant in
dleware provides notification to the programmer that thae IKE 2SDO Naming Service with some name. In so doing,
particularSDO is out of scope If that sameSDO sub- other IKE 2 users can then obtain DO proxy to thatSDO
sequently matches the programmer’s interest once agaigyvant using the name registered in the IKERO Naming
then the IKE 2 middleware delivers notification of this facService.
via anin scopeevent. User applications are often more easily constructed if they

« SDO Destruction Notification—In addition to being in- have the ability to control when the notification of asyn-
stantiatedSDOs can also be destroyed. When this occurghronous events are delivered. To provide flexibility to the
the IKE 2 middleware generates a destruction notificatigRE 2 users, IKE 2 uses the Half-Sync/Half-Async pattern (25)

event. Note that destruction notification events pertaining queue all asynchronous event notifications, delivering them
to SDOs that are not currently of interest to the IKE 2 proonly when expressly requested by users.

grammer {.e., are out of scope) are not generated.
» SDO Publication State Change Notificatior—TheSDO o) o
programming paradigm is closely aligned with the concefst: SDO Publication State Consistency Policies

of distributed shared memory. Unlike classic message- onwhenever datai.g., state) is replicated, the question of the
event-based systems which deliver notification whenevgie and degree of data consistency must be addressed. This
new data arrives, a classic distributed shared memory sygrestion has been considered in the context of multi-processor
tem provides no notification when data changes. Indicajaching systems, in the context of distributed database systems,
ing when anSDO's publication state has been modifiedand in the context of distributed shared memory systems. In all

is so useful, however, that the IKE 2 middleware providesases, decisions about the data consistency guarantees made by
the programmer precisely this information for ev&9O the system to the users of that system must be made. IKE 2 is
presently in scope. This eliminate the necessitydbthe ng exception, so its middleware is therefore designed to support
publication state to determine if it had been modified—ge following state consistency policies:

practice that is hard to program efficiently, scalably, and , cached policy—In this policy, eachSDO proxy main-

correctly. tains a local cache of th®DO’s publication state. To re-
At present, subscription interests in IKE 2 are declared by duce the latency in reading &8DO’s publication state,

SDO type. For example, consider tA®L shown in Figure 4.
IKE 2 programmers could declare their interessiDOs of type
Participant . The IKE 2 middleware system would then
generate discovery notifications for each instance cEBO®O
servant of typdParticipant presently in the system, as well
as discovery notifications for any futuRarticipant s that
are instantiated.

Moreover, the IKE 2 middleware would generate discovery

notifications for each instance of &DO of type Sensor
and typePlatform —becausesensor andPlatform in-
herit from Participant . TheSDO proxies provided to the
IKE 2 programmer in these cases would be of t{aetic-

IKE 2 transmits the publication state of &DO from the
servant (where it is written) to each of the proxies (where it
can only be read). The proxies cache that publication state,
resulting in multiple copies of aBDO'’s publication state
throughout the distributed system. If a version of the publi-
cation state older than the version presently cached was re-
ceived, the older version would simply be ignored in favor
of the newer version. This easy-to-understand implemen-
tation has been used for years in hardware systems, where
it is referred to a®RAM, for pipelinedRAM (13; 14)°

5PRAM systems do not restrict the ability to modify data to a single source,
thereby resulting in an even greater probability that the various caches do not

ipant , however, because that is what the IKE 2 programmasid the identical value for any given moment in time.

5

Since the communication time in a distributed system
not instantaneous and generally non-uniform, at any giv:
moment in time the various caches likely do not all hold
consistent value. In particular, it is quite possible thate Session-]
of the caches hold the same value as the “master coy
held by theSDO servant.

o Queued policy—This policy is similar to the cached pol-
icy, except that “late arriving” publication state updates ai
not ignored. Instead they are appended to a queue of pul
cation state updates. For certain applications, such as ¢
logging, a “late arriving” publication state.€., a version
of publication state older than the cached version curren

Host.1 Host:2

Session-1

Session2 Session-1 Session2

HE

{H

wi)

1]

Host-3 Host4

held) is still valuable and should not be ignored. Process1. Process1. Process?
When the queued policy is enabled, each read &R26's Seasiond % Sessiond % Sessiond
publication state by aBDO proxy consumes an element

from the head of this queue. The only time a read duxs
consume the head of the queue is when there are no ot
versions of the publication state presently in the queue.
a new version is received, the previously read version
the head of the queue would be discarded. In this polic,,
an application that repeatedly read the publication state of
an SDO would read—at least once—every version of the
publication state written by th®DO servant, although not
necessarily in the order written by t&90 servanf A. Compile-time Type-safety

The IKE 2 middlewareAPI relies heavily on compile-time
type-safety to help ensure reliable behavior at run-time. Relia-
bility is a critical feature of most systems, but is especially criti-

Executions in IKE 2 are a grouping of participants witleal in a real-time system, such as many of those used at military
some collection of common resources, such aslfhenulti- testing and training ranges. Strong compile-time type-safety
cast groups assigned to the particular execution. The unitelfminates an entire class of run-time errors that can occur due
participation in an execution is referred to asessionwhich to dynamic type mismatcle(g, bad _cast exceptions).
are local to a single process. A session provides the context
for publishing and subscribing t8DOs. Moreover, sessions B. DOC Middleware Infrastructure
are the logical place to explore future functionality, such as se-Implemented entirely in standa@i#+, IKE 2 achieves cross-
curity credentials, user-specified threading policies, and usptatform portability over a variety dNIX and Windows plat-
specified communication characteristics. forms usingACE-+TAO (23; 5), which are freely-available

A single LAN can simultaneously support multiple execuepen-sourcd®OC middleware.ACE is a highly-portable col-
tions. A single process can simultaneously support multiplection of C++ classes and frameworks that implement many
sessions, possibly from distinct executions. Figure 5 depiatseful patterns for the programming of distributed systems (25).
the relationships between executions, sessions, processes,T&@lis a popular real-tim€0ORBA ORB that is implemented
hosts processors. Sessions in a single process may belongsiog the patterns and frameworks providedASyE. Figure 6
multiple Executions. In Figure 5, four hosts with one or twdlustrates the relationship between IKE 2 ahGE+TAO.
processes are depicted. Each process has from one to three ses-

1]

=

Execution-1 D Execution-2 D Execution-3 |:|

Fig. 5. IKE 2 supports multiple Sessions in a process.

D. IKE 2 Executions and Sessions

sions. Each process participates in from one to three distinct IKE 2
executions.
TAO
IV. KEY POINTS OF THEIKE 2 IMPLEMENTATION ACE
The SDO concepts described in Section Il paper have been Operating System
implemented in &©0C middleware framework called IKE 2.

This section describes key points of the IKE 2 implementation. Fig. 6. Layers in the IKE 2 Middleware Architecture.

S1n actuality, if the publication state updates were being delivered using an . . .
unreliable transport mechanism, it is possible that some publication state up-GNen the strong groundmg th8DO concept has in the

dates could be lost, and heret read by theSDO proxy. CORBA DOC middleware paradigm, usingzZORBA ORB as

the foundation for the IKE 2 middleware is an obvious choic&. SDO Publication State Dissemination

IKE 2 takes advantage of the following featuresTé: The means by which the IKE 2 middleware disseminates
« IKE 2 usesCORBA valuetypes (16) to implemei8DO publication state from publishers to interested subscribers is an
publication state. implementation detail that is (theoretically) not visible to IKE 2
o IKE 2 usesTAO's real-timeCORBA event service (21) as users. What must be guaranteed, however, is that updates to
its data dissemination engine. multiple attributes of alBDO’s publication state occatomi-
« IKE 2 uses theTAO Naming Service to allow users to ob-cally. One way to achieve this is to transmit every attribute of
tain SDO proxies by name. the SDQO’s publication state (including any contain&DOs)

« IKE 2 usesTAO's buffered oneways to reduce blockingany time a modification to one or more of the attributes is com-
during data writes in those cases where the readers gited. This technique is used by the existing IKE 2 middle-
heavily loaded. ware. Section V describes more sophisticated approaches.

« IKE 2 usesTAO's optimizations for efficient copying of The actual dissemination of tl#DO publication state is per-
sequences of octets to reduce memory copy overhead. formed using thd®istributed Interest-based Message Exchange

(DIME). DIME is an extensible anonymous publish-subscribe
message-passing framework. It decouples (1) the manner in
C. Automatic Code Generation which interests in a publish-subscribe system are used to de-

. . . scribe the desired data from (2) the means by which the desired
IKE 2 makes extensive use of automatic code generati

Phta ts destinati
: - . X X ta is routed to its destinations.

This capability provides the high-level abstractions of $fizO Aslis tr?e casel with III<E I2DIME is implemented inC++
without unduly burdening application programmers who usuesing ACE+TAOQO as its foundation. To facilitate its publish-

IKE 2 ‘]USF aLORBA automat_lcally generates che using agubscribe data disseminatioD)JME makes extensive use of
IDL file as input to aiDL compiler, IKE 2 automatically gen-

erates code using®DL file as input to théf DL compiler. Au- TAC's real-imeCORBA event channel (21). PresentyiME

: . . . sypports distribution schemes based on reliall®/IP and un-

tomatic code generation makes the IKE 2 middleware practical. .
: : Co .feliableUDP multicast/broadcast.

for use. Without the automatic code generation, implementing

anSDO would be tedious and error-prone.

For eachSDO declared in DL file, the IKE 2TDL com- V. FUTURE WORK ON IKE 2

piler generates several doz@++ classes as well as abL Future work planned for IKE 2 spans a broad range of topics.
file. Figure 7 sh_oyvs an example of the qutomancally generatgd, ;e involvingquality of service(QoS) and other commu-

IDL for the Participant ~ SDO shown in theTDL example pication characteristics are being designed. User-customized
of Figure 4. In this figure, th€ORBA interface used to pro- mtj-threading support will be improved, as will IKE 2's use of
real-timeCORBA (24). The features of real-timM@ORBA will
provide the IKE 2 user with finer-grained control over the num-
bers and priorities of threads that handle 8120 servants than

#include <Participant/Participant.idl>
#include <Sensor/Sensor.idl>

module Example is possible in the current versions. Likewise, the envisioned

{ QoS features will allows IKE 2 users to control the manner
module PlatformIDL in which data is delivered, adjusting characteristics such as la-
{ tency, bandwidth, and message delivery ordering.

valuetype PublicationState

. ParticipantiDL::PublicationState Future versions of IKE 2 will also support a Java language
{ mapping, introspection, dynamic method invocation, a gener-
public double fuel; alized interceptor framework, a generic data logging mecha-
public _SensorIDL::PublicationState nism, support for in and out of scope notifications, the addi-
. longRangeSensor; tion of data streams and messages, better diagnostic support,
interface Servant - Participant::Servant and basic security features. Moreover, the addition of complex,
{ user-definable interests is planned to allow users to subscribe
void move(in double X); to SDOs based not solely on type, but on other characteristics
b as well, such as the ability to subscribe to all flatform s
g within half a mile of a particular position.

h

A reliable multicast protocol suitable to disseminate publi-
cation state data is planned. In addition, the IKE 2 develop-
Fig. 7. Example of théDL automatically generated froffDL. ment team is designing sophisticated implementations of publi-
cation state update data routing techniques, such as protocols
vide theSDO'’s methods and th€ORBA valuetype used that transmit only update deltase., transmit only those at-
to implement the&sDO'’s publication state are clearly evident. tributes of the publication state that actually were modified. In

general, that problem is quite challenging due to issues of mes- ACKNOWLEDGMENTS

sage loss and out-of-order message arrival, Morejover,' the €O his work is sponsored by the Foundation Initiative 2010
tainment OfSDO.S by otherSDO_s_, as well as the inheritance roject Management Office (6). This paper describes the work
of SDOs, compl!cates the de(_:|3|ons of where data _shouI(_j fa team of software professionals, including the author and
sent. In turn, this can result in the need to transmit multip fe following members of original IKE 2 development team:
small messages, as opposed to the one “large” message th@té?/e Bachinsky, Jon Franklin, Rob Head, Serge Kolgan, Mike
transmitted in non-delta-based schemes. . Mazurek, Sean Paus, Ed Powell, and Ed Skees, as well as two
Finally, the need for advance&DO publication state consis- ney team members: Marvin Greenberg and Rodney Smith. The
tency policies is under consideration. IKE 2 does not presentljire |KE 2 development team would like to thank Be2010
provide the ability to ensure any form of data consistency bgyoject team, in particular George Rumford, Jason Lucas, Kurt
tween multipleSDO instances. Consider two SimpBDOS, A | essmann, Larry Rothstein, and Kevin Alix. Thanks also to

andB, whereB ideally is an exact duplicate df at all imes. pgyglas C. Schmidt, who provided extensive comments on ear-
Due to any number of reasons, such as network delay or pfy grafts of this paper.

cessor load, even a single host in an IKE 2 execution that sub-
scribes to botiA andB cannot be guaranteed to have the same

values ofA andB at the same time. Adding additional hosts that REFERENCES

subscribe tA andB only exacerbates the problem. [1] H.E.Baland M. F. Kaashoek. Object Distribution in Orca
It may be necessary to implement a stronger form of publica- using Compile-Time and Run-Time Techniques Phoc.

tion state consistency in IKE 2, suchstdct causalkconsistency of the 8th Annual Conf. on Object Oriented Program-

(15) orsequentiakonsistency (12), and perhaps some from of ming Systems, Languages, and Applicatips 162-177,

distributed transaction mechanism, such as virtual synchrony Washington, D.C., Sep. 1993.

and process groups (2). [2] K. Birman and R. van RenesseReliable Distributed
Computing with the Isis ToolkitIEEE Computer Soci-
ety Press, Los Alamitos, 1994,

[3] G. Booch, J. Rumbaugh, and |. Jacobsofhe Unified
Modelling Language User Guidéddison Wesley Long-

. . L) man, Inc., Reading, MA, 1999.
Many real-time distributed applications can benefit from A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-
enhanced object-oriented communication model that provides & gjgn and Evaluation of a Wide-Area Event Notifica-

location-transparent interface to object methadd the notion tion Service. ACM Transactions on Computer Systems
of publication state. The IKE 2 middleware combines the dis- 19(3):332-383, Aug. 2001.

tributed object and publigh—gubscribe_programming paradigrm Center for Distributed Object Computing. TAO: A High-
to create a nevstateful distributed objecSDO) model that performance, Real-time Object Request Broker (ORB).

VI. CONCLUDING REMARKS

provides the strengths of each. The IKESDO implemen- http://Awww.cs.wustl.edu/schmidt/TAO.html, Washing-
tation described in this paper augments the stanG&O&BA ton University.

metaobject model and interface definition langualftLY t© (6] F|2010. Foundation Initiative 2010. http:/fi2010.jcs.mil/.
provide an object possessing both location transparent Mgt £ Gamma. R. Helm. R. Johnson and J. Vlissid@ssign

ods and location transpareptiblication stateattributes. The Patterns: Elements of Reusable Object-Oriented Soft-

publication state of a®DO is disseminated to interested sub- ware Addison-Wesley, Reading, Massachusetts, 1995.
scribers who can observe changesSiO'’s publication state [8] A. Gokhale and D. C. Schmidt. Optimizing GOR-

using callbacks. BA 1IOP Protocol Engine for Minimal Footprint Multi-
Beta testing of early IKE 2 releases is being conducted at nu- media SystemsJournal on Selected Areas in Communi-
merous military testing and training ranges and initial feedback cations special issue on Service Enabling Platforms for
has been quite positive. Work for subsequent releases is under- Networked Multimedia Systends(9), Sep. 1999.
way. These releases will address such issuea@S, multi- [9] P. Gore, R. K. Cytron, D. C. Schmidt, and C. O’Ryan. De-
threading, and the use of real-titORBA (24). signing and Optimizing a Scalab@ORBA Notification
Experience to date indicates that ®BO programming par- Service. InProceedings of the Workshop on Optimiza-
adigm is useful to not just the military testing and training range tion of Middleware and Distributed Systempp. 196—-204,
community, but to a broad spectrum of other communities as Snowbird, Utah, June 200ACM SIGPLAN.
well. As a government-sponsored program, IKE 2 is not efit0] K. S. Ho and H. V. Leong. An Extende@ORBA
cumbered by forces that tend to keep many commercial projects Event Service with Support for Load Balancing and Fault-
closed. Continued success in the range community will hope- Tolerance. InProceedings of the International Sympo-
fully increase the visibility of IKE 2 and lead to its broad adop- sium on Distributed Objects and Applications (DOA’'99)
tion. Antwerp, Belgium, Sep. 200@MG.

[11] F. Kuhl, R. Weatherly, and J. Dahman@reating Com- quest Broker: Architecture and Specificatioh5 edn.,
puter Simulation SystemBrentice Hall PTR, Upper Sad- Sep. 2001.

dle River, New Jersey, 1999. [21] C.O’'Ryan, D. C. Schmidt, and J. R. Noseworthy. Patterns
[12] L. Lamport. How to Make a Multiprocessor that Correctly and Performance of @ORBA Event Service for Large-

Executes Multiprocess ProgramidzEE Trans. on Com- scale Distributed Interactive Simulationdnternational

puters C-28(9):690-691, Sep. 1979. Journal of Computer Systems Science and Enginegring

[13] R. J. Lipton and J. S. Sandberg. PRAM: A Scalable 2001.

Shared Memory. Department of Computer Science Ted22] Real-Time InnovationsNDDS: The Real-Time Publish-
nical Report CS-TR-180-88, Princeton University, NJ, Subscribe Middleware. http://www.rti.com/products/ndds
Sep. 1988. /ndwp0899.pdf, 1999.

[14] R. J. Lipton and D. N. Serpanos. Uniform-Cost Commy23] D. C. Schmidt and S. D. Husto&++ Network Program-
nication in Scalable Multiprocessors. Rroc. of the Int. ming, Volume 1: Mastering Complexity With ACE and
Conf. on Parallel Processingvol. |, pp. 429-432, Aug. Patterns Addison-Wesley, Boston, 2002.

1990. [24] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design

[15] J. R. Noseworthy. A Novel and Efficient Distributed and Performance of Real-Time Object Request Brokers.
Shared Memory Algorithm for Strict Causal Consistency =~ Computer Communication21(4):294-324, Apr. 1998.
ECSE Dept. Ph.D. thesis, Rensselaer Poly. Inst., Troy, N25] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.

Sep. 1996. Pattern-Oriented Software Architecture: Patterns for
[16] Object Management Group.Objects-by-Value OMG Concurrent and Networked Objects, VolumeWiley &
Document orbos/98-01-18 edn., January 1998. Sons, New York, 2000.

[17] Object Management GroupNotification Service Spec-[26] Srinivasan Ramani and Balabrishnan Dasarathy and
ification, OMG Document telecom/99-07-01 edn., July Kishor S. Trivedi. Reliable Messaging Using tB®OR-
1999. BA Notification Service. IrProceedings of the’3 Inter-

[18] Object Management GrougPersistent State Service 2.0 national Symposium on Distributed Objects and Applica-
SpecificationOMG Document orbos/00-12-07 edn., Jan. tions (DOA 2001)Sep. 2001.

2000. [27] Sun MicrosystemsOpen Network Computing: Transport

[19] Object Management Group.Event Service Specifica- Independent RPCGJune 1995.
tion Version 1.1 OMG Document formal/01-03-01 edn.,[28] A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object
March 2001. Model for the Java SysterlSENIX Computing Systems

[20] Object Management Group.The Common Object Re- 9(4), November/December 1996.

