
Addressing Domain Evolution Challenges in
Software Product Lines

Gan Deng1, Gunther Lenz2, and Douglas C. Schmidt1

1 Department of EECS, Vanderbilt University

Nashville, Tennessee, USA 37203
{dengg, schmidt}@dre.vanderbilt.edu,

2 Siemens Corporate Research, Princeton, NJ 08540
lenz.gunther@Siemens.com

Abstract. It is hard to develop and evolve software product-line architectures (PLAs)
for large-scale distributed real-time and embedded (DRE) systems. Although certain
challenges of PLAs can be addressed by combining model-driven development (MDD)
techniques with component frameworks, domain evolution problems remain largely
unresolved. In particular, extending or refactoring existing software product-lines to
handle unanticipated requirements or better satisfy current requirements requires sig-
nificant effort. This paper describes techniques for minimizing such impacts on MDD-
based PLAs for DRE systems through a case study that shows how a layered architec-
ture and model-to-model transformation tool support can reduce the effort of PLA
evolution.

Keywords: Model-driven development, Product-line Architectures, Model Transfor-
mation

1. Introduction

Software product-line architectures (PLAs) [20] are a promising technology for industrializing
software development by focusing on the automated assembly and customization of domain-specific
components, rather than (re)programming systems manually. Conventional PLAs consist of compo-
nent frameworks [29] as core assets, whose design captures recurring structures, connectors, and
control flow in an application domain, along with the points of variation explicitly allowed among
these entities. PLAs are typically designed using common/variability analysis (CVA) [23], which
captures key characteristics of software product-lines, including (1) scope, which defines the do-
mains and context of the PLA, (2) commonalities, which describe the attributes that recur across all
members of the family of products, and (3) variabilities, which describe the attributes unique to the
different members of the family of products.

Despite improvements in third-generation programming languages (such as Java, C#, and C++) and
runtime platforms (such as component and web services middleware), the levels of abstraction at
which PLAs are developed today remains low relative to the concepts and concerns within the ap-
plication domains themselves. A promising means to address this problem involves developing
PLAs using model-driven development (MDD) [9] tools. As shown in Figure 1, MDD tools help
raise the level of abstraction and narrow the gap between problem and solution domain by combin-
ing (1) metamodeling and model interpreters to create domain-specific modeling languages (DSMLs)
with (2) CVA and object-oriented extensibility capabilities to create domain-specific component

frameworks. DSMLs help automate repetitive tasks that must be accomplished for each product in-
stance, e.g., generating code to glue components together or synthesizing deployment artifacts for
middleware platforms Domain-specific component frameworks factor out common usage patterns in
a domain into reusable platforms, which help reduce the complexity of designing DSMLs by simpli-
fying the code generated by their associated model interpreters.

To use MDD-based PLA technologies effectively in practice, however, requires practical and scal-
able solutions to the domain evolution problem [30], which arises when existing PLAs are extended
and/or refactored to handle unanticipated requirements or better satisfy current requirements. Al-
though PLAs can be enhanced by combining component frameworks with DSMLs, existing MDD
tools do not handle the domain evolution problem effectively since they require significant manual
changes to existing component frameworks and metamodels. For example, changing metamodels in
a PLA typically invalidates models based on previous versions of the metamodels. While software
developers can manually update their models and/or components developed with a previous meta-
model to work with the new metamodel, this approach is clearly tedious, error-prone, and non-
scalable.

Figure 1: Using DSMLs and Component Middleware to Enhance Abstraction and Narrow

the Gap between Problem and Solution Domain

This paper describes our approach to PLA domain evolution. We use a case study of a representative
MDD-based tool for DRE system to describe how to evolve PLAs systematically and minimize hu-
man intervention for specifying model-to-model transformation rules as a result of metamodel
changes. Our approach automates many tedious, time consuming, and error-prone tasks of model-to-
model transformation to reduce the complexity of PLA evolution significantly.

The remainder of this paper is organized as follows: Section 2 describes our vision of the architec-
ture of PLA for DRE systems, and introduces our case study, which applies the Event QoS Aspect
Language (EQAL) MDD tool to simplify the integration and interoperability of diverse pub-
lish/subscribe mechanisms in the Bold Stroke PLA; Section 3 describes challenges we faced when
evolving models developed using EQAL and presents our solutions to these challenges; Section 4
compares our work on EQAL with related research; and Section 5 presents concluding remarks.

2. Overview of MDD-based PLA and Case Study (EQAL)

Problem Solution

DSML

Meta Model

Interpreter

Frameworks
and Reusable
Components

OS API calls Business
Problems

Product Line Analysis

Product Line
Specific

Requirements

Commonality
& Variability

Analysis

Abstraction

This section presents an overview of an MDD-based PLA for DRE systems, focusing on the design
concepts, common patterns, and software architecture. We then describe the structure and function-
ality of EQAL.

2.1 Design Concepts of MDD-based PLAs for DRE Systems

The MDD-based design and composition approach for embedded systems in [10] describes the
benefits of combining DSML and reusable component frameworks. We believe this approach also
applies to the design of PLAs for large-scale DRE systems. Figure 2 illustrates the high-level design
principle and overall architecture of an MDD-based PLA solution that exploits a layered and com-
positional architecture to modularize various design concerns for DRE systems.

Figure 2. MDD-Based Product-line Architecture for DRE Systems

MDD-based PLAs for DRE systems are based on a core set of platforms, frameworks, languages,
and tools. DRE systems increasingly run on commercial-off-the-shelf (COTS) middleware and OS
platforms. Middleware platforms include Real-time Java, Real-time CORBA, Real-time CCM, and
the Data Distribution Service (DDS) and OS platforms include VxWorks, Timesys Linux, and Win-
dows CE. Since many DRE systems require a loosely-coupled distribution architecture to simplify
extensibility, COTS middleware typically provides publish/subscribe-based communication mecha-
nisms where application components communicate anonymously and asynchronously by defining
three software roles: publishers generate events that are transmitted to subscribers via event chan-
nels that accept events from publishers and deliver events to subscribers. Event-based communica-
tion helps developers concentrate on the application-specific concerns of their DRE systems, and
leaves the connection, communication, and QoS-related details to middleware developers and tools.
An event-based communication model also helps reduce ownership costs since it defines clear
boundaries between the components in the application, thereby reducing dependencies and mainte-
nance costs associated with replacement, integration, and revalidation of components. Moreover,
core components of event-based architectures can be reused, thereby reducing development, quality
assurance, and evolution effort.

Component frameworks provide reusable building blocks of PLAs for DRE systems. These
frameworks are increasingly built atop COTS middleware and OS platforms. Since the philosophy
of COTS middleware and OS platforms catered to maintaining “generality, wide applicability, port-
ability ad reusability,” customized frameworks are often desired in DRE software product-lines to (1)
raise the level of abstraction, and (2) offer product-line specific runtime environments. Examples
of component frameworks include domain-specific middleware services layer in the Boeing Bold
Stroke PLA [26], which supports many Boeing product variants, such as F/A-18E, F/A-18F, F-15E,
and F-15K, using a component-based, publish/subscribe platform built atop The ACE ORB (TAO)
[27] and Prism [28], which is QoS-enabled component middleware influenced by the Lightweight
CORBA Component Model (CCM) [19]. The Boeing Bold Stoke PLA supports systematic reuse of
avionics mission computing functionality and is configurable for product-specific functionality
(such as heads-up display, navigation, and sensor management) and execution environments (such
as different networks/buses, hardware, operating systems, and programming languages).

Domain-specific modeling languages (DSMLs) and patterns facilitate the model-based design,
development, and analysis of vertical application domains, such as industrial process control, tele-
communications, and avionics mission computing. Example DSMLs the include Saturn Site Produc-
tion Flow (SSPF), which is a manufacturing execution system serving as an integral and enabling
component of the business process for car manufacture industry [11] and the Embedded System
Modeling Language (ESML) [12], which models mission computing applications in the Boeing
Bold Stroke PLA. DSMLs are also applicable to horizontal platform domains, such as the domain of
component middleware for DRE systems, which provide the infrastructure for many vertical appli-
cation domains. Examples of DSMLs for horizontal platforms include Platform Independent Com-
ponent Modeling Language (PICML) [13], which facilitates the development of QoS-enabled com-
ponent-based DRE systems and J2EEML [17], which facilitates the development of EJB applica-
tions. Regardless of whether the DSMLs target vertical or horizontal domains, model interpreters
can be used to generate various artifacts (such as code and metadata descriptors), which can be inte-
grated with component frameworks to form executable applications and/or simulations.
As shown in Figure 2, MDD-based PLA defines a framework of components that adhere to a com-
mon architectural style with a clear separation of commonalities and appropriate provisions for in-
corporating variations by integrating vertical/horizontal DSMLs, component frameworks, -
middleware and OS platforms. In this architecture, MDD technologies are used to model PLA fea-
tures and glue components together, e.g., they could be utilized to synthesize deployment artifacts
[13] for standard middleware platforms.

2.2 The Design of EQAL

The Event QoS Aspect Language (EQAL) is an MDD tool designed to reduce certain aspects of
component-based publish/subscribe PLA-based DRE systems, such as the Boeing Bold Stroke PLA
described in Section 2.1. EQAL is implemented using the Generic Modeling Environment (GME)
[5], which is a toolkit that supports the development of DSMLs. The EQAL DSML provides an in-
tegrated set of metamodels, model interpreters, and standards-based component middleware that
allowing PLA developers to visually configure and deploy event-based communication mechanisms
in DRE systems via models instead of programming them manually. EQAL is an example of a
DSML that supports a horizontal platform domain, i.e., it is not restricted to a particular vertical
application domain, but instead can be leveraged by multiple vertical domains.

 Figure 3. EQAL MDD Tool Architecture Figure 4. EQAL Framework Evolution

As shown in Figure 3, EQAL is a layered architecture that supports several types of abstractions,
which are subject to change stemming from domain evolution, as discussed in Section 3. The bottom
layer is the EQAL Runtime Framework, which is a portable, OS-independent framework built atop
the Component-Integrated ACE ORB (CIAO) QoS-enabled implementation of the Lightweight
CCM specification. The EQAL Runtime Framework provides an extensible way to deploy various
event-based communication mechanisms, including a two-way event communication mechanism
based on direct method invocation, the CORBA Event Service, and TAO’s Real-time Event Service
[24].

The middle layer in the EQAL architecture is a set of domain models that represent instances of
modeled DRE systems. These models are created by the EQAL DSML and are used to capture the
structural and behavioral semantic aspects of event-based DRE systems.

The top layer of the EQAL MDD architecture consists of metamodel that enables developers to
model concepts of event-based DRE systems, including the configuration and deployment of various
publish/subscribe services and how these services are used by CCM components. This layer also
contains several model interpreters that synthesize various types of configuration files that specify
QoS configurations, parameters, and constraints. The EQAL interpreters automatically generate
publish/subscribe service configuration files and service property description files needed by the
underlying EQAL Runtime Framework and CIAO middleware.

Although the EQAL MDD tool could be used to simplify the integration and interoperability of di-
verse publish/subscribe mechanisms in some PLAs, evolving such a MDD-based PLA would often
bring additional challenges.

3. Resolving Challenges of MDD-based PLA when Facing Domain Evolution

This section examines challenges associated with evolving an MDD-based PLA in the context of the

Boeing Bold Stroke PLA and the EQAL DSML. For each challenge, we explain the context in
which the challenge arises, identify key problems that must be addressed, outline our approach for
resolving the challenges, and describe how we can apply these solutions using EQAL.

3.1 Challenge 1: Capturing New Requirements into Existing MDD-based Software
Product-lines for DRE Systems

Context. Change is a natural and inevitable part of the software PLA lifecycle. The changes may be
initiated to correct, improve, or extend assets or products. Since assets are often dependent on other
assets, changes to one asset may require corresponding changes in other assets. Moreover, changes
to assets in PLAs can propagate to affect all products using these assets. A successful process for
PLA evolution must therefore manage these changes effectively [15].

Problem → New requirements must be captured into existing PLAs. DRE systems must evolve
to adapt to changing requirements and operational contexts. In addition, when some emerging tech-
nologies become sufficiently mature, it is often desirable to integrate them into existing PLAs for
DRE systems. For example, depending on customer requirements, different product variants in the
Bold Stroke PLA may require different levels of QoS assurance for event communication, including
timing constraints, event delivery latency, jitter, and scalability. Even within the same product vari-
ant, different levels of QoS assurance may be required for different communication paths, depending
on system criticality, e.g., certain communication paths between components may require more
stringent QoS requirements than other ones.

The event communication mechanisms currently supported by EQAL include: (1) two-way based
event communication based on direct method invocation, (2) CORBA event service, and (3) TAO’s
Real-time Event Service [24]. Although the communication mechanisms provided by EQAL are
applicable to many types of event-based systems, with the evolution in a domain and new technolo-
gies emerging, other event communication mechanisms may be needed. For example, TAO’s reli-
able multicast Federated Notification Service is desired in certain DRE systems to address scal-
ability and reliability. Likewise, the OMG’s Data Distribution Service (DDS) [25] is often desired
when low latency and advanced QoS capabilities are key product variant concerns. When these two
new publish/subscribe technologies are added into the existing EQAL MDD tool, all layers in
EQAL MDD architecture must change accordingly, including EQAL Runtime Framework, EQAL
DSML and EQAL Domain Models. Moreover, since EQAL models have already been used in ear-
lier incarnations of a PLA, such as Bold Stroke, we must minimize the effort required to migrate
existing EQAL models to adhere to the new metamodels.

Solution → Evolve PLA systematically through framework and metamodel enhancement. Al-
though a layered PLA can significantly reduce software design complexity by separating concerns
and enforcing boundaries between different layers, since different layers in PLA still need to interact
with each other through predefined interfaces, therefore, to integrate new requirements into a PLA,
all layers must evolve in a systematic manner. As shown in Figure 3, for most PLAs for DRE sys-
tems we generalized this evolution to the following three ordered steps:

1. Component framework evolution. As discussed in Section 2.1, frameworks are often built atop

middleware and OS platforms and provide the runtime environment to DRE systems. As a result,

whenever the DRE systems must evolve to adapt to new requirements, component frameworks
are often affected since they have direct impact on the system.

2. DSML evolution. DSML metamodels and interpreters are often used to capture the variability

and features of DRE systems so a system can expose different capabilities for different product
variants. Often, DSMLs are used to glue different component framework entities together to
form a complete application. Hence, typically DSML evolution should be performed after frame-
work evolution is completed.

3. Domain model evolution. The DSML metamodel defines a type system to which domain mod-

els must conform to. Since the changes to the metamodel of a DSML often invalidate the exist-
ing domain models by redefining the type system, domain model evolution must be performed
after the DSML evolution.

We discuss the challenges and solutions associated with component framework and DSML evolu-
tion in the Section 3.1.1 and then discuss the challenges and solutions associated with domain model
evolution in Section 3.1.2.

3.1.1 EQAL Framework Evolution

In our case study, the EQAL Runtime Framework provides a set of service configuration libraries
that can configure various publish/subscribe services. Since these middleware services can be con-
figured using well-defined and documented interfaces, we can formulate the usage patterns of such
middleware services easily. The EQAL Runtime Framework can encapsulate these usage patterns
and provide reusable libraries that (1) contain wrapper façades for the underlying publish/subscribe
middleware services to shield component developers from tedious and error-prone programming
tasks associated with initializing and configuring these publish/subscribe services and (2) expose
interfaces to the external tools to manage the services, so that service configuration and deployment
processes can be automated, as shown in Figure 3. I. To incorporate these new publish/subscribe
technologies and minimize the impact on existing DRE systems, we used the Adapter and Strategy
patterns so all event communication mechanisms supported by EQAL provide the same interface,
yet can also be configured with different strategies and QoS configurations.

3.1.2 EQAL DSML Evolution

The EQAL metamodel must be enhanced to incorporate these new requirements, so system develop-
ers can model the behavior of new event-based communication mechanisms visually. For example,
to enhance EQAL to support DDS and TAO’s Federated Notification Service, the metamodel of the
EQAL DSML must be changed. Since the EQAL metamodel defines the language to describe
EQAL domain models, it is essential to minimize the impact on EQAL domain models, so that the
EQAL domain models can be transformed easily to comply with the new EQAL metamodel.

Compositional metamodeling is a key idea to make metamodel scalable and easier to evolve. This
technique provides a metamodel composition capability for reusing and combining existing model-
ing languages and language concepts. Since EQAL is implemented with GME, when new pub-
lish/subscribe services are integrated, we could design a new DSML within GME and import the old
EQAL metamodel as a “library”.. Apart from being read-only, all objects in the metamodel imported

through the library are equivalent to objects created from scratch. Since the new publish/subscribe
services share much commonality between the exiting publish/subscribe services that EQAL already
supports, when the old EQAL metamodel is imported as library, we could create subtypes and in-
stances from the metamodel library and refer library objects through references.

3.2 Challenge 2: Migrating Existing Domain Models with MDD-based PLA Evolution

Context. The primary value of the MDD paradigm stems from the models created using the DSML.
These models specify the system, and from the models the executable system can be generated or
composed. Changes to the computer-based system can be modeled, and the resulting executable
model is thus a working version of the actual system. Unfortunately, if the metamodel is changed,
all models that were defined using that metamodel may require maintenance to adapt to the seman-
tics that represent the computer-based system correctly. Without ensuring the correctness of the do-
main models after a change to the domain, the benefits of MDD will be lost. The only way to use
instance models based on the original metamodel is to migrate them to use the modified metamodel.
During this migration process, we must preserve the existing set of domain model assets and allow
new features to be added into domain models; ideally with as little human intervention effort as pos-
sible.

Problem → Existing domain models evolution techniques require excessive human interven-
tion. To address the challenge of preserving the existing set of domain model assets, old domain
models must be transformed to become compliant with the changed metamodel. In the MDD re-
search community, particularly in the DSML community, research has been conducted on using
model transformation to address metamodel evolution. Since the underlying structure of models,
especially visual models, can be described by graphs, most of the model transformation research has
been conducted in the context of graph transformation. In particular, recent research [1,2] has shown
that graph transformation is a promising formalism to specify model transformations rules.

Most existing model transformation techniques, however, require the transformation be performed
after the domain metamodel has changed. For example, when an old metamodel is modified and a
new metamodel based on it is created, the model transformation designer must take both the old
metamodel and new metamodel as input, and then manually specify the model transformation rules
based on these two metamodels by using the “transformation behavior specification language” pro-
vided by the transformation tool. Although such a design approach could solve the model transfor-
mation problem, it introduces additional effort in specifying the model transformation rules, even if
the metamodel evolution is minor (e.g., a simple rename of a concept in the metamodel). This addi-
tional effort is particularly high when the metamodels are complex, since the transformation tool
must take both complex metamodels as input to specify the transformation.

Solution → Tool-supported domain model migration. To preserve the assets of domain models,
our approach is to bring model migration capabilities online, i.e., embed domain model migration
capabilities into the metamodeling environment itself. This approach is sufficiently generic to be
applied to any existing metamodeling environment. A description of the change in semantics be-
tween an old and a new DSML is a sufficient specification to transform domain models such that
they are correct in the new DSML. Moreover, the pattern that specifies the proper model migration

is driven by the change in semantics, and may be fully specified by a model composed of entities
from the old and new metamodels, along with directions for their modification [6].

3.2.1 Integration of Syntactic-based and Semantic-based Domain Model Migration

Table 1: Changes that Require a Paradigm Shift [6]

Based on the characteristics of metamodel change, researchers have shown that 14 “atomic” types of
metamodel changes can be defined [6], as shown in Table 1.

These results provide us the intuition into the problem. In some cases, the semantics can be easily
specified. For example, if the metamodel designer deletes an atom called “foo” in the metamodel
and creates a new atom called “bar” we can then specify the semantics of the change as:

replace(Atom("foo") -> Atom("bar"));

Syntactic metamodel changes, however, can often affect semantic changes, which results in a highly
challenging task in model migration, i.e., semantic migration. Semantic migration requires that the
meaning of the old domain models is preserved after the transformation, and that the new domain
models conform to the entire set of static constraints required in the new domain. In these cases, it
is quite challenging to discover the semantics of the change. To make such algorithms provide actual
“semantic migration” capabilities, human input will be necessary since semantic changes in meta-
models can not be captured through syntactic changes alone.

For model migration, we generalized two approaches to perform model transformation with seman-

tic migration. In the first approach, given two distinct metamodels, old and new, we can perform a
transformation that converts the old model in entirety to the new one. This means one will have to
write a complete set of rules to convert each entity in the models. In the second approach, we create
a unified metamodel (old + new), such that both old and new models are valid in it. Developers can
then write transformation translators that convert those parts of the model belonging to the old part
of the paradigm to equivalent models in the new part of the paradigm.

It is evident that the second approach is much cleaner and user-friendly than the first approach since
it requires much less human effort. We are therefore investigating the second model migration ap-
proach. In our approach, after the unified metamodel is formulated, we use an "SQL-like" declara-
tively language that allows one to query and change the model to define model transformation rules.
The Embedded Constraint Language (ECL), used by the C-SAW GME plug-in [2], seems to be a
good candidate for such a language. The ECL is a textual language for describing transformations on
visual models. Similar to the Object Constraint Language (OCL) defined in OMG’s UML specifica-
tion, the ECL provides concepts such as collection and model navigation. In addition, the ECL also
provides a rich set of operators that are not found in the OCL to support model aggregations, con-
nections, and transformations. ECL is an imperative language that allows one to specify procedural
style transformation rules of the syntax translator to capture the semantic migration.

3.2.2 EQAL Domain Model Evolution.

Figure 5 illustrates the BasicSP application scenario in the Boeing Bold Stroke PLA, in which two
component instances named BMDevice and BMClosedED are connected with each other through
real-time event channel provided by TAO’s Real-time Event Service. An event channel consists of
one RTEC_Proxy_Consumer module and RTEC_Proxy_Supplier module, which could be
configured with various QoS settings. Consider a domain evolution scenario, where the Real-time
Event Service is not the desired choice for a particular Bold Stroke product variant, so it must be
replaced with TAO Federated Notification Service. In this case, the current domain model below
will become invalid and must be migrated to the new EQAL DSML that supports the configuration
of TAO’s Federated Notification Service.

Figure 5. EQAL Configuring Real-time Event Service between Two Components

With ECL declarative language, we could create a model translator by defining strategies as below:

strategy ChangeToFNS() {

declare FNS_Proxy_Consumer,
FNS_Proxy_Supplier : model;

// Find interested model elements…
if(atoms()->select(a | a.kindOf() =

"RTEC_Proxy_Consumer")->size() >= 1) then

//get the RTEC_Proxy_Consumer model element
//and its connections

…
//delete the RTEC_Proxy_Consumer model element
RTEC_Model.deleteModel(

“RTEC_Proxy_Consumer”,
“RTEC_proxy_consumer”);

//add the FNS_Proxy_Consumer model
FNS_Proxy_Consumer:=

addModel(“FNS_Proxy_Consumer”,

“FNS_proxy_consumer”);
FNS_Proxy_Consumer.setAttribute("Reactive", "1");
FNS_Proxy_Consumer.setAttribute("LockType",
"Thread Mutex");

//add the connections
RTEC_Model.addConnection(
"Event_Source_Proxy_Consumer",
event_source,
FNS_Proxy_Consumer);
RTEC_Model.addConnection(
"Proxy_Supplier_Event_Sink",
FNS_Proxy_Consumer,
event_sink);

//do similar to the FNS_Proxy_Supplier model
…
endif;

};

The semantic meaning of this translator is straightforward, i.e., first find the interested model ele-
ments and their associations that are based on TAO’s Real-time Event Service and replace these
model elements and associations with TAO’s Federated Notification Service.

4. Related Work
Software product-line is a viable software development paradigm that enables order-of-magnitude
improvements in time to market, cost, productivity, quality, and other business drivers [20]. As
MDD technology becomes more pervasive, there has been an increase in focus on technologies, ar-
chitecture, and tools for applying MDD-based techniques into software PLAs. This section com-
pares our research with related work.

Microsoft’s Software Factory scheme [9] focuses on combining MDD- and component-based tech-
niques with product-line principles to create highly extensible development tools quickly and
cheaply for specific domains. The PLAs for DRE systems we describe in Section 2 are similar to the
Software Factory scheme, but focuses on how aspects of PLAs for DRE systems should be designed
and evolved throughout a system’s lifecycle.

Generative software development techniques [19] develop software system families by synthesizing
code and other artifacts from specifications written in textual or graphical domain-specific languages.
Key concepts and idea in this paradigm include DSML, domain and application engineering, and
generative domain models. Feature modeling [18] is a method and notation for capturing com-
mon/variable features in a system family. This software development paradigm is related to our ap-
proach, though in our MDD-based PLA we use domain-specific graphical DSML notations to de-
scribe the application semantics, instead of using a universal feature modeling notation since the
latter is too restrictive for many DRE systems. .

Significant efforts have focused on evolution problems of model-based legacy systems. The Atlas

Transformation Language (ATL) developed in the Generative Model Transformer project [22] aims
to define and perform general transformations based on OMG’s MDA technology. Atlas is a model
transformation language specified both as a metamodel and as a textual concrete syntax, and a hy-
brid of declarative and imperative language. The Graph Rewriting and Transformation (GReAT)
[21] tool provides a model transformation specification language to handle the model migration
problem by explicitly defining complex graph patterns and pattern matching algorithms through
models. While the methods mentioned above are powerful, they are also labor-intensive since trans-
formations must be defined manually, which does not scale up for large-scale DRE systems. In con-
trast, our approach enables automatic transformation with limited human intervention that eliminates
much of the tedious tasks of model evolution. C-SAW [2] is a general model transformation engine
developed as a GME [5] plug-in and is compatible with any metamodel, i.e., it is domain-dependent
and can be used with any modeling language defined within the GME. C-SAW, however, can only
handle domain model transformations when the metamodel is not changed, while our approach can
be used even when the metamodel has changed.

5. Concluding Remarks

Large-scale DRE systems are hard to build. Software product-line architectures (PLAs) are an im-
portant technology for meeting the growing demand for highly customized and reusable DRE sys-
tems. MDD-based PLA provides a promising means to develop software product-lines for DRE
systems by combining metamodeling, DSMLs, interpreters, frameworks, and COTS middleware and
OS platforms.

Software product-lines must inevitably evolve to meet new requirements. Adding new (particularly
new unanticipated) requirements to MDD-based PLAs, however, often causes invasive modifica-
tions to the PLA’s component frameworks and DSMLs to reflect these new requirements. Since
these modifications significantly complicate PLA evolution efforts, they can outweigh the advan-
tages of PLA development compared to one off development. To rectify these problems, a layered
and compositional architecture is needed to modularize system concerns and reduce the effort asso-
ciated with domain evolution. This paper illustrates via a case study how (1) structural-based model
transformations help maintain the stability of domain evolution by automatically transforming do-
main models and (2) aspect-oriented model transformation and weaving helps reduce human effort
by capturing model-based structural concerns.

References

[1] Jonathan Sprinkle, Aditya Agrawal, Tihamer Levendovszky, Feng Shi, Gabor Karsai, “Domain

Model Translation Using Graph Transformations,” ECBS 2003: 159-167
[2] Jeff Gray, Ted Bapty, Sandeep Neema, James Tuck, “Handling Crosscutting Constraints in Do-

main-specific Modeling,” Communicaton of ACM 44(10): 87-93 (2001)
[3] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm: “Generic Schema Matching with Cupid,”

VLDB 2001: 49-58, Roma, Italy
[4] Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, Timothy Grose, “Eclipse Modeling

Framework”, Addison-Wesley 2004

[5] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G., Sprinkle
J., Volgyesi P., “The Generic Modeling Environment,” Workshop on Intelligent Signal Proc-
essing, Budapest, Hungary, May 17, 2001.

[6] Jonathan Sprinkle, Gabor Karsai, “A Domain-Specific Visual Language for Domain Model Evo-
lution”, Journal of Visual Language and Computation, vol. 15, no. 3-4, pp. 291-307, Jun., 2004.

[7] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and Aniruddha Gok-
hale, “DAnCE: A QoS-enabled Component Deployment and Conguration Engine,” Proceedings
of the 3rd Working Conference on Component Deployment, Grenoble, France, November 28-29,
2005.

[8] Gan Deng, “Supporting Configuration and Deployment of Component-based DRE Systems Us-
ing Frameworks, Models, and Aspects,” OOPSLA ’06 Companion, October 2005, San Diego,
CA, to appear

[9] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent, John Crupi, Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools, Wiley 2004

[10] Gabor Kasai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty, “Model-Integrated Develop-
ment of Embedded software”, Proceedings of the IEEE number 1, volume 91, Jan. 2003

[11] Karsai G., Sztipanovits J., Ledeczi A., Moore M., “Model-Integrated System Development:
Models, Architecture and Process,” 21st Annual International Computer Software and Applica-
tion Conference (COMPSAC), pp. 176-181, Bethesda, MD, August, 1997

[12] http://www.isis.vanderbilt.edu/Projects/mobies/.
[13] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha Gokhale,

and Douglas C. Schmidt, “A Platform-Independent Component Modeling Language for Dis-
tributed Real-time and Embedded Systems,” Proceedings of the 11th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, San Francisco, CA, March 2005

[14] George Edwards, Gan Deng, Douglas C. Schmidt, Anirudda Gokhale, and Balachandran Nata-
rajan, “Model-driven Configuration and Deployment of Component Middleware Pub-
lisher/Subscriber Services,” Proceedings of the 3rd ACM International Conference on Genera-
tive Programming and Component Engineering, Vancouver, CA, October 2004

[15] John D. McGregor, “The Evolution of Product-line Assets,” Technical Report, CMU/SEI-2003-
TR-005m ESC-TR-2003-005

[16] David Sharp. “Avionics Product-line Software Architecture Flow Policies,” In Proceedings of
the Digital Avionics Systems Conference, 1999

[17] Jules White, Douglas Schmidt, and Aniruddha Gokhale, “Simplifying Autonomic Enterprise
Java Bean Applications via Model-driven Development: a Case Study”, Proceedings of
ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Sys-
tems, Montego Bay, Jamaica, October 5-7, 2005.

[18] Krzysztof Czarnecki, Simon. Helsen, and Ulrich. Eisenecker, “Staged configuration using fea-
ture models”, In Proceedings of the Third Software Product-Line Conference, Robert Nord,
2004

[19] Krzysztof Czarnecki, Ulrich Eisenecker, Generative Programming: Methods, Tools, and Appli-
cations, Addison-Wesley 2000

[20] Paul Clements, Linda Northrop, Software Product-lines: Practices and Patterns, Addison-
Wesley, ISBN 0201703327, August 20, 2001

[21] Aditya Agrawal, Gabor Karsai, Ákos Lédeczi, “An End-to-end Domain-driven Software Devel
opment Framework,” Proceeding of ACM SIGPLAN OOPSLA 2003 Domain Driven Design
session , Anaheim, CA, 2003

[22] Available at Generative Model Transformer project website, http://www.eclipse.org/gmt/

[23] James Coplien, Daniel Hoffman, and David Weiss, “Commonality and Variability in Software
Engineering” IEEE Software, 15(6) November/December, 37—45, 1998

[24] Tim Harrison and David Levine and Douglas C. Schmidt, “The Design and Performance of a
Real-time CORBA Event Service”, Proceedings of OOPSLA '97, ACM, Atlanta, GA, October
6-7, 1997

[25] OMG’s “Data Distribution Service for Real-time Systems Specification”, version 1.0, Dec.2004.
http://www.omg.org/docs/formal/04-12-02.pdf

[26] David Sharp and Wendy Roll, “Model-Based Integration of Reusable Component-Based Avi-
onics System,” in Proceedings of the Workshop on Model-Driven Embedded Systems in RTAS
2003, May 2003

[27] Douglas Schmidt, David Levine, and Sumedh Mungee, “The Design and Performance of Real-
Time Object Request Brokers”, Computer Communications, vol. 21, pp. 294–324, Apr. 1998

[28] Wendy Roll, “Towards Model-Based and CCM-Based Applications for Real-Time Systems,”
in Proceedings of the International Symposium on Object-Oriented Real-time Distributed
Computing (ISORC), Hokkaido, Japan, IEEE/IFIP, May 2003

[29] Clemens Szyperski, “Component Software: Beyond Object-Oriented Programming”, Addison-
Wesley, Dec. 1997

[30] Randall R. Macala, Lynn D. Stuckey, Jr. David C. Gross, "Managing Domain-Specific, Prod-
uct-Line Development", IEEE Software, Vol.14, No. 13, May 1996

