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Abstract

Minimizing coupling between components is an important
means to fulfill key quality requirements in software-intensive
applications. Many applications use publisher/subscriber ar-
chitectures to deliver events from suppliers to consumers with-
out introducing excessive coupling between event sources and
sinks. Though the concepts, programming abstractions, and
benefits of publisher/subscriber architectures are well under-
stood, there has been relatively little research on how to design
architectures that are efficient and predictable enough to meet
the quality of service (QoS) requirements of distributed real-
time and embedded (DRE) applications. In particular, the QoS
performance tradeoffs between different publisher/subscriber
configurations are not well understood.

This paper makes four contributions to the design and eval-
uation of publisher/subscriber architectures for DRE applica-
tions. First, it illustrates how a flexible publisher/subscriber
architecture can be implemented using standard CORBA
middleware. Second, it shows how to extend the stan-
dard CORBA publisher/subscriber architecture so it is suit-
able for DRE applications that require low latency and jit-
ter, periodic rate-based event processing, and event filter-
ing and correlation. Third, it explains how to address key
performance-related design challenges faced when imple-
menting a publisher/subscriber architecture suitable for DRE
applications. Finally, the paper presents benchmarks that em-
pirically demonstrate the predictability, latency, and utiliza-
tion of a widely used Real-time CORBA publisher/subscriber
architecture. Our results demonstrate that it is possible to
strike an effective balance between architectural flexibility and
real-time quality of service for important classes of DRE ap-
plications.

Keywords: Real-time CORBA Event Systems, Object-
Oriented Middleware Frameworks, Publisher/Subscriber Ar-
chitectural Patterns.
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1 Introduction

1.1 Challenges for DRE Applications

Distributed, real-time, and embedded (DRE) applications are
becoming increasingly widespread and important. There are
many types of DRE applications, but they have one thing in
common: the right answer delivered too late becomes the
wrong answer. Common DRE applications include telecom-
munication networks (e.g., wireless phone services), tele-
medicine (e.g., remote surgery), manufacturing process au-
tomation (e.g., hot rolling mills), and defense applications
(e.g., avionics mission computing systems).

Due to constraints on weight, power consumption, mem-
ory footprint, and performance, the development techniques
for DRE application software have historically lagged behind
those used for mainstream desktop and enterprise software.
As a result, DRE applications are costly to develop, maintain,
and evolve. Moreover, they are often so specialized that they
cannot adapt readily to meet new functional or quality of ser-
vice (QoS) requirements, hardware/software technology inno-
vations, or market opportunities.

Programming DRE applications is also hard because QoS
properties must be supported along with the application soft-
ware and distributed computing middleware functionality.
DRE applications have historically been custom-programmed
to implement these QoS properties. Unfortunately, this te-
dious and error-prone manual development process has not ad-
equately addressed the following challenges:

Isolating DRE applications from the details of multi-
ple platforms and varying operational contexts. Modern
DRE applications must invest an ever-increasing proportion
of functionality in software. Rapidly emerging technologies,
together with the flexibility required for diverse operational
contexts, force deployment of multiple versions of software
on various platforms, while simultaneously preserving key
properties, such as real-time response and end-to-end priority
preservation.
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Reducing total ownership costs. Custom software develop-
ment and evolution is labor-intensive and error-prone for com-
plex DRE applications and can represent a substantial amount
of total system acquisition and maintenance costs. Since DRE
applications are often upgraded multiple times during their
lifetime, it can be hard to maintain the QoS properties of
custom-made systems as new components and capabilities are
added [1].
Sheltering application architectures from obsolescence
trends. Incommensurate lifetimes between long-lived DRE
applications (20 years or more) and commercial off-the-shelf
(COTS) platforms and tools (2–5 years) lead to pervasive
software obsolescence and multiply the total ownership costs
by requiring periodic software redevelopment and reengineer-
ing [2].
Minimizing personnel risks. Acquiring, retaining, and
training personnel to maintain and upgrade proprietary,
custom-made DRE applications is risky since it can make or-
ganizations overly reliant on a small group of specialized soft-
ware developers.

While considerable R&D effort has focused on how to meet
these challenges for desktop and enterprise business applica-
tions [3], comparatively little effort has focused on how to
meet these challenges for DRE applications with stringent
QoS requirements.

1.2 Candidate Solution: Publisher/Subscriber
Architectures

Addressing the challenges outlined above requires software
architectures that can support a changing set of requirements
and environments gracefully. Too often, developers find them-
selves reengineering existing software interfaces and imple-
mentations in response to planned and unplanned changes. In
fact, most software costs occurafter initial deployment [4].
Publisher/subscriber architectures can help overcome many
of these problems by reducing software dependencies and in-
flexibility. In this architecture, the components of a system are
separated into the following three roles, in accordance with the
Publisher/Subscriber pattern [5]:

� Publishers are event sources,i.e., they generate the
events that are propagated through the system. Depend-
ing on architecture implementation, publishers may need
to describe the type of events they generatea priori.

� Subscribers are the event sinks of the system. Some ar-
chitecture implementations require subscribers to declare
filtering information for the events they require.

� Event channels are components in the system that propa-
gate events from publishers to subscribers. In distributed
systems, event channels can propagate events across dis-
tribution domains to remote subscribers. Event channels

can perform event filtering and routing, QoS enforce-
ment, and fault management.

Figure 1 illustrates the relationships and information flow be-
tween these three components.
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Figure 1: Relationships Between Components in a Pub-
lisher/Subscriber Architecture

Publisher/subscriber architectures can be used to address
many of the challenges outlined in Section 1.1. In particular,
they can help to:

Isolate DRE applications from the details of multi-
ple platforms and varying operational contexts. Pub-
lisher/subscriber defines a communication model that can be
implemented over many networks, transport protocols, and OS
platforms. Developers of DRE applications can therefore con-
centrate on the application-specific aspects of their systems,
and leave the communication and QoS-related details to de-
velopers of publisher/subscriber middleware.

Reduce total ownership costs. Publisher/subscriber archi-
tectures define clear boundaries between the components in
the application, which reduces dependencies and thus main-
tenance costs associated with replacement, integration, and
revalidation of components. Likewise, core components of
these architectures can be reused, thereby helping to reduce
development, maintenance, and testing costs.

Shelter application architectures from obsolescence
trends. Publisher/subscriber architectures strongly decou-
ple event sources from event sinks. Application developers
can take advantage of this separation of concerns during the
lifetime of the system,e.g., new sources of events can be
added to the system over time. In a tightly-coupled, mono-
lithic design such changes would also require modifications
to event sinks.

Minimize personnel risks. The roles and relationships of
publisher/subscriber architectures are well documented and
relatively easy to understand, which can help minimize per-
sonnel training costs. Solutions based on proprietary pub-
lisher/subscriber systems, however, fail to address this chal-
lenge completely. Fortunately, publisher/subscriber architec-
tures based on standard middleware technologies, such as
CORBA, Java/RMI, or COM+, are more effective at address-
ing this challenge.

2



1.3 Unresolved Challenges: Ensuring the QoS
of Standard Publisher/Subscriber Archi-
tectures.

If implemented properly, publisher/subscriber architectures
satisfy many DRE application challenges. However, many
implementations of publisher/subscriber architectures rely on
non-standard distribution and infrastructure middleware [6,
7]. Comparatively little research has focused on applying
(and potentially augmenting) standard middleware to pub-
lisher/subscriber architectures to meet the needs of DRE ap-
plications. Moreover, research that has focused on this
topic [8, 9] has not documented the key patterns and frame-
works required to implement publisher/subscriber architec-
tures that can (1) preserve a clean separation of concerns while
(2) simultaneously satisfying stringent DRE application QoS
requirements.

In fact, there is a widespread belief in the commercial
embedded systems community that modern software abstrac-
tion and composition techniques, such as object-oriented de-
sign and programming, application frameworks, and standard
COTS components, are not suitable for DRE applications. Yet,
many DRE application domains can leverage the benefits of
flexible and open distributed object computing architectures,
such as those defined in the CORBA specification [10]. If
publisher/subscriber architectures can be implemented in an
efficient and predictable manner, therefore, the benefits out-
lined in Section 1.2 will make them a compelling choice for
new and planned DRE applications.

In this paper, we describe the patterns, framework design,
and performance of a publisher/subscriber architecture that
supports real-time QoS for event-driven DRE applications.
This architecture is based on the Real-time CORBA stan-
dard [10] and the TAO real-time ORB [11]. TAO is an open-
source1 implementation of Real-time CORBA that supports
efficient, predictable,and flexible DRE applications. Our
prior work on TAO has explored many dimensions of high-
performance and real-time ORB design and performance,
including optimal request demultiplexing [12], I/O subsys-
tem [13] and protocol [14] integration, connection architec-
tures [15], asynchronous [16] and synchronous [17] concur-
rent request processing, adaptive load balancing [18] and
meta-programming mechanisms [19], and IDL stub/skeleton
optimizations [20].

Our previous work [21] on publisher/subscriber architec-
tures focused on the patterns and performance of ahighly
scalable CORBA Event Service implementation. This pa-
per extends our previous work by describing how to aug-
ment the CORBA Event Service specification to satisfy the

1The source code and documentation for TAO and its Real-time Event
Service are freely available at URLhttp://deuce.doc.wustl.edu/
Download.html.

real-time needs of event-driven applications in many DRE
domains, such as avionics mission computing [22], mission-
critical distributed audio/video processing [23], and large-
scale distributed interactive simulation [21]. TAO and its Real-
time Event Service are used in many production DRE applica-
tions. Two particular relevant examples include:

� HLA RTI-NG [21], which is the next-generation Run-
time Infrastructure (RTI) implementation for the Defense
Modeling and Simulation Organization’s (DMSO) High
Level Architecture (HLA) and

� Boeing Bold Stroke [24, 25], which uses COTS hard-
ware and middleware to produce a standards-based com-
ponent architecture for military avionics mission comput-
ing capabilities, such as navigation, data link manage-
ment, and weapons control.

Both these DRE systems are examples of the need to simul-
taneously support multiple software qualities, such as main-
tainability, reusability, performance, availability, usability and
time to market.

1.4 Paper Organization

The remainder of this paper is organized as follows: Sec-
tion 2 describes how publisher/subscriber architectures can
be mapped to standard middleware, in particular Real-time
CORBA and the CORBA Event Service; Section 3 describes
how to augment the CORBA Event Service to create a Real-
time Event Service that can satisfy key QoS and flexibility re-
quirements of DRE applications. Section 4 explains the de-
sign challenges we addressed and optimizations we applied
when implementing TAO’s Real-time Event Service; Section 5
shows the results of benchmarks conducted using TAO’s Real-
time Event Service to validate the design described in Sec-
tion 3; Section 6 compares our results to related research on
publisher/subscriber architectures; and Section 7 presents con-
cluding remarks.

2 CORBA and the CORBA Event Ser-
vice

The TAO Real-time Event Service was not designed in a vac-
uum. Instead, it was designed to overcome limitations with
standard CORBA ORBs and services. This section describes
how the CORBA Event Service was designed to overcome
limitations with CORBA ORB invocation models. Section 3
then describes how TAO’s Real-time Event Service overcomes
limitations with the CORBA Event Service.
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2.1 Overview of CORBA

CORBA is a distributed object computing middleware spec-
ification [10] being standardized by the Object Management
Group (OMG). CORBA supports the development of flexi-
ble and reusable service components and distributed applica-
tions by separating interfaces from (potentially remote) ob-
ject implementations. Figure 2 illustrates the primary com-
ponents in the CORBA architecture that automate many com-

in args
operation()
out args +

return

Figure 2:Components in the CORBA ORB Architecture

mon network programming tasks, such as object registration,
location, and activation; request demultiplexing; framing and
error-handling; parameter marshaling and demarshaling; and
operation dispatching. Although it is beyond the scope of this
paper to examine how the CORBA ORB architecture affects
software quality and quality of service, these topics are ex-
plored in depth in our other publications.

The standard CORBA operation invocation model supports
synchronous and asynchronous two-way, one-way, and de-
ferred synchronous interactions between clients and servers.
Two-way synchronous calls are the default invocation model.
The primary strength of this model is its intuitive mapping
onto theobject->operation() paradigm supported by
object-oriented languages.

2.2 Limitations with CORBA

In principle, two-way synchronous invocations simplify the
development of distributed applications by supporting an im-
plicit request/response protocol that makes remote operation
invocations largely transparent to clients. In practice, however,
the standard CORBA operation invocation models are overly
restrictive for many DRE applications, due to their following
limitations:
Tight coupling of client and server lifetimes. For a
CORBA client request to be successful, the server must be

available to process the request. If a request fails because the
server is unavailable, the client receives an exception and must
take corrective action, such as notifying an end-user or sys-
tem administrator. In 2001 the OMG integrated the Messaging
specification [26] into the CORBA 2.4 standard. This specifi-
cation gave application developers more control over QoS pa-
rameters and introduced time-independent invocations (TII).
Although these features solve several problems not addressed
by earlier versions of CORBA, they require event suppliers to
have explicit knowledge of the consumers of those events.
Synchronous invocation semantics. By default, a CORBA
client waits until the server finishes processing a synchronous
two-way request and returns the result to the client. This
blocking can cause problems for DRE applications with strin-
gent real-time constraints. CORBA therefore provides various
non-synchronous invocation models, such as one-way invo-
cations, deferred synchronous invocations, and asynchronous
method invocations (AMI) [16]. However, standard one-way
invocations are not required to implement reliable delivery, de-
ferred synchronous invocations yield excessive overhead for
DRE applications since they use the CORBA Dynamic Invo-
cation Interface (DII), and AMI still requires the server to be
available when a client invokes a request.
Point-to-point communication. A CORBA operation in-
voked by a client is destined for a single target object on a
particular server. The CORBA Fault Tolerance [27] specifi-
cation relaxes this point-to-point protocol, but is not widely
implemented nor widely used at this time. Moreover, the stan-
dard replication protocols used in Fault Tolerant CORBA are
too heavyweight for many DRE applications.

2.3 Overview of the CORBA Event Service

To address the problems described in Section 2.2, develop-
ers often employ some type of publisher/subscriber archi-
tecture based on the abstractions outlined in Section 1.2.
In a publisher/subscriber architecture, the data and control
flow through events, rather than via parameterized opera-
tion invocations. Event-driven applications that use pub-
lisher/subscriber architectures possess several key require-
ments:

1. The events must be transferred efficiently from event
sources to event sinks and

2. The event sources and sinks must be anonymous and de-
coupled,i.e., the number and characteristics of the event
sinks must be transparent to event sources and vice-versa.

To support these requirements, the OMG CORBA specifica-
tion defines a standard Event Service [28] that provides asyn-
chronous message delivery and allows one or more suppliers
to send messages to one or more consumers. Event data can be
delivered from suppliers to consumers without requiring these
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participants to know each other’s identities explicitly. The
CORBA Event Service can be used in conjunction with the
CORBA Messaging specification to achieve fine grained con-
trol over QoS parameters, such as timeouts and request priori-
ties. Figure 3 illustrates the relationships between components
in the CORBA Event Service architecture.
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 : EventChannel  : ConsumerAdmin : SupplierAdmin
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Figure 3:CORBA Event Service Architecture

The CORBA Event Service defines the following three
roles:

� Suppliers, which produce event data,i.e., they play the
publisher role in the publisher/subscriber architecture,

� Consumers, which receive and process event data,i.e.,
they play the subscriber role in the publisher/subscriber
architecture, and

� Event channels, which are mediators [29] through which
multiple consumers and suppliers communicate asyn-
chronously,i.e., they play the same role as the event chan-
nels in the publisher/subscriber architecture.

There are two models (i.e., push vs. pull) of participant col-
laborations in the CORBA Event Service. This paper focuses
on real-time enhancements to the push model, which allows
suppliers of events to initiate the transfer of event data to con-
sumers. Events are transferred via standard CORBA opera-
tions from suppliers to an event channel, which in turn dis-
seminates the events to consumers.

3 The TAO Real-time Event Service

3.1 Overcoming CORBA Event Service Limi-
tations with TAO

Although the CORBA Event Service described in Section 2.3
provides a standard way to decouple event suppliers and event
consumers and support asynchronous communication, it does
not specify the following important features required by event-
driven DRE applications:

1. Low latency/jitter event dispatching

2. Support for periodic processing

3. Centralized event filtering and event correlations and
4. Efficient use of network and computational resources.

To support these important features, we have developed a
Real-time Event Service as part of the TAO project. As shown
in Figure 4, TAO’s Real-time Event Service is a component
implemented atop TAO that augments the CORBA Event Ser-
vice specification to satisfy the QoS needs of DRE applica-
tions. The following discussion summarizes the features miss-
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Figure 4:Relationship of TAO and Its Real-time Event Ser-
vice

ing in the CORBA Event Service and outlines how they are
supported by TAO’s Real-time Event Service.

1. Low latency/jitter event dispatching. To minimize la-
tency and jitter in DRE applications, it is desirable to have
multiple threads within an event channel forwarding events
to their consumers. The CORBA Event Service specification
does not designate a standard threading model, much less a
real-time threading model. As a result, DRE applications may
not be able to rely on threading support.

TAO’s Real-time Event Service can be configured with an
application-specified strategy to assign the number and prior-
ity of real-time threads that will dispatch events. TAO also
predefines several application-specified strategies to cover the
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most common cases. The same component can be used to as-
sign events to a thread at the appropriate priority, avoiding pri-
ority inversions in the event channel and thus achieving greater
predictability by enforcing scheduling decisions at run-time.

2. Support for periodic processing. Consumers in peri-
odic real-time systems typically requireC units of computa-
tion time everyP milliseconds. For instance, some real-time
avionics signal processing filters must be updated periodically
or else they will spend a substantial amount of time recon-
verging [24]. In this case, consumers have strict deadlines by
which time they must execute the requestedC units of com-
putation time. The standard CORBA Event Service defines
no interface that allows consumers to specify their temporal
execution requirements. Periodic processing is therefore not
supported in conventional CORBA Event Service implemen-
tations.

TAO’s Real-time Event Service allows consumers to specify
event dependency timeouts. It uses these timeout requests to
propagate temporal events in coordination with system-wide
scheduling policies. In addition to the canonical use of timeout
events,i.e., receiving timeouts at some interval, a consumer
can request to receive a timeout event via a real-time “watch-
dog” timer if its dependencies are not satisfied within some
time period.

3. Support for centralized event filtering and event cor-
relation. In DRE applications, consumers may not be inter-
ested in all events generated by suppliers. Although it is pos-
sible to let each application perform its own filtering, this so-
lution wastes network and computing resources and requires
extra work by application developers. Ideally, an event ser-
vice should send an event to a particular consumer only if the
consumer has subscribed for it explicitly. Care must be taken,
however, to ensure that the algorithms used to support filtering
do not cause undue burden on DRE system resources.

To alleviate scalability and performance problems, TAO’s
Real-time Event Service provides filtering and correlation
mechanisms that allow consumers to specify the type of events
they are interested in via conjunction (“AND”) and disjunctive
(“ OR”) event dependencies. Conjunctive semantics instruct
the channel to notify the consumer whenall the specified event
dependencies are satisfied. Disjunctive semantics instruct the
channel to notify the consumer(s) whenany of the specified
event dependencies are satisfied. Suppliers can also provide
information about the types of events they generate. Based on
thesubscriptions provided by the consumers and thepublica-
tions described by the suppliers, the event channel will dis-
patch events only to consumers that have expressed interest in
them.

4. Efficient use of network and computational resources.
Conventional implementations of an Event Service send one
message for each remote consumer interested in an event.

This point-to-multipoint design requires excessive network re-
sources, since the same data is transmitted multiple times, of-
ten to the same target computer. TAO’s Real-time Event Ser-
vice can therefore be configured to minimize network traffic
by:

� Using IP broadcast and multicast protocols to avoid du-
plicate network traffic, and

� Building federations of Event Services that eliminate the
transmission of duplicate events, and even eliminate the
need to send unwanted events by pushing filtering to the
source.

This paper focuses largely on features 1 and 2 described
above since they are the most essential for real-time applica-
tions. Our previous work in [21] focuses on the scalability
issues associated with features 3 and 4.

3.2 TAO’s Real-time Event Service Architec-
ture

Figure 5 shows the architecture of TAO’s Real-time Event
Service. At the heart of this architecture is theevent chan-

Dispatching Module

Consumer Admin Module

Supplier Admin Module

Per-Consumer Filters

Figure 5:TAO Real-time Event Service Architecture

nel, which provides two factory interfaces,ConsumerAdmin
andSupplierAdmin, that allow applications to obtain con-
sumer and supplier administration objects, respectively. These
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administration objects allow consumers and suppliers to con-
nect/disconnect from the channel and to specify their QoS
needs, such as their event dependencies and filtering types.
Internally, the event channel is an object-oriented frame-
work [30] that contains a series of processing modules linked
together in accordance with the Pipes and Filters pattern [5],
which provides a structure for systems that process a stream
of event data. Each module encapsulates independent tasks of
the channel, as described below.

Consumer admin module. The interface to the consumer
admin module is identical toConsumerAdmin interface
defined by theCosEventChannelAdmin module in the
CORBA Event Service shown in Figure 3. This interface
provides factory methods for creating objects that support the
ProxyPushSupplier interface. In the CORBA Event Ser-
vice, theProxyPushSupplier interface is used by con-
sumers to connect and disconnect from the channel.

The standard CORBA Event Service defines event channels
as “broadcast repeaters” that forward all events from suppliers
to all consumers. This approach has several drawbacks, how-
ever. If consumers are only interested in a subset of events
from the suppliers, they must implement their own event fil-
tering to discard unneeded events. Moreover, if a consumer
ultimately discards an event, then delivering the event to the
consumer needlessly wastes bandwidth and processing time.

To address these shortcomings, TAO’s Real-time Event Ser-
vice extends the standardProxyPushSupplier interfaces
so that consumers can register their event dependencies with
a channel. Consumers can specify conjunctive (“AND”) or
disjunctive (“OR”) semantics when registering their supplier-
based and/or type-based filtering requirements. TAO also al-
lows consumers to subscribe for particular subsets of events.
The channel uses these subscriptions to filter supplier events,
only forwarding them to interested consumers.

Supplier admin module. The interface to this module is
based on theSupplierAdmin interface defined in the
CORBA Event ServiceCosEventChannelAdmin mod-
ule. It provides factory methods for creating objects that sup-
port theProxyPushConsumer interface. Suppliers use the
ProxyPushConsumer interface to connect and disconnect
from the channel.

TAO’s Real-time Event Service also extends the standard
CORBA ProxyPushConsumer interface so that suppliers
can specify the types of events they generate. With this in-
formation, the channel’s correlation and filtering mechanism
can build data structures that allow efficient run-time lookups
of subscribed consumers.ProxyPushConsumer objects
also represent the entry point of events from suppliers into
an event channel. When suppliers transmit an event to the
ProxyPushConsumer interface via the proxy’spush()
operation the channel forwards this event to thepush() op-
eration of interested consumer(s).

Dispatching module. The dispatching module determines
when events should be delivered to consumers and pushes the
events to them accordingly. To guarantee that consumers exe-
cute in time to meet their deadlines, this module collaborates
with TAO’s Real-time Scheduling Service [11, 22]. For in-
stance, consider the arrival of an event into a dispatching mod-
ule implemented with real-time preemptive threads. If TAO’s
Real-time Scheduling Service assigns the event a preemption
priority higher than any currently running thread, the dispatch-
ing module will preempt a running thread and dispatch the new
event.

The dispatching module always dequeues events from the
head of the queue. TAO’s Real-time Scheduling Service can
determine the order of dequeueing by returning different sub-
priorities for different events. For instance, assume that an
implementation of the scheduler must ensure that some event
E1 is always dispatched before eventE2, but does not require
that the arrival ofE2 preempt a thread dispatchingE1. By
assigning a higher sub-priority to an event containingE1, the
event will always be queued before any event containingE2.
The dispatcher will therefore always dequeue and dispatchE1

events beforeE2 events.
The dispatching module can be configured to implement

several concurrency strategies, such as real-time upcalls and
preemptive multi-threading [31]. Each strategy caters to the
type and availability of system resources, such as the OS
threading model and the number of CPUs. TAO’s event chan-
nel framework is designed so that changing the number of
threads in the system, or changing to a single-threaded con-
currency strategy, does not require modifications to unrelated
components in a channel.
Priority timers proxy. The supplier admin module contains
a special-purposepriority timers proxy that manages all timers
registered with the channel. When a consumer registers for a
timeout, the priority timers proxy ensures that timeouts are dis-
patched according to the priority of their corresponding con-
sumer.

The priority timers proxy uses a heap-based callout queue,
where the average and worst case time required to schedule,
cancel, and expire a timer isO(log N) (N is the total number
of timers). The timer mechanism preallocates all its memory,
which eliminates the need for dynamic memory allocation at
run-time and is therefore well-suited for real-time systems re-
quiring highly predictable and efficient timer operations.

3.3 Alternative Event Service Configurations

Although TAO’s Real-time Event Service architecture de-
scribed in Section 3.2 provides many powerful capabilities, the
true test of its object-oriented framework arises when using it
to support a diverse set of DRE applications with a wide range
of functional and QoS requirements. The remainder of this
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section describes how TAO’s Real-time Event Service can be
configured both externally and internally. The flexibility of its
architecture helps developers of DRE applications meet their
requirements without incurring time and space overhead for
capabilities they do not use.

3.3.1 Centralized vs. Federated Event Channels

The original implementation of TAO’s Real-time Event Ser-
vice [31] was limited to a single processor configuration.
However, modern DRE applications typically connect multi-
ple computers via high-speed interconnects, such as a fiber
channel network or a VME bus. One way to configure TAO’s
Event Service is to use a single centralized real-time event
channel for the entire system, as shown in Figure 6. A cen-

Figure 6:A Centralized Configuration for the Event Chan-
nel

tralized real-time event channel architecture incurs excessive
overhead, however, because the consumer for a given supplier
is usually located on the same computer. If the event chan-
nel is on a remote computer, therefore, extra communication
overhead and latency are incurred for the common case. More-
over, TAO’s collocated operation invocation path is highly
optimized [19], so it is desirable to exploit this optimization
whenever possible.

Figure 7:Federated Event Channels

To address the limitations of the centralized event channel
architecture, TAO’s Real-time Event Service provides mech-
anisms to connect several event channels to form afedera-
tion, as shown in Figure 7. In a federated group of event
channels, suppliers and consumers just connect to their local
event channel, while event channel instances talk to each other
via CORBA. This design reduces average latency for all con-
sumers in the system because consumers and suppliers exhibit
locality-of-reference,i.e., most consumers for any event are on
the same computer as the supplier generating the event. More-
over, if multiple remote consumers are interested in the same
event only one message is sent to each remote event channel,
thereby minimizing network utilization.

A straightforward and portable way to implement this ar-
chitecture is to use agateway between each event channel. As
shown in Figure 8, such gateways play both the consumer and
supplier roles and mediate between two event channels. They

Figure 8:Using a Gateway to Connect Two Event Channels

connect (in their consumer role) to one of the event channels,
ideally subscribing only for the events that are interesting for
the participants in the second event channel. When a gate-
way receives an event it forwards the event to the second event
channel, where it has connected (in its supplier role).

Application developers can configure the location of the
gateway with respect to its event channels to minimize the uti-
lization of network resources. For example, collocating the
gateway with its sink event channel,i.e., the one it connects to
as a supplier, eliminates the need to transmit events that are not
interesting for the sink event channel. Collocating the gateway
with its source event channel can avoid event cycles more effi-
ciently than the previous configuration, however, as described
in [21].

TAO’s Real-time Event Service requires that each event
channel in a federation be connected to every one of its peers.
This is not a problem for DRE applications that have one event
channel per computer. In certain domains, however, DRE ap-
plications could require hundreds or thousands of event chan-
nels. In this case, providing a full network would not scale.
We are investigating techniques to address this situation based
on related work [7].

Many types of distributed applications can benefit from
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TAO’s federated Event Service. For instance, both distributed
interactive simulations [21] and avionics mission computing
systems [24, 25] can comprise several computers in different
networks, where most of the traffic destination is within the
same network. Configuring an event channel on each network
helps to reduce latency by avoiding round-trip delay to remote
computers.

3.3.2 Event Channel Configurations

Since the QoS requirements of DRE applications can vary con-
siderably, the internals of event channels in TAO’s Real-time
Event Service can also vary accordingly. In particular, the in-
ternal architecture of the TAO event channel is based on the
Pipes and Filters [5] and Builder [29] patterns to support dif-
ferent channel configurations optimized for different DRE ap-
plication requirements. This architecture allows TAO’s event
channels to be configured in the following ways to support a
wide range of event dispatching, filtering, and dependency se-
mantics:

Full event channel configuration. A full event channel in-
cludes the dispatching module and consumer/supplier proxy
modules, along with their full correlation and filtering mecha-
nisms. A channel configured with all these modules supports
type and source-based filtering, correlations, and priority-
based queueing and dispatching. Figure 5 illustrates a full
event channel configuration.
Subset event channel configurations. TAO’s Real-time
Event Service supports subset configurations that allow pro-
cessing modules and mechanisms to be added, removed, or
modified with minimal impact on the overall system. The
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Figure 9: Event Channel Subset Configurations

following configurations can be achieved by removing certain
modules and mechanisms from an event channel:
� Event real-time dispatching (ERD) configuration.

Removing the correlation and filtering capabilities creates an

ERD configuration, which is shown in Figure 9 (A). This con-
figuration supports “classic” real-time applications that require
no correlation or filtering.

� Event forwarding discriminator (EFD) configuration.
Removing the dispatching module from the event channel
yields an EFD configuration that supports event filtering and
correlations, as shown in Figure 9 (B). EFDs provide a “data
reduction” mechanism that minimizes the number of events
received by consumers so they only receive events of inter-
est. An EFD configuration helps improve the scalability of
applications that do not require priority-based queueing and
dispatching in the event channel.

� Event registration multiplexer (ERM) configuration.
Removing both the correlation/filtering and dispatching ca-
pabilities creates an ERM configuration, which is shown in
Figure 9 (C). This configuration supports neither real-time
dispatching nor filtering/correlations. In essence, this imple-
ments the semantics of the standard CORBA event channel
push model.

In mission-critical DRE environments with stringent QoS
requirements, such as avionics mission computing systems,
the configuration of an event channel is performed off-line to
minimize startup overhead. TAO’s Real-time Event Service
framework uses the Pipes and Filters pattern and the Builder
pattern [29] (described in Challenge 4 in Section 4) to con-
figure the event channel off-line. In dynamic real-time en-
vironments, such as telecommunication call-processing, how-
ever, component policies may require alteration at run-time. In
these contexts, it may be unacceptable to completely terminate
a running event channel when a scheduling or concurrency
policy is updated. TAO’s Real-time Event Service framework
uses the Component Configurator pattern [32] (described in
Challenge 5 in Section 4) to support dynamic reconfiguration
of event channels without interruption while continuing to pro-
cess events.

4 Designing and Optimizing TAO’s
Real-time Event Service

Although publisher/subscriber architectures have many bene-
fits, they can also have some disadvantages:

� Their modularity can introduce excessive overhead, e.g.,
inefficiencies may arise if buffer sizes are not consistently
sized and aligned between and within event channels,
thereby causing additional segmentation, reassembly, and
transmission delays

� Information hiding within components can make it hard
to manage resources predictably and dependably in DRE
applications and
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� Communication between suppliers and consumers must
be designed and implemented properly to avoid introduc-
ing subtle source of errors.

Publisher/subscriber architectures alone are therefore not suf-
ficient to resolve key challenges of DRE applications. What is
needed is a deeper understanding of the patterns and optimiza-
tion techniques necessary to develop flexible and QoS-enabled
publisher/subscriber software.

Architectural flexibility has historically been associated
with excessive time and space overhead, which is antithet-
ical to DRE applications. Fortunately, new generations of
hardware and advances in patterns and optimizations are be-
coming mature enough to compensate for much of the time
and space overhead traditionally associated with architectural
flexibility and modern software abstraction and composition
techniques [1]. To reify this point, this section describes the
patterns and idioms we applied to address the following de-
sign and performance challenges encountered when develop-
ing TAO’s Real-time Event Service:

1. Ensuring timeliness in event processing
2. Minimizing interference between the event channel com-

ponents
3. Optimizing the performance of the CORBA Any type
4. Optimizations for footprint reduction and
5. Customizing event channels for particular deployment

environments.

These challenges and our solutions are discussed below. To
enhance the generality of our solutions, we describe them in
terms of the patterns [29, 32] we used to resolve the chal-
lenges. Section 5 presents empirical results that quantify the
benefits of these patterns and optimizations.

Challenge 1: Ensuring Timeliness in Event Pro-
cessing

Context. The dispatching module of TAO’s real-time event
channel ensures that priorities are respected by enqueueing
events in an internal buffer according to their priority.

Problem. Long-duration operations, such as complex filter
evaluation, can starve other events in the queue and prevent
them from being processed in a timely manner.

Solution ! the Command Object pattern. This pattern
encapsulates an event as an object, thereby allowing param-
eterization of different events [29]. The actual representation
of the event is hidden by the command object interface. Dif-
ferent concrete implementation of this interface implement the
event and provide semantics to it. This pattern can be used to
decompose the internal event processing within an event chan-
nel into stages to ensure timeliness by avoiding long-duration
operations that would otherwise incur “head of line blocking.”

Applying the Command Object pattern. The filter evalu-
ation, subscription lookup, and event dispatching operations
in TAO’s event channel are encapsulated as command objects.
As shown in Figure 10 instead of performing these operations

Command Queue

1 2 4 5
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1 Proxy Supplier Filter
Evaluation

2 Consumer Admin Filter
Evaluation

4Proxy Consumer Filter
Evaluation 5 Supplier Admin Filter

Evaluation

3
Subscription Lookup

Operation

3

6 Event Dispatching

Figure 10: Processing Command Objects to Ensure Time-
liness

synchronously, their evaluation is split into discrete steps. If
the event is still eligible for further processing after executing
an command operation, it is replaced into the command queue
and dequeued subsequently when further processing is possi-
ble. The dispatching command is responsible for sending the
event to its consumer.

Challenge 2: Minimizing Interference Between
Event Channel Components

Context. An event channel should be able to (1) handle
event delivery from suppliers and (2) perform event forward-
ing with the minimum possible latency, i.e., suppliers deliv-
ering an event to the channel should not have to wait while
the channel forwards events to recipient consumers. Similarly,
when an event channel forwards events to multiple consumers,
each consumer might spend an unbounded amount of time in
the implementation of its push() operation. Since events are
forwarded by the event channel via CORBA two-way opera-
tions, the channel’s dispatching thread must wait until the con-
sumer returns from its upcall. This blocking overhead affects
the event channel’s event processing time.

Problem. A real-time event channel implementation must
minimize the interference between different components of the
event channel.

Solution ! the Active Object pattern. This pattern de-
couples method execution from method invocation to sim-
plify synchronized access to an object that resides in its own
thread [32]. The Active Object pattern allows one or more
independent threads of execution to interleave their access to
data modeled as a single object.
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Applying the Active Object pattern. Using the Active Ob-
ject pattern at the various stages of event processing enables
the minimization of the interference between TAO’s real-time
event channel components. As shown in Figure 11 and dis-
cussed in Challenge 1 above, events and operations performed

Enqueuing Thread

Command Queue

Processing
Thread Pool

Dispatch to remote
consumer

Filtering

Figure 11: Asynchronous Event Processing Using the Ac-
tive Object Pattern

on them are encapsulated as command objects. Enqueueing
thread(s) place event command objects into a command queue
according to a buffering order policy. An active object with
worker threads dequeues and executes the command objects
in the queue.

At a lower-level of abstraction, the TAO real-time ORB
itself can be configured to increase concurrency using the
Leader/Followers pattern [32], which provides an efficient
concurrency model where multiple threads take turns sharing
a set of event sources in order to detect, demultiplex, dispatch,
and process service requests that occur on the event sources.
In this case, each ORB invocation is handled by a separate
thread, allowing multiple events to be delivered concurrently
to a real-time event channel.

Challenge 3: Optimizing the Performance of
Anys

Context. A CORBA “Any” is a dynamically typed data
structure that can contain the typecode and data for any type of
data supported by CORBA. A CORBA-compliant Real-time
Event Service must process events containing Anys.

Problem. In CORBA, Anys are expensive data types be-
cause they can have many levels of nesting. For example, an
Any can contain a structure, which can itself be contain a se-
quences of Anys and so forth. When a CORBA demarshaling
engine decodes this expensive type, it must make a copy of the
entire data buffer containing the Any. Likewise, copying an
Any can require several memory allocations and buffer copys
to obtain a new representation. Moreover, the C++ mapping of
CORBA Anys requires them to be responsible for any mem-
ory returned to the application. Optimized ORBs should share
the Any contents even if there are multiple copies of the Any
object.

Solution ! Reference counting via the Handle/Body id-
iom. This idiom presents multiple logical copies of the same
data while sharing the same physical copy [33]. In C++, this
idiom is often used to automate the memory management in
conjunction with reference counting and smart pointers.

Applying the Handle/Body idiom. The TAO demarshaling
engine does not copy data into an Any. Instead, it reference
counts its data buffers and the Any only increments the ref-
erence count to maintain a logical copy of the buffer. Like-
wise, after the contents of the Any are extracted by an ap-
plication, the Any object itself is responsible for deallocating
the extracted object. This extracted object can be shared by
multiple instances of the Any object, minimizing the cost of
copying and extracting the contents repeatedly. The use of
the Handle/Body idiom implements this optimization without
changing the semantics required by the standard CORBA C++
mapping.

Challenge 4: Optimizations for Footprint Reduc-
tion

Context. TAO’s Real-time Event Service has many features
that may not be required by all applications. For example,
deeply embedded systems may not want to incur the increase
in memory footprint for unused features, such as correlation
and filtering.

Problem. A required set of real-time event features should
be “composable” by users.

Solution ! the Pipes and Filters pattern and the Builder
pattern. The Pipes and Filters pattern [5] provides a struc-
ture for systems that process a stream of data. The Builder pat-
tern [29] separates the construction of a complex object from
its representation so that the same construction process can
create different representations.

Applying the Pipes and Filters pattern and the Builder
pattern. TAO’s real-time event channel uses the Pipes and
Filters pattern to configure alternative implementations of its
modules described in Section 3.2. Likewise, it uses the
Builder pattern to configure its correlation and filtering mech-
anisms. For example, a configuration containing no correla-
tion/filtering + AnyProxySupplier + AnyProxyConsumer + re-
active dispatching strategy would yield the default semantics
of the CORBA Event Service.

These features are separated into libraries as follows:

� The three different pairs of proxy supplier and proxy con-
sumer types are separated into different libraries. In a
specific configuration, only the required type, e.g., the
PushProxySupplier, may be loaded by a builder at
startup. Hence, the other types of proxy implementations
are not loaded since they are not needed.
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� An application may not require filtering, in which case
the filtering engine library is not configured by the
builder.

� The dispatching module can be configured to use simple
reactive dispatching, multi-threaded dispatching, or even
omitted altogether to create one of the subset event chan-
nel configurations described in Section 3.3.2.

Challenge 5: Customizing Event Channels for
Particular Deployment Environments

Context. TAO’s CORBA Real-time Event Service is config-
urable in the following manner:

1. A user can specify features required by configuration.
2. A specific class implementation can be modified by the

user to enhance or customize behavior.
3. Users can vary default properties, such as thread pool size

and locking strategy.

Problem. A mechanism is needed to allow application de-
velopers to change various configurable option in TAO’s real-
time event channel at run-time.

Solution ! the Component Configurator pattern. This
pattern decouples the behavior of component services from
the point in time at which service implementation are con-
figured into an application [32]. This pattern can be imple-
mented using explicit dynamic linking, which allows an appli-
cation to obtain, use, and/or remove the run-time address bind-
ings of certain function- or data-related symbols defined in
DLLs. Common explicit dynamic linking mechanisms include
the POSIX/UNIX functions dlopen(), dlsym(), and
dlclose() and the Win32 functions LoadLibrary(),
GetProcAddress(), and FreeLibrary().

Applying the Component Configurator. All objects in
TAO’s Real-time Event Service implementation are created
via factory objects. These factories can be loaded statically or
dynamically. Figure 12 shows how the Component Configu-
rator pattern can be used to dynamically configure TAO’s real-
time event channel. The configuration file contains a script
with directives that designate which libraries, such as the filter
library, dispatching library, and proxy library, to dynamically
link into the address space of TAO’s real-time event channel.

5 Empirical Results

Our previous work [31] benchmarked a prototype of TAO’s
Real-time Event Service that did not run on a CORBA-
compliant ORB. This section extends these benchmarks
and also demonstrates the performance of mature Real-time
CORBA and Real-time Event Service implementations. We

Configuration File

Component -Configurator

Filter Library Dispatching Library Proxy Library

Specifies Options

Loads LibrariesNotify Engine

Uses Configurator

Figure 12: Apply the Component Configurator Pattern in
TAO’s Real-time Event Channel

first measure the CPU utilization of two event channel config-
urations described in Section 3.3.1. We then measure several
aspects of event channel latency using the ERD configuration
described in Section 3.3.2. The benchmarks reported in this
section are based on performance requirements gleaned from
our extensive work [11, 12, 20, 22] on real-time avionics mis-
sion computing systems [24, 25]. Since our focus in this paper
is on real-time properties, rather than the scalability proper-
ties described in [21], we do not report correlation or filtering
performance here.

All benchmarks were conducted on a single-CPU 300 Mhz2

Sun UltraSPARC 30 workstation with 256 MB RAM run-
ning Solaris 5.7. Version 1.1 of the TAO ORB, TAO’s Real-
time Event Service, and the test application were built with
SunC++ 5.2 with the highest level (-fast) of optimization
enabled. We focus our experiments on a single CPU hardware
configuration to factor out network interface driver overhead
and isolate the effects of ORB middleware and application la-
tency, predictability, and utilization. There was no other sig-
nificant activity on the workstation during the benchmarking.
All tests were run in the Solaris real-time scheduling class so
they had the highest software priority (but below hardware in-
terrupts) [34].

5.1 CPU Utilization Measurements

Overview. For non-real-time event channels, such as the
EFD configuration described in Section 3.3.2, correctness im-
plies that consumers receive events when their source/type
subscription and correlation dependencies are met. In contrast,
for real-time event channels, such as the full event channel
and ERD configurations, correctness implies that all deadlines

2We chose a 300 Mhz CPU for the benchmarks since it is similar to
the CPU speeds on many DRE platforms, such as avionics mission comput-
ing [24, 25].
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are met. An important metric for evaluating the performance
of a real-time system is its schedulable bound, which is the
maximum resource utilization possible without missing dead-
lines [35]. The schedulable bound of TAO’s Real-time Event
Service is therefore the maximum CPU utilization that suppli-
ers and consumers can achieve without missing deadlines.

With rate monotonic scheduling, higher rate tasks are sup-
posed to preempt lower rate tasks. For TAO’s Real-time
Scheduling Service to guarantee the schedulability of a sys-
tem (i.e., that all tasks meet their deadlines), its high-priority
tasks must therefore preempt its lower priority tasks. We there-
fore devised tests to (1) determine whether this is indeed the
case and (2) to measure the overhead of TAO’s federated event
channel configuration compared with a single collocated event
channel. Two experiments were conducted: the first measured
the utilization of a single event channel configuration and the
second measured the utilization of a federated event channel
configuration.

Single event channel utilization results. This experiment
used a single event channel that was collocated with a
high-priority supplier/consumer pair and a low-priority sup-
plier/consumer pair. The processing time for high-priority
events was increased until the low-priority task could not meet
its deadline. In Figure 13 we plot the average laxity3 for high-
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Figure 13: CPU Utilization for a Single Event Channel

priority and low-priority events. The error bars represent the
minimum and maximum laxity for each experiment. Negative
laxity means that a deadline was missed.

Figure 13 shows that the event channel achieved over 99%
utilization before its low-priority task began to miss deadlines.
The high-priority task never misses its deadlines, though its
laxity decreases slightly as utilization increases. It is inter-
esting to observe that this decrease in almost linear with the

3Laxity is defined as the time-to-deadline minus the execution time.

utilization increase, even when the low-priority task no longer
meets its deadlines.
Federated event channel utilization results. In this experi-
ment, two event channels were configured in separate OS pro-
cesses on the same computer. No work was performed when
processing remote events, but the processing time for high-
priority events was increased until deadlines were missed.
Figure 14 depicts the laxity for the high-priority and low-
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Figure 14: CPU Utilization for a Federated Event Channel

priority tasks. Although the performance of the federated
event channel is lower than the single event channel, it still
maintains high utilization (over 96%) before missing dead-
lines. As shown in Section 5.2, this small (�3%) loss of uti-
lization yields a substantial performance improvement for the
common case, where events are exchanged between local (col-
located) suppliers and consumers.
Analysis of results. The results of these two experiments in-
dicate the following:

� Both event channel configurations properly enforce the
real-time distinctions between low- and high-priority
suppliers and consumers. This enforcement stems from
the design of TAO’s Real-time Event Service dispatching
module described in Section 3.2.

� The optimizations described in Section 4 are effective at
minimizing the overhead of the object-oriented frame-
work used to implement TAO’s event channel so as not
to degrade its utilization unduly.

5.2 Latency Measurements

5.2.1 End-to-end Latency Test

Overview. Another important measure of event channel per-
formance is the latency it introduces between suppliers and
consumers. To determine this latency for TAO’s Real-time
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Event Service, we developed a test that measures the end-to-
end supplier ! consumer latency using the IIOP communica-
tion mechanism, which uses point-to-multipoint event delivery
rather than IP multicast. This test timestamps each event as it
originates in the supplier and subtracts that time from the ar-
rival time at the consumer. The consumer does nothing with
the event other than store the measurement in a preallocated
array.

Single process latency results. In this test, the consumers,
suppliers, and event channel were collocated in the same pro-
cess to eliminate ORB remote communication overhead. In
the single process case, the best-case supplier-to-consumer la-
tency was �50 �secs. In each case, as the number of suppli-
ers and/or consumers increased, the latency also increased, as
shown in Table 1.

Latency, �sec
First Consumer Last Consumer

Sup. Con. Min Max Avg Min Max Avg
1 1 53 93 58 53 93 58
1 5 107 189 114 197 284 206
1 10 171 230 183 379 451 393
1 20 291 340 300 741 817 760
2 1 49 67 51 49 67 51
2 5 95 124 100 180 213 187
2 10 159 281 170 360 498 374
2 20 283 333 299 758 828 781

10 1 51 303 72 51 303 72
10 5 100 211 113 187 1,210 284
10 10 167 222 176 369 2,545 576
10 20 211 310 290 741 4,895 1,137

Table 1: Event Latency for Collocated Event Processing

Two process latency results. In this test, two identical pro-
cesses were created and the consumers in each process sub-
scribed to both local and remote events.4 Table 2 shows the
results of this test. For two processes, the local events exhibit
similar latency to the local events in the single process case. In
particular, no significant overhead is incurred due to possible
remote consumers. In contrast, the remote consumer perfor-
mance is much higher than the local events, though it is close
to the performance of a remote operation invocation.

Analysis of results. The results of the experiments above
indicate the following:

� Table 1 illustrates the efficiency of the optimizations de-
scribed in Section 4. In particular, as the number of sup-
pliers and consumers increase, the increase in latency is
less than linear, due in large part to the Handle/Body id-
iom used to optimize the processing of Any data types.

4In this test configuration, a “ local” event is one intended for a consumer
collocated within the same process and a “ remote” event is one intended for a
consumer located in the other process.

Latency, �sec
Local Event Remote Event

Sup. Con. Min Max Avg Min Max Avg
1 1 57 71 63 772 1,078 820
1 5 108 207 155 765 1,995 1,283
1 10 170 598 289 795 5,853 3,544
1 20 303 819 534 756 6,047 3,084
2 1 50 95 57 1,226 2,329 1,297
2 5 101 214 152 1,274 4,577 2,330
2 10 167 421 274 1,226 6,676 3,448
2 20 280 821 519 1,225 20,727 6,038

10 1 49 218 60 1,406 3,969 3,102
10 5 100 1,170 172 1,477 12,773 6,282
10 10 158 2,379 310 1,258 19,153 7,904
10 20 209 4,900 596 1,266 65,449 24,345

Table 2: Event Latency for Local and Remote Event Pro-
cessing

Naturally, the use of IP multicast should even further re-
duce latency, though TAO’s event channel only supports
unreliable multicast currently.

� Table 2 illustrates the benefits of the federated event chan-
nel configuration described in Section 3.3.1. In particular,
disseminating events to consumers collocated in the same
process is one to two orders of magnitude more efficient
than disseminating them remotely.

5.2.2 Minimal Event Spacing Test

Overview. Another important performance metric is the
minimum event spacing, which is the maximum rate an event
channel can deliver messages before its overhead incurs mea-
surable latency. This test was executed in a single process,
where suppliers generate a fixed number (500) of events and
the consumers do no work other than maintain simple statis-
tics. We progressively decreased the event generation period
and measured the ratio between the effective event rate and the
expected event rate.
Minimal event spacing test results. Figure 15 shows that
the event channel can deliver over 50 messages per second
(i.e., a 50 Hz rate) before it experiences any measurable over-
head.
Analysis of results. These results indicate the “class” of
DRE systems that can be supported by TAO’s Real-time Event
Service. In particular, DRE systems that run at rates less
than 50 Hz (which includes the important class of real-time
avionics mission computing systems [24, 25]) should incur in-
consequential amounts of latency due to the overhead of the
event channel. However, DRE systems that run at higher rates
(which includes flight control software and automative break-
ing systems) may incur too much overhead to operate within
their schedulable bound. We believe that TAO’s Real-time
Event Service performance can be improved, and are currently
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Figure 15: Minimum Event Spacing

experimenting with additional patterns and optimizations to
reduce its overhead systematically.

6 Related Work

Event-driven middleware for distributed real-time and embed-
ded applications is an emerging field of study. An increasing
number of research efforts are focusing on end-to-end QoS
properties, such as timeliness, by integrating QoS manage-
ment policies and mechanisms into publisher/subscriber mid-
dleware. This section describes representative work that is re-
lated to the TAO Real-time Event Service.

6.1 CORBA-related Event Service Work

There is a growing body of work related to CORBA-based
Event Services, which we compare and contrast to our work
with TAO.
OMG standard specifications. The OMG has specified a
Notification Service [36], which is a superset of the CORBA
Event Service that adds interfaces for event filtering, config-
urable event delivery semantics (e.g., at least once or at most
once), security, event channel federations, and event delivery
QoS. The patterns and techniques used in the implementation
of TAO’s Real-time Event Service can be used to improve the
performance and predictability of Notification Service imple-
mentations. To explore that idea, we have implemented a No-
tification Service for TAO [37] and used it to validate the fea-
sibility of building a reusable framework that factors out com-
mon code for TAO’s Notification Service, its standard CORBA
Event Service implementation, and its Real-time Event Ser-
vice.

The OMG Messaging specification [26] gives application
developers control over several QoS parameters, such as one-
way reliability and timeouts, and introduces type-safe asyn-

chronous method invocation (AMI) models. The CORBA
AMI specification solves many problems with the original
CORBA invocation model, but it does not address anonymous
or single-point-to-multiple-point communication. The Mes-
saging specification can complement implementations of the
CORBA Event Service, e.g., it defines several levels of relia-
bility for one-way calls. This feature could be used in Event
Service implementations to improve decoupling of the clients,
without the risk of losing messages. We have augmented TAO
with the AMI features [16] defined by the Messaging specifi-
cation, which complement its Real-time Event Service imple-
mentation.
COBEA. COBEA [8] is a CORBA-based event architecture
service that generates parameterized events, which are pub-
lished by a trading service. For scalability, clients must reg-
ister their interest with the service, at which point an access
control check is performed. Subsequently, whenever a match-
ing event occurs, the client is notified. As with TAO’s Real-
time Event Service the authors propose a number of extensions
to support event filtering and correlation. However, COBEA
does not takes advantage of the broadcast capabilities of mod-
ern networks to reduce traffic, nor does COBEA use multicast
to offload processing from the CPU to the network cards.
Fault-tolerant Notification Service In [9] the authors study
the fault tolerance capabilities provided by the CORBA Notifi-
cation Service and propose a configuration that can achieve the
highest event delivery guarantees. The authors then examine
the performance of such configuration of the Notification Ser-
vice under different loads. TAO’s Real-time Event Service has
been designed to satisfy the requirement of high-performance
real-time systems and of highly-scalable distributed interactive
simulations. In these environments, reliability is commonly
obtained via other means, such as hardware redundancy. Nev-
ertheless, we believe that extending TAO’s Real-time Event
Service to provide higher degrees of reliability is possible, and
we are pursuing this topic in our future work on FaultTolerant
CORBA [27] and DOORS [38].

6.2 Non-CORBA Event Service Work

In addition to CORBA-related event service work, our re-
search on TAO’s Event Service is also related to the following
projects conducted outside the CORBA standard:
SIENA. SIENA [7] is a publisher/subscriber service archi-
tecture for Internet-scale event distribution. The architecture
is based on content-based networking, where a network of
routers propagate packets based on the contents of the packet,
rather than a specific destination address. SIENA uses an event
format similar to the CORBA Notification Service, i.e., a se-
quence of <name,value> tuples. Consumers can use this for-
mat to describe the sets of events they are interested in, using
a boolean predicate on the tuple values. This architecture is
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designed to reduce network resources, e.g., by propagating fil-
tering information as close to the sources as possible. Like-
wise, filtering constraints can be combined and simplified to
minimize the use of computation resources in routers.

Although SIENA and TAO’s Real-time Event Service use
similar techniques to conserve network and CPU resources,
SIENA’s event and filtering models are more powerful than
the model in TAO’s Real-time Event Service. However, TAO’s
Event Service is better suited for DRE applications with strin-
gent latency and predictability requirements. We believe that
the techniques employed in SIENA can be applied to TAO’s
Real-time Event Service in conjunction with the patterns de-
scribed in this paper to yield an efficient, predictable, and
highly scalable publisher/subscriber architecture.
CMU Pub/Sub. Rajkumar, et al., describe a real-time pub-
lisher/subscriber prototype developed at CMU [6]. Their pub-
lisher/subscriber model is similar to the CORBA Event Ser-
vice. An interesting aspect of the CMU model is the sepa-
ration of priorities for subscription and event transfer so that
these activities can be handled by different threads with dif-
ferent priorities. However, the model does not utilize any QoS
specifications from publishers (suppliers) or subscribers (con-
sumers). As a result, the message delivery mechanism does
not assign thread priorities according to the priorities of pub-
lishers or subscribers. In contrast, the TAO Event Service uti-
lizes QoS parameters from suppliers and consumers to guar-
antee the event delivery semantics determined by a real-time
scheduling service.

7 Concluding Remarks

Many distributed real-time and embedded (DRE) applications
require support for anonymous, asynchronous, predictable,
and scalable event-based communication. The CORBA Event
Service defines a standard publisher/subscriber architecture
where event channels dispatch events to consumers on behalf
of suppliers. The TAO Real-time Event Service described in
this paper augments the CORBA Event Service by provid-
ing low latency and low jitter dispatching, support for peri-
odic real-time processing, source-based and type-based filter-
ing and event correlations, and efficient use of network and
computational resources.

The empirical results presented in Section 5 illustrate that
systematically applying key patterns and optimizations make it
feasible to apply Real-time CORBA middleware to important
classes of DRE applications. The flexibility and QoS offered
by TAO’s Real-time Event Service have made it the founda-
tion for many research and production DRE applications. Our
future work is focusing on the patterns and optimization tech-
niques necessary to support even more demanding DRE appli-
cations that run at higher rates and that must simultaneously

handle multiple QoS properties, such as dependability, scala-
bility, predictability,and security.
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