
Context-Specific Middleware Specialization Techniques
for Optimizing Software Product-line Architectures

�

Arvind S. Krishna
�

, Aniruddha Gokhale
�

and Douglas C. Schmidt
�

,
Venkatesh Prasad Ranganath

�

and John Hatcliff
�

�

Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN
�

Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS

ABSTRACT
Product-line architectures (PLA)s are an emerging paradigm for de-
veloping software families for distributed real-time and embedded
(DRE) systems by customizing reusable artifacts, rather than hand-
crafting software from scratch. To reduce the effort of developing
software PLAs and product variants for DRE systems, develop-
ers are attempting to leverage general-purpose – ideally standard
– middleware platforms whose reusable services and mechanisms
support a range of application quality of service (QoS) require-
ments, such as low latency and jitter. The generality and flexi-
bility of standard middleware, however, often results in excessive
time/space overhead for DRE systems, due to lack of optimizations
tailored to meet the specific QoS requirements of different product
variants in a PLA.

This paper provides the following contributions to the study of
middleware specialization techniques for PLA-based DRE systems.
First, we identify key dimensions of generality in standard middle-
ware, including generality stemming from framework implementa-
tions, deployment platforms, and middleware standards. Second,
we illustrate how context-specific specialization techniques can be
automated and applied to tailor standard middleware to better meet
the QoS needs of different PLA product variants. Third, we quan-
tify the benefits of applying automated tools to specialize a standard
Real-time CORBA middleware implementation. When applied to-
gether, these middleware specializations improved our application
product variant throughput by � 65%, average- and worst-case end-
to-end latency measures by � 43% and � 45%, respectively, and
predictability by a factor of two over an already optimized middle-
ware implementation, without affecting portability, standard mid-
dleware APIs, or application software implementations, and pre-
serving interoperability wherever possible.
1. INTRODUCTION
Emerging trends & challenges. Product-line architectures (PLA-
s) [17, 1] are a promising technology for systematically address-
ing the challenges of large-scale software systems. In contrast to
conventional software processes that produce separate point solu-
tions, PLA-based processes create families of product variants [30]

�
This research was funded by grants from DARPA and Qualcomm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

that share a common set of capabilities, patterns, and architectural
styles. PLAs can be characterized using scope, commonality, and
variabilities (SCV) analysis [2], which is an engineering process
that identifies the scope of the product families in an application
domain and then determines the common and variable properties
among them.

PLAs have been created and applied to a variety of domains [24,
9], including the domain of distributed, real-time and embedded
(DRE) systems [30, 5, 31]. Examples of DRE systems include ap-
plications with hard real-time requirements, such as avionics mis-
sion computing [26], as well as those with softer real-time require-
ments, such as telecommunication call processing and streaming
video [20]. The QoS challenges (such as low memory footprint,
latency, and predictability) of DRE systems have hitherto led de-
velopers to (re)invent custom applications that are tightly coupled
to specific hardware/software platforms, which is tedious, error-
prone, and costly to evolve over product lifecycles. During the past
decade, therefore, a key technology for alleviating the tight cou-
pling between applications and their underlying platforms has been
middleware, which (1) functionally bridges the gap between ap-
plications and platforms, (2) controls many aspects of end-to-end
QoS, and (3) simplifies the integration of components developed by
multiple technology suppliers.

Although middleware has been used successfully in DRE sys-
tems [30, 5, 31, 26], key challenges must be overcome before it can
be applied broadly to support the QoS needs of PLA-based DRE
systems. In particular, R&D is needed to help resolve the tension
between (1) the generality of standards-based middleware plat-
forms, which benefit from reusable architectures designed to sat-
isfy a broad range of application requirements, and (2) application-
specific product variants, which benefit from highly-optimized, cus-
tom middleware implementations. In resolving this tension, solu-
tions should ideally retain the portability and interoperability af-
forded by standard middleware.
Specializing Middleware for PLAs. This paper extends our ear-
lier work on general-purpose middleware optimizations [20, 21,
23] by describing the results of developing and applying a toolkit
to help resolve key aspects of the generality/specificity tension out-
lined above. This toolkit automates the specialization [4] of general-
purpose, standards-based middleware to meet the needs of specific
PLA-based DRE systems. This paper provides the following re-
search contributions:

1. We use a representative PLA case study to identify key di-
mensions of excessive generality in standards-based middle-
ware, focusing on Real-time CORBA [15], which is standard
middleware used in Boeing Bold Stroke [30, 31, 26], which
is a PLA-based DRE system in the domain of avionics mis-
sion computing.

2. We show how context-specific specialization techniques [10]

(such as code refactoring [6], and code weaving [32]) can
be used to customize the widely used TAO [28] Real-time
CORBA implementation to remove excessive generality and
thus better support application-specific QoS needs of PLA-
based DRE systems, such as Bold Stroke.

3. We describe the design of a domain-specific language, tools,
and a process for automating the specialization techniques
discussed in the paper.

4. We present and analyze quantitative results that demonstrate
the improvement in performance and predictability of spe-
cializations applied to TAO in the context of our PLA case
study.

Our results show that specialization techniques guided by context-
specific information can significantly improve the QoS of a standa-
rds-based middleware implementation that has already been opti-
mized extensively via general-purpose techniques.
Paper organization. The remainder of the paper is organized as
follows: Section 2 identifies key middleware specialization chal-
lenges pertaining to PLA-based DRE systems; Section 3 explains
how context-specific specializations of middleware help address
these challenges and describes our techniques and tools for au-
tomating the specializations; Section 4 examines the results of ex-
periments conducted to validate our approach; Section 5 compares
our work with related research; and Section 6 presents concluding
remarks and summarizes lessons learned.

2. MIDDLEWARE SPECIALIZATION CHA-
LLENGES

General-purpose, standard middleware implementations are de-
signed to be reusable since they need to satisfy a broad range of
functional and QoS application requirements. PLAs define a fam-
ily of systems that have many common functional and QoS require-
ments, as well as variability specific to particular products built us-
ing the PLA. Resolving the tension between generality and speci-
ficity is essential to ensure that middleware can support the QoS
requirements of PLA-based DRE systems. Unfortunately, imple-
mentations of standards-based, QoS-enabled middleware, such as
Real-time CORBA and Real-time Java, can incur time/space over-
heads due to excessive generality.

This section uses a representative PLA-based DRE system sce-
nario to identify and illustrate common types of excessive general-
ity in standard middleware. Section 3 then outlines how context-
specific middleware specialization techniques and tools help to al-
leviate the time/space overhead stemming from this generality.

2.1 DRE PLA Case Study
This section uses a concise, yet representative, DRE PLA sce-

nario to (1) illustrate how the generality/specificity tension outlined
above occurs in production DRE systems and (2) identify concrete
system invariants that drive our specialization approach. The sce-
nario is based on the Boeing Bold Stroke avionics mission com-
puting PLA [31], which supports the Boeing family of aircraft, in-
cluding many product variants, such as F/A-18E, F/A-18F, F-15E,
F-15K, etc. Bold Stroke is a component-based, publish/subscribe
platform built atop the TAO Real-time CORBA ORB.

Figure 1 illustrates the BasicSP application scenario, which is an
assembly of avionics mission computing components reused in dif-
ferent Bold Stroke product variants and representative of rate-based
DRE systems in avionics, vetronics, and process control. This sce-
nario involves four avionics mission computing components that
periodically send GPS position updates to a pilot and navigator
cockpit displays at a rate of 20 Hz. The time to process inputs to

the system and present output to cockpit displays should therefore
be less than a single 20 Hz frame.

TIMER

20Hz

GPS
 NAV DISP

AIRFRAME

TIMER

20Hz

GPS
 NAV DISP

AIRFRAME

timeout
 data_avail

get_data ()

data_avail

get_data ()

Figure 1: BasicSP Application Scenario

Communication between components uses the event-push/data-
pull model, with data producing components pushing an event to
notify new data is available and data consuming components pulling
data from the source. A Timer component pulses a GPS naviga-
tion sensor component at a certain rate, which in turn publishes the
data_avail events to an Airframe component. Aware that
new data is available, this component then calls a method provided
by the Read_Data interface of the GPS component to retrieve
the current location. After formatting the data, Airframe sends
a data_avail event to the Nav_Display component, which
then pulls the location and velocity data from the Airframe com-
ponent and displays this information on the pilot’s heads-up dis-
play.

The BasicSP scenario illustrates a range of commonalities and
variabilities in the Bold Stroke PLA. Commonalities include the
set of reusable components (such as Display, Airframe, and
GPS) in Bold Stroke and middleware capabilities (such as con-
nection management, data transfer, concurrency, synchronization,
(de)marshaling, (de)multiplexing, and error-handling) that occur in
all product variants. Variabilities include application-specific com-
ponent connections (such as how GPS and Airframe components
are connected in an F/A-18E vs. an F-15K), different implementa-
tions (such as whether GPS or inertial navigation algorithms are
used), and components specific to particular customers (such as re-
strictions on exporting certain encryption algorithms). The rates at
which these components interact is yet another variability that may
change in different product variants.

Analysis of commonalities and variabilities in the BasicSP sce-
nario helps identify functional (e.g., specific communication pro-
tocols) and QoS (e.g., end-to-end latency) characteristics of PLAs.
In turn, these characteristics map to specific requirements on – and
potential optimizations of – the underlying middleware. The re-
mainder of this paper focuses on the specialized middleware opti-
mizations based on PLA functional and QoS characteristics.

2.2 Common Types of Excessive Generality in
Middleware

We now identify and describe key types of excessive middleware
generality that are relevant to PLA-based DRE systems. We use
the BasicSP scenario from Figure 1 to show how this generality
manifests itself in a PLA-based DRE system. The challenges of
each type of generality are shown in Figure 2 and discussed below.1

Challenge 1. Overly extensible object-oriented frameworks.
Middleware is often developed as a set of object-oriented frame-
works that can be extended and configured with alternative imple-
mentations of key components, such as different types of transport
protocols (e.g., TCP/IP, VME, or shared memory), event demulti-
plexing mechanisms (e.g., reactive-, proactive-, or thread-based),
request demultiplexing strategies (e.g., dynamic hashing, perfect

�

These challenges are not limited to Real-time CORBA or the Ba-
sicSP PLA, which we use simply as examples to make the discus-
sion concrete.

hashing, or active demuxing), and concurrency models (e.g., thread-
per-connection, thread pool, or thread-per-request). A particular
DRE product variant, however, may only use a small subset of the
potential framework alternatives. As a result, general-purpose mid-
dleware may be overly extensible, i.e., contain unnecessary over-
head for indirection and dynamic dispatching that is not needed for
use cases in a particular context.

In the BasicSP scenario, for instance, the transport protocol is
VME, the event demultiplexing mechanism is reactive, the request
demultiplexing mechanisms are perfect hashing and activate de-
muxing, and the concurrency model is thread pool. A different
variant of this scenario for a different set of customer requirements,
however, may use a different set of framework components. A
challenge is to develop middleware specialization techniques that
can eliminate unnecessary overhead associated with overly exten-
sible object-oriented framework implementations for certain prod-
uct variants or application-specific contexts.

Figure 2: BasicSP Specialization Points

Challenge 2. Redundant request creation and/or initialization.
To send a request to the server, the middleware creates a request,
which contains buffer space to hold the header and payload infor-
mation for each invocation. Rate-based DRE systems often re-
peatedly generate periodic events, such as timeouts that drive pe-
riodic system execution. Since most request information (such
as message size, operation name, and service context) does not
change across events, middleware implementations can use buffer
caching [20] strategies to minimize request creation. This approach,
however, can still incur the overhead of initializing the header and
payload for every request.

In the BasicSP scenario, for instance, the Timer component
always sends the same timeout event to the GPS component.
Similarly, the GPS and Airframe components send the same
data_avail event to their consumers. A different variant of this
scenario, however, may not send the same events to consumers re-
peatedly. A challenge is to develop middleware specialization tech-
niques that can reuse pre-created requests (i.e., from previous invo-
cations) partially and/or completely to avoid redundant initializa-
tion for certain product variants or application-specific contexts.
Challenge 3. Repeated resolution of the same request dispatch.
To minimize the time/space overhead incurred by opening multiple
connections to the same server, middleware often multiplexes re-
quests on a single connection between client and server processes.
Multiple client requests targeted for different request handlers in

a server process are therefore received on the same multiplexed
connection. Standard Real-time CORBA servers typically process
a client request by navigating a series of middleware layers, e.g.,
ORB core, object adapter(s), servant, and operation. To optimize
request demultiplexing, Real-time CORBA implementations can
combine active demultiplexing [20] and perfect-hashing [20] strate-
gies to bound worst case lookup time to

�������
, irrespective of the

nesting of the layers. This optimization, however, can still incur
non-trivial overhead when navigating middleware layers and is re-
dundant when the target request handler remains the same across
different request invocations.

In the BasicSP scenario, for instance, the Airframe and Nav_
Display components repeatedly use the same get_data() op-
eration to fetch new GPS and Display updates. In a connection
between GPS and Airframe components, therefore, the get_
data() operation is sent and serviced by the same request dis-
patcher. A different variant of this scenario, however, may service
operations via different request dispatchers. A challenge is to de-
velop middleware specialization techniques that avoid the expense
of navigating layers of middleware to resolve the same request dis-
patch for certain product variants or application-specific contexts.
Challenge 4. Redundant (de)marshaling overheads. PLA-based
DRE systems may be deployed on platforms with different instruc-
tion set byte orders. To support interoperable request processing
regardless of byte order, standard Real-time CORBA implementa-
tions therefore use the General Inter-ORB Protocol (GIOP), which
performs byte order tests when (de)marshaling requests/responses.
These tests incur unnecessary overhead, however, when all the DRE
system computing nodes have the same byte order. The GIOP pro-
tocol also requires alignment of primitive types (such as long and
double) within a request/response for certain hardware architec-
tures, which forces middleware implementations to maintain off-
set information within a request/response buffer and pad buffers
up to the next readable/writable locations. Frequent alignment and
padding can force costly buffer resizing and data copying. The
overhead associated with alignment can be eliminated in homoge-
neous environments, i.e., when the same ORB implementation and
compiler are used for (de)marshaling.

In the BasicSP scenario, for instance, the two nodes on which
the components are deployed (NodeA and NodeB) have the same
byte order. The standard TAO Real-time CORBA middleware re-
siding on these nodes, however, still tests whether (de)marshaling is
needed when requests/responses are exchanged between nodes. A
different variant of this scenario, however, may run on nodes with
different byte orders, but with the same compiler/middleware im-
plementation, in which case data need not be aligned. A challenge
is to develop middleware specialization techniques that evaluate
ahead-of-time deployment properties to remove redundant (de)mar-
shaling overheads for certain product variants or application-spe-
cific contexts.
Challenge 5: Generality of deployment platform. Another key
dimension of generality stems from the deployment platforms on
which middleware and PLA applications are hosted. Examples of
this deployment platform generality include different OS-specific
system calls, compiler flags and optimizations, and hardware in-
struction sets. Every OS, compiler, and hardware platform provides
different configuration settings that perform differently and can be
tuned to minimize the time/space overhead of middleware and ap-
plications.

In the BasicSP scenario, for instance, a product variant could
run the Linux OS with Timesys kernel and g++ compiler on NodeA
and the VxWorks OS with the Greenhills compiler on Node B. Yet
other variants could use different combinations of OS, complier,

and hardware. A challenge is to develop specialization techniques
that discover and automate the selection of right combination of
OS, compiler, and hardware settings for a given deployment plat-
form.

2.3 Summary
This section described key dimensions of excessive middleware

generality, using Real-time CORBA middleware as an example.
These challenges are also applicable to other popular middleware
platforms that use common patterns [7, 29] to accommodate PLA
variability, such as different protocols, concurrency, synchroniza-
tion, and (de)marshaling mechanisms. Alleviating unused object-
oriented framework generality (challenge 1) can specialize the mid-
dleware for different product variants. Avoiding redundant request
creation (challenge 2) occurs in middleware implementations that
provide notion of a request message, including CORBA, .NET, and
Web Services. Optimizing repeated resolution of same the dis-
patch (challenge 3) can benefit middleware implementations (such
as CORBA, COM, and EJB) that navigate multiple layers/lookup
tables to process target requests. Specializing (de)marshaling (chal-
lenge 4) and deployment platform generality (challenge 5) can be
applied to other middleware that target heterogeneous OS, com-
piler, and hardware platforms.

3. RESOLVING MIDDLEWARE GENERAL-
ITY VIA CONTEXT-SPECIFIC SPECIA-
LIZATIONS

This section examines techniques that focus on the use of context-
specific specializations to enhance the QoS of PLA-based DRE
systems by alleviating excessive generality in middleware imple-
mentations. Context-specific specialization techniques are related
to partial evaluation, which creates a specialized version of a gen-
eral program that is more optimized for time and/or space than
the original [12]. Context-specific specializations can be realized
using code-refactoring and weaving [32, 6], which uses aspect-
oriented programming mechanisms to factor out and weave cross-
cutting concerns, as well as language mechanisms, such as program
optimization techniques [11]. Below we describe how we applied
context-specific specializations to TAO to resolve the challenges
described in Section 2. The specialization techniques and tools are
reusable and applicable to various middleware implementations be-
yond TAO.

3.1 Applying Context-Specific Specializations
to Middleware

Context-specific specializations described in this paper include
constant propagation, layer-folding, memoization, code-refactoring,
and aspect weaving. These specialization are driven by invariant
properties [14], which are specific application-, middleware-, and
platform-level characteristics that remain fixed during system ex-
ecution, but which may vary for different system configurations/-
requirements. The invariants themselves may be specific for a par-
ticular PLA or applicable to many PLAs. Invariant properties cov-
ered in this paper include particular attribute settings (such as timer
rates), parameter values (such as arguments to a method), and inter-
nal/external contexts (such as a dispatcher for a request and hard-
ware, OS and compiler settings).

In simple cases, an invariant property manifests itself in the form
of a call to method m(), where one or more of the parameters of
the method is always bound to the same value. Our program spe-
cialization strategies push invariant data through the middleware
code, simplifying along the way. For example, we create a spe-
cialized version of m() where the parameters with fixed values

are removed and the body of m() is simplified according to the
information provided by the fixed parameter values. Below, we de-
scribe the intent (purpose), invariance assumptions (conditions in
our BasicSP case study that enabled certain specializations), and
type (technique) of specialization we applied to resolve the middle-
ware generality challenges described in Section 2.

To evaluate our middleware specializations in a realistic context,
we applied them to the TAO implementation of Real-time CORBA,
which is written in C++ and contains many general-purpose ORB
optimizations [21, 23]. We use general-purpose optimized TAO as
a baseline to quantify the benefits of specializations that help re-
solve the challenges for PLAs described in Section 2.2. We focus
on TAO since it is a mature, efficient, and open-source implemen-
tation of the Real-time CORBA standard that is used widely in pro-
duction DRE systems (www.dre.vanderbilt.edu/users.
html).

3.1.1 Specialize Middleware Framework Extensibil-
ity via Aspect Weaving

We first describe specialization techniques for resolving chal-
lenge 1 in Section 2.2.
Intent. Eliminate unnecessary extensibility mechanisms (such as
indirections and dynamic dispatching) in object-oriented frame-
works along the critical request/response processing path. This
specialization can be applied to many internal ORB frameworks
that handle transport protocols, request demultiplexing, and con-
currency models. For our case study, we choose to specialize TAO’s
(1) Reactor framework [27], which is responsible for demultiplex-
ing connection and data events to their corresponding GIOP event
handlers, and (2) pluggable protocol framework [16] which allows
ORBs to communicate transparently via different protocol imple-
mentations, such as TCP/IP, VME, SSL, SCTP, UNIX-domain sock-
ets, and/or shared memory.
Invariance assumptions. After a Reactor framework implemen-
tation is selected for the BasicSP scenario, it does not change dur-
ing the lifetime of the ORB. Likewise, after a protocol implemen-
tation is selected it also does not change during the lifetime of the
ORB.
Specialization. Figure 3(A) shows different Reactor implementa-
tions supported by TAO. The Select_Reactor uses the single-

Figure 3: Reactor & Protocol Specialization

threaded select()-based event demuxer, the Thread_Pool_
Reactor uses the multi-threaded select ()-based event de-
muxer, and the WFMO_Reactor uses the Windows WaitFor-
MultipleObjects() event demuxer. To work transparently
across all Reactor framework implementations, TAO uses an ab-
stract base class (i.e., a generic Reactor_Impl) that delegates
to concrete subclasses via virtual method calls. Specializing the
Reactor framework with a concrete subclass (i.e., a subclass with
no virtual methods) eliminates the indirection (generality) by using
the concrete reactor instance directly.

TAO’s pluggable protocol framework uses the Template Method

pattern [7] to configure different protocol implementations during
the ORB initialization phase. As shown in Figure 3(B), this frame-
work consists of protocol-independent components, such as the
Transport class that provides send() and recv() hooks to
encapsulate a connection and provide a protocol-independent means
of sending/receiving data. Protocol-specific classes, such as the
IIOP_Transport class, override these hooks to implement prot-
ocol-specific functionality. The Transport class interacts with
other framework components, such as the Profile class that en-
capsulates addressing information in TAO, which in turn uses the
Template Method pattern to support multiple protocol implemen-
tations. Specializing the hook methods in a template method with
protocol-specific behavior eliminates the indirection (i.e., the vir-
tual hook methods).

The specializations described above are an example of aspect
weaving, where the generality (i.e., virtual methods and indirec-
tions) that crosscuts different classes and files is customized for a
specific context. For example, our BasicSP PLA scenario only uses
the Select_Reactor and VME protocol, so there is no need to
incur additional indirection and generality overhead.

3.1.2 Specialize Request Creation/Initialization via
Memoization

We now describe specialization techniques for resolving chal-
lenge 2 described in Section 2.2.
Intent. Rather than creating a new CORBA request repeatedly for
each invocation, create/initialize a request once and only update its
state that changes.
Invariance assumption. Many (often most) operation parameters
and/or context information in a request do not change across invo-
cations in DRE systems.
Specialization. Figure 4 shows the structure of a two-way CORBA
request using GIOP version 1.2. As shown in the figure, every

Figure 4: Opportunities for Request Creation Specialization

request has three components defined by the CORBA specifica-
tion: (1) a request header that indicates the type of CORBA re-
quest (i.e., GIOP version 1.0, 1.1, or 1.2) and the total size of the
message, (2) a request-specific header containing the object key
that uniquely identifies the servant and service context information
containing service-specific information, such as the required prior-
ity and transaction/security contexts, and (3) optional parameters
that were passed as arguments to the operation.

Figure 4 also shows three types of specializations of increas-
ing strength that can be applied. In some situations only the re-
quest header can be specialized, i.e., its contents are held constant,
updating only the total size of the message. In other situations,
both the request and the request-specific headers can be held con-
stant, updating only the payload. Finally, the entire CORBA re-
quest can sometimes be reused wholesale across multiple request

invocations.
This specialization is an example of memoization, where a re-

sult is precomputed and saved rather than recomputed each time.
In our BasicSP PLA case study, the precomputed “result” is the
CORBA request. This specialization thus avoids unnecessary cre-
ation and/or initialization of requests.

3.1.3 Specialize Dispatch Resolution via Layer-Fold-
ing

We now describe specialization techniques for resolving chal-
lenge 3 described in Section 2.2.
Intent. Resolve the target request dispatcher once for the first re-
quest and reuse it to service all other requests sent over the same
dedicated connection.
Invariance assumptions. The same operation or operations in the
same IDL interface are invoked on a multiplexed connection.
Specialization. Figure 5 shows a normal layered demultiplexing
path through a CORBA server, i.e., the ORB core locates the target
POA, which locates the servant, which locates the skeleton, which
dispatches the request to an application-defined method. Rather

Figure 5: Specializing Request Dispatching

than navigating this layered path, a specialized implementation can
cache the skeleton servicing the request and invoke the method on
the skeleton directly. A similar approach can be applied to cache
the target POA(s) and servant.

This specialization is an example of layer-folding plus memo-
ization, where an answer (in our case the dispatcher) is saved for
later use than recomputing it each time. This enables multiple mid-
dleware layers to be collapsed during request processing.

3.1.4 Specialize Request Demarshaling via Constant
Propagation

We now describe specialization techniques for resolving chal-
lenge 4 described in Section 2.2.
Intent. Eliminate redundant tests for byte order when demarshal-
ing a CORBA request and do not align the individual fields within
the request.
Invariance assumptions. The communicating entities reside on
nodes with the same byte order, compiler padding/alignment rules,
and the same (de)marshaling mechanisms for client(s) and server(s).
Specialization. Standard-compliant CORBA ORBs are required
to test for byte order compatibility for every part of a CORBA re-
quest (not just the payload), including all fields in the CORBA re-
quest and request-specific headers. Figure 4 shows the different
parts of a CORBA request. For a typical request with a few basic
types (such as long, short, and octet parameters), these tests
translate to � 15–20 byte order tests per request. Removing these
redundant tests on homogeneous compiler/middleware platforms
can significantly improve demarshaling efficiency, particularly as

the data type complexity increases. Similarly, while marshaling a
CORBA request, ORB implementations align the individual com-
ponents, e.g., request size, id and objectkeys, to their natural bound-
aries. For a typical request with basic types, all the � 15–20 compo-
nents must be aligned. Ignoring alignment can improve marshaling
efficiency and eliminate padding, thereby reducing request size.

These specializations are an example of constant propagation,
where the byte-order is propagated along with the request to the
recipient and checked to ensure the validity of the invariance as-
sumption. Similarly, unaligned data is sent along with the request
to the recipient, where demarshaling fails if data should be aligned.

3.1.5 Specialize Platform Generality via Autoconf Me-
chanisms

We now describe specialization techniques for resolving chal-
lenge 5 described in Section 2.2.
Intent. Choose the right hardware, OS, and compiler settings to
maximize application QoS without affecting portability, interoper-
ability, or correctness.
Invariance assumptions. The deployment platform that hosts the
product variant remains fixed during the system’s lifetime.
Specialization. We use GNU autoconf (www.gnu.org/sof-
tware/autoconf) toolkit to apply platform-specific specializa-
tion techniques, including:

� Exception support. For certain DRE systems, the use of na-
tive exception support is unavailable (e.g., not supported by
older C++ compilers) or undesirable (e.g., incurs excessive
time/space overhead). Certain middleware solutions support
platforms that lack exceptions, e.g., CORBA can emulate ex-
ceptions by adding an Environment parameter at the end
of each operation signature. We extended TAO to use GNU
autoconf to automatically emulate exceptions when com-
pilers lack such capabilities, when users explicitly select this
configuration, or when performance tests indicate that emu-
lated exceptions are more efficient than native exceptions.

� Loop unrolling. Middleware implementations need to copy
data between kernel and middleware and application buffers.
An optimization applicable to certain OS/compiler platforms
is to unroll the loop of memcpy() standard library function
up to a certain buffer size. We extended TAO to use GNU
autoconf to configure middleware automatically to use the
either the optimized or default version of memcpy(), de-
pending on performance tests that deem one more efficient
than the other.

For both specializations, we use GNU autoconf to perform
these performance tests automatically just before the ORB compi-
lation process begins. Based on the test results, GNU autoconf
sets certain macros in the TAO source code, which are then used to
select which specializations to apply.

3.2 A Toolkit for Automating Context-Specific
Specializations

Large-scale DRE systems, such as Boeing’s Bold Stroke PLA,
contain millions of lines of source code. Implementing special-
ization techniques by manually handcrafting the optimizations de-
scribed in Section 3.1 into such large code bases will clearly not
scale. To augment GNU autoconf, therefore, we have created a
domain-specific language (DSL) and associated tools that help sim-
plify two steps in the specialization process: (1) identifying special-
ization points and transformations and (2) automating the delivery
of the specializations.

The remainder of this section describes the Feature Oriented
Customizer (FOCUS), which is an open-source DSL-based tool-
suite and process we developed to automate the specialization of
middleware for PLA-based DRE systems. FOCUS is available at
www.dre.vanderbilt.edu/˜arvindk/FOCUS.

3.2.1 FOCUS Requirements and Goals
Our primary goal for FOCUS was to build a general-purpose

DSL, supporting tools, and a process to automate context-specific
middleware specializations and then to validate our approach by
applying it to TAO. The types of specializations discussed in Sec-
tion 3.1 yielded the following requirements for FOCUS:
1. Ability to manipulate code. Applying aspect weaving to frame-
work specialization requires the ability to manipulate code, such as
performing search and replace specializations to devirtualize hook
methods in the Reactor_Impl base class and replace them with
the name of concrete reactor implementation.
2. Ability to refactor code regions. Object-oriented framework
specializations need to move specialized code (e.g., concrete im-
plementations of hook methods) from a derived class to the new
concrete class. Similarly, additional header files and methods may
may need to be moved from/to a derived class to/from a new con-
crete class. Likewise, layer-folding optimizations require the capa-
bility to inject code that bypasses layers at specific locations in the
code.
3. Ability to remove code. Code refactoring, memoization, and
aspect weaving specializations require the removal of certain re-
dundant functionality. In memoization optimizations, for instance,
redundant functionality that repeatedly creates the same request
must be replaced with code that caches the request header.

To support these requirements, FOCUS uses generative program-
ming techniques [3] that combine annotations (directives) with code
templates [25] to specialize middleware implementations. FOCUS
annotations are embedded within the middleware source to identify
points of variability, e.g., where a dispatching decision is made or
a particular protocol is created. This approach enables most of the
basic infrastructure of the middleware to remain fixed, but iden-
tifies well-defined variability points where specializations can be
woven automatically. It also enables middleware developers to ex-
plicitly know the variability points when source code changes are
made, thereby minimizing the skew between specializations and an
evolving middleware source base.

3.2.2 Automating Middleware Specializations with FO-
CUS

The process of applying FOCUS DSL and tools can be executed
in three phases by middleware developers and application PLA de-
velopers, as discussed below.
Phase 1: Capturing specialization transformations. In this phase,
middleware developers capture the code-level transformations re-
quired to implement a specialization using the FOCUS Special-
ization Language (FSL), which is a DSL that supports the fol-
lowing types of specializations: (1) search and replace transfor-
mations (

�
search � ...

�
replace �), (2) copying text from differ-

ent positions in multiple files onto a destination file (
�

copy-from-
source �), (3) commenting regions of a program (

�
comment �),

and (4) removing text from a program (
�

remove �). FSL uses an
XML DTD to capture the transformations, which facilitates ease
of (1) extension, i.e., additional transformations can be represented
via new XML tags and (2) transformation, i.e., XSLT transforma-
tions can be used to transform the specializations onto different tool
input formats. Similar approaches have been used in commercial
tools, such as Ant (ant.apache.org), which use XML to cap-

ture build steps and rules.
The output of phase 1 is a set of FSL specialization files that

capture all the transformations needed for the specializations. Sec-
tion 4.2.1 illustrates portions of the transformations required to
automate aspect weaving specializations in TAO.
Phase 2: Middleware annotation. In this phase, middleware de-
velopers use the FSL specialization files to annotate the middleware
with metadata required for the desired transformations. Annota-
tions in FOCUS are only required for transformations that copy,
comment, or add code, i.e., when using the

�
comment � ,

�
copy-

from-source � , or
�

add � tags, respectively. Other transforma-
tions, such as search and replace, and remove do not require an-
notation. Metadata is inserted as special comments in the source
code using source language syntax for comments. This metadata
is used by FOCUS to aid in the transformation of source code, but
is opaque to compilers for general-purpose languages like C++ or
Java and imposes no extra overhead on general-purpose middle-
ware source code.

During middleware evolution, such as feature addition/modific-
ation, middleware developers must respect the annotations. For ex-
ample, any new code between annotations that mark the begin and
end of a copy/comment does not require changes to the special-
ization files. Section 4.2.1 illustrates how annotations along with�

copy-from-source � tags can be used to minimize skew between
specializations and middleware source code.

Annotations help the FOCUS transformation process by enabling
a lightweight specialization approach that does not require a full-
fledged language front-end to parse the entire source code to iden-
tify the specialization points (hooks). This approach enables FO-
CUS to work across middleware implementations in different lan-
guages, e.g., hooks can be left within a C++- or Java-based mid-
dleware implementation for FOCUS to weave in code. FOCUS
ascribes no significance to the names for hooks, i.e., they can be
arbitrary as long as there is a corresponding name in the specializa-
tion file.
Phase 3: Executing specialization transformations. In this phase,
PLA developers perform the steps shown in Figure 6. First, they

Figure 6: Steps in the FOCUS Transformation Process

select the specializations suitable for the variant (step 1) during
the offline SCV analysis phase. Based on the features selected for
specialization, the FOCUS transformation engine queries the spe-
cialization repository to select the right file(s) (step 2). Based on
the transformation rules in the specialization file, the transforma-
tion engine executes the transformations (step 3). A compiler for
the general-purpose language used to write the middleware is then
used to generate executable platform code from the modified source

file(s) (step 4).
The FOCUS transformation engine is written in Perl to lever-

age its mature regular expressions support. Regular expressions
enhance the richness of the transformations that can be specified
within FSL specialization files. For example, search and replace
capabilities in FOCUS leverage regular expressions to ignore lead-
ing trailing white spaces and newline characters.

3.3 Summary
This section described the specialization techniques, language,

and tools we developed to resolve middleware generality challenges
in Section 2. Table 1 lists the specialization techniques along with
the corresponding FSL features we applied to resolve the gener-
ality challenges (Section 4.2 describes why we did not use FO-
CUS to resolve (de)marshaling checks and deployment generality).

Similar to the challenges, the FOCUS specialization techniques

Specialization Technique FSL features
Request creation Memoization search, replace, add
Demarshaling checks Constant propagation Not Applicable
Dispatch resolution Memoization + layer-folding search, replace, add
Framework generality Aspect weaving add, copy-from-source

search, replace
Deployment generality autoconf Not Applicable

Table 1: Summary of Specialization Techniques

we describe are reusable and applicable to middleware that incur
generality challenges. These techniques modify only copies of the
object-oriented framework and middleware code and do not neces-
sitate any modifications to application code or original frameworks
and middleware.

4. APPLYING OUR SPECIALIZATION TOO-
LS TO TAO FOR THE BASICSP SCE-
NARIO

This section presents the results of applying our specialization
tools described in Section 3 to a TAO-based implementation of the
BasicSP scenario. These results help in quantitatively and quali-
tatively evaluating the extent to which specializations improve the
throughput, average- and worst-case latency, and jitter of standard-
based middleware implementations. The constant propagation and
code refactoring techniques described in the paper were automated
using GNU autoconf conditional compilation techniques describ-
ed in Section 3.1.5. The memoization, layer-folding, and aspect
weaving were automated via the FOCUS toolkit described in Sec-
tion 3.2.2.

4.1 Analyzing General-purpose Middleware
To specialize general-purpose Real-time CORBA middleware for

PLA-based DRE systems, we first analyzed the end-to-end critical
code path of the following synchronous two-way CORBA opera-
tion in TAO:
result = object � operation (arg1, arg2)

A path represents a segment of the overall end-to-end flow through
the system. The critical path is the sequence of steps that are al-
ways necessary in TAO to process events, requests, or responses for
synchronous and asynchronous operation invocations. This code
path is the same for processing the get_data() two-way opera-
tion and data_avail and timeout events in the BasicSP sce-
nario described in Section 2.1. We use this code path to provide a
baseline for comparing our context-specific specializations to quan-
tify the number of steps specialized along the critical request/respon-
se processing path shown by the numbered bullets in Figure 7.

Using this figure as a guide, we now describe the steps involved

Server ORB

6

Object Adapter

Reactor
 4,7,8

5

Buffer Manager

5

GIOP

Message

Parsers

1.0
 1.0
1.1

Client ORB

2

Buffer Manager

 1

GIOP

Message

Parsers

1.0
 1.2
1.1

 1

Connection

Cache

C
2

3,9

Reactor
 C
2

C
2

10,11

Figure 7: End-to-End Request Processing Path

when a client invokes a synchronous two-way operation. After the
connection from client to server process has been established, the
following activities are performed by the TAO client ORB when
a client application thread invokes an operation on an object ref-
erence that designates a particular target object on a TAO server
ORB:2

1. Buffer_Manager allocates a buffer from a memory pool.
The GIOP message parser is used to marshal the parameters
in the operation invocation.

2. Send the marshaled data to the server using the established
connection e.g.,

���
.

3. The leader thread waits on the Reactor for a reply from the
server. The follower thread waits on a condition variable or
a semaphore.

The server ORB activities for processing a request are described
below:

4. Read the header of the request arriving on connection
� �

to
determine the size of the request.

5. Buffer_Manager allocate a buffer from a memory pool
to hold the request and an appropriate GIOP message parser
is used to read the request data into the buffer.

6. Demultiplex the request to locate the target portable object
adapter (POA) [22], servant, and skeleton – then dispatch
the designated upcall to the servant after demarshaling the
request parameters.

7. Send the reply (if any) to the client on connection
���

.
8. Wait in the reactor’s event loop for new connection and data

events.

Finally, the client ORB performs the following activities to process
a reply from the server:

9. The leader thread reads the reply from the server on connec-
tion

���
.

10. The leader thread hands off the reply to the follower thread
by signaling the condition variable used by the follower thread.

11. The follower thread demarshals the parameters and returns
control to the client application, which processes the reply.

4.2 Specializing TAO Middleware
Having outlined the activities at the client and server, we now

(1) describe how we specialized TAO using invariance assumptions
to resolve the challenges for PLAs described in Section 2.2 in the
context of the Bold Stroke BasicSP scenario and (2) quantitatively�

This discussion has been generalized using the Reactor, Acceptor-
Connector, and Leader/Followers patterns [29], which are used in
many popular CORBA ORBs, such as e*ORB, ORBacus, Orbix,
and TAO.

compare the end-to-end latency, throughput, and predictability im-
provements accrued from our approach. All experiments were per-
formed on an Intel Pentium III 851 Mhz processor with 512 MB
of main memory running on Linux 2.4.7-timesys-3.1.214 kernel,
which contains a very predictable real-time kernel module. The
TAO middleware used for the experiments was version 1.4.7, which
was compiled with gcc version 3.2.2.

To ensure portability and interoperability, our specializations larg-
ely comply with the Real-time CORBA specification and do not
modify any standard interfaces or BasicSP application code. Our
specializations resolve middleware generality challenges illustrated
in Figure 2, are applied along the critical request/response process-
ing path and affect end-to-end QoS. Our approach specializes most
of the steps (1, 3, 11 on the client and 4, 6, 8 on the server).

TAO provides a wide range of configuration options (see www.
dre.vanderbilt.edu/˜schmidt/TAO-options.html).
For this analysis, we used the following configuration: (1) portable
interceptors are not used, (2) servants inherit statically from org::
omg::PortableServer::Servant, i.e., we do not consider
CORBA’s dynamic invocation/skeleton features, (3) no proprietary
policies were used in the ORB, and (4) TAO’s general-purpose op-
timizations (e.g., active demultiplexing, perfect hashing, and buffer
caching strategies) were enabled for all experiments. These as-
sumptions are representative of ways in which DRE systems com-
monly apply Real-time CORBA middleware [26, 31].

To showcase our results, a sample size of 100,000 data points
was used to generate results from following types of experiments
for each specialization presented in Sections 3.1.1 through 3.1.5:

1. End-to-end latency metrics, which measure the differences
in end-to-end latency/throughput between general-purpose
and specialized versions of TAO. For each experiment, high-
resolution timers on the client collected end-to-end measure-
ment data used for analysis.

2. Path specialization metrics, which compare latency mea-
sures for specialized vs. general-purpose critical paths. For
each experiment, high-resolution timers within TAO’s ORB
core measured latency improvements for the code path spe-
cialized within TAO.

3. Cumulative metrics, which measure the end-to-end latency
and predictability improvements accrued by applying all spe-
cializations.

For each specialization, we describe (1) the steps specialized along
the request/response processing path, (2) how the specialization
was automated, and (3) consequences of applying our specializa-
tion in terms of CORBA compliance and applicability. For our
experiments, we define predictability as the measure of standard
deviation of the data points.

4.2.1 Applying the Aspect Weaving Specialization
This specialization corresponds to step 3 and 9 in the client side

and step 8 in the server side of Figure 7.
Specialization automation. Specializing the Reactor component
involved (1) replacing the ACE_Reactor_Impl class with the
concrete ACE_Select_Reactor implementation within the re-
actor, (2) replacing the creation of other reactors with the spe-
cialized version in ORB factory methods [7], and (3) eliminating
virtual methods from the reactor and interfaces within the mid-
dleware. To automate the specialization, we used FSL to cap-
ture the transformations, some of which are shown in Listing 1.
Lines 1–2 capture the module (directory or package) and file on
which the transformations are done. Devirtualizing interfaces of
the reactor is captured in line 3. Lines 4–8 allow replacing the

1: <module name="ace">
2: <file name="Reactor.h">
3: <remove>virtual</remove>
4: <substitute>
5: <search>ACE_Reactor_Impl</search>
6: <replace>ACE_Select_Reactor</replace>
7: </substitute>
8: </file>
9: </module>
10: <module="TAO/tao">
11: <file name="advanced_resource.cpp">
12: <comment>
13: <start-hook>TAO_REACTOR_SPL_COMMENT_HOOK_START</start-hook>
14: <end-hook>TAO_REACTOR_SPL_COMMENT_HOOK_END</end-hook>
15: </comment>
16: </file>
17: </module>

FOCUS Listing 1: Reactor Specialization

ACE_Reactor_Impl with the desired concrete select reactor.
Similarly, lines 12–15 show how unspecialized code within two
points in the file (

�
start-hook � ...

�
end-hook �) is commented

out for the transformations.
Listing 2 shows how we annotate the middleware source code

with hooks based on the FSL specialization file (Listing 1).

//File: advanced_resource.cpp
ACE_Reactor_Impl*
TAO_Default_Resource_Factory::

allocate_reactor_impl (void) const
{

ACE_Reactor_Impl *impl = 0;
/* FOCUS: Comment hook */

//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);

//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END
return impl;

}

FOCUS Listing 2: Annotated Middleware Source Code

Listing 3 illustrates how FOCUS transformed source code so
that the base Reactor (ACE_Reactor_Impl) is replaced with
the specialized Reactor (ACE_Select_Reactor). This special-
ization is validated by our invariance assumption that after ACE_
Select_Reactor is selected, it does not change for the BasicSP
scenario. Another observation is that the annotations are preserved
during the transformation process, which enables multiple special-
izations to use the same hook for specifying transformations, thus
avoiding cluttering of hooks within the middleware source code.

To specialize TAO’s pluggable protocol implementation, we used�
copy-from-source � capabilities provided by FSL. Listing 4 shows

//File: Reactor.h
class Reactor
{
public:

int
run_reactor_event_loop (REACTOR_EVENT_HOOK = 0);

// Other public methods
private:
// Code woven by FOCUS:

ACE_Select_Reactor *reactor_impl_;
// End Code woven by FOCUS
};

// File: advanced_resource.cpp
// Code woven by FOCUS:
ACE_Select_Reactor*
// End Code woven by FOCUS
TAO_Default_Resource_Factory::

allocate_reactor_impl (void) const
{
// Code woven by FOCUS:

ACE_Select_Reactor *impl = 0;
// End Code woven by FOCUS

/* FOCUS: Comment hook */
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
// ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END
// Code woven by FOCUS:
}

FOCUS Listing 3: Transformed Middleware Source Code

how the concrete protocol specific implementations of template

methods defined in the Profile class are copied from the IIOP_
Profile class. As shown in the listing,

�
copy-hook-start � �

copy-

<file name="Profile.cpp">
<copy-from-source>
<source>IIOP_Profile.cpp</source>
<copy-hook-start>PROFILE_METHODS_COPY_HOOK</copy-hook-start>
<copy-hook-end>PROFILE_METHODS_COPY_HOOK_END</copy-hook-end>
<dest-hook>PROFILE_SPL_ADD_HOOK</dest-hook>

</copy-from-source>
</file>

FOCUS Listing 4: Protocol Specialization

hook-end � tags signify the start and end locations of the template
method implementations in the IIOP_Profile class. These con-
crete implementations are copied on to the base Profile class at
a location defined within the Profile.cpp file. The advantage
of this design is that changes made to the implementations of the
template methods in IIOP_Profile.cpp do not necessitate a
change to the specialization file. In fact, after we completed this
specialization, support of IPv6 protocol was added to TAO, but our
specializations required no changes.

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

General
Reactor-spl
Protocol-spl

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

5

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 8: Results for Reactor & Protocol Specializations

Empirical results. Figure 8 illustrates the improvements to end-
to-end latency by specializing two object-oriented frameworks used
in TAO. Since reactors and protocols are used by both client and
server ORB, we present the most representative end-to-end results.
Our specialization results in average latency improvements of � 8 � s-
ecs (4%) for the reactor case and in � 10 � sec (5%) for the proto-
col case. These specializations also minimize dispersion measures
for both the specializations, though not appreciably. The 99% and
worst-case measure also decrease, thereby showing how removing
virtual method indirection enhances predictability.

Our results show how minimizing dynamic dispatch along the
critical path can improve performance. Similar approaches can be
applied to specialize other frameworks used within middleware.
Based on the results obtained in this case study, our future work
will specialize other object-oriented frameworks in TAO to further
improve its performance.
Applicability and CORBA compliance. Specialization of object-
oriented framework extensibility can be applied to all ORB im-
plementations that use virtual methods, yet can be customized via
a single concrete instance late in the system lifecycle, e.g., dur-
ing deployment or initialization. This specialization is CORBA-
compliant since the reactor is part of TAO’s ORB core implemen-
tation, not part of the public API defined by the Real-time CORBA
specification. Similarly the specialization of the protocol frame-
work does not modify any standard APIs or application code, but
only affects hook methods specific to TAO’s implementation.

4.2.2 Applying the Memoization Specialization
This specialization corresponds to step 1 in the client side of

Figure 7.
Specialization automation. In TAO, the GIOP engine creates pro-
tocol specific request/response objects. Listing 5 illustrates a por-
tion of the transformations for this specialization. During the first

<add>
<hook>TAO_HEADER_CACHING_ADD_HOOK</hook>
<data>

1. if (__header_cached__)
2. {
3. // First invocation -- normal path
4. __header_cached__ = 0;
5. this->write_header (...);
6. skip_length__ = this->total_length ();
7. }
8. else
9. {
10. // All invocations -- Optimized path
11. this->skip (skip_length)
12. }
</data>

</add>

FOCUS Listing 5: Specializing Request Creation

invocation of a request/response, the length of the actual header
is computed and cached (as shown in lines 1–6). For subsequent
requests the cached pre-marshaled header is used by moving the
current writable location by the total header size.

We applied specialized request creation to TAO on a per-connect-
ion basis, i.e., the request headers cached are specific to a connec-
tion. This design stems from our invariance assumption from the
BasicSP scenario, where the get_data and data_avail oper-
ation are sent along separate connections.
Empirical results. Figure 9 illustrates the end-to-end and code
path specialization improvements that result from applying the re-
quest creation/initialization specialization on the request and request-
specific CORBA header. The average end-to-end latency measures
improved by � 8 � sec (4%), while the path specialization results
improved by 25%. This discrepancy shows how much our spe-
cialized code path influences end-to-end latency. The dispersion
measures improve, but not significantly, by applying this special-
ization. Both 99% and worst-case measures improve, which show
this specialization improves predictability. These results show how
the end-to-end path specialization results are influenced by the con-
tribution from the actual path specialized.
Applicability and CORBA compliance. Specializing the entire
request is possible only if the request does not change, which is the
case for control messages sent between Timer and GPS compo-
nents. Specializing the request and request-specific header is pos-
sible if only the contents change between requests, which is the
case for the get_data() operation. This specialization can be
applied for the standard Real-time CORBA SERVER DECLARED

priority model, where the priority information is set a priori during
object reference creation. Specializing only the request header is
applicable to all requests, though it has the least payoff in terms
of improvements in performance since it represents a relatively
small portion of the request. All three approaches comply with
the CORBA specification since they do not change the type of the
CORBA request message. The third approach, however, does not
update the request identifier, which is used to uniquely identify
the client thread processing the response when multiplexed con-
nections are used.

4.2.3 Applying the Layer-Folding Specialization
This specialization corresponds to step 6 to step 8 in the server

side of Figure 7.

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

End-to-End (general)
End-to-End (spl)
Path (general)
Path (spl)

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 9: Results for Request Creation/Initialization Special-
ization

Specialization automation. We implemented the layer-folding spe-
cialization (Section 3.1) by caching the target request dispatcher
determined when the first request from the client on a connection is
serviced. Subsequent requests used the cached dispatcher directly,
i.e., the skeleton that services the requests. FSL annotations were
add to TAO’s POA so FOCUS can weave in code that cached the
skeleton servicing the request. Another annotation within the ORB
core marked the start of the normal request path.

These specialization transformations were similar to the aspect
weaving and memoization specializations discussed in Section 3.1
and are applied on a per-connection basis. Multiple simultaneous
client connections that have different request dispatcher can there-
fore be serviced concurrently. This design conforms to our invari-
ance assumption from the BasicSP scenario that the operations are
same only on a per-connection basis.
Empirical results. Figure 10 illustrates the end-to-end and code
path performance improvements resulting from the dispatch res-
olution specialization. The average end-to-end latency measures
improved by � 30 � secs, which is � 16% better than the general-
purpose TAO implementation. For the actual code path specialized
this translates to � 40% improvement in latency. The dispersion
measures for end-to-end latencies improved by a factor of � 1.5,
while those for the specialized path were twice as good as those
for the general-purpose path. The 99% measures are similar to
the dispersion measures, indicating improvement in predictability.
The worst-case measures improved by 20% when applying the dis-
patch resolution specialization to the specialized path and by � 14%
for the end-to-end results. These results show that applying layer-
folding specialization to the TAO middleware improves predictabil-
ity and latency considerably.
Applicability and CORBA compliance. This specialization ap-
plies to the get_data() operation in the BasicSP scenario where
the same operation is invoked repeatedly. Caching the target ser-
vant and skeleton sacrifices some CORBA compliance since thread-
specific state (e.g., CORBA Current and POA Current are not main-
tained. This context information is often unnecessary, however,
e.g., the POA current interface is used primarily when the POA is
associated with a Default_Servant (where one servant han-
dles all invocations) or Servant_Manager (which creates a ser-
vant dynamically to handle requests). Since these dynamic CORBA
policies are rarely – if ever – used in DRE systems, the impact on
CORBA compliance is negligible in this context.

4.2.4 Applying the Constant Propagation Specializa-
tion

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

End-to-End (general)
End-to-End (spl)
Path (general)
Path (spl)

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 10: Results for Dispatch Resolution Specialization

This specialization corresponds to steps 1 and 11 on the client
and steps 4 and 6 in the server of Figure 7.
Specialization automation. The (de)marshaling engine within TA-
O used several OS platform-specific capabilities that were automat-
ically (un)set using GNU autoconf. GNU autoconf necessi-
tated the use of conditional compilation to implement this special-
ization. Two flags, CDR_IGNORE_ALIGNMENT and DISABLE_
SWAP_ON_READwere added to the write() and read()meth-
ods within TAO’s Common Data Representation (CDR) engine to
ignore alignment and byte-order values in the request/response fields.
This design conforms to our invariance assumption that the com-
municating entities run on homogeneous middleware, OS, com-
piler, and hardware platforms, which is often the case for produc-
tion DRE systems.
Empirical results. Figure 11 illustrates the end-to-end and path
performance improvements from applying the request (de)marshali-
ng specialization. The specialized path for this experiment began
when a server demarshaled a request until the response was re-
turned to the client. Applying the specialization that ignored align-
ment improved end-to-end latencies by � 8 � secs (a 4% improve-
ment over the general-purpose TAO implementation), while elimi-
nating byte order checks improved byte order checks by � 9 � sec (a
4% improvement over the general-purpose TAO implementation).
Path specialization results improved by � 4 – 5 � sec (a 10% im-
provement) for both the cases. Although the general-purpose TAO
implementation performs tests on the client and server for all fields
in a CORBA request header, our specialization improvements were
relatively small since our initial experiment sent a single long data
type, which required very few byte order tests.

To quantify the improvements from this specialization for more
complex data types, we conducted another experiment that sent an
IDL structure with four primitive types, a short, long, double
and float interspersed with a char. The use of a char type
forced the general-purpose TAO middleware to re-align the indi-
vidual primitive types. The specialized TAO middleware, however,
did not incur this overhead.

A sequence of this structure with varying sizes was sent over
the network to measure the improvement in performance. Both spe-
cializations were enabled simultaneously for this experiment. Ta-
ble 2 illustrates the speed up in average end-to-end latency accrued
from applying our specialization. The results show that latency
measures improve between 12 – 30% with increasing sequence
lengths.

These results underscore the fact that the benefits of specializa-
tions often depend heavily on the use cases that exercise the spe-

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

End-to-End (general)
End-to-End (no-swap)
Path (general)
Path (no-swap)
End-to-End (no-align)
Path (no-align)

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 11: Results for Request (De)marshaling Specialization

Sequence Length Speedup
64 11.5%

128 17.35%
1,024 20.12%
2,048 25.64%
4,096 30.12%

Table 2: Performance Speedup as a Function of Sequence
Length

cialized code.
Applicability and CORBA compliance. Elimination of byte-order
checks and ignoring alignment specializations are applicable to de-
ployments on homogeneous environments i.e., nodes with the same
byte order, e.g., NodeA and NodeB in our BasicSP scenario, and/or
the same platform implementations at sender and receiver. These
specializations are not CORBA compatible. A middleware imple-
mentation, however, can add recovery mechanisms, such as check-
ing for byte order within the request before using the aforemen-
tioned specializations, though these mechanisms violate our invari-
ance assumption.

4.2.5 Applying Autoconf Techniques for Platform Spe-
cialization

This specialization corresponds to the underlying platform on
which the BasicSP scenario was run.
Specialization automation. To automate the loop unrolling op-
timization, we used GNU autoconf’s AC_RUN_IFELSE capa-
bility that compiled and executed a benchmark to compare perfor-
mance both with and without our optimization. If our optimiza-
tion was faster, autoconf sets the ACE_HAS_MEMCPY_LOOP_
UNROLL flag to enable the feature. For exception support, we used
GNU autoconf’s AC_COMPILE_IFELSE feature to determine
if a compiler supported exceptions and then empirically evaluated
whether using native exceptions was faster than emulated excep-
tions.
Empirical results. Figure 12 illustrates how applying our loop un-
rolling and exception emulation specialization techniques together
improved average end-to-end latency measures by � 17%. Worst-
case latency improved by � 12%, while the 99% latency measures
were closer to the average for our specializations, thereby indicat-
ing better predictability. These results show that specializing de-
ployment platforms via GNU autoconf can improve QoS signif-
icantly.
Applicability and CORBA compliance. The GNU autoconf
specialization techniques do not affect specification compliance at
all.

50

100

150

200

250

300

350

L
at

en
cy

(u
s) General

Specialized

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

5

6

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 12: Results for Specializing Deployment Platform

4.2.6 Applying the Specializations Cumulatively
Figure 13 illustrates the QoS improvements accrued by applying

all of the middleware specializations discussed above to a remote
CORBA operation. The average end-to-end latency for the spe-
cialized TAO dropped by � 43%, while the dispersion measure was
twice as good as general-purpose optimized TAO implementation,
indicating considerable improvement in predictability, which is es-
sential for DRE systems.

50

100

150

200

250

300

350

L
at

en
cy

(u
s) General

Specialized

Average

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

99%

1

2

3

4

5

6

L
at

en
cy

(u
s)

Standard Deviation

50

100

150

200

250

300

350

L
at

en
cy

(u
s)

Max

Figure 13: Results for Cumulative Specialization Application

Similarly, the 99% bound values for the specialized TAO im-
proved by � 40% while worst-case measures improved by � 150 � se-
cs, which is a 45% improvement over the general-purpose TAO
implementation. End-to-end throughput measures improved by an
average of � 65%. To measure performance speed up for a com-
plicated data structure, we ran the experiment using the complex
data structure from our demarshaling experiments. For a sequence
length of 64 average latency improved by � 26%, while for a length
of 4,096 latency improved by � 51%.

4.3 Evaluating FOCUS
Now that we have illustrated how FOCUS’s DSL, tools, and pro-

cess can be applied to help middleware developers build and eval-
uate middleware specializations, we can evaluate its benefits and
drawbacks.
Benefits. In resolving the challenges described in Section 2, FO-
CUS has the following benefits:

� It preserves portability of the middleware implementations it
specializes, i.e., the specialized middleware should run on all
platforms on which the middleware runs. The FSL snippets

in Section 4.2.1 do not change the interface of Reactor or
protocol components in TAO.

� It has no external dependencies, i.e., it does not require ex-
ternal libraries to be linked for execution.

� It supports role separation, i.e., middleware developers cap-
ture the specialization and annotate the middleware, whereas
PLA application developers select the specializations based
on SCV analysis.

� It uses COTS tools and standard technologies, such as Perl
and XML, to automate the delivery of these specializations
to enhance its use in production middleware platforms.

� Its transformations incur no unnecessary overhead at runtime
since they are performed statically at compile-time, similar to
other source-to-source transformations, such as AspectC++
(www.aspectc.org/), DMS (www.semdesigns.com),
TXL (www.txl.ca), and Stratego-XT (www.program-tr-
ansformation.org/Stratego/). The transformed mid-
dleware source code woven by FOCUS (Section 4.2.1) il-
lustrates that there is no tool-specific code inserted as a part
of the transformation process.

� Its specializations do not affect business logic and only mod-
ify the structure of middleware implementations, particularly
object-oriented frameworks. The non-transformed versions
of the frameworks are therefore still available when other
developers need to use their object-oriented extensibility fea-
tures. None of the specializations described earlier modified
or specialized BasicSP application code.

Drawbacks. Since FOCUS was developed primarily to help us
evaluate the benefits of middleware specializations, in general, and
the TAO ORB, in particular, it currently has the following limita-
tions:

� It automates the delivery of specializations, but not the iden-
tification of specializations suitable for a PLA or an individ-
ual variant.

� Developers are responsible for ensuring that annotations are
synchronized with specialization rules, i.e., if the annota-
tions are changed the specialization files also need change.
This can be ameliorated somewhat by providing guidelines
to middleware developers and enhancing the parser to first
make sure the required hooks are present in the middleware
before performing the transformations.

� Modifications/enhancements to the state and/or- interface of
implementations require manual changes to the specializa-
tions, i.e., if the name of an operation or its parameters change,
the specialization files need to be updated. This limitation,
however, is not specific to FOCUS but also to DMS and As-
pectC++.

� The FOCUS transformation engine does not check that the
woven code executes correctly, which is a common limita-
tion with other source-to-source transformation tools, such
as AspectC++, that rely upon general-purpose compilers and
automated quality assurance tools to ensure the transforma-
tions compile and run properly.

Now that we have validated the benefits of automating middleware
specializations, we plan to address these limitations in our future
work on more powerful specialization languages.

4.4 Summary
Specialization is a promising technique for alleviating the time/-

space overhead stemming from excessive generality in standards-
based middleware implementations and improving its QoS, such

as reducing latency and jitter. This section quantified the benefits
of specializations we applied to the TAO Real-time CORBA based
on invariants stemming from the BasicSP scenario, which itself is
based on the SCV analysis embodied in the Boeing Bold Stroke
PLA. Our empirical results illustrate the viability of our approach
to improve the QoS of PLA-based DRE systems, where stringent
performance requirements must be met while also preserving ap-
plication source code and middleware portability/interoperability
as much as possible.

The specialization techniques discussed in this section are tar-
geted to PLA developers who identify the applicability of vari-
ous specialization techniques to a variant in the PLA during SCV
analysis. Among the specializations examined and implemented
in this paper, deployment platform-specific time/space specializa-
tions yielded the most improvement in QoS, followed by memo-
ization, layer-folding, and aspect weaving, in that order. Our future
work we will examine other dimensions of specializations such as
eliminating layering at the client side and resolving other platform
specific generality.

5. RELATED RESEARCH
This section compares our work on context-specific specializa-

tions for middleware-based PLAs for DRE systems with related
research in a range of system and application domains.

5.1 Operating systems
Specialization techniques have been applied to operating sys-

tems. For example, the Synthesis Kernel [19] generated custom
system calls for specific situations to collapse layers and eliminate
unnecessary procedure calls. This approach has been extended to
use incremental specialization techniques. For example, [18] have
identified several invariants for an OS read() call on HP/UX.
Based on these invariants, code is synthesized to adapt to differ-
ent situations. Once the invariants fail, either re-plugging code is
used to adapt to a different invariant or default unoptimized code is
used. Our work extends the range of specializations to encompass
middleware invariants in the context of PLA-based DRE systems,
which have some different constraints. For example, we do not
consider dynamic re-plugging costs since it would unduly increase
jitter for product variants in many DRE systems.

5.2 Middleware
Specialization techniques have also been applied to various gen-

erations of middleware. [14] describes the use of the Tempo C pro-
gram partial evaluator tool to automatically optimize common soft-
ware architecture structures with respect to fixed application con-
texts. For instance, the authors show how partial evaluation can be
applied to fold together and optimize layers in early generations of
middleware, i.e., a remote procedure call (RPC) implementation,
by specializing RPC invocations to the size and type of remote pro-
cedure parameters (yielding speed-ups of 1.7x and 3.5x).

[14] also customize a publish/subscribe framework to a context
in which subscribers of a particular event are known a priori. This
type of architecture is representative of the structures encountered
in middleware for PLA-based DRE systems, which motivated us to
consider similar techniques that could be applied with good effect
to optimize Real-time CORBA implementations. In our work, we
have identified additional CORBA architectural structures that are
amenable to optimization via specialization. Technical challenges
remaining include extending the automatic C program techniques
in [14] to richer object-oriented languages, such as C++ and Java,
that place a greater emphasis on dynamically created data.

Other research on middleware [32, 8] has applied aspect-oriented

programming (AOP) techniques to factor out cross-cutting middle-
ware features, such as portable interceptors, (de)marshaling rou-
tines, and dynamic typing. Some specializations described in this
paper can be implemented using AOP. The primary difference is
that our specializations focus more on the transformations (woven
code) required to specialize middleware, whereas AOP is more of
a delivery mechanism to realize specializations.

5.3 Empirically-guided Optimizers
The ATLAS [13] numerical algebra library uses an empirical

optimization engine to set the values of optimization parameters
by generating different program versions that are run on various
hardware/OS platforms. The output from these runs are used to se-
lect parameter values that maximize performance. Similarly, our
GNU autoconf specializations run empirical benchmarks on the
target deployment platform to determine the OS, compiler, and
hardware parameters that maximize performance.

6. CONCLUDING REMARKS
This paper describes how specializations can be automated and

applied to optimize excessive generality in standards-based mid-
dleware implementations used for PLAs. We show how context-
specific specializations based on the Bold Stroke avionics mission
computing PLA can be used to optimize the TAO Real-time CORBA
implementation. Our middleware specialization results collectively
improved the throughput of Bold Stroke BasicSP scenario by � 65%,
its average- and worst-case end-to-end latency measures by � 43%
and � 45%, respectively, and its predictability by a factor of two,
without affecting portability, standard middleware APIs, or appli-
cation software implementations, while preserving interoperability
wherever possible. These improvements are particularly notable
since TAO has already been tuned via many general-purpose mid-
dleware optimizations [20, 21, 23]. We also described how GNU
autoconf, FOCUS DSL and tools were used to automate the
middleware specializations described in the paper.

The remainder of this section discusses the consequences and
implications of our specialization techniques and tools.
Implications on QoS. The specializations discussed in this paper
had no inter-dependencies, i.e., the specializations do not overlap in
the end-to-end code path. As middleware and system architects de-
velop a catalog of specializations, it will be necessary to document
the interplay between the specializations and analyze the implica-
tions on mixing and matching different specializations. Similarly,
not all the specializations will be applicable to every PLA applica-
tion scenario, so PLA developers will need to work in conjunction
with middleware developers to determine the applicability of the
different specialization techniques to product variants.

Quantitative results show that improvements from applying our
specializations can be scenario-specific. For example, the demar-
shaling results showed how a complicated structure benefited more
from the specialization than a simple type. When the specialized
path is traversed more often, therefore, its influence on end-to-end
performance is more significant.
Implications on adaptability. The specialization mechanisms dis-
cussed in this paper do not consider adaptation costs, i.e., the over-
head of handling and recovering from situations where the invari-
ance assumptions are violated. Adding such mechanisms require
activities (such as loading new libraries or adding run-time checks)
that can incur considerable jitter, and thus are not desirable for DRE
systems.
Implications on schedulability. In many DRE systems, real-time
tasks are scheduled and analyzed offline to ensure they complete
before their deadlines. Latency overheads caused by general-purpose

middleware implementations may cause deadline misses for criti-
cal tasks scheduled a priori. Applying our specializations could
reduce middleware overhead considerably, helping ensure that crit-
ical tasks complete before their deadlines. Our optimizations might
also enable such tasks to finish well ahead of their deadlines, thereby
increasing the total slack, i.e., time interval available for scheduling
other tasks (such as soft real-time tasks), in the system. More avail-
able slack could potentially increase the number of schedulable soft
real-time tasks in the system.

7. REFERENCES
[1] P. Clements and L. Northrop. Software Product Lines:

Practices and Patterns. Addison-Wesley, Boston, 2002.
[2] J. Coplien, D. Hoffman, and D. Weiss. Commonality and

Variability in Software Engineering. IEEE Software, 15(6),
November/December 1998.

[3] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts, 2000.

[4] G. Daugherty. A proposal for the specialization of ha/dre
systems. In Proceedings of the ACM SIGPLAN 2004
Symposium on Partial Evaluation and Program
Manipulation (PEPM 04), Verona, Italy, Aug. 2004. ACM.

[5] B. S. Doerr and D. C. Sharp. Freeing Product Line
Architectures from Execution Dependencies. In Proceedings
of the 11th Annual Software Technology Conference, Apr.
1999.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring - Improving the Design of Existing Code.
Addison-Wesley, Reading, Massachusetts, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] C. Z. D. Gao and H.-A. Jacobseon. Towards Just In Time
Middleware Architectures. In Proceedings of the 2005
Aspect Oriented Software Engineering Conference (AOSD),
Nov 2005.

[9] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. John Wiley & Sons, New York,
2004.

[10] J. Hatcliff. An Introduction to Online and Offline Partial
Evaluation using a Simple Flowchart Language. Partial
Evaluation – Practice and Theory DIKU 1998 International
Summer School, Springer Verlag, 1706:20 – 82, Jun 1998.

[11] V. Itkin. On Partial and Mixed Program Execution. In
Program Optimization and Transformation, pages 17–30.
CCN, 1983. (In Russian).

[12] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[13] Kamen Yotov and Xiaoming Li and Gan Ren et.al. A
Comparison of Empirical and Model-driven Optimization. In
Proceedings of ACM SIGPLAN conference on Programming
Language Design and Implementation, June 2003.

[14] R. Marlet, S. Thibault, and C. Consel. Efficient
Implementations of Software Architectures via Partial
Evaluation. Automated Software Engineering: An
International Journal, 6(4):411–440, October 1999.

[15] Object Management Group. Real-time CORBA Specification,
OMG Document formal/02-08-02 edition, Aug. 2002.

[16] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and
J. Parsons. The Design and Performance of a Pluggable

Protocols Framework for Real-time Distributed Object
Computing Middleware. In Proceedings of the Middleware
2000 Conference. ACM/IFIP, Apr. 2000.

[17] D. L. Parnas. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering,
SE-2(1):1–9, 1976.

[18] C. Pu, T. Autery, A. Black, C. Consel, C. Cowan, J. W.
Jon Inouye, Lakshmi Kethana, and K. Zhang. Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System. In Symposium of Operating System
Principles, Copper Mountain Resort, Colorado, Dec. 1995.

[19] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis Kernel.
Computing Systems, 1(1):11–32, Winter 1988.

[20] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale. Applying Optimization Patterns to the
Design of Real-time ORBs. In Proceedings of the ���

�

Conference on Object-Oriented Technologies and Systems,
pages 145–159, San Diego, CA, May 1999. USENIX.

[21] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale. Using Principle Patterns to Optimize
Real-time ORBs. IEEE Concurrency Magazine, 8(1), 2000.

[22] I. Pyarali and D. C. Schmidt. An Overview of the CORBA
Portable Object Adapter. ACM StandardView, 6(1), Mar.
1998.

[23] I. Pyarali, D. C. Schmidt, and R. Cytron. Techniques for
Enhancing Real-time CORBA Quality of Service. IEEE
Proceedings Special Issue on Real-time Systems, 91(7), July
2003.

[24] F. v. d. L. Rob van Ommering, J. Kramer, and J. Magee. The
Koala Component Model for Consumer Electronics
Software. IEEE Computer, 3(33):78–85, Mar. 2000.

[25] R. J. Rodger. Jostraca: a template engine for generative
programming. In ECOOP 2002 Workshop on Generative
Programming. Springer Verlag, 2002.

[26] W. Roll. Towards Model-Based and CCM-Based
Applications for Real-Time Systems. In Proceedings of the
International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC), Hakodate, Hokkaido,
Japan, May 2003. IEEE/IFIP.

[27] D. C. Schmidt and S. D. Huston. C++ Network
Programming, Volume 2: Systematic Reuse with ACE and
Frameworks. Addison-Wesley, Reading, Massachusetts,
2002.

[28] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design
and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

[29] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

[30] D. C. Sharp. Reducing Avionics Software Cost Through
Component Based Product Line Development. In
Proceedings of the 10th Annual Software Technology
Conference, Apr. 1998.

[31] D. C. Sharp and W. C. Roll. Model-Based Integration of
Reusable Component-Based Avionics System. In Proc. of
the Workshop on Model-Driven Embedded Systems in RTAS
2003, May 2003.

[32] C. Zhang and H. Jacobsen. Re-factoring Middleware with
Aspects. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1058–1073, Nov 2003.

