
Flexible Configuration of High-Performance
Object-Oriented Distributed Communication Systems

Position Paper for OOPSLA ’94 Workshop
on Flexibility in System Software

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis

An earlier version of this paper appeared at the OOPSLA
’94 workshop on Flexibility in System Software, Portland,
OR, October 1994.

1 Introduction

The demand for extensible, robust, and efficient distributed
communication systems is increasing. Distributed commu-
nication systems are characterized by significant amounts of
network traffic. Examples of these systems include global
personal communication systems, telecommunication switch
management platforms, video-on-demand servers, real-time
market data monitoring systems, and the underlying commu-
nication protocol stacks.

Although distributing application services among a set of
autonomous hosts offers many potential benefits, developing
distributed systems is more complex than developing non-
distributed systems. A major source of complexity arises
when mapping application services flexibly and efficiently
onto host processes. Selecting an efficient mapping is dif-
ficult since service processing behavior, network/host work-
load, and OS/hardware platform characteristics may vary dy-
namically. Therefore, it is essential to develop software tools
that support flexibility with respect to the following design
criteria:

� which services to map onto which hosts in a distributed
system

� how to effectively use the parallelism available on multi-
processor platforms

Ideally, software development tools should postpone these
decisions until very late in the development cycle (i.e., at
installation-time or run-time). By deferring these decisions,
it becomes possible to select mappings that are tailored to an
application’s run-time environment.

Various strategies and tactics for developing flexible sys-
tem software have emerged in several domains. One ap-
proach (used by distributed application frameworks such as
Regis [1] and Polylith [2]) represents application state at-
tributes as abstract data types to facilitate service configu-
ration and reconfiguration. Another approach (used by dae-
mon management frameworks such as inetd and listen

in System V Release 4 UNIX [3]) provides mechanisms
for automating tedious and error-prone activities associated
with configuring and reconfiguring network daemons. These
mechanisms automate service initialization, reduce the con-
sumption of OS resources by spawning service handlers “on-
demand,” allow daemon services to be updated without modi-
fying existing source code, and consolidate the administration
of network services via uniform configuration management
operations.

The existing frameworks outlined above have proven to
be useful in practice. However, these frameworks were de-
veloped without adequate consideration of object-oriented
techniques (such as class-based encapsulation, inheritance,
dynamic binding, and parameterized types) and advanced
OS mechanisms (such as dynamic linking and lightweight
processes) that are provided by modern operating systems
(such as SVR4 UNIX, Windows NT, and OS/2). This de-
ters fine-grain component reuse and introduces unnecessary
performance overhead that discourages developers from fully
exploiting the benefits of flexible software configuration tech-
niques.

For example, the standard version of inetd is written in
C and its implementation is characterized by a proliferation
of global variables, a lack of information hiding, and an al-
gorithmic decomposition that precludes fine-grained reuse of
its internal components. More importantly, existing frame-
works do not provide automated support for (1) dynamically
linking services into an application’s address space at run-
time and (2) executing these services in parallel via one
or more lightweight processes [4] that communicate using
shared memory. Instead, these frameworks configure and re-
configure applicationservices by spawning heavyweight pro-
cesses and connecting these processes via relatively heavy-
weight IPC mechanisms (such as pipes and sockets).

The central thesis presented in this position paper
is that object-oriented frameworks for flexible, high-
performance distributed communication systems must in-
corporate lightweight (re)configuration mechanisms based
upon dynamic linking and lightweight processes. Otherwise,
the performance cost of flexibility may exceed its benefits,
thereby limiting widespread adoption of flexible software
configuration techniques. In addition, techniques for paral-
lelizing active objects within applications must address the

1



primary sources of overhead associated with parallel process-
ing. On shared memory multi-processors, for instance, these
sources of overhead include context switching, synchroniza-
tion, and data movement.

The remainder of this paper describes how object-oriented
techniques are being applied successfully in practice to im-
prove system software flexibility without unduly degrading
performance. Section 2 outlines the structure of an object-
oriented framework that simplifies the flexible configuration
and reconfiguration of distributed communication systems;
Section 3 discusses how this framework has been used to
configure and test efficient protocol stacks on shared memory
multi-processor platforms; and Section 4 presents concluding
remarks.

2 An Object-Oriented Framework for
Configuring Distributed Communi-
cation System Software

To help simplify the development, configuration, and recon-
figuration of distributed communication systems, we have
developed an object-oriented framework called the ADAP-
TIVE Service eXecutive (ASX) [5]. The ASX framework
supports the flexible configuration of distributed communi-
cation systems that are built by specializing and composing
reusable components. These application-independent com-
ponents handle interprocess communication [6], event de-
multiplexing [7], flexible service (re)configuration [5], and
concurrency [8]. Application-specific services may inherit
and instantiate these framework components in order to com-
pose a particular communication system.

To enhance the flexibility and extensibility of distributed
communication systems, the ASX framework decouples the
functionality of application-specific services from the char-
acteristics of distributed systems described below:

Structural Characteristics: The ASX framework decou-
ples service functionality from the following structural char-
acteristics of applications:

� The type and number of services associated with each
process – The ASX framework supports the configu-
ration of applications that contain multiple services.
These services may be instances of the same service
or instances of different services.

� The point of time at which service(s) are configured
into an application – The ASX framework encapsulates
dynamic linking mechanisms provided by an operat-
ing system. Dynamic linking is a lightweight mecha-
nism for configuring services into an application either
statically (at compile-time or link-time) or dynamically
(when an application first begins executing or while it
is running). The ASX framework allows the choice be-
tween static and dynamic configuration to be deferred
until installation-time [5].

� The order in which hierarchically-related services are
composed into an application – An application may be
represented as a series of hierarchically-related services
that communicate by passing typed messages. These
services may be flexibly configured in order to satisfy
application requirements and enhance component reuse.

Communication Mechanisms: The ASX framework
decouples service functionality from the following
communication-related mechanisms:

� The underlying interprocess communication (IPC) pro-
tocols and interfaces used to communicate with peers
– The ASX framework encapsulates IPC mechanisms
(such as sockets, TLI, STREAM pipes, and named
pipes) within a uniform, portable, and type-safe object-
oriented interface.

� The I/O-based and timer-based event demultiplexing
mechanisms – TheASX framework encapsulates several
event demultiplexing mechanisms (such as the UNIX
select and poll system calls and the Windows NT
WaitForMultipleObjects function) via a uni-
form, extensible object-oriented interface. These de-
multiplexing mechanisms are used to dispatch exter-
nal events (such as connection requests and application
data) onto pre-registered application-specified event
handlers.

Concurrency Strategies: The ASX framework decouples
service functionality from the following concurrency strate-
gies:

� The type and number of concurrent processes and/or
threads used to perform services at run-time – The
ASX framework encapsulates different flavors of multi-
threading mechanisms (such as POSIX threads, MACH
cthreads, Solaris threads, and Windows NT threads) to
facilitate portability and greater functionality for multi-
processing capabilities available on an OS platform. On
SunOS 5.x UNIX [4], for instance, developers may se-
lect between user-level and kernel-level threads at run-
time.

� Flexible selection of process architectures – The ASX
framework enables the flexible configuration of sev-
eral message-based and task-based process architec-
tures [9]. A process architecture binds units of ap-
plication service processing (such as layers, functions,
connections, or messages) with one or more CPUs. The
choice of process architecture directly impacts sources
of significant overhead for distributed applications (such
as memory-to-memory copying and data manipulation,
context switching, scheduling, and synchronization).

The ASX framework enables applications to avoid premature
commitment to the structural, communication, and concur-
rency characteristics described above until late in the de-
velopment cycle (i.e., during installation-time or run-time).

2



This “late binding” method of configuring services into ap-
plications enhances application portability, reusability, and
extensibility. It does this by deferring design and implemen-
tation decisions until sufficient information is available to
select efficient policies and mechanisms. The structure and
functionality of the ASX framework is described in greater
detail in [6, 8, 7, 5].

3 Configuring High-performance Dis-
tributed Communication Systems

Parallel processing is a promising technique for improving
the performance of distributed communication systems [10].
In this domain, flexible software configuration techniques
are useful for configuring parallelism into communication
systems. This section describes how the ASX framework
has been used to conduct experiments with alternative pro-
cess architectures on multi-processor platforms. The ASX
framework contributed to these experiments by decoupling
protocol-specific functionality from the underlying parallel
process architecture.

Object-oriented distributed communication systems are
typically structured as a set of collaborating active objects
[11]. Each active object binds a separate thread of control
together with its data and methods. A parallelized distributed
communication system consists of both active objects (which
execute autonomously in their own threads of control), as
well as passive objects (which do not maintain their own
thread of control). Active objects communicate by passing
typed messages to other active objects. Each active object
maintains a queue of pending messages that it will process.
Depending on the sophistication of the underlying operating
systems and number of available CPUs on hosts, multiple
active objects may execute in parallel in separate lightweight
or heavyweight processes.

Many communication systems decompose naturally into a
series of hierarchically-related tasks. For instance, standard
layered protocol stacks (such as those specified by the In-
ternet and the ISO OSI reference models) may be modeled
and implemented as a stack of layers. Each layer performs
protocol processing tasks upon messages exchanged with
protocol stacks running on other hosts throughout a network.
This type of layered architecture is also common in other
domains such as network management [12] and configurable
distributed systems [2, 1, 5].

On a multi-processor host, it is tempting to design and im-
plement layered communication systems by interconnecting
a stack of active objects. Each active object encapsulates
the set of tasks in a particular layer (such as the network
layer, the transport layer, and the presentation layer). In this
“task-based” process architecture, tasks are implemented as
active objects, whereas messages processed by the tasks are
treated as passive objects (shown in Figure 1 (1)). Parallelism
is achieved by executing task objects in separate CPUs and
passing messages between the tasks/CPUs using some form

PE

PE

PE

PE

(1)  TASK-BASED
PROCESS  ARCHITECTURE

active

(2)  MESSAGE-BASED
PROCESS  ARCHITECTURE

PE PEPE PE

active

active

active

active

active

active

active

MESSAGE
OBJECT

PE

PROCESSING
ELEMENT

TASK
OBJECT

Figure 1: Process Architecture Components and Interrela-
tionships

of IPC (such as pipes or UNIX-domain sockets).
Task-based process architectures are an intuitive, widely-

used [1, 2, 10] means to structure parallelism. They map
directly onto layered communication models using a “pro-
ducer/consumer” architecture, which is relatively simple to
design and implement. In addition, it is straightforward to re-
configure task-based process architectures at run-time since
protocol tasks are tightly coupled with processes. Therefore,
replacing a task simply involves terminating an existing pro-
cess and restarting another process containing the new task.

An alternative approach to modeling and implementing
protocol stack parallelism involves binding the CPUs to the
messages that flow through a series of hierarchically-related
tasks. In this “message-based” process architecture, mes-
sages are the active objects, whereas tasks are the passive
objects (shown in Figure 1 (2)). Parallelism is achieved by
escorting multiple messages on separate CPUs simultane-
ously through a stack of interconnected processing tasks.

The primary advantage of message-based process archi-
tectures is that each message is associated with a single CPU
throughout most of its task processing. This arrangement
substantially reduces context switching and data movement
overhead. Note, however, that dynamic linking is required
to enable lightweight reconfiguration of protocol stacks im-
plemented using message-based process architectures. This
requirement occurs since protocol tasks are decoupled from
processes.

Protocol stacks (such as the Internet and ISO OSI refer-
ence models) may be implemented using either task-based
or message-based process architectures. However, different
process architectures exhibit significantly different perfor-
mance characteristics. These characteristics depend on the
underlying operating system and hardware platform. For in-

3



stance, in a non-shared memory transputer multi-processor
environment, message-based process architectures result in
high levels of synchronization overhead [13]. Likewise, on
shared memory multi-processor platforms, task-based pro-
cess architectures result in high data movement and context
switching overhead.

We performed experiments on TCP/IP-based protocol
stacks implemented using the ASX framework. These ex-
periments indicate that message-based process architectures
significantly outperform task-based process architectures on
a shared memory multi-processor platform [8]. However,
different results would occur on platforms that possess dif-
ferent relative costs for context switching, synchronization,
and data movement. Therefore, an object-oriented frame-
work that allows developers to flexibly configure process
architectures at installation-time or run-time is essential to
facilitate extensibility and performance of system software.

4 Concluding Remarks

The choice of techniques for configuring components into
distributed communication systems have a significant im-
pact on extensibility and performance. Conventional tech-
niques for configuring and reconfiguring application services
utilize heavyweight processes that communicate via heavy-
weight IPC mechanisms. However, the overhead of these
techniques discourages developers of high-performance dis-
tributed communication systems from reaping the benefits of
flexibly configurable software.

Achieving the wide-spread adoption of flexible system
software requires lightweight (re)configuration mechanisms
based upon dynamic linking and lightweight processes. Dy-
namic linking helps to improve extensibility by deferring
design and implementation decisions until enough informa-
tion is available to make effective application configuration
choices. When dynamic linking is combined with lightweight
processes, it becomes possible to flexibly configure efficient
parallel process architectures that are tailored to their run-
time environments.

The ASX framework enhances component reuse, auto-
mates configuration and reconfiguration, and helps to im-
prove the performance of distributedcommunication systems
that execute their services in parallel on multi-processor plat-
forms. To improve extensibility and performance, the ASX
framework decouples application-specific service function-
ality from both the temporal and structural bindings of these
services onto heavyweight and lightweight processes. Thus,
distributed applications may be updated and extended with-
out modifying, recompiling, relinking, or restarting systems
at run-time.

The ASX framework is available via anonymous ftp from
ics.uci.edu in the file gnu/C++ wrappers.tar.Z.
This distribution contains complete source code, documen-
tation, and example test drivers for the C++ components.
Components in the ASX framework have been ported to both
UNIX and Windows NT and are currently being used in a

number of commercial products including the AT&T Q.port
ATM signaling software product, the Ericsson EOS family of
telecommunication switch monitoring applications, and the
network management portion of the Motorola Iridium global
personal communication system.

References
[1] J. Magee, N. Dulay, and J. Kramer, “A Constructive Devel-

opment Environment for Parallel and Distributed Programs,”
in Proceedings of the 2nd International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 1–14, IEEE,
Mar. 1994.

[2] J. M. Purtilo, “The Polylith Software Toolbus,” ACM Trans-
actions on Programming Languages and Systems, To appear
1994.

[3] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[4] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[5] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE Distributed Systems Engineering Jour-
nal (Special Issue on Configurable Distributed Systems), to
appear 1995.

[6] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[7] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Dispatching,” in Pro-
ceedings of the 1st Annual Conference on the Pattern Lan-
guages of Programs, (Monticello, Illinois), August 1994.

[8] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[9] D. C. Schmidt and T. Suda, “Measuring the Impact of Alter-
native Parallel Process Architectures on Communication Sub-
system Performance,” in Proceedings of the 4th International
Workshop on Protocols for High-Speed Networks, (Vancouver,
British Columbia), IFIP/IEEE, August 1994.

[10] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for High-
Performance Communication Subsystems,” IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 507–519, May
1993.

[11] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[12] D. C. Schmidt and T. Suda, “Experiences with an Object-
Oriented Architecture for Developing Extensible Distributed
System ManagementSoftware,” in Proceedingsof the Confer-
ence on Global Communications (GLOBECOM), (San Fran-
cisco, CA), IEEE, November/December 1994.

[13] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan, “Pitfalls in Multithreading SVR4 STREAMS and other
Weightless Processes,” in Proceedings of the Winter USENIX
Conference, (San Diego, CA), pp. 85–106, Jan. 1993.

4


