
Flexible and Adaptive QoS Control for Distributed
Real-time and Embedded Middleware

Richard E. Schantz1, Joseph P. Loyall1, Craig Rodrigues1, Douglas C. Schmidt2,
Yamuna Krishnamurthy3, Irfan Pyarali3

1BBN Technologies
Cambridge, MA

{schantz, jloyall, crodrigu}@bbn.com
2 Vanderbilt University

Nashville, TN
schmidt@ isis-server.isis.vanderbilt.edu

3 OOMWorks, LLC
Metuchen, NJ

{yamuna,irfan}@oomworks.com

Abstract. Computing systems are increasingly distributed, real-time, and em-
bedded (DRE) and must operate under highly unpredictable and changeable
conditions. To provide predictable mission-critical quality of service (QoS)
end-to-end, QoS-enabled middleware services and mechanisms have begun to
emerge. However, the current generation of commercial-off-the-shelf middle-
ware lacks adequate support for applications with stringent QoS requirements in
changing, dynamic environments. This paper provides two contributions to the
study of adaptive middleware to control DRE applications. It first describes
how priority- and reservation-based OS and network QoS management mecha-
nisms can be coupled with standards-based, off-the-shelf distributed object
computing (DOC) middleware to better support dynamic DRE applications
with stringent end-to-end real-time requirements. It then presents the results of
experimentation and validation activities we conducted to evaluate these com-
bined OS, network, and middleware capabilities. Our work integrates currently
missing low-level resource control capabilities for end-to-end flows with exist-
ing capabilities in adaptive DRE middleware and sets the stage for further ad-
vances in fine-grained precision management of aggregate flows using dynamic
adaptation techniques.

1 Introduction and Background

Emerging trends. Next-generation distributed real-time and embedded (DRE) sys-
tems must collaborate with multiple remote sensors, provide on-demand browsing and
actuation capabilities for human operators, and respond flexibly to unanticipated situ-
ational factors that arise at run-time [5]. The distributed computing infrastructure for

 This work was supported by the Defense Advanced Research Projects Agency (DARPA) and

Air Force Research Laboratory under contracts F30602-98-C-0187 and F33615-00-C-1694.

these sys
times dur
behavior.
one impo

The re
in histori
of stream
face of hi
ber of pr
computin
to enviro
priate ada

An ov
decreased
illustrates
• Distrib

and di
autom
demul
resides
RMI [3

• QoS a
betwee
service
sary to
erate i
QoS ad
Logical Method Calls

Bandwidth
Control

Status
Collection

Configuration
Management

Client Host Network

Operating System
and Protocols

Middleware

Applications
Client

Servant Host

Middleware

Applications
Object

Resource
Managers

Resource
Managers

Property
Managers

Policy
Managers QoS Adaptive Layer

Common Services
QoS Adaptive Layer
Common Services

Distributed Objects
COTS ORB

Distributed Objects
COTS ORB

Mechanisms

Network Based Services
Event

Services
Name

 Services
...
...Managers

Operating System
and Protocols

Communication and
Concurrency Mechanisms

Communication and
Concurrency Mechanisms

Fig. 1. Layers of Middleware
tems must be sufficiently flexible to support varying workloads at different
ing an application lifecycle, yet maintain highly predictable and dependable
 Controlling the real-time behavior of such distributed computing systems is
rtant dimension of the delivered quality of service (QoS).
cent focus on user control over QoS aspects stems from technology advances
cally challenging research areas, such as allocation policies, synchronization
s in distributed multimedia applications, and assured communication in the
gh demand. The focus on QoS aspects has led to the development of a num-
oposed and implemented improvements to commonly available distributed
g infrastructures. When coupled with software that can recognize and react
nmental changes, these improvements form the basis for constructing appro-
ptive behavior for next-generation DRE systems.
erview of COTS middleware. Requirements for faster development cycles,
 cost, and reusable solutions motivate the use of middleware [25]. Figure 1
 the key middleware layers related to the focus of this paper:
ution middleware – This layer encapsulates concurrency, communication,
stribution mechanisms to provide a higher level programming model that
ates common programming tasks, such as parameter (de)marshaling, request
tiplexing, and error handling. At the heart of this infrastructure middleware
 some form of Object Request Broker (ORB), such as CORBA [21], Java
2], or Microsoft's COM+ [3].

daptive middleware – This emerging layer of middleware bridges the gap
n an application’s QoS needs across its multiple parts and the middleware
s and infrastructure that provides QoS. It provides the abstractions neces-
 adapt to changing conditions and requirements for applications that can op-
n a wide variety of environments and changing conditions. An example of
aptive middleware is the Quality Objects (QuO) framework [34].

Towards an adaptive COTS middleware solution. As network and endsystem
performance continues to increase, so too does the demand for more control and man-
ageability of their resources through the middleware interface. In particular, next-
generation DRE systems present end-to-end real-time QoS requirements over shared
resources and with workloads that can vary significantly at run-time. In turn, this in-
creases the demands on end-to-end system resource management and control, which
makes it hard to simultaneously (1) coordinate the management of multiple end-to-
end resources and (2) mediate the (possibly conflicting) resource needs across multi-
ple applications, with individual resource mechanisms or managers. In addition, the
mission-critical processing aspects of next-generation DRE systems require that they
(1) respond adequately to both anticipated and unanticipated operational changes in
their run-time environment and (2) ensure that critical capabilities acquire the neces-
sary resources.

Meeting these increasing demands of next-generation DRE systems motivates the
need for adaptive middleware-centric QoS management abstractions and techniques.
Supporting this adaptive middleware QoS management architecture efficiently, pre-
dictably, and scalably requires new dynamic and adaptive resource management tech-
niques that can (1) integrate control and measurement of resources end-to-end, (2)
mediate the resource requirements of multiple applications and (3) dynamically adjust
resource allocation in response to changing requirements and conditions.

Our prior work has explored many dimensions of QoS-enabled adaptive middle-
ware design and performance, including QoS frameworks, QoS specification and
measurement, inserting adaptive behavior into applications, QoS aspects for depend-
ability and survivability, scalable event processing, request demultiplexing, connec-
tion management and explicit binding architectures, asynchronous and synchronous
concurrent request processing, and IDL stub/skeleton optimizations. This paper fo-
cuses on a previously unexamined dimension of QoS-enabled adaptive middleware:
the integration of priority- and reservation-based OS and network QoS management
mechanisms with standards-based COTS DOC middleware. This integration is essen-
tial since it enables a new generation of flexible DRE applications that (1) have more
precise control over their end-to-end resource management strategies, (2) can be more
easily reconfigured and adapted to dynamically changing network and computing en-
vironments, and (3) help mature the emerging standards-based COTS infrastructure.

Paper organization. The remainder of this paper is organized as follows: Section
2 outlines related work on adaptive DRE middleware, including the technologies cre-
ated during our earlier work on standards-based COTS adaptive DRE middleware that
form the basis for the work described in this paper; Section 3 describes the emerging
priority and reservation-based resource management mechanisms needed to support
dynamic end-to-end QoS management using middleware; Section 4 provides an ex-
ample DRE application in which we have integrated these resource management ser-
vices with our earlier adaptive DRE middleware; Section 5 describes empirical results
obtained by systematically measuring the behavior of our adaptive DRE middleware
in representative application scenarios; and Section 6 presents concluding remarks.

2 Related Work

Distributed object computing (DOC) is the most advanced, mature, flexible paradigm
available today for the development of next-generation DRE systems [10]. DOC
software architectures are composed of objects that can be distributed or collocated
throughout a wide-range of networks and interconnects, thereby shielding applica-
tions from many distributed computing complexities. Since conventional DOC mid-
dleware historically failed to support more stringent end-to-end application require-
ments, an increasing body of research has focused on techniques that specify,
measure, control, and adapt QoS. This section reviews optimizations and enhance-
ments we and others have made to conventional DOC middleware programming
models and implementations so they can support DRE QoS properties and simultane-
ously allow flexible control and adaptation of key application QoS aspects.

2.1 Our Earlier DRE Middleware Efforts

Our earlier DRE middleware work has focused on TAO and QuO, which leverage
Real-time CORBA [20, 21] to provide efficient, scalable, and predictable DRE mid-
dleware structures and services, and adaptive QoS management policies, respectively.
These technologies serve as the underlying context for adding the specific resource
management mechanisms described in Section 3 to manage and control end-to-end
DRE performance.

Overview of TAO. TAO [26] is a high-performance distribution middleware tar-
geted for DRE applications with deterministic QoS requirements, as well as best-
effort requirements. TAO supports the standard OMG CORBA [21] and Real-time
CORBA [20] specifications, whose implementation in TAO ensures efficient, predict-
able, and scalable QoS behavior for high-performance DRE applications. The follow-
ing are some of the optimizations in TAO:
• Optimized IDL Stubs and Skeletons –TAO's IDL compiler generates

stubs/skeletons that can selectively use highly optimized compiled and/or interpre-
tive marshaling/demarshaling [8], thereby allowing application developers to trade
off time and space, which is crucial for high-performance DRE applications.

• Real-time ORB –TAO's real-time Object Adapter uses perfect hashing and active
demultiplexing [22] optimizations to dispatch servant operations in constant time,
regardless of the number of active connections, servants, and operations defined in
IDL interfaces and TAO's real-time ORB Core [27] uses a multi-threaded, preemp-
tive, priority-based connection and concurrency architecture [8] to provide an effi-
cient and predictable CORBA protocol engine.

• Run-time Scheduler – TAO's run-time scheduler maps application QoS require-
ments (such as bounding end-to-end latency and meeting periodic scheduling dead-
lines) to ORB endsystem/network resources (such as CPU, memory, network con-
nections, and storage devices) using either static and/or dynamic [7] real-time
scheduling strategies.
Overview of QuO. The Quality Objects (QuO) framework [1, 16, 30] is a QoS

adaptive layer of middleware that runs on existing DOC middleware (such as Real-
time CORBA and Java RMI) and supports distributed applications that can specify (1)

their QoS requirements, (2) the system elements that must be monitored and con-
trolled to measure and provide QoS, and (3) the behavior for adapting to QoS varia-
tions that occur at run-time. To achieve these goals, QuO provides middleware-centric
abstractions and policies for developing DOC applications. Key components provided
by QuO to support the above operations include:
• Contracts – The operating regions and service requirements of the application are

encoded in contracts, which describe the possible states the system might be in, as
well as which actions to perform when the state changes.

• Delegates –Delegates are proxies that can be inserted into the path of object inter-
actions transparently, but with woven in QoS aware and adaptive code. When a
method call or return is made, the delegate checks the system state, as recorded by
a set of contracts, and selects a behavior based upon it.

• System Condition Objects – System condition objects are wrapper facades that
provide consistent interfaces to infrastructure mechanisms, services, and managers.
System condition objects are used to measure and control the states of resources,
mechanisms, and managers that are relevant to contracts.
Our recent work [31] integrating the TAO Real-time CORBA ORB with QuO en-

ables a managed end-to-end path through middleware services. The work reported in
Sections 3 though 5 of this paper extends end-to-end middleware control of QoS
through the OS and network layers, as well.

2.2 Other Adaptive DRE Middleware Efforts

Meta-programming techniques can be applied to specify middleware QoS behaviors
and configure the supporting mechanisms for these QoS behaviors. In particular, the
container architecture in component-based middleware, such as Enterprise Javabeans
(EJB) and the CORBA Component Model (CCM), provides the vehicle for applying
meta-programming techniques that provide QoS assurance control in component mid-
dleware. Conan et al [4] use containers together with aspect-oriented software devel-
opment (AOSD) [14] techniques to plug in different non-functional behaviors. This
project is similar to QuO delegates in that mechanisms are provided to inject aspects
into applications statically at the middleware level. QuO goes further, however, since
it also supports dynamic QoS provisioning via its Qosket mechanisms [24].

de Miguel [17] extends other work on QoS-enabled containers by enhancing an
EJB container to support a QoSContext interface that allows the exchange of QoS-
related information with component instances. To take advantage of the QoS-
container, a component must implement QoSBean and QoSNegotiation inter-
faces. A key difference between de Miguel’s approach and ours is the QuO delegates
and contracts enable the QoS negotiation protocols to be performed transparently to
the component implementations.

In their dynamicTAO project, Kon and Campbell [15] apply adaptive middleware
techniques to extend TAO so it can be reconfigured at runtime by dynamically linking
selected modules, according to the features required by the applications. As with our
prior efforts on TAO and QuO, Kon and Campbell provide mechanisms to realize
QoS provision in the middleware level. The work described in this paper goes further,

however, by integrating QoS provisioning mechanisms at the middleware, OS, and
network levels.

The Distributed Multimedia Research Group at Lancaster University has devel-
oped a prototype of advanced reflective middleware called Adapt [2]. This middle-
ware model concentrates on dynamic composition of objects through open-binding
[6], which (1) allows object implementations to be configured dynamically, (2) de-
termines various aspects of object implementations, such as adding or removing
methods from an object, and (3) explicitly establishes transport connections between
objects that can be used for streaming multimedia data. The Adapt project model also
facilitates QoS properties management and monitoring. Compared to the Adapt pro-
ject, our efforts concentrate on applying QoS provisioning techniques to implement
and improve the implementation of an existing middleware standard (CORBA),
whereas the Adapt project defines and implements the meta-space of a new middle-
ware framework at a higher level.

3 Managing End-to-End Real-time QoS via Middleware-
mediated Resource Management Mechanisms

End-to-end QoS requires management and control of the processing resources on
nodes in a DRE system and the network resources that connect them. A number of
mechanisms for managing these individual resources are emerging, such as mecha-
nisms for (1) prioritizing competing network traffic using standard Internet technolo-
gies and (2) reserving prespecified amounts of processor time on COTS host com-
puters. These mechanisms are necessary conditions for establishing end-to-end QoS,
but they are not sufficient by themselves. To achieve end-to-end QoS, therefore, indi-
vidual resources must be managed in a coordinated manner. Management of an indi-
vidual resource (e.g., CPU or network connection) will not enable predictable per-
formance if the other complementary resources along an end-to-end path are
constrained, unmanaged, or even managed in an uncoordinated manner.

This section describes four emerging mechanisms for managing resources in a
DRE system: two each for managing OS and network resources. One pair of mecha-
nisms is predominantly based on a priority paradigm and the other pair is predomi-
nantly based on a reservation paradigm. We also discuss how we have enhanced the
TAO and QuO middleware to combine and coordinate these mechanisms toward
achieving complete end-to-end QoS management capabilities. Section 4 describes the
application context for this work and Section 5 then reports our latest experimentation
and validation work in using the resource management mechanisms described below
separately and in combination.

3.1 Priority-based OS Resource Management

CORBA (as well as other existing standards-based COTS middleware) has histori-
cally lacked features to provide fine granularity allocation, scheduling, and control of
key host OS resources necessary to ensure and coordinate predictable platform proc-

essing behavior. The Real-time CORBA (RT-CORBA) 1.0 specification [20] defines
standard features that support end-to-end predictability for operations in fixed-priority
CORBA applications. RT-CORBA (and the TAO implementation) now includes
standard interfaces and QoS policies that allow applications to configure the follow-
ing types of resources:
• Processor resources via priority mechanisms, standardized ways of handling

thread pools and intra-process mutexes, and a global scheduling service;
• Communication resources via protocol properties and explicit bindings; and
• Memory resources by bounding buffering requests and the size of thread pools.

Applications typically configure these real-time QoS policies along with other
policies when they invoke standard ORB operations. For instance, when an object
reference is created using a QoS-enabled RT-CORBA object adapter, the object
adapter ensures that any server-side policies that affect client-side requests are em-
bedded within a tagged component in the object reference. This enables clients who
invoke operations on such object references to honor the policies required by the tar-
get object.

Strict control over the scheduling and execution of processor resources is essential
for correct execution of fixed-priority DRE applications. RT-CORBA enables client
and server applications to (1) determine the priority at which CORBA invocations
will be processed and (2) allow servers to pre-define pools of threads to service in-
coming invocations in a standard, ORB independent manner.

The fine-grained control of various aspects of ORB implementations is important
for predictable behavior. However, establishing a global task priority mechanism that
can be mapped to existing lower-level OS priorities and propagated across platforms
can be viewed as the key element of RT-CORBA for enabling coordinated end-to-end
behavior in a standard and interoperable COTS manner.

3.2 Priority-based Network Resource Management

Due to its pervasiveness (and the associated cost/availability ramifications), Internet
technology is coming to predominate the communication infrastructure for many
types of systems. A historic limitation of the Internet technology for DRE applications
has been its exclusive reliance on a “best effort” style of resource management. The
Internet Engineering Task Force (IETF) realized that Internet Protocol (IP) on its own
did not satisfy the requirements for these types of applications, and set up a working
group to develop new mechanisms to augment basic IP/TCP. As a result, network re-
source management capabilities based on Internet technologies are slowly emerging
that are more in line with the requirements of DRE computing environments.

In IP networks, data packets contain just enough information for intermediate
routers to forward a packet to its destination. Without emerging network traffic man-
agement extensions, all IP packets are treated the same and forwarded with “best ef-
fort” QoS. If a router between source and destination receives network traffic at a rate
faster than it can process, it will drop packets arbitrarily, which is a condition known
as network congestion. When TCP packets are dropped, the data is lost, and the
source host must retransmit the data to the destination host, thereby incurring laten-
cies that are unacceptable to many DRE applications.

The Differentiated Services (DiffServ) architecture [12] provides different types or
levels of service for IP network traffic. Individual traffic flows can be made more re-
sistant to dropping (and hence get preferential delivery) by setting the value of each
IP packet’s DiffServ field with an appropriate value. An IP header has an eight bit
DiffServ field that encodes router-level QoS into (1) six bits of DiffServ Codepoint
(DSCP), which enables 64 service categories of Per-Hop_Behavior (PHB) and (2)
two bits of Explicit Congestion Notification (ECN). A DSCP is added to data packet
headers to specify the expected type of service. DiffServ-enabled routers and other
network elements use the DSCP to differentiate the network traffic.

We have implemented two enhancements to the RT-CORBA support in TAO that
leverage DiffServ capabilities. First, we provided an efficient and flexible way of set-
ting the DSCP by extending the ORB protocol properties on the GIOP request and re-
sponse packets so that priority can be propagated to requests as they transit the net-
work and OS resources. Based on various factors (such as resource availability,
application conditions, and operational requirements), the QuO middleware can
change these priorities dynamically by marking application streams with appropriate
DSCPs to ensure appropriate priority handling against lower priority competing traf-
fic. Second, we provide a mechanism to map RT-CORBA priorities to DiffServ net-
work priorities. The TAO ORB provides a priority-mapping manager that supports in-
stallation of a custom mapping to override the default mapping. Figure 2 depicts how
these individual mechanisms are integrated into an end-to-end priority configuration.

3.3 Reservation-based OS Resource Management

The management of CPU resources in most operating systems has traditionally been
handled by assigning priorities to tasks in the system (usually threads or processes)
and applying scheduling algorithms to assign each task a share of CPU time. An al-
ternative approach is to reserve sufficient resources a priori for the estimated need.
While this approach may seem a more natural fit with meeting real-time demands, it
is usually more complicated to implement this type of resource management strategy
effectively because of issues associated with metering and meeting allocation guaran-
tees while also supporting a priority mechanism for practicality.

The TimeSys Corporation has applied a reservation approach to resource manage-
ment by implementing a CPU reservation feature in the Linux kernel. The TimeSys
Linux kernel is based on resource kernel (RK) [28] work done by the Real-time and

Middle-tier
Server

Client
Server

Service
Context
priority = 100

Service
Context
priority = 100

Router

Diffserv
CodePoint

 = EF

Diffserv
CodePoint

 = EF

Router

Fig. 2. Example Priority Propagation in RT-CORBA + DiffServ

QNX
priority

 = 16

LynxOS
priority
 = 128

Solaris
priority
 = 136

Multimedia Systems Laboratory at CMU. An application (or more precisely, a mid-
dleware proxy for the application) running on top of the TimeSys resource kernel can
specify its QoS requirements for timeliness, and the underlying resource kernel will
manage the OS resources so that these requirements can be met.

For CPU resources, TimeSys Linux allows an application to specify its timeliness
requirements by specifying parameters for compute time and period. If the resource
kernel can allocate resources that meet these requirements, it grants the application a
reserve, which guarantees that for every period, the application will have the re-
quested amount of CPU compute time, and will not be pre-empted. Reserving appro-
priate slices of resources on each of the participating platforms is an alternative to
priority based end-to-end management of host processing.

Although TimeSys Linux provides COTS mechanisms for reserving OS CPU re-
sources, the QuO and TAO middleware are responsible for determining who gets the
reserved capacity, how much, and for how long. These policy decisions are performed
via the higher-level middleware since it retains the end-to-end perspective to set the
lower-level OS resources appropriately. We are working with the University of Utah
to develop a CORBA-based CPU reservation manager that will (1) be the local agent
for setting up reservations on a host and (2) translate various representations of reser-
vation specification into the particular style supported by the TimeSys Linux [23].

3.4 Reservation-based Network Resource Management

Setting DSCPs as discussed in Section 3.2 makes traffic flows less likely to be
dropped due to network congestion in routers. There is no way in this model, how-
ever, to guarantee a level of service to a traffic flow unless it is the single highest pri-
ority traffic at each intermediate step. Just as for the OS-level resource reservations
discussed in Section 3.3, it is also desirable to request resources from the network to
help guarantee properties, such as latency or bandwidth of network traffic, across
some competing flows by reserving appropriate capacity in advance.

To address these issues, the Internet Engineering Task Force (IETF) established a
working group to develop a new reserved capacity mechanism to augment IP. The re-
sult was the Resource Reservation Protocol (RSVP) specified in RFC 2205 [33], also
commonly referred to as IntServ (for Integrated Services). Whereas the DiffServ
mechanisms outlined in Section 3.2 merely classify and prioritize packets for different
service levels, IntServ reservations allocate and coordinate router behavior along a
communication path flow to ensure the reserved end-to-end bandwidth.

RSVP specifies a signaling protocol, whereby an application can request a level of
service, such as bandwidth, for a certain network flow between a source and destina-
tion host. Each router between the source and destination host receives this signaling
information, and allocates enough resources to meet the required QoS. The resource
reservation is stored in each router so that it can be updated or deleted dynamically.

We have integrated the IntServ mechanisms described above into the QuO and
TAO middleware outlined in Section 2.1, where we use them to coordinate end-to-
end reservation allocation strategies. The QuO contracts contain the information about
the specification of the required reservations. From our prior work on developing in-
termediate level common distribution services, we utilize the CORBA A/V Streaming

Se
ob
lyi

4

W
me
the
for
tiv
clu
am
na

spe
It
im
rel
1.

2.
3.
Control Station Host 5

CORBA A/V
Streaming Service

UAV Host 1

MPEG
File

Host 4

Wired

Wireless
Ethernet

Video
Distributor
Process 1

Video
Distributor
Process 2

Video
Distributor
Process 3

Video
Source
Process Filter

Filter
Contract

UAV Host 2

MPEG
File

Video
Source
Process Filter

Filter
Contract

UAV Host 3
Video

Source
Process

Scale/
Compress

Quality
Contract

Bandwidth
Management

Bandwidth
Management

Bandwidth
Management

Throughput
Contracts

Displays

Control Station Host 6

Throughput
Contracts

Displays

Control Station Host 7

ATR
Contract

ATR
Display

Fig. 3. Architecture of the Evaluation Application Suite
rvice [19] to set up the (video stream) paths between the communicating CORBA
jects. Integrated with that is the ability to attach an RSVP reservation to the under-
ng network connection as it is setup by the A/V Streaming Service.

Applying Managed QoS in DRE Applications

e are applying and evaluating the multi-layered managed QoS approach and
chanisms described in Section 2.1 and Section 3 to complex challenge problems in
 avionics and remote sensor processing domains. Certain experimentation plat-
ms involve high speed mobile airborne vehicles, whereas others reside on rela-
ely fixed or slower moving ground platforms. The relevant QoS management in-
des trading off sensor quality and timeliness, and coordinating resource usage
ong competing applications, to satisfy changing mission requirements under dy-

mic, and potentially hostile, environmental conditions.
Figure 3 illustrates the architecture for the application suite that is motivating the
cific directions for our work currently being developed and undergoing evaluation.

represents collections of three-stage pipelines that apply QuO, TAO, and TAO’s
plementation of the CORBA Audio/Video Streaming Service [18] alongside other
evant technologies under investigation to the following three stages:
Sensor sources, (hosts 1-3) including processes with live camera feeds and those
that replay from a file, which send video images to

Distributor processes, (host 4) which are responsible for distributing the video to
Multiple receivers, (hosts 5-7) including human-oriented video displays and CPU-
intensive image processing software.

This application presents a wide variety of characteristics representative of many or
most DRE applications involving constrained resources, varying conditions, and con-
figurations, and varying data and processing characteristics, including:
• Varying data formats, including MPEG and PPM, with different data sizes and

compression characteristics.
• Varying network transports, including wireless, LAN, and WAN, with variable

and constrained bandwidth over both noisy and private channels.
• Varying image processing algorithms, including image display and image recog-

nition processes (the ATR – automated target recognition – process in Figure 3),
with different CPU usage patterns.

• Varying granularities of real-time deadlines, ranging from microseconds to milli-
seconds and seconds.
In particular, managing real-time end-to-end QoS in this context requires support-

ing and coordinating the following measures of operational effectiveness:
Minimal frame rate. Full motion video is typically 30 frames per second (fps), but

smooth video is generally perceptible at above approximately 20 fps. Lower frame
rates are visibly less smooth, but are viewable as long as other qualities, such as data
fidelity and jitter, are controlled. Our DRE application can use frame rates as low as 2
fps for human viewing and lower for image processing.

Minimal latency. Some uses of sensor information, such as remote piloting, re-
quire that the end viewer see an accurate and timely view of what the sensor is col-
lecting, which implies a minimal latency requirement. Studies have indicated that
humans can perceive a delay of more than 100-200 ms, so this provides a lower
bound for timeliness requirement in cases where the video is meant for human view-
ing and precision action. In cases where the image is being processed automatically,
the important threshold is for the latency to be low enough that there is no more cur-
rent image. In the case of MPEG-1 where I-frames (full content frames) are two fps,
that means a minimum latency of 500 ms.

Minimal jitter. Controlling the smoothness of the video can have greater impact on
the quality of human perception than the frame rate. Controlling the jitter requires
control all along the end-to-end path, since it can be affected by changes in the rate at
which video is sent, latency of video delivery, and the rate at which frames are dis-
played. Some typical strategies for reducing jitter, such as buffering, are not as useful
in real-time video because of the need for the video to be timely.

Image quality. The image must be of high enough quality, comprising the image
size, pixel depth, etc., for the purpose it is being used. In the case of human viewing,
this means the video must be large enough and clear enough to discern the detail that
humans need. For automated processing, it means the image must contain whatever
important features the processing is intended to detect.

Coordination of multiple activities. The middleware, in conjunction with system
and application directives, must control and coordinate the QoS so that the necessary
allocations and tradeoffs are made to ensure that the highest priority streams and the
most important characteristics (e.g., frame rate, latency, and jitter) are favored, even
while other, less important characteristics may be minimized or neglected.

Achieving end-to-end QoS requires managing the resources, including CPU and
network bandwidth, along the entire path from source to sink. It requires making
tradeoffs that consider user requirements, e.g., whether timeliness, fidelity, etc. is the

dominant characteristic. In our application architecture, we encode QoS measurement,
control, and adaptation directives and policies in QuO contracts that are distributed
throughout the application and are responsible for managing the resource and applica-
tion/data adaptation necessary to achieve an appropriate end-to-end QoS matched to
the circumstances relevant at that time.

By incorporating the OS and network mechanisms described in Section 3 that pro-
vide lower level resource control capabilities, we can integrate QuO contracts, ser-
vices such as CORBA Audio/Video Streaming Service, and the underlying TAO
Real-time CORBA middleware to establish task and network priorities and reserva-
tions end-to-end. These new integrated capabilities complement previous work [13] in
which the data/processing characteristics (such as changing the frame rate or image
size) were modified as well to satisfy operational requirements.

5 Empirical Results

Section 3 described mechanisms and services useful for managing CPU and network
resources. Using the QuO and TAO middleware outlined in Section 2.1 to integrate
and control these CPU and network resources, we are developing two complementary
approaches to end-to-end QoS management:
• Priority-based – Using TAO’s standard support for CORBA priorities to map to

OS priorities and to network priorities based on Real-time CORBA and DiffServ.
• Reservation-based – Reserving CPU cycles and network bandwidth based on the

TimeSys Linux resource kernel and the IntServ mechanism.
This section describes the results of systematic experiments we have conducted in the
context of the application described in Section 4 to evaluate the integration of prior-
ity- and reservation-based techniques using standards-based DRE middleware to
manage predictable QoS end-to-end.

5.1 Priority-based End-to-End Adaptive QoS

As discussed in Sections 3.1, RT-CORBA supports the preservation of priorities
across threads of activities in DRE applications by (1) mapping the importance of
various application activities to corresponding operating system thread priorities and
(2) propagating these priorities across the multiple hosts that the activity spans. RT-
CORBA is less explicit about the communication transport and network, however. As
described in Section 3.2, our approach is to use the RT-CORBA priority not only for
mapping to thread priorities and application scheduling requirements, but also to map
to DiffServ network priorities for end-to-end predictability and performance.

Empirical results for prioritization. We conducted a set of experiments to evalu-
ate the improvement in predictability and performance when using RT-CORBA pri-
orities to map to thread priorities and network DSCPs. The experiments consisted of
two video senders transmitting video to two receiver servants under the following
conditions:

Fig. 4. No DSCP set on either task and no thread priorities; (a) no extra CPU or network load
and (b) with extra CPU load and network traffic.
• Control runs, using senders with no priorities and no network management, with
and without contending CPU load and network traffic.

• Experimental runs with extra CPU load and network traffic, using thread priori-
ties; DiffServ priorities; and thread priorities and DiffServ priorities combined.

This experiment tests the hypothesis that combined management of thread and net-
work resources results in improved performance and predictability compared with no
resource management and management of either one individual resource alone.

The testbed consisted of 4 PCs with 1 GHz AMD Athlon processors and 512 MB
RAM, running Redhat Linux 7.1, with a 100 M bits-per-second (bps) Ethernet net-
work. The sender machine hosted two identical tasks playing the role of video send-
ers, generating GIOP messages at the rate of approximately 1.2 Mbps, the approxi-
mate bandwidth of MPEG video at 30 frames-per-second (fps). The receiver machine
hosted two servants activated in two separate Portable Object Adapters (POAs),
which dispatch operations to servants. A third machine played the role of a DiffServ-
enabled router, while a fourth machine generated cross traffic in excess of 90 Mbps.
We introduced continuous additional CPU load by making 100 consecutive calls to a
function checking for large prime numbers.

Figure 4 illustrates the control runs, with both sender tasks having no RTCORBA
(thread) priority and no network management of the video stream traffic. Figure 4a
indicates the results with no extra load introduced, either in the CPU or in the net-
work. As long as resources are plentiful, the latency of the video traffic for both
streams was approximately 1.5 ms, with occasional spikes to approximately 10 ms.
When extra network and CPU load was introduced, as illustrated in Figure 4b, per-
formance and predictability degraded significantly. Latency fluctuates widely be-
tween a few milliseconds to nearly a second for both streams.

Figure 5 illustrates the results of the first set of experimental runs, evaluating the
ability of thread priority alone. As mentioned above, the hypothesis is that while the
thread priority mechanism defined by the RT-CORBA specification alone might im-
prove performance and predictability, it is only a partial solution and cannot, by itself,
lead to end-to-end QoS. To test this hypothesis, we set one sender task as high priority
and the other low priority and increased the CPU load. Figure 5a illustrates that the

Fig. 5. Tasks with different priorities; no DSCP set on either task; and with introduced CPU
load; (a) no traffic congestion and (b) with traffic congestion.
higher priority task (sender 1) exhibits significantly lower latency than the lower pri-
ority task (sender 2).

When network traffic is introduced, however, thread priorities are not sufficient to
maintain QoS. The system becomes unpredictable even with RTCORBA priorities
set, as Figure 5b illustrates. In fact, there is a possibility of a priority inversion when
the high priority task finishes after the low priority task. As expected, the RT-CORBA
mapping to thread priority has no capability to maintain QoS when the network is the
bottleneck.

Figure 6 illustrates the efficacy of Diffserv alone. In the presence of introduced
network traffic, Diffserv is sufficient to maintain predictable performance (Figure 6a).
However, when extra CPU load is also introduced, the system experiences unaccept-
able jitter (Figure 6b). In contrast, Figure 7 illustrates the results of the experiment in
which we use RT-CORBA priorities for mapping to both thread priorities and DSCPs.
In this experiment, both senders get thread priorities and their DSCP set, giving them
preferential treatment over the competing CPU load and network traffic, with sender 1

Fig. 6. Tasks with no thread priorities but with DSCP set on either task; and with introduced
network traffic; (a) no CPU load and (b) with CPU load.

having the higher priority thread and higher network priority. Both senders become
much more predictable, while sender 1’s stream exhibits lower latency than sender
2’s. Priority-based thread control combined with priority-based DiffServ network
management is thus able to provide better end-to-end performance and predictability
in the face of CPU and network contention than either can do individually.

5.2 Reservation-Based End-to-End Adaptive QoS

The previous sections described priority-based mechanisms for ensuring end-to-end
QoS performance of applications. Priority mechanisms do not always work as well,
however, in systems with unpredictable and dynamic load scenarios as they do in
more static systems, where the load is periodic and the system is not affected to a sig-
nificant degree by the external environment [29]. Priorities serve best to reflect rela-
tive timing requirements of tasks. Likewise, reservations serve best to reflect the ab-
solute timing requirements of each task, when and if they are known.

Below, we describe experiments conducted with reservation-based resource man-
agement mechanisms in the context of the video streaming application and the
CORBA Audio/Video Streaming Service outlined in Section 4. These results illustrate
how the reservation resource mechanisms described in Sections 3.3 and 3.4 can be
used in conjunction with adaptive DRE middleware to provide end-to-end QoS as an
alternative to, or in concert with, priority-based techniques. The experiments evaluate
network and CPU mechanisms separately and in conjunction with application adapta-
tion, providing another step toward our ongoing research objective of a comprehen-
sive end-to-end capability for QoS adaptive middleware.

Empirical results for network reservations. We conducted a set of experiments
on the video delivery application to evaluate the effectiveness of network reservation
to increase the predictability and performance of data delivery. Our experiments in-
cluded two types of RSVP reservations: full reservations (1.2 Mbps, enough to sup-
port 30 fps) and partial reservations (670 Kbps). Since partial reservations are not suf-
ficient to support full rate video (i.e., 30 fps), we experimented with using QuO-based

Fig. 7. Task 1 wit d

h High Thread Priority and DSCP set and with traffic and CPU loa

frame filter
network res
every one o

1. No fra
2. No fra
3. No fra
4. Frame
5. Frame
6. Frame

ness o
The send

512MB RA
video (appr
an extra 43
The frame
down to 10

Figure 8
With no ad
were lost. W
important i
I-frames). W

Table 1
tency), and
trates that
and reduces

Empiric
end-to-end
livery. To m
quirements
was transm
ing server,
ure 3 of our
0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

Number of frames sent

N
um

be
r o

f f
ra

m
es

 re
ce

iv
ed

No Adaptation

Partial Resv and Frame
Filtering

Full Reservation

Load

Fig. 8. Predictability of Image Delivery using Network Reservation
ing also, i.e., reducing the video frame rate to a rate that the network (and
ervation) can support. In these experiments, we conducted experiments in
f the following possible combinations:
me filtering and no reservation
me filtering and partial reservation
me filtering and full reservation
 filtering and no reservation
 filtering and partial reservation
 filtering and full reservation (This combination is included for complete-
nly. With a full reservation, no frame filtering is necessary.)
er/distributor and receiver boxes were 750 MHz Pentium III laptops with
M, with 10 Mbps Ethernet between them. The video sender sent MPEG-1
oximately 1.2 Mbps for 30 fps) for 300 seconds. After 60 seconds elapsed,
.8 Mbps network load was generated for 60 seconds, then discontinued.
filtering cases dynamically reacted to network load by filtering frames

 fps or 2 fps, whichever the network would support.
 summarizes the predictability of video delivery in experiments 1, 5, and 6.
aptation, almost all of the frames sent while the system was under load
ith a partial reservation and frame filtering, the middleware dropped less

ntermediate frames, but successfully delivered all full content frames (i.e.,
ith a full reservation, all frames were delivered successfully.

describes the predictability (number of frames delivered), performance (la-
 jitter (standard deviation) under load of all the experimental cases. It illus-
network reservation greatly increases the predictability and performance,
 the jitter when the system is heavily loaded.
al results for CPU reservations. As with the priority-based experiments,
QoS reservations need to consider image processing as well as image de-
easure the ability to control the predictability of the CPU processing re-

 of the application, we constructed an experiment where image frame data
itted from a client program to a CORBA middleware-based image process-
simulating the automatic target recognition (ATR) function shown in Fig-
 application architecture. In the image-processing server, we ran three dif-

T

No Ad

Partial

Full R

No Re
Filteri
Partial
Frame
Full R
Filteri

ferent compu
Hirsch algorit

We ran the
the following
• Two contro

(2) competi
• An experim

with CPU r
We ran the

of RAM, runn
sys real-time
300,060 bytes
ceiver via a C
Kirsch, Prewi
algorithms wi
and a CPU res
image. The res

These resul
rithms increas
+30%. The ex
load, as illustr
the fact that th

Adding a C
comparable to
also much les
reservations th
predictability
able 1. Summary of Network Reservation Experimental Results

Under Load
% Frames
Delivered

Average
Latency

Standard
Deviation

aptation 0.83% 324 ms NMF

 Reservation 43.9% 742 ms 190.6

eservation 100% 190 ms 42.3

servation; Frame
ng 95.04% 276 ms 146.6

 Reservation;
 Filtering 99.18% 187 ms 143.6

eservation; Frame

ng 100% 171 ms 63.5

tationally intensive edge detection algorithms (Prewitt, Sobel, and
hms [11]) from the Tools for Image Processing library [9].
 experiments by sending many images to the image-processing server in
different runs:
l runs, which processed images with (1) no competing CPU load and
ng CPU load (and no CPU management) and
ental case, where images were processed with competing CPU load and
eservations added.
se experiments on a Pentium-III 850 MHz machine with 480 megabytes
ing Red Hat Linux 7.1 with version 2.4.7-timesys-3.0.145 of the Time-
Linux kernel. We used four images in PPM format, 400x250 pixels,
, and in RGB color. The sender continuously sent the images to the re-
ORBA interface. The receiver processed the image by invoking the

tt, and Sobel edge detection algorithms in sequence. We executed the
thout load, with competing CPU load, and with competing CPU load
ervation, and recorded the time that each algorithm took to process the
ults are summarized in Table 2.
ts show that under load, the execution time of the edge detection algo-
ed significantly – Kirsch by +41%, Prewitt by +13%, and Sobel by
ecution times of the edge detectors varied more than when there was no
ated by the higher standard deviations. This result may be explained by
e load added was variable and not sustained.
PU reservation reduced the execution time under load to values that are
 those exhibited with no load. The variability in the execution times was
s than in the experiment with load but with no CPU reservation. CPU
erefore did its job as expected to reduce the latency and increase the

of executing tasks when there is competing CPU load.

Our short-term future plans involve combining CPU and network reservation
mechanisms in a middleware controlled end-to-end QoS management capability for
our video streaming application.

6 Concluding Remarks

This paper describes recent advances we have made towards developing adaptive
DRE systems with end-to-end QoS management by integrating and testing a variety
of emerging operating system and network resource management mechanisms with
our earlier work on standards-based COTS DRE middleware and adaptive QoS man-
agement frameworks. As our work becomes more completely integrated as common
middleware – and is complemented with appropriate resource management binding
and scheduling services and policies – it is enabling a new generation of flexible DRE
applications that (1) have more precise control over their end-to-end resource man-
agement strategies and (2) can be easily reconfigured and adapted to dynamically
changing network and computing environments.

Most cost effective, near term solutions to end-to-end system QoS management
need to rely on underlying COTS components, such as operating systems, networks,
and CPUs. To provide an effective end-to-end solution, however, mechanisms for
managing resources at these architectural levels must be integrated with middleware.
Until recently, capabilities for managing these resources outside of the narrow host or
intra-network perspective were either missing, primitive, or non-standard. The atten-
tion being focused on QoS issues for distributed systems has prompted activities that
have led to a variety of new mechanisms for low level resource control. Accordingly,
our current R&D activity is focused on two topics:
1. How to integrate these emerging individual mechanisms effectively to form a

consistent end-to-end control model and

Table 2. Summary of CPU Reservation Experimental Results

No Load Competing
CPU Load

CPU Load &
CPU Reserva-
tion

Algorithm Av.
Proc.
Time
(ms)

Std.
Dev.

Av.
Proc.
Time
(ms)

Std.
Dev.

Av.
Proc.
Time
(ms)

Std.
Dev.

Kirsch 44.3 0.08 56.5 11.8 44.5 0.87

Prewitt 44.6 0.09 51.5 9.2 44.7 0.16

Sobel 45.3 0.12 59.8 12.9 45.7 0.84

2. How to integrate these low-level mechanisms with higher levels of middleware
that can provide end-to-end and system-wide policies and strategies needed to
complete our vision.
While this paper indicates that we are making significant progress, we have not yet

achieved our final integration milestones. The results in Section 5 illustrate how we
have made fundamental progress in separately supporting the two dominant para-
digms: priority-and reservation-based approaches. We have demonstrated the effec-
tiveness of implementations of these mechanisms (sometimes integrated, sometimes
in isolation) to do what they were intended to do. We have made progress on integrat-
ing these low-level controls with higher-level middleware abstractions and policy
mechanisms intended to unify the individual elements of the system. All of that work
is continuing. After we have integrated, tested, and validated all of the individual
mechanisms end-to-end, as well as with the upper levels of middleware for individual
flows, we will then focus on the aggregate management policies and adaptive behav-
ior that these levels of middleware are intended to enable. When all of these attributes
are in place, we can then provide a more detailed decomposition of the roles and in-
terfaces required to provide a complete service.

Ultimately, we contend that priority- and reservation-based approaches will both
have their place in complex DRE application systems. It will therefore be important
not only to provide both a consistent end-to-end priority and reservation capability
stand-alone, but to characterize, understand, and manage the patterns of their individ-
ual use and the interplay and interactions between them.

One promising research direction is to combine priority-based mechanisms in con-
junction with reservation mechanisms, using the priority paradigm to drive who gets
reservations and to what degree. Since OS reservation allocation mechanisms are
newer and have been applied less often than priority mechanisms, they also lag prior-
ity-based mechanisms in coordinating and standardizing the reservation mechanisms
across distributed systems. Our future work aims at redressing this imbalance.

QuO and TAO software are available in open-source format at http://www.dist-
systems.bbn.com/tech/QuO and http://deuce.doc.wustl.edu/Download.html.

References

1. BBN Technologies, “Quality Objects (QuO)”, http://www.dist-systems.bbn.com/papers.
2. G. Blair, G. Coulson, P. Robin, M. Papathomas, “An Architecture for Next Generation Middleware,” Pro-

ceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing, London, England, 1998.

3. D. Box, Essential COM, Addison-Wesley, Reading, MA, 1997.
4. D. Conan, E. Putrycz, N. Farcet, M. DeMiguel, “Integration of Non-Functional Properties in Containers,”

Proc. of the 6th International Workshop on Component-Oriented Programming, Budapest, Hungary, 2001.
5. B. Doerr, T. Venturella, R. Jha, C. Gill, and D. Schmidt, "Adaptive Scheduling for Real-time, Embedded

Information Systems", Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference
(DASC), St. Louis, Missouri, Oct 1999.

6. T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, P. Robin, “Supporting Adaptive Multimedia Applications
through Open Bindings,” International Conference on Configurable Distributed Systems, Maryland, 1998.

7. C. Gill, D. Levine, and D. Schmidt, "The Design and Performance of a Real-Time CORBA Scheduling
Service”, Real-Time Systems, The International Journal of Time-Critical Computing Systems, special is-
sue on Real-Time Middleware, vol. 20, num. 2, 2001.

8. A. Gokhale and D. Schmidt, "Optimizing a CORBA IIOP Protocol Engine for Minimal Footprint Multi-
media Systems”, Journal on Selected Areas in Communications special issue on Service Enabling Plat-
forms for Networked Multimedia Systems, vol. 17, num. 9, Sep 1999.

9. S. Grigorescu, C. Grigorescu, and A. Jalba. Tools for Image Processing, Version 0.0.1.
http://www.cs.rug.nl/˜cosmin/tip/, 2002.

10. M. Henning and S. Vinoski, “Advanced CORBA Programming With C++”, Addison-Wesley, 1999.
11. S. Hlavac and R. Boyle Image Processing, Understanding, and Machine Vision, 2nd edition. PWS Pub-

lishing Company, Pacific Grove, CA, 2nd edition, 1999.
12. IETF, An Architecture for Differentiated Services, http://www.ietf.org/rfc/rfc2475.txt
13. Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishnamurthy Y, Pyarali I, Schmidt DC. Application of

the QuO Quality-of-Service Framework to a Distributed Video Application. Proceedings of the Interna-
tional Symposium on Distributed Objects and Applications, September 18-20, 2001, Rome, Italy.

14. G. Kiczales, “Aspect-Oriented Programming”, Proceedings of the 11th European Conference on Object-
Oriented Programming, Jun 1997.

15. F. Kon, F. Costa, G. Blair, and R. Campbell, “The Case for Reflective Middleware,” CACM, June 2002.
16. J. Loyall, R Schantz, J.. Zinky,and D. Bakken, "Specifying and Measuring Quality of Service in Distrib-

uted Object Systems", Proceedings of the 1st IEEE International Symposium on Object-oriented Real-
time distributed Computing (ISORC), April 1998.

17. M deMiguel, “QoS-Aware Component Frameworks,” The 10th Int’l Workshop on QoS, Florida, 2002.
18. S. Mungee, N. Surendran, Y. Krishnamurthy, and D. Schmidt, “The Design and Performance of a

CORBA Audio/Video Streaming Service,” Design and Management of Multimedia Information Systems:
Opportunities and Challenges, Idea Publishing Group, 2000.

19. Object Management Group, "Control and Management of Audio/Video Streams, OMG RFP Submission
(Revised), OMG Technical Document 98-10-05", Oct 1998, Framingham. MA.

20. Object Management Group, “Realtime CORBA Joint Revised Submission”, OMG Document orbos/99-
02-12, March 1999.

21. Object Management Group, Real –Time CORBA 2.0: Dynamic Scheduling Specification, OMG Final
Adopted Specification, September 2001, http://cgi.omg.org/docs/ptc/01-08-34.pdf.

22. I. Pyarali, C. O'Ryan, D. Schmidt, N. Wang, V. Kachroo, and A. Gokhale, "Applying Optimization Pat-
terns to the Design of Real-time ORBs”, Proceedings of the 5th Conference on Object-Oriented Technolo-
gies and Systems, San Diego, CA, May 1999.

23. J. Regehr and J. Lepreau. “The Case For Using Middleware To Manage Diverse Soft Realtime Schedul-
ers,” In Proc. of the International Workshop on Multimedia Middleware, Ottawa, Canada, October 2001.

24. R. Schantz, J. Loyall, M. Atighetchi, P. Pal. “Packaging Quality of Service Control Behaviors for Reuse,”
Proceedings of the 5th IEEE International Symposium on Object-oriented Real-time distributed Comput-
ing (ISORC 2002), April 29 - May 1, 2002, Washington, DC.

25. R. Schantz and D. Schmidt, “Middleware for Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software Engineering, Wiley and Sons, 2002.

26. D. Schmidt, D.Levine, and S. Mungee, “The Design and Performance of Real-Time Object Request Bro-
kers,” Computer Communications, April 1998.

27. D. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software Architectures for Reducing Priority
Inversion and Non-determinism in Real-time Object Request Brokers”, Journal of Real-time Systems,
special issue on Real-time Computing in the Age of the Web and the Internet, Kluwer, 2001.

28. TimeSys Corporation. TimeSys Linux R/T User’s Manual, 2.0 edition, 2001.
29. Timesys Corporation. Predictable Performance for Dynamic Load and Overload, Version 1.0.

http://www.timesys.com/files/whitepapers/Predictable_Performance_1_0.pdf, 2002.
30. R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken, “QuO's Runtime Support for Quality

of Service in Distributed Objects", Proceedings of Middleware 98, the IFIP International Conference on
Distributed Systems Platform and Open Distributed Processing, Sept 1998.

31. N. Wang, D. Schmidt, A. Gokhale, C. Gill, B. Natarajan, C. Rodrigues, J. Loyall, R. Schantz. "Total
Quality of Service Provisioning in Middleware and Applications," Microprocessors and Microsystems
spec. issue on "Middleware Solutions for QoS-enabled Multimedia Provisioning over the Internet", 2003.

31. A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System”, USENIX Com-
puting Systems, MIT Press, vol. 9, num. 4, Nov/Dec 1996.

33. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A New Resource ReSerVation Pro-
tocol,” IEEE Network, September 1993

34. J. Zinky, D. Bakken, and R. Schantz, “Architectural Support for Quality of Service for CORBA Objects”,
Theory and Practice of Object Systems, vol. 3, num. 1, 1997.

http://www.ietf.org/rfc/rfc2475.txt
http://cgi.omg.org/docs/ptc/01-08-34.pdf

