Outline

Building multi-threaded distributed appli-
Implementing Multi-threaded cations is hard

CORBA Applications with Orbix

and ACE To succeed, programmers must understand
available tools, techniques, and patterns

This tutorial examines how to build multi-
Douglas C. Schmidt threaded CORBA applications

Washington University, St. Louis — Using Orbix and ACE

) It also presents several concurrency mod-
http://www.cs.wustl.edu/~schmidt/ els

schmidt@cs.wustl.edu 1. Thread-per-Request

2. Thread Pool

3. Thread-per-Object

Overview of CORBA

e Simplifies application interworking Overall CORBA Architecture

— CORBA provides higher level integration than
traditional “untyped TCP bytestreams”

[APPLICATION] [DOMAIN] [COMMON]
INTERFACES INTERFACES FACILITIES
A A A L} A A A A L}

e Provides a foundation for higher-level dis-
tributed object collaboration

OBJECT REQUEST BROKER

OBJECT
SERVICES

— e.g., Windows OLE and the OMG Common
Object Service Specification (COSS)

e Benefits for distributed programming sim-
ilar to OO languages for non-distributed
programming

— e.g., encapsulation, interface inheritance, and
object-based exception handling

CORBA ORB Architecture

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

in args
CLIENT (os7) _Operation() OBJECT
REF | out args + return value (SERVANT)

5 d ‘ ’
SKELETON
IDL OBJECT
SLUBS INTERFACE

ADAPTER
GIOP/TIOP

O STANDARD INTERFACE OSTAN])ARD LANGUAGE MAPPING

. ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

CORBA Quoter Example

e Ideally, to use a distributed service, we'd
like it to look just like a non-distributed
service:
int
main (int argc, char xargv[])

{

// Use a factory to bind to any quoter.
Quoter_var quoter = bind_quoter_service ();

const char *stock_name = "ACME ORB Inc.";

long value = quoter->get_quote (stock_name);
cout << stock_name << " = " << value << endl;

e Unfortunately, life is harder when errors
occur...

CORBA Quoter Interface

e We need to write a OMG IDL interface
for our Quoter object

// Interface is similar to a C++ class.
interface Quoter
{

exception Invalid_Stock {};

long get_quote (in string stock_name)
raises (Invalid_Stock);

};

The use of OMG IDL promotes language
independence, location transparency, and
modularity

Motivation for Concurrency in
CORBA
e Concurrent CORBA programming is in-
creasing relevant to:
Leverage hardware/software advances

* e.d., multi-processors and OS thread sup-
port

Increase performance

* e.g., overlap computation and communica-
tion

Improve response-time
* e.d., GUIs and network servers

Simplify program structure

* €e.d., synchronous vs. asynchronous network
IPC

Overview of Orbix

e Orbix provides a thread-safe version of the
standard Orbix CORBA libraries

e An application can choose to ignore threads
and if it creates none, it need not be thread-
safe

e Orbix is mostly backwardly compatible with
non-threaded Orbix

— Problems arise with event-loop integration mech-
anism

— Performance is also an issue...

Threading in Orbix

e Orbix uses threads internally, e.g.,

* Listening for new connections
* For each underlying network connection
* Cleaning up after the other threads (reaper)

Applications can create threads using the
native threads package

— e.g., Solaris threads, Windows NT threads, POSIX
Pthreads, etc.

Locking within the libraries is a compro-
mise between restrictions on concurrent
execution and unacceptably high overhead

— Orbix doesn’'t automatically synchronize access
to application objects

— Therefore, applications must synchronize ac-
cess to their own objects

Orbix Thread Filter Architecture

5: inRequestPreMarshal()

WORKER

1 6: continue

_>% ThreadDispatch()

WORKER
THREAD 9
4: filter

D request() _>%

APPLICATION

1: impl_is_ready() »%

QUEUEING
LAYER

ORB
CORE

Overview of Thread Filters
e To increase flexibility, Orbix uses a “Thread
Filter" concurrency architecture

— Thread Filters are a non-standard extension
that use the “Chain of Responsibility” pattern

e Thread Filters largely shield the ORB and
Object Adapter from the choice of con-
currency model

— j.e., decouples demultiplexing from dispatching

e Various concurrency models can be cre-
ated by using Thread Filters

— e.g., Thread-per-request, Thread Pool, Thread-
per-Object

Example Thread Filter Code

A thread filter that dispatches incoming

Using Thread Filters calls

class TPR_Filter : public CORBA::ThreadFilter
{
public:
// Intercept request and spawn thread.
virtual int inRequestPreMarshal (CORBA::Request &) ;

e TO process CORBA requests concurrently,
create a filter containing the inRequestPreMarshal
method

— Orbix call this method before the request is

processed // Execute the request in a separate thread.

static void *worker_thread (void *);
};
— inRequestPreMarshal should return —1 to
tell Orbix it will process the request concur-

rently Implements the Thread-per-Request model

TPR_Filter::inRequestPreMarshal (CORBA::Request &req);

_ {
e Threads can be spawned according to the // Use Solaris thread creation function.

: thr_create (0, 0, TPR_Filter::worker_thread,
desired concurrency model (void *) &req, THR_DETACHED, 0);

// Tell Orbix we’ll dispatch request later
return -1;

Thread Entry Point

e Once a thread is created, the CORBA re-
quest is passed to worker_thread

Creating a Thread Filter

— This calls CORBA: :Orbix.continueThreadDispatch,
which continues dispatching the request e A filter that inherits from CORBA: : ThreadFilter

)) will automatically be placed at the end of
— Thus, the request is processed in a new thread . .
of control the “per-process filter chain”

// Global object installs per-process Thread Filter.
TPR_Filter global_thread_dispatcher;

e The worker_thread code might look like

this:
e Object creation causes filter insertion

// Entry point where the new thread begins..

void *TPR_Filter::worker_thread (void *arg) e Note that there can only be a single per-
{
CORBA: :Request *req = process Thread Filter installed!
static_cast <CORBA::Request *> (arg);
CORBA: :0rbix.continueThreadDispatch (*req);
return O;

}

Overcoming Limitations with
CORBA

e Problem

— CORBA primarily addresses ‘“‘communication”
topics

e [orces

— Real world distributed applications need many
other components

* €.d., concurrency control, layering, shared
memory, event-loop integration, dynamic con-
figuration, etc.

e Solution

— Integrate CORBA with an OO communication
framework

FRAMEWORKS ACCEPTOR CONNECTOR

. ‘ i

The ADAPTIVE Communication
Environment (ACE)

SELF-CONTAINED MIDDLEWARE

DISTRIBUTED JAWS ADAPTIVE APPLICATIONS
SERVICE WEB SERVER
COMPONENTS TOKEN IGATEWAY [— THE ACE ORB
SERVER SERVER _ (r20)
D g
LOGGING NAME TIME)
SERVER SERVER SERVER

SERVICE
'HANDLER

BB - ADAPTIVE SERVICE EXECUTIVE (ASX)
PROCESS/ [£

URATO! ’
SYNCH SPIPE | [SOCK_SAP, ’PROACTOR YSV
WRAPPERS | { _sap |/ i sap /] A /| map_|{wrappers l

OS ADAPTATION LAYER

SOCKETS/ || NAMED SELECT/ [El MEMORY i SYSTEM
TLI PIPES 10 COMP [| LINKING [/ MAPPING | V IPC

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

e A set of C++ wrappers, class categories,
and frameworks based on design patterns

— www.cs.wustl.edu/~schmidt/ACE.html

Class Categories in ACE

Network
o lServices
®

Stream
Framework

Service
Initialization
O

Interprocess
Communication Service
Configurator
O

Reactor

Concurrency
global

Class Categories in ACE (cont’d)

e Responsibilities of each class category

IPC_SAP encapsulates local and/or remote IPC
mechanisms

Connection encapsulates active/passive con-
nection establishment mechanisms

Concurrency encapsulates and extends multi-
threading and synchronization mechanisms

Reactor performs event demultiplexing and event
handler dispatching

Service Configurator automates configura-
tion and reconfiguration by encapsulating ex-
plicit dynamic linking mechanisms

Stream models and implements layers and par-
titions of hierarchically-integrated communica-
tion software

Network Services provides distributed nam-
ing, logging, locking, and routing services

20

Overview of ACE Concurrency

e ACE provides portable C+4+4 threading and
synchronization wrappers

e ACE classes we'll examine include:
— Thread Management
* ACE_Thread Manager — encapsulates threads
— Synchronization

* ACE_Thread Mutex and ACE_RW Mutex — en-
capsulates mutexes

x ACE_Atomic Op — atomically perform arith-
metic operations

x ACE_Guard — automatically acquire/release
locks

— Queueing

+x ACE_Message _Queue — thread-safe message
queue

*x ACE_Message Block — enqueued/dequeued
on message queues

Overview of ACE Concurrency
(cont’'d)

e Several ACE Thread Manager class methods
are particularly interesting:

— spawn — Create 1 new thread of control run-
ning func

int spawn (void *(*) (void *) func,
void *arg,
long flags,

spawn.n — Create n new threads of control
running func

int spawn_n (size_t n,
void *(*)(void *) func,
void *arg,
long flags,

wait — Wait for all threads in a manager to
terminate

int wait (void);

Orbix Examples

e Each example implements a concurrent
CORBA stock gquote service

— Show how threads can be used on both the
client and server side

e The server is implemented three different
ways:

1. Thread-per-Request — Every incoming CORBA
request causes a new thread to be spawned to
process it

. Thread Pool — A fixed number of threads are
generated in the server at start-up to service
all incoming requests

Thread-per-Object — Each session created is
assigned a thread to process requests for that
session

e Note that clients are unaware which con-
currency model is being used...

Stock Quoter Application

D Gateway/Router
[mvs-BM

] sunos - sPARC
] HP/UX - HPPA ~ ETHERNET
D 0S/2 - PowerPC 'Ql i ﬁ ﬂ ﬂ -
[windows NT - Alpha

Bl Windows- Pentium BROKERS

e Note the heterogeneity in this example

OMG IDL Definitions

e The IDL definition is the same for all three
server implementations:

// Define the interface for a stock quote server
module Stock
{

exception Invalid_Stock {};

// Interface is similar to a C++ class.
interface Quoter : CosLifeCycle::LifeCycleObject {
long get_quote (in string stock_name)
raises (Invalid_Stock);
// Inherits:
// void remove () raises (NotRemovable);

}s;

// Manage the lifecycle of a Quoter object.

interface Quoter_Factory : CosLifeCycle::GenericFactory {

// Returns a new Quoter selected by name

// e.g., "Dow Jones," "Reuters,", etc.

// Inherits:

// Object create_object (in Key k,

// in Criteria criteria);
};
};

Thread-per-Request Concurrency

Architecture

QUOTE SERVER 4: SPAWN THREAD

: TPR |\5: UPCALL

My_QUOTER
FAcTORY

2: RECEIVE
3: INVOKE FILTERS(

Thread-per-Request Main

Program

e In this scheme the server creates a sin-
gle Quoter factory and waits in the Orbix
event loop

typedef TIE_Quoter_Factory (My_Quoter_Factory)
TIE_QUOTER_FACTORY;
class Quote_Database; // Singleton.

int main (void)
{
try {
CORBA::0RB_var orb = CORBA::0RB_init (argc, argv, 0);
ORB::BOA_var boa = orb->BOA_init (argc, argv, 0);

// Create factory object.
Quoter_Factory_var qf =
new TIE_QUOTER_FACTORY (new My_Quoter_Factory);

// Run CORBA event loop.
boa->impl_is_ready ("Quoter_Factory");

// Destructor of qf calls CORBA::release ();
} catch (...) { /* handle exception ... */ }
}

27

Thread-per-Request Quoter
Interface

e Implementation of the Quoter IDL inter-
face

// Maintain count of requests.
typedef u_long COUNTER;

class My_Quoter
{
public:
// Constructor.
My_Quoter (const char *name);

// Returns the current stock value.
long get_quote (const char *stock_name);

private:

// Maintain request count.
static COUNTER req_count_;
};

Thread-per-Request Quoter

Factory Interface

e Factory that manages a Quoter’s lifecycle

class My_Quoter_Factory

{

public:
// Constructor
My_Quoter_Factory (void);

// Factory method for creation.
CORBA::0bject_ptr create_object

(const CosLifeCycle::Key &factory_key,

const CosLifeCycle::Criteria &the_criteria);

};

e We use the Factory Method pattern to
make creation more abstract

OBJECT-STYLE

RPC-style vs. Object-style

Communication

QUOTE CLIENT

name QUOTE SERVER
OoO—

: Quoter get_quote()

Proxy /- - — -

: Quoter
Proxy

remove()

: Reuters : Reuters
Quoter Quoter

Proxy

Factory
Quoter

: DowJones

name Quoter
o—

get_quote()

Thread-per-Request Filter

Interface

e The thread filter spawns a new thread for
each request

class TPR_Filter : public CORBA::ThreadFilter
{
// Intercept request and spawn thread
virtual int inRequestPreMarshal (CORBA::Request &) ;

// Execute the request in a separate thread
static void *worker_thread (void *);

We'll use the TIE approach to associate
the CORBA interfaces with our implemen-
tation

DEF_TIE_Quoter_Factory (My_Quoter_Factory)
DEF_TIE_Quoter (My_Quoter)

Associating Skeletons with

Implementations

e Problem

— How to associate the automatically generated
IDL skeleton with our implementation code

e [orces

— Inheritance is inflexible since it tightly couples
the solution with the base classes

— Virtual base classes are often incorrectly imple-

mented and are potentially space inefficient

e Solution

— Use the object form of the Adapter pattern

The Adapter Pattern

e Intent

— "“Convert the interface of a class into another
interface client expects”

* Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces

e This pattern resolves the following force
that arises when writing CORBA servers

1. How to associate the object implementation
with the auto-generated IDL skeleton without
requiring the use of inheritance

Structure of the Object form of
the Adapter Pattern

1: request ()
s~ Target /

(.

) client / \ g (

J) —_o\
— , request() =0 %

N
-
X/

- —_ T TN~ — T —
s —_— =

P

N ————

r//\\\/\) -///\ \
\ Adapter (Adapte 4

\
|

\

—__ ——

~

request()

N_——"~_"

(I specific_request() /\
\ /

———~_"

[E—
_/ 2:specific_request()

Using the Object form of the
Adapter Pattern with Orbix TIE

-~
—_——

. ARE create_quoter ()
client / ——

——

(T T
~ CosLifeCycle \\

\ GenericFactory)

) \

l/ create_object() = O\)
e A

N W/

// T~ \\
7 Quoter
\ Factory '

/ create_object() = 0
~ - — (S / 5
oo X r~7 No_
Quoter_Factory \\ g /My A
My_Quoter_Factory) Quoter /
e
- Factory \
create_object() /. _ y \
4 2: create_object() |
|

/
(
\

|

|

|

\

_ . \
-7 TN_/ create_object() /
’

-

\

-~ —

N/

35

Thread-per-Request Quoter

Factory Implementation

e The factory controls the lifetime of a Quoter

typedef TIE_Quoter (My_Quoter) TIE_QUOTER;

CORBA: :0Object_ptr
My_Quoter_Factory::create_object
(const CosLifeCycle::Key &factory_key,
const CosLifeCycle::Criteria &the_criteria)

{
My_Quoter_ptr q = new My_Quoter (factory_key.id);

Quoter_ptr quoter = new TIE_QUOTER (q);

// Be sure to duplicate the object reference!
return quoter->_duplicate ();

Thread-per-Request Filter

Implementation

e Every incoming request generates a new
thread that runs ‘“detached”

— Detached threads terminate silently when the
request is complete

int TPR_Filter::inRequestPreMarshal
(CORBA: :Request &req)
{
ACE_Thread_Manager: :instance ()->spawn
(TPR_Filter: :worker_thread, (void *) &req,
THR_DETACHED | THR_NEW_LWP);

// Tell Orbix we’ll dispatch request later
return -1;

}

void *TPR_Filter: :worker_thread (void *arg)
{
CORBA: :Request *req =
static_cast<CORBA: :Request *> (arg);
CORBA: :Orbix.continueThreadDispatch (*req);
}

// Thread filter (automatically registered)...
TPR_Filter global_thread_dispatcher;

37

Thread-per-Request Quoter

Implementation

e Implementation of thread-safe Quoter call-
back invoked by the CORBA skeleton

long
My_Quoter: :get_quote (const char *stock_name)
{
// Increment the request count (beware...).
++My_Quoter: :req_count_;

// Obtain stock price (beware...).
long value = Quote_Database::instance ()->
lookup_stock_price (stock_name);

if (value == -1)
// Skeleton handles exceptions.
throw Stock::Invalid_Stock ();

return value;

Eliminating Race Conditions

e Problem

— The concurrent Quote server contains “race
conditions” e.g.,

* Auto-increment of static variable req_count_

is not serialized properly

* Quote_Database also may not be serialized. ..

e Forces
— Modern shared memory multi-processors use

deep caches and weakly ordered memory mod-
els

— Access to shared data must be protected from
corruption

e Solution

— Use synchronization mechanisms

Basic Synchronization

Mechanisms

e One approach to solve the serialization
problem is to use OS mutual exclusion
mechanisms explicitly, e.g.,

// Sun0S 5.x, implicitly "unlocked".
mutex_t lock;

long
My_Quoter::get_quote (const char *stock_name)
{
mutex_lock (&lock);
// Increment the request count.
++My_Quoter: :req_count_;

// Obtain stock price.
long value = Quote_Database::instance ()->
lookup_stock_price (stock_name);

if (value == -1)

// Skeleton handles exceptions.

throw Stock::Invalid_Stock ();
mutex_unlock (&lock);
return value;

Problems Galore!

e Problems with explicit mutex_* calls:
Inelegant

* “Impedance mismatch” with C/C++

Obtrusive

x Must find and lock all uses of lookup_stock price
and req_count_

Error-prone

* CH4+ exception handling and multiple method
exit points cause subtle problems

* Global mutexes may not be initialized correctly. ..

Non-portable

* Hard-coded to Solaris 2.x

Inefficient

* e.d., expensive for certain platforms/designs

41

C++ Wrappers for

Synchronization

e To address portability problems, define a

C++ wrapper:

class Thread_Mutex
{
public:
Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, O0);
}
“Thread_Mutex (void) { mutex_destroy (&lock_); }
int acquire (void) { return mutex_lock (&lock_); }

int tryacquire (void) { return mutex_trylock (&lock); }

int release (void) { return mutex_unlock (&lock_); }

private:
mutex_t lock_; // Sun0S 5.x serialization mechanism.
void operator= (const Thread_Mutex &);
Thread_Mutex (const Thread_Mutex &) ;

};

Note, this mutual exclusion class interface
is portable to other OS platforms

Porting Thread_Mutex to
Windows NT

e Win32 version of Thread Mutex

class Thread_Mutex
{
public:
Thread_Mutex (void) {
InitializeCriticalSection (&lock_);
}
~“Thread_Mutex (void) {
DeleteCriticalSection (&lock_);
}
int acquire (void) {
EnterCriticalSection (&lock_); return O;
}
int tryacquire (void) {
TryEnterCriticalSection (&lock_); return O;
}
int release (void) {
LeaveCriticalSection (&lock_); return O;
}
private:
CRITICAL_SECTION lock_; // Win32 locking mechanism.
/...

Using the C++4 Thread Mutex
Wrapper

e Using the CH4+4 wrapper helps improve

portability and elegance:

Thread_Mutex lock;
long My_Quoter::get_quote (const char *stock_name)

lock.acquire ();
// Increment the request count.
++My_Quoter: :req_count_;
// Obtain stock price.
long value = Quote_Database::instance ()->
lookup_stock_price (stock_name);

if (value == -1)

// Skeleton handles exceptions.

throw Stock::Invalid_Stock ();
lock.release ();
return value;

e However, it does not solve the obtrusive-

ness or error-proneness problems. ..

Automated Mutex Acquisition and

Release

e TOo ensure mutexes are locked and un-
locked, we’ll define a template class that
acquires and releases a mutex automati-
cally

template <class LOCK>
class Guard
{
public:
Guard (LOCK &m): lock_ (m) { lock_.acquire ();
“Guard (void) { lock_.release (); }
/...
private:
LOCK &lock_;
}

Guard uses the C++ idiom whereby a con-
structor acquires a resource and the de-
structor releases the resource

Using the Guard Class

e Using the Guard class helps reduce errors:

Thread_Mutex lock;

long
My_Quoter: :get_quote (const char *stock_name)
{
Guard<Thread_Mutex> mon (lock);
// Increment the request count.
++My_Quoter: :req_count_;

// Obtain stock price.
long value = Quote_Database::instance ()->
lookup_stock_price (stock_name);
if (value == -1)
// Skeleton handles exceptions.
throw Stock::Invalid_Stock ();
return value; // Destructor of mon release lock.

e However, using the Thread Mutex and Guard
classes is still overly obtrusive and subtle
(may lock too much scope...)

OO Design Interlude

Q: Why is Guard parameterized by the
type of LOCK?

A: there are many locking mechanisms that
benefit from Guard functionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes
* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

In ACE, all synchronization classes use the
Wrapper Facade and Adapter patterns to
provide identical interfaces that facilitate
parameterization

The Wrapper Facade Pattern

e Intent

— "“Encapsulate low-level, stand-alone functions
within type-safe, modular, and portable class
interfaces”

e This pattern resolves the following forces
that arises when using native C-level OS
APIs

. How to avoid tedious, error-prone, and non-
portable programming of low-level IPC and lock-
ing mechanisms

. How to combine multiple related, but indepen-
dent, functions into a single cohesive abstrac-
tion

Structure of the Wrapper Facade

Pattern

~— T

T —— =

1: operationl () _ —
~ ——> 7/ \
) ” Wrapper y
= \\ operationl() !

| operation2()
| operation3() /

e

-~
/ T—— T~
/

-~ Wrappee
\ _

\\ specific_operation1() 2: specific_operationl()

I specific_operation2()
{ spccific_operation3()

—

)
(
~

\
\ mutex_lock()

- \

Using the Wrapper Facade
Pattern for Locking

lracquire () ~ =
> _—

/
client /\’ P AMIIE
—— \\ acquire() {

| release() \

/ .
\ tryacquire() /

—

VA

_——T —

/\\

——
—~—_ ~

/
\/ Solaris

2: mutex_lock()

I mutex_unlock()
| mutex_trylock()

\

Using the Adapter Pattern for
Locking

client

P

UG
l 1: Guard() Guard()

~Guard() //
— " N - 4

~ _ _|Mutex

—

/ v —~
\ Guard /
| Guard() O \/
'\ ~Guard()

N7 N_"7

~ —
Ve ——

/
~)
§ Mutex
\
% .)
2: acquire() =) J
N —_—
A : mutex_lock()

Y~

—~ — -
- —_—

- POSIX

| pthread mutex
| lock()

—— T

" Win32

o~ ——

Solaris

mutex_lock() #. Section()

Transparently Parameterizing
Synchonization Using C++4

e The following C++4 template class uses
the “Decorator” pattern to define a set of
atomic operations on a type parameter:

template <class LOCK

class TYPE

class ACE_Atomic_Op {
public:

ACE_Atomic_Op (TYPE ¢ = 0) { count_ = c; }

ACE_Thread_Mutex,
u_long>

TYPE operator++ (void) {
Guard<LOCK> m (lock_); return ++count_;

}

operator TYPE () {
Guard<LOCK> m (lock_);
return count_;

3

// Other arithmetic operations omitted...

private:

LOCK lock_;
TYPE count_;
};

Thread-safe Version of Quote

Using ACE _Atomic Op Server

e A few minor changes are made to the class

header: e req count_ iS now serialized automatically

so only minimal scope is locked

#if defined (MT_SAFE)
typedef ACE_Atomic_Op<> COUNTER; // Note default parameters long

#else My_Quoter::get_quote (const char *stock_name)
typedef ACE_Atomic_Op<ACE_Null_Mutex> COUNTER; {

#endif /* MT_SAFE */ // Increment the request count by Calling
// ACE_Atomic_Op: :operator++(void)
++My_Quoter: :req_count_;

long value;

In addition, we add a lock, producing: {

Guard<Thread_Mutex> mon (lock);

class My_Quoter

{

/...
// Serialize access to database.
ACE_Thread_Mutex lock_;

// Obtain stock price.
value = Quote_Database::instance ()->
lookup_stock_price (stock_name);
// Destructor of mon release lock.
}
if (value == -1)
// Skeleton handles exceptions.
throw Stock::Invalid_Stock ();
return value;

// Maintain request count.
static COUNTER req_count_;

Thread Pool Concurrency

Thread Pool Architecture

QUOTE SERVER 4:EN

ST
e This approach creates a thread pool to : M. Quoren
amortize the cost of dynamically creating \\ i FAcTORY
threads

2: RECEIVE
3: INVOKE

poo
—»
FILTER(S)

e In this scheme, before waiting for input thre
the server code creates the following:

poo
i’ thref™

1. A Quoter_Factory (as before)

2. A pool of threads based upon the command
line input

e Note the use of the ACE spawn n method
for spawning multiple pool threads

Thread Pool Main Program

const int DEFAULT_POOL_SIZE = 3;

// Thread filter (automatically registered)... Thread Pool Filter Public
TP_Filter global_thread_dispatcher;
Interface
int main (int argc, char *argv[])
{
CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, 0);
ORB: :BOA_var boa = orb->BOA_init (argc, argv, 0); e This approach uses an ACE Message Queue

// Initialize the factory implementation. to buffer requests
Quoter_Factory_var qf =
new TIE_Quoter_Factory (My_Quoter_Factory)

// Create a Thread Filter to dispatch incoming calls.
(new My_Quoter_Factory);

X . class TP_Filter : public CORBA::ThreadFilter
int pool_size = argc < 2 7 DEFAULT_POOL_SIZE {

: atoi (argv([1l); public:

// Intercept request insert at end of req_queue_.

// Create a thread p?ol- virtual int inRequestPreMarshal (CORBA::Request &) ;
ACE_Thread_Manager: :instance ()->spawn_n

(pool_size,

TP_Filter::pool_thread,

(void *) &global_thread_dispatcher,
THR_DETACHED | THR_NEW_LWP) ;

// A pool thread executes this...
static void *pool_thread (void *);

// Called by our own pool threads.

CORBA: :Request *dequeue_head (void);
// Wait for work to do.... 4 4

try {
boa->impl_is_ready ("Quoter_Factory");
} catch (...) { /* Handle exception... */ }
}

Thread Pool Filter

Implementation

Thread Pool Filter Non-Public

e The main Quoter implementation code is
Interface similar to the Thread-per-Request version

— The differences are primarily in the thread and
. filter code and are highlighted below:
e Note the use of ACE_Atomic Op to control

access to counter... // static member function for thread entry point.

void *TP_Filter::pool_thread (void *arg)
protected: {

// Called by thread filter. TP_Filter *tf = static_cast <TP_Filter *> (arg);
void enqueue_tail (CORBA::Request *);
// Loop forever, dequeueing new Requests,

private: // and dispatching them....
// Atomically increment request count.

static ACE_Atomic_Op<ACE_Thread_Mutex, for (;3) {
u_long> req_count_; CORBA: :Request *req = tf->dequeue_head ();

// Thread-safe message queue. // This call will perform the upcall,

ACE_Message_Queue<ACE_MT_SYNCH> req_queue_; // send the reply (if any) and

} // delete the CORBA::Request for us...
CORBA: :0Orbix.continueThreadDispatch (*req);

}

/* NOTREACHED */

Implementing the TP _Filter

e As requests come in they are inserted at
the end of the queue

TP_Filter::inRequestPreMarshal (CORBA::Request &req)

{
// Will block when "full".
enqueue_tail (&req);

// Tell Orbix we’ll dispatch the request later..

return -1;

e Meanwhile, all the threads wait for re-
quests to arrive on the head of the mes-
sage queue

— If all the threads are busy, the queue keep grow-
ing

— As always, flow control is an important concern...

Implementing the Request Queue

e The queue of CORBA Requests reuses
the ACE thread-safe Message_Queue

void
TP_Filter::enqueue_tail (CORBA::Request *req)
{
ACE_Message_Block *mb =
new ACE_Message_Block ((char *) req);

// Will block if queue is full. This is where
// we need to handle flow control policies...
req_queue_.enqueue_tail (mb);

CORBA: :Request *TP_Filter::dequeue_head (void)
{
ACE_Message_Block *mb;

// Will block if queue is empty.
req_queue_.dequeue_head (mb);

CORBA: :Request *req =

static_cast <CORBA::Request *> (mb->base ());
delete mb;
return req;

Thread-per-Object

e The third example of using threads is the
most complicated

— An ACE thread-safe Message_Queue is used,
as with the Thread Pool

— However, each object has its own thread and
its own queue

* Rather than one queue of incoming requests
per server...

e Like Thread-per-Request, no threads are
started in advance

— However, the implementation differs...

e This is a classic example of the “Active
Object” pattern

— In this case, each object maintains a different
client “session”

The Active Object Pattern

e Intent

— “Decouples method execution from method in-
vocation and simplifies synchronized access to
shared resources by concurrent threads”

e This pattern resolves the following forces
for concurrent communication software:

— How to allow blocking operations (such as read
and write) to execute concurrently

— How to serialize concurrent access to shared
object state

— How to simplify composition of independent
services

Active Object Pattern

> loop {
—— —» m = act_queue _.dequeue()
\
m.call()

Future m1() \\ 1: enqueue(new M1) = ~

Eumre el / <7 N_ -7, 3:dispatch()” /Actlvatlon\
uture m3() j //p ~

_ Scheduler\ - \ Queue /

2 ,/ enqueue()

- dlspatch()’ - \ |

PRNITNY L E—

—

RS

.

1) R 2: enqueue(Ml) 1 TSN
1 |

Se J
INVISIBLE LS erfl'}'(z)lnt\/ Methodk

TO \
cumnts | 20 71 Request \/ e

| m3()/ < N 11 \
7 4mig \fa 9" <\\M3

e Intent: decouples the thread of method
execution from the thread of method in-
vocation

Thread-per-Object Concurrency
Architecture

MyY_QUOTER
FACTORY

2: RECEIVE
3: INVOKE

Thread-per-Object Quoter Public
Interface

e Each Quoter active object has its own thread
of control

class My_Quoter

public:
// Comstructor
My_Quoter (const char *name);

// Returns the current stock value.
virtual long get_quote (const char *stock_name);

// A thread executes this per-active object.
static void *object_thread (void *);

// Thread filter uses this to queue the Request
virtual void enqueue_tail (CORBA::Request *);

Thread-per-Object Quoter
Non-Public Interface

e Each Quoter active object has a Message Queue

protected:
// Queue of pending requests called by our thread.
CORBA: :Request *dequeue_head (void);

private:
// Atomically increment request count.
static ACE_Atomic_Op<ACE_Thread_Mutex,
u_long> req_count_;

// Thread-safe message queue.
ACE_Message_Queue<ACE_MT_SYNCH> req_queue_;
};

Thread-per-Object Quoter

Factory Implementation
Thread-per-Object Constructor

e Static entry point method:
e The contructor spawns a separate thread
of control void *My_Quoter::object_thread (void *arg)

My_Quoter_ptr quoter =
static_cast<My_Quoter_ptr> (arg);

e This thread runs the event loop of the
. . // Loop forever, receiving new Requests,
active Ob_JeCt // and dispatching them....

My_Quoter: :My_Quoter (const char *name) fo? G

// Activate a new thread for the Quoter object. CORBA: :Request *req = quoter—>dequeue_head O);

ACE_Thread_Manager: :instance ()->spawn
(My_Quoter::object_thread,
this, // Get My_Quoter.
THR_DETACHED | THR_NEW_LWP);

// This call will perform the upcall,
// send the reply (if any) and
// delete the Request for us...
CORBA: :Orbix.continueThreadDispatch (*req);
}
/* NOTREACHED */
return O;

Thread-per-Object Quoter Thread-per-Object Filter

Factory Implementation
The filter must figure out which object an
e Threads are created by the My_Quoter con- incoming request references

structor

— Note the reuse of components from Thread This allows the filter to queue the request

Pool
in the right active object

CORBA: :Object_ptr
My_Quoter_Factory::create_object

(const CosLifeCycle::Key &factory_key, . . .
const CosLifeCycle::Criteria &the_criteria) Note that Orbix does the demultiplexing

{ for us automatically!
My_Quoter_ptr q = new My_Quoter (factory_key.id);

Quoter_ptr quoter = new TIE_QUOTER (q);
However, we must make sure we ignore

everything that isn't a Quoter (such as the
Quoter Factory requests or others)

// Be sure to duplicate the object reference!
return quoter->_duplicate ();

Thread-per-Object Filter

Implementation

e This filter implementation is more com-
plex

TPO_Filter::inRequestPreMarshal (CORBA::Request &req)
{
CORBA: :Dbject_ptr obj = req.target ();

// Ensure its a Quoter (could be Quoter_Factory).
CORBA: :Environment env;
Quoter_ptr quoter = Quoter::_narrow (obj, env);

if (env) // Must be the Quoter_Factory or other...
// continue the work on THIS thread.
return 1; // tell Orbix to continue normally.

// Get the My_Quoter object.
My_Quoter_ptr my_quoter =
static_cast <My_Quoter_ptr> (DEREF (quoter));

// Pass the request to the per object thread.
my_quoter->enqueue_tail (&req);

// Tell Orbix we will dispatch the request later..
return -1;

73

Client Application

The client works with any server concur-
rency model

The client obtains a Quoter Factory oObject
reference, spawns n threads, and obtains
a Quoter object reference per-thread

Each thread queries the Quoter 100 times
looking up the value of the ACME ORBs
stock

The main routine then waits for the threads
to terminate

QUOTE
CLIENT

Client/Server Structure

: My
Quoter

remove()

Quoter

name
Oo—

: Quoter get_quote()

Client Code

e The entry point function that does a re-

mote invocation to get a stock quote from
the server

— This executes in one or more threads

static void *get_quotes (void *arg)
{
Quoter_Factory_ptr factory =
static_cast<Quoter_Factory_ptr> (arg);

CosLifeCycle: :Key key =
Options::instance ()->key ();

Quoter_var quoter = Stock::Quoter::_narrow
(factory->create_object (key));

if (!CORBA::is_nil (quoter)) {
for (int i = 0; i < 100; i++) {
try {
long value = quoter—->get_quote ("ACME ORBs");
cout << "value = " << value << endl;
} catch (...) { /* Handle exception */ }
}

quoter->remove ();

Main Client Program

e Client spawns threads to run the get_quotes
function and waits for threads to exit

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

try {
// Create a remote Quoter_Factory.

// Narrow to Quoter_Factory interface.
Quoter_Factory_var factory =
bind_service<Quoter_Factory> ("My_Quoter_Factory”,
argc, argv);

// Create client threads.

ACE_Thread_Manager: :instance ()->spawn_n
(Options::instance ()->threads (), get_quotes,
(void *) factory, THR_DETACHED | THR_NEW_LWP) ;

// Wait for the client threads to exit
ACE_Thread_Manager: :instance ()->wait ();
} catch (...) { /x ... %/}
}

Obtaining an Object Reference

e Obtain an object reference

template <class T> T *
bind_service (const char #*name,
int argc, char *argv[]) {
static CosNaming::NamingContext_ptr name_context = 0;
CORBA::0Object_var obj;
CosNaming: :Name svc_name;
svc_name.length (1); svc_name[0].id = name;

// ¢‘First time in’’ check.
if (name_context == 0) {
// Get reference to name service.
CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, 0);

obj = orb->resolve_initial_references ("NameService");

name_context = CosNaming::NamingContext::_narrow (obj);

}

// Find object reference in the name service.
obj = name_context->resolve (svc_name);

// Narrow to the T interface and away we go!
return T::_narrow (obj);

Evaluating the Concurrency
Models

e Thread-per-Request
— Advantages

* Simple to implement
* Permits fine-grain load balancing
* Most useful for long-duration requests

— Disadvantages

* Excessive overhead for short-duration requests

* Permits unbounded number of concurrent
requests

* Application responsible for concurrency con-
trol

Evaluating the Concurrency
Models (cont’'d)

e Thread Pool
— Advantages

* Bounds the number of concurrent requests
* Scales nicely for multi-processor platforms
* Permits load balancing

— Disadvantages

* Applications must handle concurrency con-
trol

* Potential for Deadlock

Evaluating the Concurrency
Models (cont’'d)

e Thread-per-Object
— Advantages

* May simplify concurrency control when re-
working single-threaded code

— Disadvantages

* Does not support load balancing

* Potential for deadlock on nested callbacks

Concluding Remarks

Orbix supports several threading models

— Performance may determine model choice

ACE provides key building blocks for sim-
plifying concurrent application code

— www.cs.wustl.edu/~schmidt/ACE.html

More information on CORBA can be ob-
tained at

— www.cs.wustl.edu/~schmidt/corba.html

C++ Report columns written with Steve
Vinoski

— www.cs.wustl.edu/~schmidt/report-doc.html

