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Abstract. Performance-intensive software is increasingly being used on heterogeneous combina-
tions of OS, compiler, and hardware platforms. Examples include reusable middleware that forms
the basis for scientific computing grids and distributed real-time and embedded systems. Since
this software has stringent quality of service (QoS) requirements, it often provides a multitude
of configuration options that can be tuned for specific application workloads and run-time envi-
ronments. As performance-intensive systems evolve, developers typically conduct quality assur-
ance (QA) tasks in-house, on a small number of configurations to identify and alleviate overhead
that degrades performance. QA performed solely in-house is inadequate because of time/resource
constraints, and insufficient to manage software variability, i.e., ensuring software quality on all
supported target platforms across all desired configuration options.

This paper addresses limitations with in-house QA for performance-intensive software by ap-
plying the Skoll distributed continuous quality assurance (DCQA) processes, to improve software
performance iteratively, opportunistically, and efficiently around-the-clock in multiple, geograph-
ically distributed locations. It describes model driven tools that allow Skoll users to capture the
system’s axes of variability (such as configuration options, QoS strategies, and platform dependen-
cies). It describes experiments that apply Skoll to evaluate and improve the performance of DRE
component middleware on a range of platforms and configuration options. The results show that
automatic analysis of QA task results can significantly improve software quality by capturing the
impact of software variability on performance and providing feedback to help developers optimize
performance.

1. Introduction

Emerging trends and challenges. Quality Assurance (QA) processes have tra-
ditionally performed functional testing, code inspections/profiling, and quality
of service (QoS) performance evaluation/optimization in-house on developer-
generated workloads and regression suites. Unfortunately, in-house QA pro-
cesses are not delivering the level of quality software needed for large-scale
mission-critical systems since they do not manage software variability effec-
tively. For example, in-house QA processes can rarely capture, predict, and
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recreate the run-time environment and usage patterns that will be encountered
in the field on all supported target platforms across all desired configuration op-
tions. The deficiencies of in-house QA processes are particularly problematic
for performance-intensive software systems. Examples of this type of software
include high-performance scientific computing systems, distributed real-time
and embedded (DRE) systems, and the accompanying systems software (e.g.,
operating systems, middleware, and language processing tools).

To support the customizations demanded by users, reusable performance-
intensive software often must (1) run on a variety of hardware/OS/compiler
platforms and (2) provide a variety of options that can be configured at compile-
and/or run-time. For example, performance-intensive middleware, such as web
servers (e.g., Apache), object request brokers (e.g., TAO), and databases (e.g.,
Oracle) run on dozens of platforms and have dozen or hundreds of options,
with each option being a configuration within the entire software configuration
space. As software configuration spaces increase in size and software devel-
opment resources decrease, it becomes infeasible to handle all QA activities
in-house. For instance, developers may not have access to all the hardware,
OS, and compiler platforms on which their reusable software artifacts will run.
Solution approach � Distributed continuous QA processes and tools. In
response to the trends and challenges described above, developers and or-
ganizations have begun to change the processes they use to build and vali-
date performance-intensive software. Specifically, they are moving towards
more agile processes characterized by (1) decentralized development teams,
(2) greater reliance on middleware component reuse, assembly, and deploy-
ment, (3) evolution-oriented development requiring frequent software updates,
(4) product designs that allow extensive end-user customization, and (5) soft-
ware repositories that help to consolidate and coordinate QA tasks associated
with the other four characteristics outlined above. While these agile processes
address key challenges with conventional QA approaches, they also create new
challenges, e.g., coping with frequent software changes, remote developer co-
ordination, and exploding software configuration spaces.

To address the challenges with conventional and agile software QA pro-
cesses, we have developed a distributed continuous quality assurance (DCQA)
environment called Skoll (www.cs.umd.edu/projects/skoll) that sup-
ports around-the-world, around-the-clock QA on a computing grid provided by
end-users and distributed development teams. The Skoll environment includes
languages for modeling key characteristics of performance-intensive software
configurations, algorithms for scheduling and remotely executing QA tasks,
and analysis techniques that characterize software faults and QoS performance
bottlenecks.
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Our earlier publications [1] on Skoll described its structure and functionality
and presented results from a feasibility study that applied Skoll tools and pro-
cesses to ACE [2] and TAO [3], which are large (i.e., over two million SLOC)
reusable middleware packages targeted at performance-intensive software for
DRE systems. Our initial work focused largely on building the Skoll infrastruc-
ture, which consisted of the languages, algorithms, mechanisms, and analysis
techniques that tested the functional correctness of reusable software and its
application to end-user systems.

This paper describes several other dimensions of DCQA processes and the
Skoll environment: (1) integrating model-based techniques with DCQA pro-
cesses, (2) improving QoS as opposed to simply functional correctness, and
(3) using Skoll to empirically optimize a system for specific run-time con-
texts. At the heart of the Skoll work presented in this paper is Benchmark
Generation Modeling Language (BGML) [4], which is Model-based toolsuite

�
that applies generative model-based software techniques [5] to measure and
optimize the QoS of reusable performance-intensive software configurations.
BGML extends Skoll’s earlier focus on functional correctness to address QoS
issues associated with reusable performance-intensive software, i.e., modeling
and benchmarking interaction scenarios on various platforms by mixing and
matching configuration options. By integrating BGML into the Skoll process,
QoS evaluation tasks are performed in a feedback-driven loop that is distributed
over multiple sites. Skoll tools analyze the results of these tasks and use them
as the basis for subsequent evaluation tasks that are redistributed to the Skoll
computing grid.
Paper organization. The remainder of this paper is organized as follows: Sec-
tion 2 presents an overview of the Skoll DCQA architecture focusing on in-
teractions between various components and services; Section 3 motivates and
describes our model based meta-programmable tool (BGML), focusing on its
syntactic and semantic modeling elements that help QA engineers to visu-
ally compose QA tasks for Skoll and its generative capabilities to the resolve
accidental complexities associated with quantifying the impact of software
variability on QoS; Section 4 reports the results of experiments using this
model-based DCQA process on the CIAO QoS-enabled component middle-
ware framework; and Section 5 presents concluding remarks and outlines fu-
ture work.

�
BGML can be downloaded from www.dre.vanderbilt.edu/cosmic.
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2. Overview of the Structure and Functionality of Skoll

To address limitations with in-house QA approaches, the Skoll project is devel-
oping and empirically evaluating feedback-driven processes, methods, and sup-
porting tools for distributed continuous QA. In this approach software quality
is improved – iteratively, opportunistically, and efficiently – around-the-clock
in multiple, geographically distributed locations. To support distributed con-
tinuous QA processes, we have implemented a set of components and services
called the Skoll infrastructure, which includes languages for modeling system
configurations and their constraints, algorithms for scheduling and remotely
executing tasks, and analysis techniques for characterizing faults.

The Skoll infrastructure performs its distributed QA tasks, such as testing,
capturing usage patterns, and measuring system performance, on a grid of com-
puting nodes. Skoll decomposes QA tasks into subtasks that perform part of
a larger task. In the Skoll grid, computing nodes are machines provided by
the core development group and volunteered by end-users. These nodes re-
quest work from a server when they wish to make themselves available. The
remainder of this section describes the Skoll infrastructure and processes.

2.1. The Skoll Infrastructure

Skoll QA processes are based on a client/server model. Clients distributed
throughout the Skoll grid request job configurations (implemented as QA sub-
task scripts) from a Skoll server. The server determines which subtasks to allo-
cate, bundles up all necessary scripts and artifacts, and sends them to the client.
The client executes the subtasks and returns the results to the server. The server
analyzes the results, interprets them, and modifies the process as appropriate,
which may trigger a new round of job configurations for subsequent clients
running in the grid.

At a lower level, the Skoll QA process is more sophisticated. QA process
designers must determine (1) how tasks will be decomposed into subtasks, (2)
on what basis and in what order subtasks will be allocated to clients, (3) how
subtasks will be implemented to execute on a potentially wide set of client plat-
forms, (4) how subtask results will be merged together and interpreted, (5) if
and how should the process adapt on-the-fly based on incoming results, and (6)
how the results of the overall process will be summarized and communicated
to software developers. To support this process we’ve developed the following
components and services for use by Skoll QA process designers (a comprehen-
sive discussion appears in [1]):
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Configuration space model. The cornerstone of Skoll is its formal model of
a DCQA process’ configuration space, which captures all valid configurations
for QA subtasks. This information is used in planning the global QA process,
for adapting the process dynamically, and aiding in analyzing and interpreting
results.
Intelligent Steering Agent. A novel feature of Skoll is its use of an Intelli-
gent Steering Agent (ISA) to control the global QA process by deciding which
valid configuration to allocate to each incoming Skoll client request. The ISA
treats configuration selection as an AI planning problem. For example, given
the current state of the global process including the results of previous QA
subtasks (e.g., which configurations are known to have failed tests), the config-
uration model, and metaheuristics (e.g., nearest neighbor searching), the ISA
will chose the next configuration such that process goals (e.g., evaluate config-
urations in proportion to known usage distributions) will be met.
Adaptation strategies. As QA subtasks are performed by clients in the Skoll
grid, their results are returned to the ISA, which can learn from the incoming
results. For example, when some configurations prove to be faulty, the ISA
can refocus resources on other unexplored parts of the configuration space.
To support such dynamic behavior, Skoll QA process designers can develop
customized adaptation strategies that monitor the global QA process state, an-
alyze it, and use the information to modify future subtask assignments in ways
that improve process performance.

2.2. Skoll in Action

At a high level, the Skoll process is carried out as shown in Figure 1.
1. Developers create the configuration model and adaptation strategies. The
ISA automatically translates the model into planning operators. Developers
create the generic QA subtask code that will be specialized when creating ac-
tual job configurations.
2. A user requests Skoll client software via the registration process described
earlier. The user receives the Skoll client software and a configuration template.
If a user wants to change certain configuration settings or constrain specific
options he/she can do so by modifying the configuration template.
3. A Skoll client periodically (or on-demand) requests a job configuration from
a Skoll server.
4. The Skoll server queries its databases and the user-provided configuration
template to determine which configuration option settings are fixed for that
user and which must be set by the ISA. It then packages this information as a
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Figure 1: Skoll QA Process View

planning goal and queries the ISA. The ISA generates a plan, creates the job
configuration and returns it to the Skoll client.
5. A Skoll client invokes the job configuration and returns the results to the
Skoll server.
6. The Skoll server examines these results and invokes all adaptation strategies.
These update the ISA operators to adapt the global process.
7. The Skoll server prepares a virtual scoreboard that summarizes subtask
results and the current state of the overall process. This scoreboard is updated
periodically and/or when prompted by developers.

3. Enhancing Skoll with a Model-based QoS Improvement
Process

Reusable performance-intensive software is often used by applications with
stringent QoS requirements, such as low latency and bounded jitter. The QoS
of reusable performance-intensive software is influenced heavily by factors
such as the configuration options set by end-users and characteristics of the
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underlying platform. Managing these variable platform aspects effectively re-
quires a QA process that can precisely pinpoint the consequences of mixing and
matching configuration options on various platforms. In particular, such a QA
process should resolve the following forces: (1) Minimize the time and effort
associated with testing various configuration options on particular platforms,
and (2) Provide a framework for seamless addition of new test configurations
corresponding to various platform environment and application requirement
contexts.

In our initial Skoll approach, creating a benchmarking experiment to mea-
sure QoS properties required QA engineers to write (1) the header files, source
code, that implement the functionality, and (2) the configuration and script files
that tune the underlying ORB and automate running tests and output genera-
tion, Our experience during our initial feasibility study [1] revealed how te-
dious and error-prone this process was since it required multiple manual steps
to generate benchmarks, thereby impeding productivity and quality in the QA
process. The remainder of this section describes how we have applied model-
based techniques [5] to resolve forces 1 and 2 outlined earlier.

3.1. Model Driven Approach for Evaluating QoS

To overcome the limitations with manually developing custom benchmarking
suites described earlier, we have used MDD techniques to develop the Bench-
mark Generation Modeling Language (BGML) [4]. BGML provides visual
representations for defining entities (components), their interactions (opera-
tions and events) and QoS metrics (latency, throughput and jitter). Further,
the visual representations themselves are customizable for different domains.
BGML has been tailored towards evaluating the QoS of implementations of the
CORBA Component Model (CCM) [6]

�
.

3.1.1. BGML overview

BGML is built atop the Generic Modeling Environment (GME) [7], which
provides a meta-programmable framework for creating domain-specific mod-
eling languages and generative tools. GME is programmed via meta-models
and model interpreters. The meta-models define modeling languages called
paradigms that specify allowed modeling elements, their properties, and their
relationships. Model interpreters associated with a paradigm can also be built

�
We focus on CCM in our work since it is standard component middleware that is targeted for

the QoS requirements of DRE systems. As QoS support for other component middleware matures
we will enhance our modeling tools and DCQA processes to integrate them.

Studia Informatica Universalis



“JSP-SIU”
2004/12/19
page 8

8 Krishna-Natarajan

to traverse the paradigm’s modeling elements, performing analysis and gener-
ating code.

BGML captures key QoS evaluation concerns of performance-intensivemid-
dleware. Middleware/application developers can use BGML to graphically
model interaction scenarios of interest. Given such a model, BGML then gen-
erates most of the code needed to run experiments, including scripts that start
daemon processes, launch components on various distributed system nodes,
run the benchmarks, and analyze/display the results. BGML allows CCM users
to:

1. Model interaction scenarios between CCM components using varied con-
figuration options, i.e., capture software variability in higher-level mod-
els rather than in lower-level source code.

2. Automate benchmarking code generation to systematically identify per-
formance bottlenecks based on mixing and matching configurations.

3. Generate control scripts to distribute and execute the experiments to
users around the world to monitor QoS performance behavior in a wide
range of execution contexts.

4. Evaluate and compare CCM implementation performances in a highly
automated way the overhead that CCM implementations impose above
and beyond CORBA 2.x implementations based on the DOC model.

5. Enable comparison of CCM implementations using key metrics, such as
throughput, latency, jitter, and other QoS criteria.

With BGML, QA engineers graphically model possible interaction scenarios.
Given a model, BGML generates the scaffolding code needed to run the ex-
periments. This typically includes Perl scripts that start daemon processes,
spawn the component server and client, run the experiment, and display the
required results. BGML is built on top of the Generic Modeling Environ-
ment (GME) [7], which provides a meta-programmable framework for cre-
ating domain-specific modeling languages and generative tools. GME is pro-
grammed via meta-models and model interpreters. The meta-models define
modeling languages called paradigms that specify allowed modeling elements,
their properties, and their relationships. Model interpreters associated with a
paradigm can also be built to traverse the paradigm’s modeling elements, per-
forming analysis and generating code.

3.1.2. BGML model elements

To capture QoS evaluation concerns of different component middleware solu-
tions, the BGML provides:� Build elements such as project, workspace, resources and implementa-

tion artifact that can be used to represent projects and their dependencies
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such as DLLs, shared objects. For example, the projects modeled can
be mapped to Visual Studio project files (Windows platforms) or onto
GNUMake/Make files (*NIX platforms). The build commands can be
used to represent compilers for different platforms such as gcc, g++ and
ant.� Test elements such as operations, return-types, latency and throughput
that can be used to represent generic operation or a sequence or operation
steps and associate functional QoS properties with them. For example,
the operation signature (name, input parameters and return-type) can be
used to generate platform specific benchmarking code via language map-
pings (C++/Java) during the interpretation process.� Workload elements such as tasks and task-set that can be used to model
and simulate background load present during the experimentation pro-
cess. These workload elements are then mapped to individual platform
specific code in the interpretation process.

A benchmark in BGML consists of capturing latency, throughput and jitter as-
sociated with a two way operation/event communication between two CORBA
components. In particular, the following are the two steps required to generate
a benchmark using BGML:
Step 1. Modeling component interaction scenarios. This first step in our pro-
cess involves using PICML [8] to visually represent the interfaces of the com-
ponents, their interconnections, and their dependencies on external libraries
and artifacts. The PICML tool which is part of the CoSMIC tool chain sup-
ports visual modeling of components, ports, interfaces, and operations.
Step 2. Benchmark construction. Use BGML MDD tool to model the test,
i.e., associate latency/throughput characteristics with the component operations
that are to be empirically evaluated to determine the right configurations. Then
use BGML’s model interpreters to generate the testsuite for evaluating the QoS
delivered to the DRE system by the middleware configuration. This step in-
volves the generation of the build, benchmarking and script code code from
higher level models to run the experiment. Figure 2 depicts how a latency
metric was associated with a twoway CORBA operation.

Figure 2: Associating QoS with operation in BGML
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3.2. Integrating BGML with Skoll

Figure 3 presents an overview of how we have integrated BGML with the Skoll
infrastructure.
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Figure 3: Skoll QA Process View with BGML Enhancements

Below we describe how our BGML modeling tools interact with the existing
Skoll infrastructure to enhance its DCQA capabilities.
A. QA engineers define a test configuration using BGML models. The neces-
sary experimentation details are captured in the models, e.g., the ORB config-
uration options used, the IDL interface exchanged between the client and the
server, and the benchmark metric performed by the experiment.
B & C. QA engineers then use BGML to interpret the model. The OCML par-
adigm interpreter parses the modeled ORB configuration options and generates
the required configuration files to configure the underlying ORB. The BGML
paradigm interpreter then generates the required benchmarking code, i.e., IDL
files, the required header and source files, and necessary script files to run the
experiment. Steps A, B, and C are integrated with Step 1 of the Skoll process.
D. When users register with the Skoll infrastructure they obtain the Skoll client
software and configuration template. This step happens in concert with Step 2,
3, and 4 of the Skoll process.
E & F. The client executes the experiment and returns the result to the Skoll
server, which updates its internal database. When prompted by developers,
Skoll displays execution results using an on demand scoreboard. This score-
board displays graphs and charts for QoS metrics, e.g., performance graphs,
latency measures and foot-print metrics. Steps E and F correspond to steps 5,
6, and 7 of the Skoll process.
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4. DCQA Process for Capturing QoS of Performance-intensive
Software

This section describes the design and results of an experiment we conducted
to evaluate the enhanced DCQA capabilities that stem from integrating BGML
with Skoll. In prior work [4], we used BGML to measure round-trip latency of
the CIAO CCM middleware platform, focusing on generating scaffolding code,
evaluating the correctness of the generated experiment code, and using models
to identify performance bottlenecks and improve QoS characteristics. In this
paper, we use the BGML modeling tools and Skoll infrastructure to execute a
formally-designed experiment using a full-factorial design, which executes the
experimental task (benchmarking in this case) exhaustively across all combi-
nations of the experimental options (a subset of the configuration parameters
of the CIAO QoS-enabled component middleware).

The data from our experiments is returned to the Skoll server, where it is or-
ganized into a database. The database then becomes a resource for developers
of applications and middleware who wish to study the system’s performance
across its many different configurations. Since the data is gathered through
a formally-designed experiment, we use statistical methods (e.g., analysis of
variance, wilcox ran sum tests, and classification tree analysis) to analyze the
data. To demonstrate the utility of this approach, we present two use cases that
show how (1) CIAO developers can query the database to improve the perfor-
mance of the component middleware software and (2) application developers
can fine-tune CIAO’s configuration parameters to improve the performance of
their software.

4.1. Hypotheses

The use cases we present in this section explore the following hypotheses:
1. The Skoll grid can be used together with BGML to quickly generate

benchmark experiments that pinpoint specific QoS performance aspects
of interest to developers of middleware and/or applications, e.g., BGML
allows QA process engineers to quickly setup QA processes and generate
significant portions of the required benchmarking code.

2. Using the output of BGML, the Skoll infrastructure can be used to (1)
quickly execute benchmarking experiments on end-user resources across
a Skoll grid and (2) capture and organize the resulting data in a database
that can be used to improve the QoS of performance-intensive software.

3. Developers and users of performance-intensive software can query the
database to gather important information about that software, e.g., obtain
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a mix of configuration option settings that improve the performance for
their specific workload(s).

4.2. Experimental Process

We used the following experimental process to evaluate the hypotheses out-
lined in Section 4.1:

Step 1: Choose a software system that has stringent performance require-
ments. Identify a relevant configuration space.

Step 2: Select workload application model and build benchmarks using
BGML.

Step 3: Deploy Skoll and BGML to run benchmarks on multiple configu-
rations using a full factorial design of the configuration options. Gather
performance data.

Step 4: Formulate and demonstrate specific uses of the performance results
database from the perspective of both middleware and application devel-
opers.

4.2.1. Step 1: Subject Applications

We used ACE 5.4 + TAO 1.4 + CIAO 0.4 for this study. CIAO [9] is a
QoS-enabled implementation of CCM developed at Washington University, St.
Louis and Vanderbilt University to help simplify the development of performance-
intensive software applications by enabling developers to declaratively provi-
sion QoS policies end-to-end when assembling a DRE system. CIAO adds
component support to TAO [3], which is distribution middleware that imple-
ments key patterns [10] to meet the demanding QoS requirements of DRE sys-
tems.

4.2.2. Step 2: Build Benchmarks

The following steps were performed by the ACE+TAO+CIAO QA engineers
to build benchmarks using the BGML tool. The models were used to generate
screening experiments to quantify behavior of latency and throughput.

1. QA engineers used the BGML modeling paradigm to compose the ex-
periment. In particular, QA engineers use the domain-specific building
blocks in BGML to compose experiments.

2. In the experiment modeled, QA engineers associated the QoS character-
istic (in this case roundtrip latency and throughput) that will be captured
in the experiment.
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3. Using the experiment modeled by QA engineers, BGML interpreters
generated the benchmarking code required to set-up, run, and tear-down
the experiment. The generated files include component implementa-
tion files (.h and .cpp), IDL files (.idl), component IDL files (.cidl), and
benchmarking code (.cpp) files.

4. The generated file was then executed using the Skoll DCQA process and
QoS characteristics were measured. The execution was done in Step 4
described in Section 4.2.4.

4.2.3. Step 3: Execute the DCQA process

For this version of ACE+TAO+CIAO, we identified 14 run-time options that
could affect latency and throughput. As shown in Table 1, each option is bi-
nary, so the entire configuration space is � ���
	���
��������

. We executed the
benchmark experiments on each of the 16,384 configurations. This is called
a full-factorial experimental design. Clearly such designs will not scale up to
arbitrary numbers of factors. In ongoing work we are therefore studying strate-
gies for reducing the number of observations that must be examined. In the
current example, however, the design is manageable.

Option Index Option Name Option Settings
opt1 ORBReactorThreadQueue � FIFO, LIFO �
opt2 ORBClientConnectionHandler � RW, MT �
opt3 ORBReactorMaskSignals � 0, 1 �
opt4 ORBConnectionPurgingStrategy � LRU, LFU �
opt5 ORBConnectionCachePurgePercentage � 10, 40 �
opt6 ORBConnectionCacheLock � thread, null �
opt7 ORBCorbaObjectLock � thread, null �
opt8 ORBObjectKeyTableLock � thread, null �
opt9 ORBInputCDRAllocator � thread, null �

opt10 ORBConcurrency � reactive, tpc �
opt11 ORBActiveObjectMapSize � 32, 128 �
opt12 ORBUseridPolicyDemuxStrategy � linear, dynamic �
opt13 ORBSystemidPolicyDemuxStrategy � linear, dynamic �
opt14 ORBUniqueidPolicyReverseDemuxStrategy � linear, dynamic �

Table 1: The Configuration Space: Run-time Options and
their Settings

For a given configuration, we use the BGML modeling paradigms to model
the configuration visually and generate the scaffolding code to run the bench-
marking code. The experiment was run three times and for each run the client
sent 300,000 requests to the server. In total, we distributed and ran � 50,000
benchmarking experiments. For each run, we measured the latency values for
each request and total throughput (events/second).
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The BGML modeling tool helps improve the productivity of QA engineers
by allowing them to compose the experiment visually rather than wrestling with
low-level source code. This tool thus resolves tedious and error-prone acciden-
tal complexities associated with writing correct code by auto-generating them
from higher level models. Table 2 summarizes the BGML code generation
metrics for a particular configuration.

Files Number Lines of Code Generated (%)
IDL 3 81 100

Source (.cpp) 2 310 100
Header (.h) 1 108 100
Script (.pl) 1 115 100

Config (svc.conf) 1 6 100
Descriptors (XML) 2 90 0

Table 2: Generated Code Summary for BGML
This table shows how BGML automatically generates 8 of 10 required files

that account for 88% of the code required for the experiment.

4.2.4. Step 4: Example Use Cases

Below we present two use cases that leverage the data collected by the Skoll
DCQA process. The first scenario involves application developers who need
information to help configuring CIAO for their use. The second involves CIAO
middleware developers who want to prioritize certain development tasks.
Use case #1: Application developer configuration. In this scenario, a de-
veloper of a performance-intensive software application is using CIAO. This
application is expected to have a fairly smooth traffic stream and needs high
overall throughput and low latency for individual messages. This developer
has decided on several of the option settings needed for his/her application, but
is unsure how to set the remaining options and what effect those specific set-
tings will have on application performance. To help answer this question, the
application developer goes to the ACE+TAO+CIAO Skoll web page and iden-
tifies the general workload expected by the application, the platform, OS, and
ACE+TAO+CIAO versions used. Next, the developer arrives at the web page
shown in Figure 4. On this page the application developer inputs those option
settings (s)he expects to use and left unspecified (denoted “*”) those for which
(s)he needs guidance. The developer also indicates the performance metrics
(s)he wishes to analyze and then submits the page.

Submitting the page causes several things to happen. First, the data corre-
sponding to the known option settings is located in the Skoll databases. Next,
the system graphs the historical performance distributions of both the entire
configuration space and the subset specified by the application developer (i.e.,
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Figure 4: Accessing Performance Database

the subset of the configuration space consistent with the developer’s partially-
specified options). These graphs are shown in Figure 5 and Figure 6.

Figure 5:
�����

Iteration

Last, the system presents a statistical analysis of the options that signif-
icantly affect the performance measures, as depicted in Figure 6. Together,
these views present the application developer with several pieces of informa-
tion. First, it shows how the expected configuration has performed historically
on a specific set of benchmarks. Next, it compares this configuration’s perfor-
mance with the performance of other possible configurations. It also indicates
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Figure 6:
�����

Iteration: Main Effects Graph (Statistically Sig-
nificant Options are Denoted by an *)

which of the options have a significant effect on performance and thus should
be considered carefully when selecting the final configuration.

Continuing our use case example, the application developer sees that option
opt10 (ORBConcurrency) has not been set and that it has a significant effect
on performance. To better understand the effect of this option, the developer
consults the main effects graph shown in Figure 6). This plot shows that setting
ORBConcurrency to thread-per-connection (where the ORB dedicates one
thread to each incoming connection) should lead to better performance than
setting it to reactive (where the ORB uses a single thread to detect, demultiplex
and service multiple client connections). The application developer therefore
sets the option and reruns the earlier analysis. The new analysis shows that,
based on historical data, the new setting does indeed improve performance, as
shown in Figure 7.

However, the accompanying main effects graph shown in Figure 8 shows
that the remaining unset options are unlikely to have a substantial effect on
performance. At this point, the application developer has several choices, e.g.,
(s)he can stop here and set the remaining options to their default settings or
(s)he can revisit the original settings. In this case, our developer reexamines
the original settings and their main effects (See Figure 9) and determines that
changing the setting of opt2 (ORBClientConnectionHandler) might
greatly improve performance.

Using this setting will require making some changes to the actual appli-
cation, so the application developer reruns the analysis to get an idea of the
potential benefits of changing the option setting. The resulting data is shown
in Figure 10. The results in this figure show that the performance improvement
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Figure 7: ���� Iteration

Figure 8: ���� Iteration: Main effects graph (Statistically Sig-
nificant Options are Denoted by an *)

from setting this option would be substantial. The developer would now have
to decide whether the benefits justify the costs of changing the application.
Use case #2: Middleware developer task prioritization. In this scenario, a
developer of CIAO middleware itself wants to do an exploratory analysis of the
system’s performance across its configuration space. This developer is looking
for areas that are in the greatest need of improvement. To do this (s)he accesses
the ACE+TAO+CIAO and Skoll web page and performs several tasks.

First, (s)he examines the overall performance distribution of one or more
performance metric. In this case, the middleware developer examines mea-
surements of system latency, noting that the tails of the distribution are quite
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Figure 9:
��!  Iteration: Main Effects Graph (Statistically Sig-

nificant Options are Denoted by an *)

Figure 10:
��!  Iteration: Step 3

long (the latency plots are the same as those found in the “all.options” sub-
plots of Figure 5). The developers wants to better understand which specific
configurations are the poor performers. "

Our DCQA process casts this question as a classification problem. The mid-
dleware developer therefore recodes the performance data into two categories:
those in the worse-performing 10% and the rest. From here out, (s)he considers
poor performing configurations as those in the bottom 10%. Next, (s)he uses

#
For latency the worst performers are found in the upper tail, whereas for throughput it is the

opposite.
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classification tree analysis [11] to model the specific combinations of options
that lead to degraded performance.

For our current use case example, the middleware developer uses a classifi-
cation tree to extract performance-degrading option patterns, i.e., (s)he extracts
the options and option settings from the tree that characterize poorly perform-
ing configurations. Figure 11 shows one tree obtained from the CIAO data (for
space reasons the tree shown in the Figure gives only a coarse picture of the
information actually contained in the tree).

Figure 11: Sample Classification Tree Modeling Poorly Per-
forming Configurations

By examining the tree, the middleware developer notes that a large major-
ity of the poorly performing configurations have ORBClientConnection-
Handler set to MT and ORBConcurrency set to reactive. The first option
indicates that the CORBA ORB uses separate threads to service each incom-
ing connections. The second option indicates that the ORB’s reactor [10] (the
framework that detects and accepts connections and dispatches event to the
corresponding event handlers when events arrive) are executed by a pool of
threads.

The information gleaned by the classification tree is then used to guide ex-
ploratory data analysis. To help middleware developers organize and visualize
the large amount of data, we employed the Treemaps data visualizer ( www.
cs.umd.edu/hcil/treemap), which allows developers to explore multi-
dimensional data.

The performance data described in the previous paragraph is represented
as a treemap. In this scheme, poorly performing configurations are shown as
dark tiles and the acceptably performing configurations as lighter tiles. The
layout first divides the data into two halves: the left for configurations with
ORBClientConnectionHandler set to RW and the right for those set
to MT. Each half is further subdivided, with the upper half for configurations
with ORCConcurrency set to thread-per-connection and the lower half for
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those set to reactive. The data can be further subdivided to arbitrary levels,
depending on how many options the middleware developer wishes to explore.

The middleware developer continues to explore the data, checking whether
the addition of other options would further isolate the poor performers, thereby
providing more information about the options that negatively influence per-
formance. After some exploration, the middleware developer find no other
influential options. Next, (s)he examines the poor performing configurations
that are not part of the n group, i.e., those with ORBCurrency set to thread-
per-connection rather than reactive. The middleware developer determines that
nearly all of the latency values for these configurations are quite close to the
10% cutoff. In fact, lowering the arbitrary cutoff to around 8% leads to the sit-
uation in which nearly every poor performer has ORBConnectionClient-
Handler set to MT and ORBConcurency set to reactive. Based on this in-
formation, the middleware developer can conduct further studies to determine
whether a redesign might improve performance.

4.3. Discussion

The experiments reported in this section empirically explored how integrating
BGML and Skoll allowed us to quickly implement specific DCQA processes
to help application and middleware developers understand, use, and improve
highly-variable performance-intensive systems. To accomplish this, we used
BGML and Skoll to implement a DCQA process that conducted a large-scale,
formally-designed experiment across a grid of remote machines. This process
quickly collected performance data across all combinations of a set of system
configuration options, thereby allowing application and middleware developers
to conduct sophisticated statistical analyses.

We found that the BGML modeling approach allowed us to specify the rele-
vant configuration space quickly and to automatically generate a large fraction
of the benchmark code needed by the DCQA process. In our previous ef-
forts [1] we performed these steps manually, making numerous errors. Overall,
it took around 48 hours of CPU time to run the � 50,000 experimental tasks dic-
tated by the experimental design. Calendar time is effectively dictated by the
number of end-users participating in the process. We see no problem conduct-
ing these types of experiment several times a day, which is particularly useful
for ACE++TAOCIAO developers (whose middleware infrastructure changes
quite frequently), since this will help keep the performance data in synch with
the evolving middleware.
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Although this paper focused on experiments over a single platform, we can
run our Skoll DCQA process over many platforms. This cross-platform porta-
bility is extremely important to ACE++TAOCIAO developers because their
middleware run over dozens of compiler/OS platforms, though individual mid-
dleware developers often have access to only a few platforms. Our DCQA
process therefore gives individual developers virtual access to all platforms.
Moreover, our approach makes performance data accessible to application de-
velopers and end-users, which helps extend the benefits of DCQA processes
from the core to the periphery.

Despite the success of our experiments, we also found numerous areas for
improvement. For example, we realize that exhaustive experimental designs
can only scale up so far. As the number of configuration options under study
grows, it will become increasingly important to find more efficient experimen-
tal designs. Moreover, the options we studied were binary and had no inter-
option constraints, which will not always be the case in practice. Additional
attention therefore must be paid to the experimental design to avoid incorrect
analysis results.

We also found that much more work is needed to support data visualiza-
tion and interactive exploratory data analysis. We have included some tools for
this in Skoll, but they are rudimentary. More attention must be paid to char-
acterizing the workload examined by the benchmark experiments. The one we
used in this study modeled a constant flow of messages, but obviously differ-
ent usage scenarios will call for different benchmarks. Finally, we note that our
use cases focused on middleware and applications at a particular point in time.
Time-series analyses that study systems as they evolve may also be valuable.

5. Concluding Remarks & Future Work

Reusable software for performance-intensive systems increasingly has a multi-
tude of configuration options and runs on a wide variety of hardware, compiler,
network, OS, and middleware platforms. The distributed continuous QA tech-
niques provided by Skoll play an important role in ensuring the correctness and
quality of service (QoS) of performance-intensive software.

Skoll helps to ameliorate the variability in reusable software contexts by
providing

� Domain-specific modeling languages that encapsulate the variability in
software configuration options and interaction scenarios within GME
modeling paradigms.
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� An Intelligent Steering Agent (ISA) to map configuration options to
clients that test the configuration and adaptation strategies to learn from
the results obtained from clients and� Model-based interpreters that generate benchmarking code and provide
a framework to automate benchmark tests and facilitate the seamless in-
tegration of new tests.

Our experimental results showed how the modeling tools improve produc-
tivity by resolving the accidental complexity involved in writing error-prone
source code for each benchmarking configuration. Section 4.2.3 showed that
by using BGML, � 90% of the code required to test and profile each com-
bination of options can be generated, thereby significantly reducing the effort
required by QA engineers to empirically evaluate impact of software variability
on numerous QOS parameters. Section 4.2.4 showed how the results collected
using Skoll can be used to populate a data repository that can be used by both
application and middleware developers. The two use case presented in our
feasibility study showed how our approach provides feedback to (1) applica-
tion developers, e.g., to tune configurations to maximize end-to-end QoS and
(2) middleware developers, e.g., to more readily identify configurations that
should be optimized further.

In future work, we are applying DCQA processes to a grid of geographi-
cally decentralized computers composed of thousands of machines provided
by users, developers, and organizations around the world. We are also inte-
grating our DCQA technologies into the DRE software repository maintained
by the ESCHER Institute (www.escherinstitute.org), which is a non-
profit organization

�
established to preserve, maintain, and promote the tech-

nology transfer of government-sponsored R&D tools and frameworks in the
DRE computing domain.
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