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Abstract

Minimizing coupling between components is an important
means to fulfill key quality requirements in software-intensive
applications. Many applications use publisher/subscriber ar-
chitecturesto deliver events from suppliersto consumerswith-
out introducing excessive coupling between event sources and
sinks. Though the concepts, programming abstractions, and
benefits of publisher/subscriber architectures are well under-
stood, there hasbeenrelatively little research on howto design
architecturesthat are efficient and predictable enough to meet
the quality of service (QoS) requirements of distributed real-
time and embedded (DRE) applications. In particular, the QoS
performance tradeoffs between different publisher/subscriber
configurations are not well understood.

This paper makes four contributionsto the design and eval-
uation of publisher/subscriber architectures for DRE applica-
tions. Firgt, it illustrates how a flexible publisher/subscriber
architecture can be implemented using standard CORBA
middleware. Second, it shows how to extend the stan-
dard CORBA publisher/subscriber architecture so it is suit-
able for DRE applications that require low latency and jit-
ter, periodic rate-based event processing, and event filter-
ing and correlation. Third, it explains how to address key
performance-related design challenges faced when imple-
menting a publisher/subscriber architecture suitable for DRE
applications. Finally, the paper presents benchmarksthat em-
pirically demonstrate the predictability, latency, and utiliza-
tion of a widely used Real-time CORBA publisher/subscriber
architecture. Our results demonstrate that it is possible to
strike an effective balance between architectural flexibility and
real-time quality of service for important classes of DRE ap-
plications.
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1 Introduction

1.1 Challengesfor DRE Applications

Distributed, real-time, and embedded (DRE) applications are
becoming increasingly widespread and important. There are
many types of DRE applications, but they have one thing in
common: the right answer delivered too late becomes the
wrong answer. Common DRE applications include telecom-
munication networks gg., wireless phone services), tele-
medicine €.g., remote surgery), manufacturing process au-
tomation €.g., hot rolling mills), and defense applications
(e.g., avionics mission computing systems).

Due to constraints on weight, power consumption, mem-
ory footprint, and performance, the development techniques
for DRE application software have historically lagged behind
those used for mainstream desktop and enterprise software.
As aresult, DRE applications are costly to develop, maintain,
and evolve. Moreover, they are often so specialized that they
cannot adapt readily to meet new functional or quality of ser-
vice (QoS) requirements, hardware/software technology inno-
vations, or market opportunities.

Programming DRE applications is also hard because QoS
properties must be supported along with the application soft-
ware and distributed computing middleware functionality.
DRE applications have historically been custom-programmed
to implement these QoS properties. Unfortunately, this te-
dious and error-prone manual development process has not ad-
equately addressed the following challenges:

Isolating DRE applications from the details of multi-

ple platforms and varying operational contexts. Modern
DRE applications must invest an ever-increasing proportion
of functionality in software. Rapidly emerging technologies,
P_gether with the flexibility required for diverse operational
contexts, force deployment of multiple versions of software

on various platforms, while simultaneously preserving key
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SAIC, and Siemens.

preservation.



Reducing total ownership costs. Custom software develop- can perform event filtering and routing, QoS enforce-
ment and evolution is labor-intensive and error-prone for com- ment, and fault management.

plex DRE applications and can represent a substantial amqf,re 1 jllustrates the relationships and information flow be-
of total system acquisition and maintenance costs. Since DRJsen these three components.

applications are often upgraded multiple times during their

lifetime, it can be hard to maintain the QoS properties of opTIONAL opTiONAL

custom-made systems as new components and capabilities-=ze otmonty sounonry

added [1] Publisher
Sheltering application architectures from obsolescence =] =

(COTS) platforms and tools (2-5 years) lead to pervasi

software obsolescence and multiply the total ownership co

by requiring periodic software redevelopment and reengineglgure 1: Relationships Between Components in a Pub-

ing [2]. lisher/Subscriber Architecture

Minimizing personnel risks. Acquiring, retaining, and

training personnel to maintain and upgrade proprietary,Publisher/subscriber architectures can be used to address

custom-made DRE applications is risky since it can make arany of the challenges outlined in Section 1.1. In particular,

ganizations overly reliant on a small group of specialized sofftey can help to:

ware developers. Isolate DRE applications from the details of multi-
While considerable R&D effort has focused on how to mepte platforms and varying operational contexts. Pub-

these challenges for desktop and enterprise business appligher/subscriber defines a communication model that can be

tions [3], comparatively little effort has focused on how témplemented over many networks, transport protocols, and OS

meet these challenges for DRE applications with stringgi@tforms. Developers of DRE applications can therefore con-

QoS requirements. centrate on the application-specific aspects of their systems,

and leave the communication and QoS-related details to de-

1.2 Candidate Solution: Publisher/Subscriber velopers of publisher/subscriber middleware.
' Architectures ' Reduce total ownership costs. Publisher/subscriber archi-

tectures define clear boundaries between the components in
Addressing the challenges outlined above requires softwtire application, which reduces dependencies and thus main-
architectures that can support a changing set of requiremdetsince costs associated with replacement, integration, and
and environments gracefully. Too often, developers find thenevalidation of components. Likewise, core components of
selves reengineering existing software interfaces and imgleese architectures can be reused, thereby helping to reduce
mentations in response to planned and unplanned changesleirelopment, maintenance, and testing costs.
fact, most software costs occatfter initial deployment [4]. Shelter application architectures from obsolescence
Publisher/subscriber architectures can help overcome manytrends. Publisher/subscriber architectures strongly decou-
of these problems by reducing software dependencies andyle- event sources from event sinks. Application developers
flexibility. In this architecture, the components of a system at@n take advantage of this separation of concerns during the
separated into the following three roles, in accordance with tifetime of the systemeg., new sources of events can be
Publisher/Subscriber pattern [5]: added to the system over time. In a tightly-coupled, mono-
e Publishers are event sources,e., they generate thelithic design such changes would also require modifications
events that are propagated through the system. Depd@dvent sinks.
ing on architecture implementation, publishers may negtinimize personnel risks. The roles and relationships of
to describe the type of events they geneegpeiori. publisher/subscriber architectures are well documented and
e Subscribers are the event sinks of the system. Some aelatively easy to understand, which can help minimize per-
chitecture implementations require subscribers to declgtnnel training costs. Solutions based on proprietary pub-
filtering information for the events they require. lisher/subscriber systems, however, fail to address this chal-
¢ Event channelsare components in the system that propenge completely. Fortunately, publisher/subscriber architec-
gate events from publishers to subscribers. In distributeoles based on standard middleware technologies, such as
systems, event channels can propagate events acrossQERBA, Java/RMI, or COM+, are more effective at address-
tribution domains to remote subscribers. Event channéig this challenge.

Subscriber

. . . EVENTS
trends. Incommensurate lifetimes between long-lived DR| Publisher CE‘;‘;EL' Subscriber
applications (20 years or more) and commercial off-the-she = B ﬂ%
Publisher



1.3 Unresolved Challenges: Ensuring the QoS real-time needs of event-driven applications in many DRE
of Standard Publisher/Subscriber Archi- domains, such as avionics mission computing [22], mission-
tectures. critical distributed audio/video processing [23], and large-

scale distributed interactive simulation [21]. TAO and its Real-

If implemented properly, publisher/subscriber architecturgge Event Service are used in many production DRE applica-

satisfy many DRE application challenges. However, matigns. Two particular relevant examples include:

implementations of publisher/subscriber architectures rely on

non-standard distribution and infrastructure middleware [6,® HLA RTI-NG [21], which is the next-generation Run-

7] Comparaﬂve|y ||tt|e research has focused on app|y|ng t|me Infrastructure (RT') implementation for the Defense

(and potentially augmenting) standard middleware to pub- Modeling and Simulation Organization’s (DMSO) High

lisher/subscriber architectures to meet the needs of DRE ap- Level Architecture (HLA) and

plications. Moreover, research that has focused on thiss Boeing Bold Stroke [24, 25], which uses COTS hard-

topic [8, 9] has not documented the key patterns and frame- ware and middleware to produce a standards-based com-

works required to implement publisher/subscriber architec- ponent architecture for military avionics mission comput-
tures that can (1) preserve a clean separation of concerns while ing capabilities, such as navigation, data link manage-

(2) simultaneously satisfying stringent DRE application QoS ment, and weapons control.

requirements.

In fact, there is a widespread belief in the commerciBPth these DRE systems are examples of the need to simul-
embedded systems community that modern software abstfageously support multiple software qualities, such as main-
tion and composition techniques, such as object-oriented ténability, reusability, performance, availability, usability and
sign and programming, application frameworks, and standéifge to market.

COTS components, are not suitable for DRE applications. Yet,

many DRE application domains can leverage the benefits of

flexible and open distributed object computing architecturds4  Paper Organization

such as those defined in the CORBA specification [10].

publisher/subscriber architectures can be implemented inTd¢ remainder of this paper is organized as follows: Sec-

efficient and predictable manner, therefore, the benefits dign 2 describes how publisher/subscriber architectures can

lined in Section 1.2 will make them a compelling choice fd¥¢ mapped to standard middleware, in particular Real-time
new and planned DRE applications. CORBA and the CORBA Event Service; Section 3 describes

In this paper, we describe the patterns, framework desij@w to augment the CORBA Event Service to create a Real-
and performance of a publisher/subscriber architecture tkgte Event Service that can satisfy key QoS and flexibility re-
supports real-time QoS for event-driven DRE applicatior@lirements of DRE applications. Section 4 explains the de-
This architecture is based on the Real-time CORBA st&ign challenges we addressed and optimizations we applied
dard [10] and the TAO real-time ORB [11]. TAO is an operivhenimplementing TAO’s Real-time Event Service; Section 5
sourcé implementation of Real-time CORBA that supportshows the results of benchmarks conducted using TAO’s Real-
efficient, predictableand flexible DRE applications. Ourtime Event Service to validate the design described in Sec-
prior work on TAO has explored many dimensions of highion 3; Section 6 compares our results to related research on
performance and real-time ORB design and performanggblisher/subscriber architectures; and Section 7 presents con-
including optimal request demultiplexing [12], /0 subsysluding remarks.
tem [13] and protocol [14] integration, connection architec-
tures [15], asynchronous [16] and synchronous [17] concur-
rent request processing, adaptive load balancing [18] a2d CORBA and the CORBA Event Ser-
meta-programming mechanisms [19], and IDL stub/skeleton
optimizations [20]. vice

Our previous work [21] on publisher/subscriber architec-
tures focused on the patterns and performance bigely The TAO Real-time Event Service was not designed in a vac-
scalable CORBA Event Service implementation. This paqum. Instead, it was designed to overcome limitations with
per extends our previous work by describing how to augtandard CORBA ORBs and services. This section describes
ment the CORBA Event Service specification to satisfy thew the CORBA Event Service was designed to overcome

1The source code and documentation for TAO and its Real-time Ev rqltatlons with CORBA ORB invocation models. Section 3
Service are freely available at URit t p: / / deuce. doc. wust | . edu/ then describes how TAO's Real-time Event Service overcomes
Downl oad. ht m . limitations with the CORBA Event Service.




2.1 Overview of CORBA available to process the request. If a request fails because the

. . . . ) server is unavailable, the client receives an exception and must
CORBA is a distributed object computing middleware spe, P

fike corrective action, such as notifying an end-user or sys-
ification [10] being standardized by the Object Managem y fying y

administrator. In 2001 the OMG integrated the Messagin
Group (OMG). CORBA supports the development of ﬂexE g ging

bl d bl . d distributed | ecification [26] into the CORBA 2.4 standard. This specifi-
'€ and reusable service components an .|str| uted applicgi,, gave application developers more control over QoS pa-
tions by separating interfaces from (potentially remote) of)-

act impl : Fi il h : meters and introduced time-independent invocations (TII).
ject imp gmﬁntg'[(l;)SEA 'gl;]r,e : usthrates the primary CorT/l]though these features solve several problems not addressed
ponents in the architecture that automate many COE(}'earlier versions of CORBA, they require event suppliers to

have explicit knowledge of the consumers of those events.

Interface IDL Implementation Synchronous invocation semantics. By default, a CORBA
Repository Compiler Repository f . . .. .
client waits until the server finishes processing a synchronous

two-way request and returns the result to the client. This

blocking can cause problems for DRE applications with strin-
Client e o%» (Scc’etr){/::t) gent real-time con§traints: CORBA therefore provides var'ious
o _REF eoutargs s nor_l-synchronous invocation m_odels, ;uch as one-way invo-
\ f cations, deferred synchronous invocations, and asynchronous
IDL method invocations (AMI) [16]. However, standard one-way
v y skev | | P! invocations are not required to implement reliable delivery, de-

IDL ORB ; i : ;
DII [STUBS] [ INTERFACE} Object Adapter ferred synchronous invocations yield excessive overhead for

DRE applications since they use the CORBA Dynamic Invo-
cation Interface (DIl), and AMI still requires the server to be
available when a client invokes a request.

Figure 2:Componentsin the CORBA ORB Architecture Point-to-point communication. A CORBA operation in-
voked by a client is destined for a single target object on a

. . . particular server. The CORBA Fault Tolerance [27] specifi-
mon network programming tasks, such as object registration,. . g . : .

. NS . T : Cation relaxes this point-to-point protocol, but is not widely
location, and activation; request demultiplexing; framing an

error-handling: parameter marshaling and demarshalina: ém&)lemented nor widely used at this time. Moreover, the stan-
9. p 9 9 difrd replication protocols used in Fault Tolerant CORBA are

operation dispatching. Although it is beyond the scope of this . o
paper to examine how the CORBA ORB architecture affec?so heavyweight for many DRE applications.
software quality and quality of service, these topics are ex- ) )
plored in depth in our other publications. 2.3 Overview of the CORBA Event Service
syl—sr?rcs)aa:fsagjng255::@::)?232r;vl\?(;/- ?’\(lzglognrg?vsgf:?‘%ogs_address the problems described in Section 22 develo.p-
ferred synchronous interactions between clients and serv th ofteg eméz)loy st,gme k;[ytpe (t)'f publlstTerlzup SCS”bEf; arclhlz-
Two-way synchronous calls are the default invocation mod §jcture based on the abstractions outiined In section L.2.
The primary strength of this model is its intuitive mappin
onto theobj ect - >oper ati on() paradigm supported by

object-oriented languages.

a publisher/subscriber architecture, the data and control
ow through events, rather than via parameterized opera-
tion invocations. Event-driven applications that use pub-
lisher/subscriber architectures possess several key require-
ments:

2.2 Limitationswith CORBA 1. The events must be transferred efficiently from event

In principle, two-way synchronous invocations simplify the ~ sources to event sinks and

development of distributed applications by supporting an im2. The event sources and sinks must be anonymous and de-
plicit request/response protocol that makes remote operation coupled;.e., the number and characteristics of the event
invocations largely transparent to clients. In practice, however, Sinks must be transparentto event sources and vice-versa.
the standard CORBA operation invocation models are overly support these requirements, the OMG CORBA specifica-
restrictive for many DRE applications, due to their followingon defines a standard Event Service [28] that provides asyn-
limitations: chronous message delivery and allows one or more suppliers
Tight coupling of client and server lifetimes. For a tosend messages to one or more consumers. Event data can be
CORBA client request to be successful, the server mustdsivered from suppliers to consumers without requiring these



participants to know each other’s identities explicily. Thd The TAO Real-time Event Service

CORBA Event Service can be used in conjunction with the

CORBA Messaging specification to achieve fine grained c@@- Overcoming CORBA Event Service Limi-

trol over QoS parameters, such as timeouts and request priori-  tationswith TAO

ties. Figure 3 illustrates the relationships between components

in the CORBA Event Service architecture. Although the CORBA Event Service described in Section 2.3
provides a standard way to decouple event suppliers and event

consumers and support asynchronous communication, it does
: CORBA Server : CORBA Server not specify the following important features required by event-
: PushSupplier| 1 : PushConsumer driven DRE appllcatlons:
1. Low latencyl/jitter event dispatching
- 2. Support for periodic processing
~-CORBA Server L 3. Centralized event filtering and event correlations and
ProxyPushConsumer ProxyPushSupplier 4. Efficient use of network and computational resources.
1 —
1 1 To support these important features, we have developed a
0. \/ ‘ Real-time Event Service as part of the TAO project. As shown
0..—{: SupplierAdmin| | EventChannel| | : ConsumerAdmint— in Figure 4, TAO’s Real-time Event Service is a component
g - implemented atop TAO that augments the CORBA Event Ser-
Q /N I*|  vice specification to satisfy the QoS needs of DRE applica-
1 1 tions. The following discussion summarizes the features miss-
: ProxyPullConsumer| : ProxyPullSupplier
1 — -
push() EVENT SERVICE push()
: CORBA Server 1 . CORBA Server
. f . REAL-TIME
: PullSupplier : PullConsumer SUPPLIER SCHEDULING CONSUMER
1 SERVICE

Figure 3:CORBA Event Service Architecture

Sl INTERFACE
The CORBA Event Service defines the following three

e Suppliers, which produce event datag., they play the
publisher role in the publisher/subscriber architecture, Figure 4:Relationship of TAO and Its Real-time Event Ser-

¢ Consumers, which receive and process event ddta, V/C€

they play the subscriber role in the publisher/subscriber . .
architecture, and ing in the CORBA Event Service and outlines how they are

, i ~ supported by TAO’s Real-time Event Service.
e Event channels, which are mediators [29] through which

multiple consumers and suppliers communicate asyh-LOW latencyljitter event dispatching. To minimize la-

nels in the publisher/subscriber architecture. multiple threads within an event channel forwarding events

to their consumers. The CORBA Event Service specification
There are two models.€., push vs. pull) of participant col- does not designate a standard threading model, much less a
laborations in the CORBA Event Service. This paper focugesi-time threading model. As a result, DRE applications may
on real-time enhancements to the push model, which alloagt be able to rely on threading support.
suppliers of events to initiate the transfer of event data to conTAO’s Real-time Event Service can be configured with an
sumers. Events are transferred via standard CORBA opexpplication-specified strategy to assign the number and prior-
tions from suppliers to an event channel, which in turn digy of real-time threads that will dispatch events. TAO also
seminates the events to consumers. predefines several application-specified strategies to cover the

3JECT
ADAPTER




most common cases. The same component can be used td lis-point-to-multipoint design requires excessive network re-
sign events to a thread at the appropriate priority, avoiding pgBurces, since the same data is transmitted multiple times, of-
ority inversions in the event channel and thus achieving greatan to the same target computer. TAO'’s Real-time Event Ser-
predictability by enforcing scheduling decisions at run-timevice can therefore be configured to minimize network traffic

2. Support for periodic processing. Consumers in peri- PY:

odic real-time systems typically requi@units of computa- e Using IP broadcast and multicast protocols to avoid du-

tion time everyP milliseconds. For instance, some real-time  plicate network traffic, and

avionics signal processing filters must be updated periodically Building federations of Event Services that eliminate the

or else they will spend a substantial amount of time recon- transmission of duplicate events, and even eliminate the
verging [24]. In this case, consumers have strict deadlines by need to send unwanted events by pushing filtering to the
which time they must execute the requestednits of com- source.

putation time. The standard CORBA Event Service definesthis paper focuses largely on features 1 and 2 described
no interface that allows consumers to specify their tempogove since they are the most essential for real-time applica-

execution requirements. Periodic processing is therefore fighs. Our previous work in [21] focuses on the scalability
supported in conventional CORBA Event Service implemersyes associated with features 3 and 4.

tations.
TAO’s Real-time Event Service allows consumers to spec?/ TAO's Real-time Event Service Architec-

event dependency timeouts. It uses these timeout reques s'%o

propagate temporal events in coordination with system-wide ture

scheduling policies. In addition to the canonical use of timeqtfgure 5 shows the architecture of TAO’s Real-time Event

events,i.e, receiving timeouts at some interval, a consumegryice. At the heart of this architecture is thent chan-
can request to receive a timeout event via a real-time “watch-

dog” timer if its dependencies are not satisfied within some PushConsumer
time period. PushConsum

3. Support for centralized event filtering and event cor- $ f

relation. In DRE applications, consumers may not be inter-

<
ested in all events generated by suppliers. Although it is pos- O%%O O&O %@

PushConsumer

sible to let each application perform its own filtering, this so- Per-Consumer Filters
lution wastes network and computing resources and requires <y

extra work by application developers. Ideally, an event ser- Pr pyf proxypu5h5upp|i‘er
vice should send an event to a particular consumer only if the

consumer has subscribed for it explicitly. Care must be taken, Consumer Admin Module

however, to ensure that the algorithms used to support filtering -
do not cause undue burden on DRE system resources. T 3 3 3 Timer
To alleviate scalability and performance problems, TAO's

. . ’ ; Module
Real-time Event Service provides filtering and correlation E E E E
mechanisms that allow consumers to specify the type of events

they are interested in via conjunctiom{p”) and disjunctive Dispatching Module

(“oR") event dependencies. Conjunctive semantics instruct
the channel to notify the consumer whahthe specified event ‘
dependencies are satisfied. Disjunctive semantics instruct the | ProxyPushConsumer
channel to notify the consumer(s) whany of the specified

event dependencies are satisfied. Suppliers can also provide ™
information about the types of events they generate. Based on / o~ _
the subscriptions provided by the consumers and theblica- PushSupplier PushSupplier
tions described by the suppliers, the event channel will dis-

patch events only to consumers that have expressed interest ifigure 5: TAO Real-time Event Service Architecture
them.

4. Efficient use of network and computational resources. nel, which provides two factory interfaceéSpnsuner Adm n
Conventional implementations of an Event Service send aredSuppl i er Adm n, that allow applications to obtain con-
message for each remote consumer interested in an ev&mner and supplier administration objects, respectively. These

Event Flow
Event Channel

Supplier Admin Module




administration objects allow consumers and suppliers to c@ispatching module. The dispatching module determines
nect/disconnect from the channel and to specify their Qafien events should be delivered to consumers and pushes the
needs, such as their event dependencies and filtering typeents to them accordingly. To guarantee that consumers exe-
Internally, the event channel is an object-oriented frameute in time to meet their deadlines, this module collaborates
work [30] that contains a series of processing modules linkeith TAO’s Real-time Scheduling Service [11, 22]. For in-
together in accordance with the Pipes and Filters pattern [&ance, consider the arrival of an event into a dispatching mod-
which provides a structure for systems that process a stradmimplemented with real-time preemptive threads. If TAO's
of event data. Each module encapsulates independent taskaafl-time Scheduling Service assigns the event a preemption
the channel, as described below. priority higher than any currently running thread, the dispatch-
Consumer admin module. The interface to the consumel"9 module will preempt a running thread and dispatch the new
admin module is identical t€onsuner Adni n interface SVt . .

defined by theCosEvent Channel Adnmi n module in the The dispatching modu’le alway_s dequeues events ffom the
CORBA Event Service shown in Figure 3. This interfa ead of the queue. TAO’s Real-time Scheduling Service can

provides factory methods for creating objects that support %termine the order of dequeueing by returning different sub-

Pr oxyPushSuppl i er interface. Inthe CORBA Event serPriorities for different events. For instance, assume that an

vice, thePr oxyPushSuppl i er interface is used by con-/mplementation of the scheduler must ensure that some event
sum'ers to connect and disconnect from the channel. Eyis alwayg dispatched before evéfy, bUt. does qot require
The standard CORBA Event Service defines event chanr%Q%t. thg arnvgl OfEy preemp.t a thread d|spatch|@. By
“ " .assigning a higher sub-priority to an event contairtingthe
as “broadcast repeaters” that forward all events from suppliers . %

. event will always be queued before any event contaiing
to all consumers. This approach has several drawbacks, h 2 dispatcher will therefore always deaueue and distgich
ever. If consumers are only interested in a subset of events b y q At

vents befor&, events.

from the syppllers, they must implement their own event f The dispatching module can be configured to implement
tering to discard unneeded events. Moreover, if a consumer ) .
. . o gveral concurrency strategies, such as real-time upcalls and
ultimately discards an event, then delivering the event to the : ; :
) . . preemptive multi-threading [31]. Each strategy caters to the
consumer needlessly wastes bandwidth and processing time

. ) ) fype and availability of system resources, such as the OS
_To address these shortcomings, TAQ's Real-time Event SI%Eeading model and the number of CPUs. TAO's event chan-
vice extends the standaRil oxyPushSuppl i er interfaces

nelnframework is designed so that changing the number of

so that consumers can register their event dependencies Y. i< i1 the system, or changing to a single-threaded con-

a c_hanqel. ‘Co“nsumers can specify ?O”JP”C“““.“O ) or. currency strategy, does not require modifications to unrelated
disjunctive (‘OR") semantics when registering their supplier

o . cgmponents in a channel.
based and/or type-based filtering requirements. TAO also Ié? p : . : .
X . riority timersproxy. The supplier admin module contains
lows consumers to subscribe for particular subsets of events.. ST )
b ' . a sspemal-purposqarlonty timers proxy that manages all timers
The channel uses these subscriptions to filter supplier event . X
. . registered with the channel. When a consumer registers for a
only forwarding them to interested consumers. . Lo . .
timeout, the priority timers proxy ensures that timeouts are dis-
Supplier admin module. The interface to this module ispatched according to the priority of their corresponding con-
based on theSuppl i er Adm n interface defined in the sumer.
CORBA Event ServiceCosEvent Channel Adni n mod-  The priority timers proxy uses a heap-based callout queue,
ule. It provides factory methods for creating objects that suphere the average and worst case time required to schedule,
port thePr oxyPushConsuner interface. Suppliers use thecancel, and expire a timer 8(log N) (N is the total number
ProxyPushConsuner interface to connect and disconneasf timers). The timer mechanism preallocates all its memory,
from the channel. which eliminates the need for dynamic memory allocation at
TAO’s Real-time Event Service also extends the standawh-time and is therefore well-suited for real-time systems re-
CORBA Pr oxyPushConsuner interface so that suppliersquiring highly predictable and efficient timer operations.
can specify the types of events they generate. With this in-
formatlion, the channel’s correlation anq f||ter|ng'mechan|s§.13 Alternative Event Service Configurations
can build data structures that allow efficient run-time lookups
of subscribed consumersPr oxyPushConsuner objects Although TAO’s Real-time Event Service architecture de-
also represent the entry point of events from suppliers irgoribed in Section 3.2 provides many powerful capabilities, the
an event channel. When suppliers transmit an event to thee test of its object-oriented framework arises when using it
Pr oxyPushConsunrer interface via the proxy'push() to supporta diverse set of DRE applications with a wide range
operation the channel forwards this event toplish() op- of functional and QoS requirements. The remainder of this
eration of interested consumer(s).



section describes how TAO’s Real-time Event Service can bélo address the limitations of the centralized event channel
configured both externally and internally. The flexibility of itarchitecture, TAO’s Real-time Event Service provides mech-
architecture helps developers of DRE applications meet thamisms to connect several event channels to forfedera-

requirements without incurring time and space overhead fomn, as shown in Figure 7. In a federated group of event

capabilities they do not use. channels, suppliers and consumers just connect to their local
event channel, while event channel instances talk to each other
331 Centralized vs. Federated Event Channels via CORBA. This design reduces average latency for all con-

sumers in the system because consumers and suppliers exhibit
The original implementation of TAO’s Real-time Event Sefecality-of-reference,e., most consumers for any event are on
vice [31] was limited to a single processor configuratiothe same computer as the supplier generating the event. More-
However, modern DRE applications typically connect multever, if multiple remote consumers are interested in the same
ple computers via high-speed interconnects, such as a fi@nt only one message is sent to each remote event channel,
channel network or a VME bus. One way to configure TAOihiereby minimizing network utilization.
Event Service is to use a single centralized real-time evenp straightforward and portable way to implement this ar-
channel for the entire system, as shown in Figure 6. A cefhitecture is to use gateway between each event channel. As
shown in Figure 8, such gateways play both the consumer and

Host A (oS [3 supplier roles and mediate between two event channels. They
Pus PushConsumer pus PushConsumer
by v IRIoSE A PushConsumer IRtosE (2 PushConsumer
PushSupplier PushConsumer
[CORBA/IIOP }
1k i ry| ~a/ ~/
Hostc || HostE § Host D u ‘ EventChannel EventChannel
PushSupplier EventChannel LPushConsumer
Gateway
Figure 6:A Centralized Configuration for the Event Chan-

nel [T
Figure 8:Using a Gateway to Connect Two Event Channels
tralized real-time event channel architecture incurs excessive
overhead, however, because the consumer for a given supplififnect (in their consumer role) to one of the event channels,
is usually located on the same computer. If the event chadeally subscribing only for the events that are interesting for
nel is on a remote computer, therefore, extra communicatip@ participants in the second event channel. When a gate-
overhead and latency are incurred for the common case. Mgy receives an event it forwards the event to the second event
over, TAO's collocated operation invocation path is highlyhannel, where it has connected (in its supplier role).
optimized [19], so it is desirable to exploit this optimization Application developers can configure the location of the

whenever possible. gateway with respect to its event channels to minimize the uti-
lization of network resources. For example, collocating the
Host A [pushconsumer|| |HOS'B  [pushconsumer gateway with its sink event channgk., the one it connects to
PushSupplier =———| | PushConsumer as a supplier, eliminates the need to transmit events that are not
~ ~_ interesting for the sink event channel. Collocating the gateway
EventChannel EventChannel with its source event channel can avoid event cycles more effi-
- - ciently than the previous configuration, however, as described
1 ¥ in [21].
[CORBA/IIOP } TAO's Real-time Event Service requires that each event
. - channel in a federation be connected to every one of its peers.
Host C [ Host D ¥ This is not a problem for DRE applications that have one event
EeitChne] EeitChne] channel per computer. In certain domains, however, DRE ap-
> v~ S~ plications could require hundreds or thousands of event chan-
Pushsup Pushsupplier Pushsupplier Fonsumer nels. In this case, providing a full network would not scale.
] We are investigating techniques to address this situation based
on related work [7].
Figure 7:Federated Event Channels Many types of distributed applications can benefit from



TAO's federated Event Service. For instance, both distributeBD configuration, which isshownin Figure9 (A). This con-
interactive simulations [21] and avionics mission computirfgguration supports*“ classic” real-time applicationsthat require
systems [24, 25] can comprise several computers in differaotcorrelation or filtering.

networks, where most of the traffic destination is within the  Eyent forwarding discriminator (EFD) configuration.

same network. Configuring an event channel on each ”etWR@fnoving the dispatching module from the event channel
helps to reduce latency by avoiding round-trip delay to remajRilds an EFD configuration that supports event filtering and

computers. correlations, as shown in Figure 9 (B). EFDs provide a “data
reduction” mechanism that minimizes the number of events
3.3.2 Event Channel Configurations received by consumers so they only receive events of inter-

An EFD configuration helps improve the scalability of

Since the QoS requirements of DRE applications can vary C%Bblicati ons that do not require priority-based queueing and
siderably, the internals of event channels in TAO'’s Real'“'ﬁ%patching in the event channel.

Event Service can also vary accordingly. In particular, the in-

ternal architecture of the TAO event channel is based on the EVent regisiration multiplexer (ERM) configuration.
Pipes and Filters [5] and Builder [29] patterns to support difemoving both the correlation/filtering and dispatching car

ferent channel configurations optimized for different DRE af@Pilitiés creates an ERM configuration, which is shown in

plication requirements. This architecture allows TAO's evehtdure 9 (C). This configuration supports neither red-time
channels to be configured in the following ways to supportiPaiching nor filtering/correlations. In essence, this imple-

wide range of event dispatching, filtering, and dependency Se- ts the semantics of the standard CORBA event channel
mantics: push model.

Full event channel configuration. A full event channel in-  In mission-critical DRE environments with stringent QoS
cludes the dispatching module and consumer/supplier prégguirements, such as avionics mission computing systems,
modules, along with their full correlation and filtering mechdhe configuration of an event channel is performed off-line to
nisms. A channel configured with all these modules suppofglimize startup overhead. TAO's Real-time Event Service
type and source-based filtering, correlations, and priorifyjamework uses the Pipes and Filters pattern and the Builder
based queueing and dispatching. Figure 5 illustrates a faftern [29] (described in Challenge 4 in Section 4) to con-
event channel configuration. figure the event channel off-line. In dynamic rea-time en-
Subset event channel configurations. TAO's Real-time Vironments, such as telecommunication call-processing, how-

Event Service supports subset configurations that allow pR€", COmponent policiesmay requirealteration at run-time. In

cessing modules and mechanisms to be added, removedgF Contexts, it may be unacceptable to completely terminate
modified with minimal impact on the overall system. Th@ running event channel when a scheduling or concurrency
policy is updated. TAO's Real-time Event Service framework

Event Channel Event Channel Event Channel uses the Component Configurator pattern [32] (described in
Ferconage Flers Challenge 5 in Section 4) to support dynamic reconfiguration
of event channel swithout i nterruption while continuing to pro-

ProxyPushSupplier ProxyPushSupplier il ProxyPushSupplier cess (E‘\/ents
3373 ?? 4 Designing and Optimizing TAO’s
555 Q0 Real-time Event Service

Supplier Admin Module Supplier Admin Module Supplier Admin Module

Although publisher/subscriber architectures have many bene-
fits, they can also have some disadvantages:

ProxyPushConsumer ProxyPushConsumer ProxyPushConsumer

e Their modularity can introduce excessive overhead, e.g.,
inefficienciesmay ariseif buffer sizesare not consistently

Figure 9: Event Channel Subset Configurations sized and aligned between and within event channels,
thereby causing additional segmentation, reassembly, and
following configurations can be achieved by removing certain transmission delays
modules and mechanisms from an event channel . e Information hiding within components can make it hard
e Event real-time dispatching (ERD) configuration. to manage resources predictably and dependably in DRE
Removing the correlation and filtering capabilities creates an applicationsand



e Communication between suppliers and consumers must
be designed and implemented properly to avoid introduc-
ing subtle source of errors.

Publisher/subscriber architectures alone are therefore not suf-
ficient to resolve key challenges of DRE applications. What is
needed is a deeper understanding of the patterns and optimiza-
tion techniques necessary to devel op flexible and QoS-enabled
publisher/subscriber software.

Architectural flexibility has historically been associated
with excessive time and space overhead, which is antithet-
ical to DRE applications. Fortunately, new generations of
hardware and advances in patterns and optimizations are be-
coming mature enough to compensate for much of the time
and space overhead traditionally associated with architectural
flexibility and modern software abstraction and composition
techniques [1]. To reify this point, this section describes the
patterns and idioms we applied to address the following de-
sign and performance challenges encountered when develop-
ing TAO's Real-time Event Service:

1. Ensuring timelinessin event processing

2. Minimizing interference between the event channel com-
ponents

3. Optimizing the performance of the CORBA Any type

4. Optimizations for footprint reduction and

5. Customizing event channels for particular deployment
environments.

These challenges and our solutions are discussed below. To
enhance the generality of our solutions, we describe them in
terms of the patterns [29, 32] we used to resolve the chal-
lenges. Section 5 presents empirical results that quantify the
benefits of these patterns and optimizations.

Challenge 1: Ensuring Timelinessin Event Pro-
cessing

Context. The dispatching module of TAO's real-time event
channel ensures that priorities are respected by enqueueing
eventsin an internal buffer according to their priority.

Problem. Long-duration operations, such as complex filter
evaluation, can starve other events in the queue and prevent
them from being processed in atimely manner.

Solution — the Command Object pattern. This pattern
encapsulates an event as an object, thereby alowing param-
eterization of different events [29]. The actual representation
of the event is hidden by the command object interface. Dif-
ferent concrete implementation of thisinterfaceimplement the
event and provide semantics to it. This pattern can be used to
decomposetheinternal event processing within an event chan-
nel into stages to ensure timeliness by avoiding long-duration
operations that would otherwiseincur “head of line blocking.”

Applying the Command Object pattern. The filter evalu-
ation, subscription lookup, and event dispatching operations
in TAO's event channel are encapsulated as command objects.
As shown in Figure 10 instead of performing these operations

o 090 6

Command Queue
Proxy Supplier Filter onsumer Admin FiIter@ Subscription Lookup
Evaluation Evaluation Operation
oxy Consumer Filter 5 ) Supplier Admin Filter @ Event Dispatching
Evaluation Evaluation

Figure 10: Processing Command Objectsto Ensure Time-
liness

synchronously, their evaluation is split into discrete steps. |If
the event is till digible for further processing after executing
an command operation, it is replaced into the command queue
and dequeued subsequently when further processing is possi-
ble. The dispatching command is responsible for sending the
event to its consumer.

Challenge 2: Minimizing Interference Between
Event Channel Components

Context. An event channel should be able to (1) handle
event delivery from suppliers and (2) perform event forward-
ing with the minimum possible latency, i.e., suppliers deliv-
ering an event to the channel should not have to wait while
the channel forwards eventsto recipient consumers. Similarly,
when an event channel forwards events to multiple consumers,
each consumer might spend an unbounded amount of timein
the implementation of itspush() operation. Since eventsare
forwarded by the event channel via CORBA two-way opera-
tions, the channel’s dispatching thread must wait until the con-
sumer returns from its upcall. This blocking overhead affects
the event channel’s event processing time.

Problem. A real-time event channel implementation must
minimizetheinterference between different componentsof the
event channel.

Solution — the Active Object pattern. This pattern de-
couples method execution from method invocation to sim-
plify synchronized access to an object that resides in its own
thread [32]. The Active Object pattern allows one or more
independent threads of execution to interleave their access to
data modeled as a single object.
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Applying the Active Object pattern. Using the Active Ob-
ject pattern at the various stages of event processing enables
the minimization of the interference between TAO's real-time
event channel components. As shown in Figure 11 and dis-
cussed in Challenge 1 above, events and operations performed

Processing
Thread Pool

Command Queue

Dispatch to remote

consumer

Enqueuing Thread —»

&

Filtering

-

Figure 11: Asynchronous Event Processing Using the Ac-
tive Object Pattern

on them are encapsulated as command objects. Enqueueing
thread(s) place event command objects into acommand queue
according to a buffering order policy. An active object with
worker threads degqueues and executes the command objects
in the queue.

At a lower-level of abstraction, the TAO real-time ORB
itself can be configured to increase concurrency using the
Leader/Followers pattern [32], which provides an efficient
concurrency model where multiple threads take turns sharing
aset of event sourcesin order to detect, demultiplex, dispatch,
and process service requests that occur on the event sources.
In this case, each ORB invocation is handled by a separate
thread, allowing multiple events to be delivered concurrently
to areal-time event channel.

Challenge 3: Optimizing the Performance of
Anys

Context. A CORBA “Any” is a dynamically typed data
structure that can contain the typecode and data for any type of
data supported by CORBA. A CORBA-compliant Real-time
Event Service must process events containing Anys.

Problem. In CORBA, Anys are expensive data types be-
cause they can have many levels of nesting. For example, an
Any can contain a structure, which can itself be contain a se-
guences of Anys and so forth. When a CORBA demarshaling
engine decodesthis expensivetype, it must make a copy of the
entire data buffer containing the Any. Likewise, copying an
Any can require several memory alocations and buffer copys
to obtain anew representation. Moreover, the C++ mapping of
CORBA Anys requires them to be responsible for any mem-
ory returned to the application. Optimized ORBSs should share
the Any contents even if there are multiple copies of the Any
object.

Solution — Reference counting via the Handle/Body id-
iom. Thisidiom presents multiplelogical copies of the same
data while sharing the same physical copy [33]. In C++, this
idiom is often used to automate the memory management in
conjunction with reference counting and smart pointers.

Applying the Handle/Body idiom. The TAO demarshaling
engine does not copy data into an Any. Instead, it reference
counts its data buffers and the Any only increments the ref-
erence count to maintain a logical copy of the buffer. Like-
wise, after the contents of the Any are extracted by an ap-
plication, the Any object itself is responsible for deallocating
the extracted object. This extracted object can be shared by
multiple instances of the Any object, minimizing the cost of
copying and extracting the contents repeatedly. The use of
the Handle/Body idiom implements this optimization without
changing the semantics required by the standard CORBA C++

mapping.

Challenge 4: Optimizationsfor Footprint Reduc-
tion

Context. TAO's Real-time Event Service has many features
that may not be required by all applications. For example,
deeply embedded systems may not want to incur the increase
in memory footprint for unused features, such as correlation
and filtering.

Problem. A required set of real-time event features should
be “composable’ by users.

Solution — the Pipes and Filters pattern and the Builder
pattern. The Pipes and Filters pattern [5] provides a struc-
turefor systemsthat process astream of data. The Builder pat-
tern [29] separates the construction of a complex object from
its representation so that the same construction process can
create different representations.

Applying the Pipes and Filters pattern and the Builder
pattern. TAO's rea-time event channel uses the Pipes and
Filters pattern to configure alternative implementations of its
modules described in Section 3.2. Likewise, it uses the
Builder pattern to configure its correlation and filtering mech-
anisms. For example, a configuration containing no correla-
tion/filtering + AnyProxySupplier + AnyProxyConsumer + re-
active dispatching strategy would yield the default semantics
of the CORBA Event Service.
These features are separated into libraries as follows:

e Thethreedifferent pairsof proxy supplier and proxy con-
sumer types are separated into different libraries. In a
specific configuration, only the required type, eg., the
PushPr oxySuppl i er, may be loaded by a builder at
startup. Hence, the other types of proxy implementations
are not loaded since they are not needed.
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e An application may not require filtering, in which case
the filtering engine library is not configured by the
builder.

e The dispatching module can be configured to use simple
reactive dispatching, multi-threaded dispatching, or even
omitted altogether to create one of the subset event chan-
nel configurations described in Section 3.3.2.

Challenge 5: Customizing Event Channels for
Particular Deployment Environments

Context. TAO's CORBA Real-time Event Serviceis config-
urable in the following manner:

1. A user can specify features required by configuration.

2. A specific class implementation can be modified by the
user to enhance or customize behavior.

3. Userscan vary default properties, such asthread pool size
and locking strategy.

Problem. A mechanism is needed to allow application de-
velopers to change various configurable option in TAO's real-
time event channel at run-time.

Solution — the Component Configurator pattern. This
pattern decouples the behavior of component services from
the point in time at which service implementation are con-
figured into an application [32]. This pattern can be imple-
mented using explicit dynamic linking, which allows an appli-
cation to obtain, use, and/or remove the run-time address bind-
ings of certain function- or data-related symbols defined in
DLLs. Common explicit dynamic linking mechanismsinclude
the POSIX/UNIX functions dl open(), dl sym(), and
dl cl ose() and the Win32 functions LoadLi brary(),
Get ProcAddress(),andFreeLi brary().

Applying the Component Configurator. All objects in
TAO's Real-time Event Service implementation are created
viafactory objects. These factories can be loaded statically or
dynamically. Figure 12 shows how the Component Configu-
rator pattern can be used to dynamically configure TAO's real -
time event channel. The configuration file contains a script
with directivesthat designate which libraries, such asthefilter
library, dispatching library, and proxy library, to dynamically
link into the address space of TAO's real -time event channel.

5 Empirical Results

Our previous work [31] benchmarked a prototype of TAO's
Real-time Event Service that did not run on a CORBA-
compliant ORB. This section extends these benchmarks
and also demonstrates the performance of mature Real-time
CORBA and Real-time Event Service implementations. We

Uses Configurator

Notify Engine

Loads Libraries

Specifies Options

? Component -Configurator

Configuration File Filter Library Dispatching Library Proxy Library

Figure 12: Apply the Component Configurator Pattern in
TAO’s Real-time Event Channel

first measure the CPU utilization of two event channel config-
urations described in Section 3.3.1. We then measure several
aspects of event channel latency using the ERD configuration
described in Section 3.3.2. The benchmarks reported in this
section are based on performance requirements gleaned from
our extensivework [11, 12, 20, 22] on real-time avionics mis-
sion computing systems [24, 25]. Since our focusin this paper
is on real-time properties, rather than the scalability proper-
ties described in [21], we do not report correlation or filtering
performance here.

All benchmarkswere conducted on asingle-CPU 300 Mhz?
Sun UltraSPARC 30 workstation with 256 MB RAM run-
ning Solaris 5.7. Version 1.1 of the TAO ORB, TAO's Real-
time Event Service, and the test application were built with
SunC++ 5.2 with the highest level (- f ast ) of optimization
enabled. We focus our experiments on asingle CPU hardware
configuration to factor out network interface driver overhead
and isolate the effects of ORB middleware and application la-
tency, predictability, and utilization. There was no other sig-
nificant activity on the workstation during the benchmarking.
All tests were run in the Solaris real-time scheduling class so
they had the highest software priority (but below hardwarein-
terrupts) [34].

5.1 CPU Utilization M easurements

Overview. For non-rea-time event channels, such as the
EFD configuration described in Section 3.3.2, correctnessim-
plies that consumers receive events when their source/type
subscription and correl ation dependenciesare met. In contrast,
for real-time event channels, such as the full event channel
and ERD configurations, correctnessimpliesthat all deadlines

2We chose a 300 Mhz CPU for the benchmarks since it is similar to
the CPU speeds on many DRE platforms, such as avionics mission comput-
ing [24, 25].
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are met. An important metric for evaluating the performance
of a real-time system is its schedulable bound, which is the
maximum resource utilization possible without missing dead-
lines [35]. The schedulable bound of TAO's Real-time Event
Serviceis therefore the maximum CPU utilization that suppli-
ers and consumers can achieve without missing deadlines.

With rate monotonic scheduling, higher rate tasks are sup-
posed to preempt lower rate tasks. For TAO's Real-time
Scheduling Service to guarantee the schedulability of a sys-
tem (i.e, that all tasks meet their deadlines), its high-priority
tasks must therefore preempt itslower priority tasks. Wethere-
fore devised tests to (1) determine whether this is indeed the
case and (2) to measure the overhead of TAO's federated event
channel configuration compared with asingle collocated event
channel. Two experiments were conducted: the first measured
the utilization of a single event channel configuration and the
second measured the utilization of a federated event channel
configuration.

Single event channel utilization results. This experiment
used a single event channel that was collocated with a
high-priority supplier/consumer pair and a low-priority sup-
plier/consumer pair. The processing time for high-priority
eventswas increased until the low-priority task could not meet
its deadline. In Figure 13 we plot the average laxity® for high-
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Figure 13: CPU Utilization for a Single Event Channel

priority and low-priority events. The error bars represent the
minimum and maximum laxity for each experiment. Negative
laxity means that a deadline was missed.

Figure 13 shows that the event channel achieved over 99%
utilization beforeitslow-priority task began to miss deadlines.
The high-priority task never misses its deadlines, though its
laxity decreases dightly as utilization increases. It is inter-
esting to observe that this decrease in amost linear with the

SLaxity is defined as the time-to-deadline minus the execution time.

utilization increase, even when the low-priority task no longer
meets its deadlines.

Federated event channel utilization results. Inthisexperi-
ment, two event channels were configured in separate OS pro-
cesses on the same computer. No work was performed when
processing remote events, but the processing time for high-
priority events was increased until deadlines were missed.
Figure 14 depicts the laxity for the high-priority and low-
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Figure 14: CPU Utilization for a Federated Event Channel

priority tasks. Although the performance of the federated
event channel is lower than the single event channel, it still
maintains high utilization (over 96%) before missing dead-
lines. As shown in Section 5.2, this small (~3%) loss of uti-
lization yields a substantial performance improvement for the
common case, where events are exchanged between local (col-
located) suppliers and consumers.

Analysisof results. Theresults of these two experimentsin-
dicate the following:

e Both event channel configurations properly enforce the
real-time distinctions between low- and high-priority
suppliers and consumers. This enforcement stems from
the design of TAO's Real-time Event Service dispatching
modul e described in Section 3.2,

e The optimizations described in Section 4 are effective at
minimizing the overhead of the object-oriented frame-
work used to implement TAO’s event channel so as not
to degradeits utilization unduly.

5.2 Latency Measurements
5.21 End-to-end Latency Test

Overview. Another important measure of event channel per-
formance is the latency it introduces between suppliers and
consumers. To determine this latency for TAO's Real-time
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Event Service, we developed a test that measures the end-to-
end supplier — consumer latency using the 11OP communica-
tion mechani sm, which uses point-to-multipoint event delivery
rather than |P multicast. This test timestamps each event as it
originates in the supplier and subtracts that time from the ar-
rival time at the consumer. The consumer does nothing with
the event other than store the measurement in a preallocated
array.

Single process latency results. In this test, the consumers,
suppliers, and event channel were collocated in the same pro-
cess to eliminate ORB remote communication overhead. In
the single process case, the best-case supplier-to-consumer la-
tency was ~50 usecs. In each case, as the number of suppli-
ers and/or consumers increased, the latency also increased, as
shownin Table 1.

Latency, psec
First Consumer Last Consumer

Sup. | Con. Min | Max | Avg || Min Max Avg
1 1 53 93 58 53 93 58
1 5 107 | 189 | 114 197 284 206
1 10 171 | 230 | 183 379 451 393
1 20 291 | 340 | 300 741 817 760
2 1 49 67 51 49 67 51
2 5 95 | 124 | 100 180 213 187
2 10 159 | 281 | 170 || 360 498 374
2 20 283 | 333 | 299 758 828 781
10 1 51 | 303 72 51 303 72
10 5 100 | 211 | 113 187 | 1,210 284
10 10 167 | 222 | 176 369 | 2,545 576
10 20 211 | 310 | 290 741 | 4,895 | 1,137

Table 1: Event Latency for Collocated Event Processing

Two process latency results.  Inthistest, two identical pro-
cesses were created and the consumers in each process sub-
scribed to both local and remote events.* Table 2 shows the
results of this test. For two processes, the local events exhibit
similar latency to thelocal eventsin the single processcase. In
particular, no significant overhead is incurred due to possible
remote consumers. In contrast, the remote consumer perfor-
mance is much higher than the local events, though it is close
to the performance of a remote operation invocation.

Analysis of results. The results of the experiments above
indicate the following:

e Table 1 illustrates the efficiency of the optimizations de-
scribed in Section 4. In particular, as the number of sup-
pliers and consumers increase, the increase in latency is
less than linear, due in large part to the Handle/Body id-
iom used to optimize the processing of Any data types.

4In this test configuration, a“local” event is one intended for a consumer
collocated within the same process and a “remote” event is one intended for a
consumer located in the other process.

Latency, pusec
Local Event Remote Event

Sup. | Con. Min Max | Avg Min Max Avg
1 1 57 71 63 772 1,078 820
1 5 108 207 | 155 765 1,995 1,283
1 10 170 598 | 289 795 5,853 3,544
1 20 || 303 819 | 534 756 6,047 3,084
2 1 50 95 57 || 1,226 2,329 1,297
2 5 101 214 | 152 || 1,274 4,577 2,330
2 10 167 421 | 274 || 1,226 6,676 3,448
2 20 280 821 | 519 || 1,225 | 20,727 6,038
10 1 49 218 60 || 1,406 3,969 3,102
10 5 100 | 1,170 | 172 || 1,477 | 12,773 6,282
10 10 158 | 2,379 | 310 || 1,258 | 19,153 7,904
10 20 209 | 4900 | 596 || 1,266 | 65,449 | 24,345

Table 2: Event Latency for Local and Remote Event Pro-
cessing

Naturally, the use of IP multicast should even further re-
duce latency, though TAO's event channel only supports
unreliable multicast currently.

e Table2illustratesthe benefits of the federated event chan-
nel configuration describedin Section 3.3.1. In particular,
disseminating eventsto consumers collocated in the same
process is one to two orders of magnitude more efficient
than disseminating them remotely.

5.2.2 Minimal Event Spacing Test

Overview. Another important performance metric is the
minimum event spacing, which is the maximum rate an event
channel can deliver messages before its overhead incurs mea-
surable latency. This test was executed in a single process,
where suppliers generate a fixed number (500) of events and
the consumers do no work other than maintain simple statis-
tics. We progressively decreased the event generation period
and measured the ratio between the effective event rate and the
expected event rate.

Minimal event spacing test results. Figure 15 shows that
the event channel can deliver over 50 messages per second
(i.e., a50 Hz rate) before it experiences any measurable over-
head.

Analysis of results. These results indicate the “class’ of
DRE systemsthat can be supported by TAO's Real -time Event
Service. In particular, DRE systems that run at rates less
than 50 Hz (which includes the important class of real-time
avionics mission computing systems[24, 25]) should incur in-
conseguential amounts of latency due to the overhead of the
event channel. However, DRE systems that run at higher rates
(which includes flight control software and automative break-
ing systems) may incur too much overhead to operate within
their schedulable bound. We believe that TAO's Real-time
Event Service performance can beimproved, and are currently
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experimenting with additional patterns and optimizations to
reduce its overhead systematically.

6 Related Work

Event-driven middleware for distributed real-time and embed-
ded applications is an emerging field of study. An increasing
number of research efforts are focusing on end-to-end QoS
properties, such as timeliness, by integrating QoS manage-
ment policies and mechanisms into publisher/subscriber mid-
dleware. This section describes representative work that is re-
lated to the TAO Real-time Event Service.

6.1 CORBA-related Event Service Work

There is a growing body of work related to CORBA-based
Event Services, which we compare and contrast to our work
with TAO.
OMG standard specifications. The OMG has specified a
Notification Service [36], which is a superset of the CORBA
Event Service that adds interfaces for event filtering, config-
urable event delivery semantics (e.g., at least once or at most
once), security, event channel federations, and event delivery
QoS. The patterns and techniques used in the implementation
of TAO's Real-time Event Service can be used to improve the
performance and predictability of Notification Service imple-
mentations. To explore that idea, we have implemented a No-
tification Service for TAO [37] and used it to validate the fea-
sibility of building a reusable framework that factors out com-
mon codefor TAO's Notification Service, its standard CORBA
Event Service implementation, and its Real-time Event Ser-
vice.

The OMG Messaging specification [26] gives application
developers control over several QoS parameters, such as one-
way reliability and timeouts, and introduces type-safe asyn-

chronous method invocation (AMI) models. The CORBA
AMI specification solves many problems with the original
CORBA invocation model, but it does not address anonymous
or single-point-to-multiple-point communication. The Mes-
saging specification can complement implementations of the
CORBA Event Service, e.g., it defines several levels of relia-
bility for one-way calls. This feature could be used in Event
Service implementationsto improve decoupling of the clients,
without the risk of losing messages. We have augmented TAO
with the AMI features [16] defined by the Messaging specifi-
cation, which complement its Real-time Event Service imple-
mentation.

COBEA. COBEA [8] isaCORBA-based event architecture
service that generates parameterized events, which are pub-
lished by atrading service. For scalability, clients must reg-
ister their interest with the service, at which point an access
control check is performed. Subsequently, whenever a match-
ing event occurs, the client is notified. As with TAO's Real-
time Event Service the authors propose anumber of extensions
to support event filtering and correlation. However, COBEA
does not takes advantage of the broadcast capabilities of mod-
ern networks to reduce traffic, nor does COBEA use multicast
to offload processing from the CPU to the network cards.
Fault-tolerant Notification Service In[9] the authors study
the fault tolerance capabilities provided by the CORBA Notifi-
cation Service and propose aconfiguration that can achievethe
highest event delivery guarantees. The authors then examine
the performance of such configuration of the Notification Ser-
vice under different loads. TAO's Real-time Event Service has
been designed to satisfy the requirement of high-performance
real-time systemsand of highly-scalabledistributed interactive
simulations. In these environments, reliability is commonly
obtained via other means, such as hardware redundancy. Nev-
ertheless, we believe that extending TAO's Real-time Event
Serviceto provide higher degrees of reliability is possible, and
we are pursuing this topic in our future work on FaultTolerant
CORBA [27] and DOORS [38].

6.2 Non-CORBA Event Service Work

In addition to CORBA-related event service work, our re-
search on TAO's Event Serviceis also related to the following
projects conducted outside the CORBA standard:

SIENA. SIENA [7] is a publisher/subscriber service archi-
tecture for Internet-scale event distribution. The architecture
is based on content-based networking, where a network of
routers propagate packets based on the contents of the packet,
rather than a specific destination address. SIENA uses an event
format similar to the CORBA Notification Service, i.e, a se-
guence of <name,value> tuples. Consumers can use this for-
mat to describe the sets of eventsthey are interested in, using
a boolean predicate on the tuple values. This architecture is
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designed to reduce network resources, e.g., by propagating fil-
tering information as close to the sources as possible. Like-
wise, filtering constraints can be combined and simplified to
minimize the use of computation resourcesin routers.
Although SIENA and TAO's Redl-time Event Service use
similar techniques to conserve network and CPU resources,
SIENA's event and filtering models are more powerful than
themodel in TAO's Real-time Event Service. However, TAO's
Event Serviceis better suited for DRE applications with strin-
gent latency and predictability requirements. We believe that
the techniques employed in SIENA can be applied to TAO's
Real-time Event Service in conjunction with the patterns de-
scribed in this paper to yield an efficient, predictable, and
highly scalable publisher/subscriber architecture.
CMU Pub/Sub. Rakumar, et al., describe a real-time pub-
lisher/subscriber prototype developed at CMU [6]. Their pub-
lisher/subscriber model is similar to the CORBA Event Ser-
vice. An interesting aspect of the CMU model is the sepa-
ration of priorities for subscription and event transfer so that
these activities can be handled by different threads with dif-
ferent priorities. However, the model does not utilize any QoS
specifications from publishers (suppliers) or subscribers (con-
sumers). As aresult, the message delivery mechanism does
not assign thread priorities according to the priorities of pub-
lishers or subscribers. In contrast, the TAO Event Service uti-
lizes QOS parameters from suppliers and consumers to guar-
antee the event delivery semantics determined by a real-time
scheduling service.

7 Concluding Remarks

Many distributed real-time and embedded (DRE) applications
require support for anonymous, asynchronous, predictable,
and scalable event-based communication. The CORBA Event
Service defines a standard publisher/subscriber architecture
where event channels dispatch events to consumers on behal f
of suppliers. The TAO Real-time Event Service described in
this paper augments the CORBA Event Service by provid-
ing low latency and low jitter dispatching, support for peri-
odic real-time processing, source-based and type-based filter-
ing and event correlations, and efficient use of network and
computational resources.

The empirical results presented in Section 5 illustrate that
systematically applying key patterns and optimizationsmakeit
feasible to apply Red-time CORBA middleware to important
classes of DRE applications. The flexibility and QoS offered
by TAO's Real-time Event Service have made it the founda-
tion for many research and production DRE applications. Our
future work is focusing on the patterns and optimization tech-
nigques necessary to support even more demanding DRE appli-
cations that run at higher rates and that must simultaneously

handle multiple QoS properties, such as dependability, scala-
bility, predictability,and security.
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