Dynamically Configuring Communication Services

with the Service Configurator Pattern

Prashant Jain and Douglas C. Schmidt
pjain@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, (314) 935-7538

ThisarticleappearedintheJune’ 97 C++ Report magazine.

1 Introduction

A rapidly growing collection of communication services
are now available on the Internet. A communication ser-
vice is a component in a server that provides capabilitiesto
clients. Services available on the Internet include: WWW
browsing and content retrieval services (e.g., Alta Vista,
Apache, Netscape' SHTTP server); software distribution ser-
vices (eg., Cadtinet), eectronic mail and network news
transfer agents (e.g., sendnmai | and nnt pd), file access
on remote machines (e.g., ft pd), remote termina access
(e.g., r1 ogi nd and t el net d), routing table management
(eg., gat ed and r out ed), host and user activity reporting
(e.g., fi ngerd and r whod), network time protocols (e.g.,
nt pd), and request brokerage services (eg., or bi xd and
RPC por t mapper).

A common way to implement these servicesisto develop
each one as a separate program and then compile, link, and
execute each program in a separate process. However, this
“satic” approach to configuring servicesyiel dsinflexibl e, of -
ten inefficient, applications and software architectures. The
main problem with static configurationis that it tightly cou-
ples the implementation of a particular service with the con-
figuration of the service with respect to other servicesin an
application.

This article describes the Service Configurator pattern,
which increases application flexibility (and often perfor-
mance) by decoupling the behavior of servicesfrom the point
in time at which these service implementations are config-
ured into applications. This article illustrates the Service
Configurator pattern using a distributed time service written
in C++ as an example. However, the Service Configurator
pattern has been implemented in many ways, ranging from
device driversin modern operating systems (like Solaris and
Windows NT), to Internet superservers (likei net d and the
Windows NT Service Control Manager), as well as Java ap-
plets.

2 The Service Configurator Pattern

21 Intent

Decouples the behavior of services from the point in time at
which service implementations are configured into an appli-
cation or system.

2.2 AlsoKnown As

Super-server

2.3 Moaotivation

The Service Configurator pattern decouples the implemen-
tation of services from the time at which the services are
configured into an application or a system. This decoupling
improves the modul arity of services and alows the services
to evolve over time independently of configuration issues
(such as whether two services must be co-located or what
concurrency mode will be used to execute the services).

In addition, the Service Configurator pattern centralizes
the administration of the services it configures. This fa
cilitates automatic initiaization and termination of services
and can improve performance by factoring common service
initialization and termination patterns into efficient reusable
components.

This section motivates the Service Configurator pattern
using a distributed time service as an example.

2.3.1 Context

The Service Configurator pattern should be applied when
a service needs to be initiated, suspended, resumed, and ter-
minated dynamically. In addition, the Service Configurator
pattern should be applied when service configuration deci-
sions must be deferred until run-time.

To motivate this pattern, consider the distributed time ser-
viceshowninFigurel. Thisserviceprovidesaccurate, fault-
tolerant clock synchronizationfor computers collaboratingin
local area networks and wide area networks. Synchronized
timeservicesareimportant in distributed systemsthat require
multi plehoststo maintain accurate global time. For instance,
large-scale distributed medical imaging systems [1] require

class Clerk_Handl er :
public Svc_Handl er <SOCK_Strean»

{

publi c:
/1 This nethod is called by the Reactor
/1 when requests arrive fromd erks.
virtual int handl e_i nput (void)

CLIENT

/1 Read request from Cerk and reply
/1 with the current tinme.

TIME

UPDATE
TIME

UPDATE

}s
/

| The derk_Acceptor is a factory that

/] accepts connections fromC erks and creates
/1 derk_Handl ers.

typedef Acceptor<C erk_Handl er, SOCK_Accept or>
Cl erk_Acceptor;

int nain (int argc, char *argv[])

UPDATE

/] Parse command-|ine arguments.
Options::instance ()->parse_args (argc, argv);

CLIENT /1 Set up Acceptor to listen for Cerk connections.

Cl erk_Acceptor acceptor
(Options::instance ()->port ());

/1 Register with the Reactor Singleton.
Reactor: :instance ()->register_handl er
(&acceptor, ACCEPT_MASK);

/1 Run the event loop waiting for Clerks to
/1 connect and performtime queries.

. -) . for (;;)
Figure 1: A Distributed Time Service Reactor::instance ()->handl e_events ();

/* NOTREACHED */
globaly synchronized clocks to ensure that patient exams '
are accurately timestamped and analyzed expeditiously by This program uses the Reactor pattern [4] and the Acceptor

radiol ogiststhroughout the hedth-care delivery system. pattern [5] to implement a statically configured Time Server
As shown in Figure 1, the architecture of the distributed process.

time service contains the following Time Server, Clerk, and Each host that requires global time synchronization would

Client components: run a Clerk process. The Clerks periodicaly update their

local system time based on values received from one or more

* A Time Server answers queries about the time made by Time Servers. The following C++ code fragment illustrates

Clerks _ the structure of a statically configured Clerk process:
o A Clerk queries one or more Time Servers to determine - | e
; ; ; This class comuni cates with the Time_Server.
the correct time, cal cul ates the approximate correct time class Time Server Handler { /* ... */ }:

using one of severa distributed time algorithms|[2, 3],

and updatesitsown local system time. /1 This class establishes connections with the

/1 Time Servers and periodically queries themfor

i i i i i Nt 5 /] their latest time val ues.
¢ AClient us&thgglobal .t|me|nfor.mat|on ma,mtameq by class Cerk : public Svc_Handl er <SOCK_Strean
a Clerk to provide consistency with the notion of time {
used by clients on other hosts. public:

/1 Initialize the derk.
Aerk (void) {
Ti me_Server _Handl er **handler = 0;

2.4 A Common Solution

/Il Use the Iterator pattern and the

One way to implement a distributed time service is to stat- /1 Connector pattern to set up the
ically configure the logical functionaity of Time Servers, /1" connections to the Time Servers.
Clerks, and Clients into separate physical processes. In this for (I TERATOR iterator (handler_set);
approach, one or more hosts would run Time Server pro- iterator.next (handler) !=0;

. - iterator.advance
cesses, which handle time update requests from Clerk pro- connect or _. connect (’(*al)angl er);

cesses. The following C++ code fragment illustrates the

. . . Ti me_Val ue tinmeout _interval (60);
structure of astatically configured Time Server process: - - (60)

Regi ster a timer that will expire
very 60 seconds. This will trigger

/1
/1 The d erk_Handl er processes tinme requests Il e
/1 a call to the handle_tinmeout() method,

/1 fromd erks.

/1 which will query the Time Servers and

/] retrieve the current time of day.

Reactor::instance ()->schedul e_tiner
(this, timeout_interval);

This nmethod i npl enents the C ock Synchronization

is called periodically by the Reactor’s tiner

}
/1
/1 algorithmthat conputes local systemtinme. It
/1
/1 mechani sm

int handl e_tinmeout (void) {
/1 Periodically query the servers by iterating
/1 over the handler set and obtaining tine
/1 updates fromeach Tine Server.

Ti me_Server _Handl er **handl er = O;

/1 Use the Iterator pattern to query all
/1 the Time Servers

for (I TERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {
Ti ne_Val ue server_tinme =
(*handl er) - >get _server_tine ();

/'l Conmpute the local systemtine and

/] store this in shared nmenory that

/1 is accessible to the Cient processes.
}

private:
typedef Unbounded_Set <Ti me_Server_Handl er *>
HANDLER_SET;
typedef Unbounded_Set _Iterator
<Ti me_Server _Handl er *> | TERATOR;

/1 Set of Clerks and iterator over the set.
HANDLER SET handl er _set _;

/1 The connector_ is a factory that
/] establishes connections with Tine Servers
/1 and creates Time_Server_Handl ers.
Connect or <Ti me_Ser ver _Handl er,
SOCK_Connect or >
connect or _;

int main (int argc, char *argv[])

/] Parse command-1ine argunents.
Options::instance ()->parse_args (argc, argv);

/1 Initialize the derk.
Clerk clerk;

/1 Run the event |oop, periodically
/1 querying the Time Servers to determ ne
/1 the gl obal tine.
for (;;)
Reactor::instance ()->handl e_events ();

/* NOTREACHED */

This program uses the Reactor pattern [4] and the Connector
pattern[6] toimplement astatically configured Clerk process.

Client processes woul d use the synchroni zed timereported
by their loca Clerk. To minimize communication overhead,
the current time could be stored in shared memory that is
mapped into the address space of the Clerk and al Clients
on the same host. In addition to the time service, other
communication services (such as file transfer, remote login,
and HTTP servers) provided by the hosts would a so execute
in separate statically configured processes.

25 Trapsand Pitfallswith the Common Solu-
tion

Although the use of patterns like Reactor, Acceptor, and
Connector improve the modularity and portability of the
distributed time server shown above, configuring commu-
nication services using a static approach has the following
drawbacks:

¢ Service configuration decisions must be madetoo early
in the development cycle: This is undesirable since de-
velopers may not know a priori the best way to co-locate
or distribute service components. For example, the lack of
memory resources in wireless computing environments may
force the split of Client and Clerk into two independent pro-
Cesses running on separate hosts. In contrast, in area-time
avionics environment it might be necessary to co-locate the
Clerk and Server into one process to reduce communication
latency.! Forcing developers to commit prematurely to a
particular service configuration impedes flexibility and can
reduce performance and functionality.

e Modifying a service may adversdly affect other ser-
vices: The implementation of each service component is
tightly coupled with its initial configuration. This makes
it hard to modify one service without affecting other ser-
vices. For example, in the rea-time avionics environment
mentioned above, a Clerk and a Time Server might be stati-
cally configured to execute in one process to reduce | atency.
If the distributed time agorithm implemented by the Clerk
is changed, however, the existing Clerk code would require
modification, recompilation, and static relinking. However,
terminating the process to change the Clerk code would ter-
minate the Time Server as well. This disruption in service
may not be acceptable for highly available systems (such as
telecommunication switches or call centers[7]).

¢ System performance may not scale up efficiently: As
sociating a process with each service ties up OS resources
(such as /O descriptors, virtual memory, and process table
slots). This design can be wasteful if services are frequently
idle. Moreover, processes are often the wrong abstraction
for many short-lived communication tasks (such as asking a
Time Server for the current time or resolving a host address
request in the Domain Name Service). In these cases, multi-
threaded Active Objects [8] or single-threaded Reactive [4]
event loops may be more efficient.

2.6 A Better Solution

Often, a more convenient and flexible way to implement
distributed services is to use the Service Configurator pat-
tern. This pattern decouples the behavior of communication
services from the point in time at which these services are

1|f the Clerk and the Server are co-located in the same process, the Clerk
may optimize communication by (1) eliminating the need to set up a socket
connectionwith the Server and (2) directly accessing the Server’s notion of
time via shared memory.

configured into an application or system. The Service Con-
figurator pattern resolves the following forces:

¢ The need to defer the selection of a particular type, or
a particular implementation, of a service until very late
inthedesign cycle: Thisallows devel opersto concentrate
on a service's functionality (e.g., the clock synchronization
algorithm), without committing themselves prematurely to
a particular service configuration. By decoupling function-
ality from configuration, the Service Configurator pattern
permits applicationsto evolve independently of the configu-
ration policies and mechanisms used by the system.

e The need to build complete applications or systems
by composing multipleindependently developed services
that do not require global knowledge: The Service Con-
figurator pattern requiresall servicesto have auniforminter-
face for configuration and control. This allows the services
to betreated as building blocksthat can be integrated easily
as components into a larger application. The uniform inter-
face across al the services makes them “look and feel” the
same with respect to how they are configured. In turn, this
uniformity simplifies application devel opment by promoting
the“principle of least surprise.”

e The need to optimize, control, and reconfigure the be-
havior of a service at run-time: Decoupling the imple-
mentation of aservicefromitsconfiguration makesit possible
to fine-tune certain implementation or configuration param-
eters of services. For instance, depending on the parallelism
available on the hardware and operating system, it may be
either more or less efficient to run multiple services in sepa
rate threads or processes. The Service Configurator pattern
enables applications to select and tune these behaviors at
run-time, when more information may be available to help
optimize the services. In addition, adding a new or updated
service to a distributed system can often be performed with-
out requiring downtime for existing services.

Figure 2 uses OMT notation to illustrate the structure of
thedistributed time service designed according to the Service
Configurator pattern.

Service
init()
Service services fin j()
. <>—e
Repository suspend)()
resume()
info()
[\
Time_Server Clerk
init() init()
fini() fini()

Figure 2: Structure of aDistributed Time Service

The Ser vi ce base class providesastandard interface for
configuring and controlling services (such as Time Serversor
Clerks). A Service Configurator-based application uses this
interfacetoinitiate, suspend, resume, and terminateaservice,
aswell asto obtain run-timeinformation about aservice (such
asits|P address and port number). The services themselves
residewithinaSer vi ce Reposit ory and can be added
and removed to and from the Ser vi ce Repository by
a Service Configurator-based application.

Two subclasses of the Ser vi ce base class appear in
the distributed time service: Ti me Server and d er k.
Each subclass represents a concrete Ser vi ce that has spe-
cific functionality in the distributed time service. The Ti ne
Ser ver serviceisresponsiblefor receiving and processing
requestsfor timeupdatesfromC er ks. Thed er k service
isa Connector [6] factory that (1) creates a new connection
for every server, (2) dynamically allocates a new handler to
send time update requests to a connected server, (3) receives
thereplies from dl the servers through the handlers, and (4)
then updates the local system time.

The Service Configurator pattern makes the distributed
time service more flexible by managing the configuration of
the service components in the time service, thereby decou-
pling it from the implementation issues. In addition, the
Service Configurator provides a framework to consolidate
the configuration and management of other communication
services under one administrative unit.

3 Applicability
Use the Service Configurator pattern when:

e Services must be initiated, suspended, resumed, and
terminated dynamically; and

e The implementation of a service may change, but its
configuration with respect to related services remains
the same and/or the configuration of a group of col-
located services may change, but their implementations
remain the same; or

e An application or system can be simplified by being
composed of multipleindependently devel oped and dy-
namically configurable services; or

o The management of multiple services can be simplified
or optimized by configuring them using a singleadmin-
istrative unit.

Do not use the Service Configurator pattern when:
o Dynamic (re)configuration isundesirable dueto security

restrictions (in this case, static configuration may be
necessary?); or

2|t's possible to use the Service Configurator pattern to statically config-
ure services by ensuring that the implementations are statically linked into
the main executable program.

e Theinitializationor termination of aservice istoo com-
plicated or too tightly coupled with its context to be
performed in a uniform manner; or

o A service does not benefit from dynamic configuration
since it never changes; or

e Stringent performance requirements mandate the need
to minimize the extra levels of indirection incurred by
the OS and language mechanisms used for dynamic
(re)configuration.

4 Structure and Participants

The structure of the Service Configurator patternisillustrated
using OMT notationin Figure 3:

Service
Servi init()
€rvice services fini
. (Sevices g fini()
Repository suspend()
resume()
info()
[[[
Concrete Concrete Concrete
Service A Service B Service C

Figure 3: Structure of the Service Configurator Pattern

The key participants in the Service Configurator pattern in-
clude the following:

e Service (Servi ce)

— Specifies the interface containing hook methods
[9] (such as initidization and termination) used
by a Service Configurator-based application to dy-
namically configure the Ser vi ce.

e Concrete Service(Cl erk and Ti me Ser ver)

— Implements the service's hook methods and other
service-specific functionality (such as event pro-
cessing and communication with clients).

e Service Repository (Servi ce Repository)

— Maintains a repository of al the services offered
by a Service Configurator-based application. This
allows administrative entitiesto centrally manage
and control the behavior of the configured services.

5 Collaborations

Figure 4 depicts the collaborations between components in
the following three phases of the Service Configurator pat-
tern:

Service Service Service Service
o Configurator A B Repository
S 1 i i [
9 S Linit) | i
S g | insert() | L
; FOR EACH . | | >
& % init() »l I
2 SERVICE DO - >
% | insert() | .
Q I I !
| | |
|
e | | [
SVC
8 é : 0 Isvc |
S 2 RUN EVENT | |
& Loop | I [|
@z | | | |
- | . | | |
% fini | |
= | |
§ 5 FOR EACH i :remove() T >
X SERVICE DO niQ) »! '
8 | remove() | |
S T T ™

Figure 4: Interaction Diagram for the Service Configurator
Pattern

o Serviceconfiguration—The ServiceConfigurator initial -
izesaSer vi ce by calingitsi ni t method. Oncethe
Ser vi ce hasbeen initialized successfully, the Service
Configurator adds it to the Ser vi ce Repository,
which manages and controlsall the Ser vi ces.

e Service processing — After it is configured into the sys-
tem, a Servi ce peforms its processing tasks (i.e,
sarvicing client requests).> While Ser vi ce process-
ing is executing, the Service Configurator can suspend
and resume the Ser vi ce.

e Service termination — The Service Configurator termi-
natesthe Ser vi ce onceitisno longer needed by call-
ingthef i ni hook method ontheSer vi ce. Thishook
alows the Ser vi ce to clean up before terminating.
OnceaSer vi ce isterminated, the Service Configura-
tor removesit fromthe Ser vi ce Repository.

6 Consequences

6.1 Benefits

The Service Configurator pattern offers the following bene-
fits:

e Centralized administration: The pattern consolidates
one or more services into a single administrative unit. This
helps to simplify development by automatically perform-
ing common service initialization and termination activities
(such as opening and closing files, acquiring and releasing
locks, etc.). In addition, it centralizes the administration of
communi cation services by imposing auniformset of config-
uration management operations (such as initialize, suspend,

3Section 7 covers the details of how parameters can be passed into the
Ser vi ce, aswell ashow the Ser vi ce can be activated.

o Increased modularity and reuse. The pattern improves
the modul arity and reusability of communication services by
decoupling the implementation of these services from the
configuration of the services. In addition, all serviceshave a
uniform interface by which they are configured, thereby en-
couraging reuse and simplifying devel opment of subsequent
services.

¢ Increased configuration dynamism: The pattern en-
ables a service to be dynamically reconfigured without mod-
ifying, recompiling, or statically relinking existing code. In
addition, reconfiguration of a service can often be performed
without restarting the service or other active services with
which it is co-located.*

e Increased opportunity for tuning and optimization:
The patternincreases the range of service configuration alter-
natives available to developers by decoupling service func-
tionality from the concurrency strategy used to execute the
service. Devel operscan adaptively tunedaemon concurrency
levelsto match client demands and available OS processing
resources by choosing from a range of concurrency strate-
gies. Someaternativesinclude spawning athread or process
upon the arrival of a client request or pre-spawning a thread
Or process at service creation time.

6.2 Drawbacks

The Service Configurator pattern has the following draw-
backs:

o Lack of determinism: The pattern makes it hard to de-
termine the behavior of an application until its services are
configured at run-time. Thiscan be problematicfor red-time
systems since adynamically configured service may not per-
form predictably when run with certain other services. For
example, anewly configured service may consume excessive
CPU cycles, thereby starving out other services and causing
them to miss their deadlines.

¢ Reduced reliability: Anapplicationthat usesthe Service
Configurator pattern may be less reliable than a statically
configured application since a particular configuration of ser-
vices may adversaly affect the execution of the services. For
instance, afaulty service may crash, thereby corrupting state
information it shares with other services. Thisisparticularly
problematic if multiple services are configured to run within
the same process.

e Increased overhead: The pattern adds extra levels of
indirection to execute a service. For instance, the Service
Configurator first initializesthe service and then loadsit into
the Servi ce Repository. This may incur excessive
overhead in time-critical applications. In addition, the use
of dynamic linking to implement the Service Configurator

41t is beyond the scope of the Service Configurator pattern to ensure
robust dynamic service reconfiguration. Supporting robust reconfiguration
is primarily a matter of protocolsand policies, whereas the Service Config-
urator pattern primarily addresses (re)configuration mechanisms.

Step Common Alter natives
Define the service control o Servicesinherit from an
interface abstract base class
o Services respond to control messages
Define a Service Repository | e Maintain atable of service

implementations

Select aconfiguration
mechanism

o Specify at command line
o Specify through a user interface
o Specify through a configurationfile

o Reactive execution
o Multi-threaded Active Objects

Determine service execution
mechanism

¢ Multi-process Active Objects

Table 1. Steps Involved in Implementing the Service Con-
figurator Pettern

pattern adds extralevel sof indirectionto method invocations
and global variable accesses.

7 Implementation

The Service Configurator pattern may be implemented in
many ways. This section explains the steps and alternatives
involved when implementing the pattern. These steps and
aternativesare summarized in Table 1.

¢ Define the service control interface: The following is
the basic interface that services must support to enable the
Service Configurator to configure and control a service:

e Service initialization - provide an entry point into the
service and perform initiaization of the service.

e Service termination - terminate execution of a service.

e Service suspension - temporarily suspend the execution
of aservice.

e Service resumption - resume execution of a suspended
service.

e Serviceinformation- report information(e.g., port num-
ber or service name) that describes a service.

There are two basic approaches to defining the service
control interface, inheritance-based and message-based:

¢ Inheritance-based — This approach has each servicein-
herit from a common base class. This is the approach
used by the ACE Ser vi ce Confi gur at or frame-
work [7] and Java applets. It works by defining an
abstract base class containing a number of pure virtual
“hook” methods, as follows:
class Service
-
publi c:

/1 = Initialization and term nati on hooks.

virtual int init (int argc, char *argv[]) = 0,
virtual int fini (void) = 0;

/1 = Schedul i ng hooks.
virtual int suspend (void);
virtual int resune (void);

/1 = Informational hook.
virtual int info (char **,

size_t) = 0;

The i nit method serves as an entry point into a
Ser vi ce. Itisused by the Service Configurator to ini-
tializethe execution of aSer vi ce. Thef i ni method
allows the Service Configurator to terminate the execu-
tionof aSer vi ce. Thesuspend andr esumne meth-
odsare scheduling hooksused by the Service Configura-
tor to suspend and resume the execution of aSer vi ce.
The i nf o method allows the Service Configurator to
obtain Ser vi ce-related information (such asits name
and network address). Together, these methods impose
a uniform contract between the Service Configurator
and the Ser vi ces that it manages.

¢ Message-based — Another way to control communica
tion services is to program each Ser vi ce to respond
to a specific set of messages. This makes it possible
to integrate the Service Configurator into non-OO pro-
gramming languages that |ack inheritance (such as C or
Ada83).

The WindowsNT Service Control Manager (SCM) uses
this scheme. Each Window NT host has a master SCM
process that automatically initiates and manages sys
tem services by passing them various control messages
(such as PAUSE, RESUME, and TERM NATE). Each de-
veloper of an SCMmanaged service is responsible for
writing code to process these messages.

¢ Define a Repository: A Service Repository is
used to maintain all the service implementations such as
objects, executable programs, or dynamicaly linked li-
brary (DLLS). A Service Configurator uses the Ser vi ce
Reposi t ory to access aservice when it is configured into
or removed from the system. Each service's current status
(such as whether it's active or suspended) is maintained in
the Repository, as well. The Service Configurator stores
and accesses the Ser vi ce Reposi t ory information in
main memory, thefile system, or the kernel (e.g., it may use
operationsthat report the status of processes and threads).

¢ Select a configuration mechanism: A service needs to
be configured before it can be executed. To configure a ser-
vicerequiresspecifying attributesthat i ndi cate thelocati on of
the service' simplementation (such as an executable program
or DLL), aswell asthe parametersrequired toinitializeaser-
vice at run-time. This configuration criteria can be specified
in various ways (such as on the command line, viaenviron-
ment variables, through auser interface, or in aconfiguration
file). A centraized configuration mechanism simplifies the
installation and administration of the services in an appli-
cation by consolidating service attributes and initialization
parameters in a single location.

o Determinethe serviceexecution mechanism: A service
that has been dynamically configured by a Service Configura-
tor can be executed using various combinations of Reactive

[4] and Active Object [8] schemes. These dternatives are
examined briefly below:

¢ Reactive execution - A single thread of control can be
used for the Service Configurator, as well the execution
of all the services it configures.

o Multi-threaded Active Objects - This approach runsthe
dynamically configured services in their own threads of
control within the Service Configurator process. The
Service Configurator can either spawn new threads® on-
demand” or execute the services within an existing pool
of threads.

o Multi-process Active Objects - This approach runs the
dynamically configured servicesin their own processes.
The Service Configurator can either spawvn new pro-
cesses “on-demand” or execute the services within an
existing pool of processes.

8 Sample Code

The following code presents an exampl e of the Service Con-
figurator pattern writtenin C++. The example focusesonthe
configuration-rel ated aspects of the distributed time service
presented in Section 2.3. In addition, thisexampleillustrates
the use of other patterns (such as the Reactor pattern [4] and
the Acceptor [5] and Connector [6] patterns) that are com-
monly used to develop communication services and Object
Request Brokers.

Inthe examplebelow, theConcr et e Ser vi ce classin
the OMT class diagram shown in Figure 3 is represented by
theTi me Server class, aswell asthed er k class. The
C++codeinthissectionimplementstheTi me Ser ver and
the d er k classes® Both classes inherit from Ser vi ce,
allowing them to be dynamically configured into an applica
tion. In addition, the approach uses a configuration mech-
anism based on explicit dynamic linking [7] and a config-
uration file to dynamically configure the Clerk and Server
portions of the distributed time service. The service exe-
cution mechanism is based on the reactive event handling
model within a singlethread of control.

The exampl e shows how the Clerk component can change
the agorithm it uses to compute the loca system time with-
out affecting the execution of other components configured
by the Service Configurator. Once the agorithm has been
modified, the Clerk component is reconfigured dynamically
by the Service Configurator.

The code shown below aso includes the mai n driver
function, which provides the generic entry point into any
Service Configurator-based application. The implementa:
tion runs on both UNIX/POSIX and Win32 platforms us-
ing ACE [7], which can be obtained via the WWW at
www. cs. wust | . edu/ ~schmi dt/ ACE. ht m .

5To save space, most of the error handling code has been omitted.

8.1 TheTime Server Class

The Ti me Server uses the Accept or class to accept
connectionsfrom one or more Clerks. The Accept or class
uses the Acceptor pattern [5] to create handlers for every
connection from Clerksthat want to receive requestsfor time
updates. This design decouples the implementation of the
Time Server from its configuration. Therefore, developers
can change the implementation of the Time Server indepen-
dently of its configuration. This provides flexibility with
respect to evolving the implementation of the Time Server.
The Ti me Server class inherits from the Servi ce
base class defined in Section 7. This enables the Ser-
vice Configurator to dynamically link and unlink a Ti me
Server. Beforeloading the Ti ne Server service into
the Servi ce Reposi t ory, the Service Configurator in-
vokes its i nit hook. This method performs the Ti e
Ser ver -specific initidization code. Likewise, the fi ni
hook method is called automatically by the Service Configu-
rator to terminate the service when it is no longer needed.
/1 The O erk_Handl er processes tinme requests
/1 fromd erks.

class O erk_Handl er :
public Svc_Handl er <SOCK_Strean

I/l This is identical to the derk_Handl er
/1 defined in the second section.

h

class Tine_Server : public Service

{
publi c:

/1 Initialize the service when |inked dynanically.

virtual int init (int argc, char *argv[]) {
/1 Parse command |ine argunments to get
/1 port nunmber to listen on.
parse_args (argc, argv);

/1 Set the connection acceptor endpoint into
/1 listen nbde (using the Acceptor pattern).
acceptor_.open (port_);

/!l Register with the Reactor Singleton.
Reactor: :instance ()->register_handl er
(&acceptor_, ACCEPT_MASK) ;

/] Term nate the service when dynanically unlinked.

virtual int fini (void) {
/1 d ose down the connection.
acceptor_.close ();

}
/1 Oher nethods (e.g., info(), suspend(), and
/1 resune()) omtted.

private:
/1 Parse command |ine argunments or those
/1 specified by the configuration file.
int parse_args (int argc, char *argv[]);

Il Acceptor is a factory that accepts

/1 connections fromC erks and creates

/1 O erk_Handl ers.

Accept or <Cl erk_Handl er, SOCK_Accept or >
acceptor_;

/1 Port the Time Server |listens on.

int port_;
H
Note that the Service Configurator can also suspend and
resume the Ti me Server by caling its suspend and

r esune hooks, respectively.

8.2 TheClerk Class

The C er k uses the Connect or class to establish and
maintain connections with one or more Ti me Servers.
The Connect or class uses the Connector pattern [6] to
create handlers for each connection to a Time Server. The
handlers receive and process time updates from the Ti e
Servers.

The C er k class inheritsfrom the Ser vi ce base class.
Therefore, like the Ti ne Ser ver, it can be dynamically
configured by the Service Configurator. The Service Con-
figurator can initialize, suspend, resume, and terminate the
C er k by calingitsi ni t ,suspend,r esune, andf i ni
hooks, respectively.

/1 This class communicates with the Tine_Server.
class Time_Server _Handl er
public Svc_Handl er <SOCK_Strean»

{

publi c:
/1l Get the current tinme froma Time Server.
Ti ne_Val ue get_server_tinme (void);

/1

}
/1 This class establishes and maintai ns connections
/1 with the Time Servers and al so periodically queries
/1 themto calculate the current tine.

class Clerk : public Service
{
publi c:
/1 Initialize the service when |inked dynanically.
virtual int init (int argc, char *argv[]) {
/1 Parse command |ine arguments and for
/] every host:port specification of server,
/] create a Clerk instance that handl es
/1 connection to the server.
parse_args (argc, argv);

Ti me_Server _Handl er **handler = 0;

/Il Use the Iterator pattern and the
/1 Connector pattern to set up the
/1 connections to the Tinme Servers.

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {
connect or _. connect (*handler);

Ti ne_Val ue tinmeout _interval (60);

/! Register a tiner that will expire

/1 every 60 seconds. This will trigger
/1 a call to the handle_tinmeout() nethod,
/1 which will query the Tinme Servers and
/] retrieve the current time of day.
Reactor::instance ()->schedul e_tiner

(this, timeout_interval);
}

/] Termi nate the service when dynanically unlinked.
virtual int fini (void) {
Ti me_Server _Handl er **handl er = 0;
// Disconnect fromall the time servers.
for (I TERATOR iterator (handler_set_);
iterator.next (handler) != 0;

iterator.advance ())
(*handl er) ->cl ose ();

/! Renopve the tiner.
Reactor::instance ()->cancel _tiner (this);

/'l info(), suspend(),
/1 The handl e_ti neout nethod inplenments the

/1 O ock Synchroni zation al gorithmthat conputes
/1 local systemtime. It is called periodically
/1 by the Reactor’s timer mechani sm

int handl e_tinmeout (void) {
/1 Periodically query the servers by iterating
/1 over the handler set and obtaining tine
/1 updates fromeach Tine Server.

Ti me_Server _Handl er **handl er = O;

/1 Use the Iterator pattern to query all
/1 the Time Servers

for (I TERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {
Ti ne_Val ue server_tinme =
(*handl er) - >get _server_tine ();

/1 Conmpute the local systemtine and

/] store this in shared nmenory that

/1 is accessible to the Cient processes.
}

private:
/1 Parse command |ine argunents or those
/'l specified by the configuration file and
/] create Clerks for every specified server.
int parse_args (int argc, char *argv[]);

typedef Unbounded_Set <Ti me_Server_Handl er *>
HANDLER_SET;

typedef Unbounded_Set _Iterator
<Ti me_Server _Handl er *> | TERATOR;

/1 Set of Clerks and iterator over the set.
HANDLER SET handl er _set _;

/1 Connector used to set up connections
/Il to all servers.
Connect or <Ti ne_Ser ver _Handl er,
connector_;
3

SOCK_Connect or >

The d er k periodically sends a request for time update
toall itsconnected Ti me Ser ver s by iterating over itslist
of handlers. Once the Cl er k receives responses from all
its connected Ti me Ser ver s, it recalculates its notion of
the local system time. Thus, when Clients ask the Clerk for
the current time, they receive a globally synchronized time
value,

8.3 Configuringan Application
8.3.1 Co-located Configuration

Thefollowing codeillustratesthe dynamic configuration and
execution of an application that usesaconfigurationfileto co-
locate the Ti me Ser ver and the C er k within the same
OS process.

int

main (int argc, char *argv[])
/1 Configure the daenon.

Servi ce_Confi g daenon (argc, argv);

and resune() nethods omitted.

Directive | Description |

dynamic | Dynamically link and enable a service
static Enable a statically linked service
remove Completely remove a service

suspend | Suspend service without removing it
resume Resume a previously suspended service

Table 2: Service Configuration Directives

/1 Perform daenbn services updates.
daenon. run_event _l oop ();
/* NOTREACHED */

}

This completely generic mai n program configures com-
munication services dynamically within the constructor of
the Servi ce Confi g object. This method consults the
followingsvc. conf configurationfile;

Configure a Time Server.
dynami ¢ Ti ne_Server Service*
net svcs. dl | : nake_Ti ne_Server ()
"-p $TI ME_SERVER PORT"

Configure a Cerk.
dynam ¢ O erk Service*
netsvcs. dl | : make_Cl er k()
"-h tango. cs: $TI ME_SERVER PORT"
"-h perdita.wierl: $TI ME_SERVER PORT"
"-h atom c-cl ock. | anl.gov: $TI ME_SERVER_PORT"
"-P 10" # polling frequency

Each entry in the svc. conf configuration file is pro-
cessed by the ACE Service Configurator framework. The
framework interpretsthedynami c directive as a command
to dynamically link the designated Ser vi ce into the ap-
plication process. Table 2 summarizes the available service
configuration directives.

For example, the first entry in the svc. conf file spec-
ifies a service name (Ti me_Ser ver) that is used by the
Servi ce Repository toidentify the dynamically con-
figured Ser vi ce. The nake_Ti me_Ser ver is afactory
functionlocated inthedynamiclink library net svcs. dl | .
The Service Configurator framework dynamically links this
DLL into the application’s address space and then invokes
the make_Ti ne_Ser ver Factory function. This function
dynamically alocates a new Ti me Server instance, as
follows:

Servi ce *make_Ti me_Server (voi d)

return new Ti me_Server;

The final string parameter in the first entry specifies an en-
vironment variable containing a port number that the Ti e
Server will lissenon for O er k connections. The Service
Configurator converts this string into an “ar gc/ ar gv”-
style vector and passes it to the i ni t hook of the Ti ne
Server. If thei ni t method succeeds, the Ser vi ce *
is stored in the Ser vi ce Reposi t ory under the name
Ti me_Server.

The second entry in the svc. conf file specifies how to
dynamically configureaC er k. Asbefore, the Service Con-
figurator dynamicaly links net svcs. dl | DLL into the
application’s address space and invokes the make_Cl er k
factory function to creste a new Cl er k instance. The
init hook is passed the names and port numbers of
three Time Servers (t ango. cs, perdi ta. wuerl , and
atomi c-cl ock. | anl). In addition, the - P 10 option
defines how frequently the Clerk will poll the Time Servers.

8.3.2 Distributed Configuration

Suppose we did not want to co-locate the Ti me Ser ver

andthed er k in order to reduce the memory footprint of an
application. Since we' re using the Service Configurator pat-
tern, al that'srequiredistosplitthesvc. conf fileintotwo
parts. One part containsthe Ti me Ser ver entry and the
other part containstheCl er k entry. Theservicesthemselves
would not haveto change by virtueof thefact that the Service
Configurator pattern has decoupled their behavior from their
configuration. Figure 5 shows what the configuration looks
likewiththe Ti me Server and d er k co-located in the
same process, as well as what the configuration looks like
after the split.

CO-LOCATED @/ DECOUPLED

Figure5: Reconfiguring a Time Server and a Clerk

8.4 Reconfiguring an Application

Now suppose we need to change the a gorithm implementa-
tion of the Cl er k. For example, we may decide to switch
from an implementation of the Berkeley agorithm [2] to an
implementation of Cristian’salgorithm|[3], both of which are
outlined bel ow:

e Berkeley algorithm — In this approach, the Ti me
Server is an active component that polls every ma

10

chine in the network periodically to ask what timeitis
there. Based on the responses it receives, it computes
an aggregate notion of the correct time and tellsal the
machines to adjust their clocks accordingly.

e Crigtian’s algorithm — In this approach, the Ti e
Ser ver isapassive entity responding to queries made
by Clerks. It does not actively query other machines to
determine its own notion of time.

A change in the time synchronization algorithm may be
necessary in response to the characteristics of the Ti me
Server . Forinstance, if the machine on which the Ti nme
Ser ver resides hasaWWV receiver® the Ti me Ser ver
can act as a passive entity and Cristian algorithm would be
appropriate. On the other hand, if the machine on which the
Ti me Ser ver resides doesnot haveaWWV receiver then
an implementation of the Berkeley agorithm would be more
appropriate.

Figure 5 shows a change in the Clerk implementation
(corresponding to the change in clock synchronization algo-
rithm). The change takes place in the process of separating
theTi ne Server andthed er k, which were previously
co-located.

Ideally, we'd like to change the agorithm implementa-
tion without affecting the execution of other services or other
components of the time service. Accomplishing this using
the Service Configurator simply requires the following mod-
ificationtothesvc. conf file:

Term nate Cderk
renove Clerk

The only additional requirement is to have the Service
Configurator processthisdirective. Thiscan bedoneby gen-
erating an external event (such asthe UNIX SIGHUP signal,
an RPC notification, or a Windows NT Registry event). On
recei pt of thisevent, theapplicationwoul d consult the config-
urationfile again and terminate the execution of the Clerk ser-
vice. The Service Configurator would call thef i ni method
of the d er k and thereby terminate the execution of the
Clerk component. The execution of other services should
not be affected.

Once the Clerk service has been terminated, changes can
be made to the a gorithm implementation. The code can then
be recompiled and relinked to form a new net svcs DLL.
A similar approach can be taken to add a Clerk service back
to the Service Configurator. The configuration file would be
modified with a new directive specifying that the Clerk be
dynamically linked, as follows:

Reconfigure a new O erk.
dynam ¢ O erk Service*
net svcs. dl | : make_Cl er k()
"-h tango. cs: $TI ME_SERVER_PORT"
"-h perdita.wierl: $TI ME_SERVER PORT"
"-h atom c-clock. | anl.gov: $TI ME_SERVER_PORT"

6A WWV receiver interceptsthe short pul sesbroadcasted by the National
Ingtitute of Standard Time (NIST) to provide Universal Coordinated Time
(UTC) to the public.

CONFIGURE/

init()
RECONFIGURE/

init()
RUNNING D

suspend()

resume()

SUSPENDED

Figure 6: State Diagram of the Service Lifecycle

"-P 10" # polling frequency

An externa event would then be generated, causing the pro-
cess to reread the configuration file and add the Clerk com-
ponent to the repository. The Clerk component would begin
execution oncethei ni t method of Ol er k iscaled by the
Service Configurator framework.

Figure 6 shows a state diagram of the lifecycle of a
Ser vi ce such asthe Clerk service.
Note that in the entire process of terminating and remov-
ing the Clerk service, no other active services are affected
by changes to the implementation and reconfiguration of the
Clerk service. The ease of being able to substitute a new
service implementation further exemplifies the flexibility of-
fered by the Service Configurator pattern.

9 Known Uses

The Service Configurator pattern is widely used in system
and application programming environmentsincluding UNI X,
Windows NT, ACE, and Java applets:

e Modern operating system device drivers. Most mod-
ern operating systems (such as Solaris and Windows NT)
provide support for dynamically configurable kernel-level
devicedrivers. Thesedriverscan belinkedinto and unlinked
out of thesystem dynamically viai ni t /f i ni /i nf o hooks.
These operating systems use the Service Configurator pattern
to allow administratorsto reconfigure the OS kernel without
having to shut it down, recompile and staticaly relink new
drivers, and restart the system.

¢ UNIX network daemon management: The Service
Configurator pattern has been used in “superservers’ that
manage UNIX network daemons. Two widely available net-
work daemon management frameworks arei net d [10] and
[i sten [11]. Both frameworks consult configuration files
that specify (1) service names (such as the standard Inter-
net servicesft p,t el net, dayti ne, and echo), (2) port
numbersto listenonfor clientsto connect with these services,

11

and (3) an executable file to invoke and perform the service
when a client connects. Both frameworks contain a master
Acceptor [5] processthat monitorsthe set of ports associated
withthe services. When aclient connection occurs onamon-
itored port, the Acceptor process accepts the connection and
demultiplexes the request to the appropriate pre-registered
service handler. This handler performs the service (either
reactively or in an active object) and returns any results to
theclient.

e The Windows NT Service Control Manager (SCM):
Unlikei net d andl i st en, theWindowsNT Service Con-
trol Manager (SCM is not a port monitor, per se. That is,
it does not provide built-in support for listening to a set
of 1/0 ports and dispatching server processes “on-demand”
when client requests arrive. Instead, it provides an RPC-
based interface that alows a master SCM process to au-
tomatically initiate and control (i.e., pause, resume, termi-
nate, etc.) administrator-installed services (such asr enot e
regi stry access). These serviceswould otherwiserun
as separate threads within either a single-service or a multi-
service daemon process. Each installed service is individ-
ually responsible for configuring itself and monitoring any
communication endpoints, which can be more general than
socket ports. For instance, the SCMcan control named pipes
and shared memory.

e The ADAPTIVE Communication Environment (ACE)
framework: The ACE framework [7] provides a set of
C++ mechanisms for configuring and controlling com-
munication services dynamically. The ACE Servi ce
Confi gur at or extends the mechanisms provided by
i netd,listen,andSCMtoautomatically support dynamic
linking and unlinking of communication services. The code
contai ned in Section 8 showshow the ACE framework isused
to implement the distributed time service. The mechanisms
provided by ACE were influenced by the interfaces used to
configure and control device drivers in modern operating
systems. Rather than targeting kernel-level device drivers,
however, the ACE Ser vi ce Confi gur at or framework
focuses on dynamic configuration and control of application-
level Ser vi ce objects.

o Java applets. — The applet mechanism in Java uses the
Service Configurator pattern. Java provides support for
downloading, initializing, starting, suspending, resuming,
and terminating applets. It does this by providing methods
(eg., start and st op) that initiate and terminate threads.
A method in a Java applet can access the thread it is run-
ning under using Thr ead. cur r ent Thr ead() , and then
issue control messages to it such as suspend, r esune,
and st op. [12] presents an example that illustrates how the
Service Configurator pattern is used for Java applets.

10 Related Patterns

The intent of the Service Configurator pattern is similar to
the Configuration pattern [13]. The Configuration pattern

decouples structural issues related to configuring servicesin
distributed applications from the execution of the services
themselves. The Configuration pattern has been used in
frameworks for configuring distributed systems to support
the construction of a distributed system from a set of com-
ponents. In a similar way, the Service Configurator pattern
decouples serviceinitializationfrom service processing. The
primary difference is that the Configuration pattern focuses
more on the active composition of a chain of related ser-
vices, whereas the Service Configurator pattern focuses on
the dynamic initialization of service handlers at a particu-
lar endpoint. In addition, the Service Configurator pattern
focuses on decoupling service behavior from the service's
concurrency strategies.

The Manager Pattern [14] manages a collection of objects
by assuming responsibility for creating and deleting these
objects. In addition, it provides an interface to allow clients
access to the objects it manages. The Service Configurator
pattern can use the Manager pattern to create and delete Ser-
vices as needed, as well as to maintain a repository of the
Servicesit creates using the Manager Pattern . However, the
functionality of dynamically configuring, initidizing, sus-
pending, resuming, and terminating a Service created using
the Manager Pattern must be added to fully implement the
Service Configurator Pattern.

A Service Configurator often makes use of the Reactor
[4] pattern to perform event demultiplexing and dispatching
on behalf of configured services. Likewise, dynamically
configured services that execute for a long periods of time
often use the Active Object pattern [15].

Administrative interfaces (such as configuration files or
GUIs) to a Service Configurator-based system provide a
Facade [16]. This Facade simplifies the management and
control of applicationsthat are executing within the Service
Configurator.

The virtual methods provided by the Ser vi ce base class
are callback “hooks’ [9]. These hooks are used by the Ser-
vice Configurator to initiate, suspend, resume, and terminate
Services.

A Ser vi ce (such asthe d er k class described in Sec-
tion 8) may be created using a Factory Method [16]. This
allowsan application to decide which typeof Ser vi ce sub-
classto create.

11 Concluding Remarks

This article describes the Service Configurator pattern and
illustrates how it decouples the implementation of services
from their configuration. This decoupling increases the flex-
ibility and extensibility of services. In particular, service
implementations can be devel oped and evolved over timein-
dependently of many issues related to service configuration.
In addition, the Service Configurator patten providestheabil -
ity to reconfigure a service without modifying, recompiling,
or statically relinking existing code.

12

The Service Configurator pattern also centralizes the ad-
ministration of servicesit configures. This centralization can
simplify programming effort by automating common service
initialization tasks (such as opening and closing files, ac-
quiring and releasing locks, etc). In addition, centralized
administration can provide greater control over the lifecycle
of services.

The Service Configurator pattern has been applied widely
in many contexts. Thisarticle used adistributed time service
writtenin C++ asan exampleto demonstrate the Service Con-
figurator pattern. The ability to decouple the development of
the components of a distributed time service from their con-
figuration into the system exemplifies the flexibility offered
by the Service Configurator pattern. This decoupling alows
different Clerks to be developed with different distributed
timeagorithms. The decision to configurea particular Clerk
becomes arun-time decision, which yieldsgreater flexibility.
Thearticle al so showed how the Service Configurator pattern
can be used to dynamically reconfigure the distributed time
service without having to modify, recompile, or staticaly
relink running servers.

The Service Configurator pattern is widely used in many
contexts such as device driversin Solaris and Windows NT,
Internet superservers like inetd, the Windows NT Service
Control Manager, and the ACE framework. In each case,
the Service Configurator pattern decouples the implementa-
tion of a service from the configuration of the service. This
decoupling supports both extensibility and flexibility of ap-
plications.

References

[1] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” USENIX Comput-
ing Systems, val. 9, November/December 1996.

R. Gusellaand S. Zatti, “The Accuracy of the Clock Synchro-
nization Achieved by TEMPO in Berkeley UNIX 4.3BSD,”
|EEE Transactionson Software Engineering, vol. 15, pp. 847—
853, July 1989.

F. Cristian, “Probabilistic Clock Synchronization,” Dis-
tributed Computing, vol. 3, pp. 146-158, 1989.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

D. C. Schmidt, “ Design Patternsfor Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,” C++ Report, vol. 8, January
1996.

D. C. Schmidt and T. Suda, “ An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” |EE/BCS Distributed SystemsEngineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280-293, December 1994.

R. G. Lavender and D. C. Schmidt, “ Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern

(2]

(3]
[4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]

[12]

[13]

[14]

[19]

[16]

Languages of Program Design (J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

W. Pree, Design Patterns for Object-Oriented Software De-
velopment. Reading, MA: Addison-Wesley, 1994.

W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

P. Jain and D. C. Schmidt, “Service Configurator: A Pat-
tern for Dynamic Configuration of Services,” in Proceedings
of the 3"* Conference on Object-Oriented Technologies and
Systems, USENIX, June 1997.

S. Crane, J. Magee, and N. Pryce, “ Design Patternsfor Binding
in Distributed Systems,” in The OOPSLA ’95 Workshop on
Design Patterns for Concurrent, Parallel, and Distributed
Object-Oriented Systems, (Austin, TX), ACM, Oct. 1995.

P. Sommerland and F. Buschmann, “ The Manager Design Pat-

tern,” in Proceedings of the 3" Pattern Languages of Pro-
gramming Conference, September 1996.

R. G. Lavenderand D. C. Schmidt, “ Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conference on the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

13

