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Abstract method invocation to simplify distributed application compo-

To support the quality of service (QoS) requirements of efient collaboration [2]. Third, there are increasing efforts to

bedded multimedia applications, such as real-time audio aﬁlgfinestgnﬂdgrplnéiddlewar%t?uchrj\s the O;jeft I\/'Lanﬁgement
video, electronic mail and fax, and Internet telephony, off-th sroup ( )'s Common Object Request Broker Architecture

shelf middleware like CORBA must be flexible, efficient, and p -,ORBA) [k?’]’ thatl perlmi;s emgedded multimedia apEIications
dictable. Moreover, stringent memory constraints imposed interwork seamlessly throughdtterogeneousetworks and

embedded system hardware necessitates a minimal footprintef psystems. i i i
middleware that supports multimedia applications. Standard CORBA middleware is now available that allows

This paper provides three contributions towards develoﬁl-'ents to invoke operations on distributed components without

ing efficient ORB middleware to support embedded multimg2"cern for comppne'nt location, programming language, OS
dia applications. First, we describe the optimization Iorinciplatform, communication protocols and interconnects, or hard-

ple patterns used to develop a time- and space-efficient CORMA®: These features of CORBA make it potentially suited to
Inter-ORB Protocol (IIOP) interpreter for TAO, which is ourProvide communication middleware for distributed embedded

high-performance, real-time ORB. Second, we describe the 8ﬁ§tems. However, conventional CORBA middleware gener-

timizations applied to TAO's IDL compiler to generate effdy lacks support for efficient and predictable performamoe

cient and small stubs/skeletons used in TAO's IIOP protocﬂlnal! .footprints, which Iimit the rate_at .WhiCh performance-

engine. Third, we empirically compare the performance argnsitive embedded mult|med|a apphcatl.ons have been devel-

memory footprint of interpretive (de)marshaling versus corﬁped to leverage advances in standard middleware.

piled (de)marshaling for a wide range of IDL data types. B. Research challenges for communication middleware
Applying our optimization principle patterns to TAO's IIOP ) . . o )

protocol engine improved its interpretive (de)marshaling per- Developing efficient and predictable communication mid-

formance to the point where it is now comparable to the pefleware like CORBA for embedded multimedia applications

formance of compiled (de)marshaling. Moreover, our IDL conyi€lds many research challenges. For hand-held embedded de-
piler optimizations generate interpreted stubs/skeletons whodges, these challenges center on meeting mobile computing de-

footprint is substantially smaller than compiled stubs/skeletorf§ands [4], [5], such as handling low bandwidth, heterogeneity
Our results illustrate that careful application of optimizatior the network connections, frequent changes and disruptions

principle patterns can yield both time- and space-efficiefft the established connections due migration, and maintaining

standards-based middleware. cache consistency. N o
Keywords: CORBA performance optimizations, minimal [N @ddition to the mobility challenges, there are restrictions
footprint ORBs, embedded multimedia applications. on the physical size and power consumption of embedded multi-
media system hardware. These restrictions constrain the amount
I. INTRODUCTION of storage used by these systems. Likewise, storage constraints

A. Emerging trends in embedded multimedia application devgl-.Ctate the size, flexibility, and performanpe reguwements of the
opment middleware software that supports multimedia applications on

these embedded systems.

Three trends are shaping the future development environThe memory footprint of CORBA middleware is determined
ments for embedded multimedia applications, such as MIMErgely by the static and dynamic size of the ORB Core, Ob-
enabled email, Web browsing, and Internet telephony. Firfdct Adapter, and stubs/skeletons generated by a OMG Interface
there is a movement away froprogrammingapplications from pefinition Language (IDL) compiler [6]. The OMGHginimum
scratch using low-level protocols and operating system APIS@@RBA[7] specification defines a standard subset of CORBA
integrating applications using reusable components [1]. Segyat minimizes the size of the ORB Core and Object Adapter for
ond, there is great demand for middleware that provides remgifibedded systems. However, the OMG does not define a stan-

Work done by the first author while at Washington University. dard specification for m|n|m|z|ng th.e fOOtp.rmt of IDI; compllerf

This work was supported in part by Boeing, DARPA contract 9701516, v@enerated stubs/skeletons, which is considered a “quality of im-
torola, NSF grant NCR-9628218, Nortel, Siemens, and Sprint. plementation” issue for ORB developers.



C. Addressing research challenges with optimization principbject location, programming language, OS platform, commu-
patterns: nication protocols and interconnects, and hardware. Figure 1
iIBsttrates the key components in the CORBA reference model

Our previous research has examined many dimensions ! X o
at collaborate to provide this degree of portability, interoper-

high-performance and real-time ORB endsystem design, ﬁ]bl d | ic of )
cluding static [8] and dynamic [9] scheduling, event proces§- llity, and transparency. For a complete synopsis of CORBA'S

ing [10], I/O subsystem integration [11], ORB Core connec-
tion and concurrency architectures [12], and Object Adapter INTERFACE IDL IMPLEMENTATION
demultiplexing optimizations [6]. This paper focuses on an- REPOSTTORY COMPILER REPOSITORY
other dimension in the high-performance and real-time OR
endsystem design space: thptimization principle patterns
used to develop a time- and space-efficient CORBA Inter-ORB
Protocol (IIOP) engine for TAO [8], which is a open-soufce
standard-compliant implementation of CORBA optimized for
high-performance and real-time applications.

The optimizations used in TAO's IIOP protocol engine are

in args

operation()

OBJECT
(SERVANT)

OBJECT
ADAPTER

guided by a set gfrinciple patterng13] that have been applied
to middleware [6] and lower-level networking protocols [14], [GIOP/ TIOP/ ESIOPS)
such as TCP/IP. Optimization principle patterns document ruIeO STANDARD INTERFACE OSTANDARD LANGUAGE MAPPING

for avoiding common design and implementation mistakes thaO ORB-sPECIFIC INTERFACE () STANDARD PROTOCOL

degrade the performance, scalability, and predictability of com- 4 1 ey Components in the CORBA 2.x Reference Model

plex systems. The optimization principle patterns we applied to

TAQ's IIOP protocol engine includeaptimizing for the common components, see [3].

case; eliminating gratuitous waste; replacing general purpose

methods with specialized, efficient ones; precomputing valugs, gyerview of CORBA GIOP and 11OP

if possible; storing redundant state to speed up expensive oper-

ations; passing information between layers; optimizing for the The CORBA General Inter-ORB Protocol (GIOP) defines an

processor cache; and factoring common tasks to reduce fottteroperability protocol between ORBs. The GIOP protocol

print. provides an abstract protocol specification that can be mapped
The performance of the optimized version of TAO is as fag2nto conventional connection-oriented transport protocols. An

or faster, than existing ORBs [15], [16] when using the static if2RB is GIOP-compatible if it can send and receive all valid

vocation interface (Sll). Moreover, depending on the data tyfalOP messages.

it is ~2 to 4.5 times faster than ORBs when using the dynamic The GIOP specification consists of the following elements:

skeleton interface (DSI) [17].
B.1 A Common Data Representation (CDR) definition

D. Paper organization The GIOP specification defines the CDR transfer syntax,

This paper is organized as follows: Section Il outlines thghich maps OMG IDL types from the native host format into
CORBA reference model, the GIOP/IIOP interoperability prag low-levelbi-canonicalrepresentation that supports both little-
tocols, SunSoft I1OP, and TAO; Section IlI presents the resuligdian and big-endian formats. All OMG IDL data types are
of TAO's performance optimizations on the SunSoft IIOP inmarshaled using the CDR syntax into@mcapsulation(which
terpreter; Section IV presents the results of optimizing TAOis an octet stream that holds marshaled data) and exchanged be-
IDL compiler to produce efficient and small footprint stubs angyeen clients and servers.
skeletons for a range of IDL data types; Section V compares our
research with related work; and Section VI provides concludigg2 GIOP message formats

remarks. . '
The GIOP specification defines seven types of messages that

Il. BACKGROUND send requests, receive replies, locate objects, and manage com-

. . icati h Is.
TAO is a real-time ORB based on the SunSoft IIOP proton—umlcatIon channe’s

col engine. TAO is targe.ted for applications with determlnlst!l_g)_3 GIOP transport assumptions
and statistical QoS requirements, as well as best effort require- - '
ments. This section outlines the CORBA reference model, itsThe GIOP specification describes the type of transport pro-

GIOP/IIOP interoperability protocols, SunSoft IIOP, and TAOtocols that can carry GIOP messages. In addition, the GIOP
specification defines a connection management protocol and a
A. Overview of CORBA set of constraints for message ordering.

CORBA Object Request Brokers (ORBs) [18] allow clients The most common concrete mapping of GIOP onto the

to invoke operations on distributed objects without concern f%P/IP transport protocol is known as the Internet Inter-ORB

IThe source code and documentation for TAO is freely available 5%@000' (”OP)_' The GIOP and IIOP SpeC|f|Cat'0ns are de-
www.cs.wustl.edu/  ~schmidt/TAO.html . scribed further in [3].



in args

C. Overview of the SunSoft IIOP Protocol Engine o——»
| CLIENT W operation() OBJECT
SunSoft IIOP is a freely available, open-sodriteplementa- out args ¥ refurn value |+ (;E“VA“)

tion of IIOP version 1.0. The key features and architecture of
SunSoft IIOP are outlined below. v v \ pd

DI IDL ORB
C.1 CORBA Features Supported by SunSoft IIOP I ] SToes INTERFACE

The SunSoft IIOP protocol engine is written in C++ and pro- (
vides the features of a CORBA ORB Core. It handles connec-

A

OBJECT
ADAPTER

)
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TYPECODE TYPECODE

tion management, socket endpoint demultiplexing, concurrency i M e

control, and the [IOP protocol. It is not a complete ORB, how- TypeCode: traverse() TypeCode::traverse()

ever, since it lacks an IDL compiler, an Implementation Repos- 7y 7y

itory, and a Portable Object Adapter (POA). Eieepjree(a [e‘fg‘(};()] REQUESET [ de?g}}e’;o] Eieepﬁfree(ﬂ
On the client-side, SunSoft IIOP providestatic invocation v

interface(Sll) and adynamic invocation interfad@®ll). The SlI visit() visit()
is used by client-side stubs. The DIl is used by clients that have
no compile-time knowledge of the operations they invoke. Thus, CDR:- ) RESPONSE (" CpR-
the DIl allows clients to create CORBA requests at run-time. E““"py@ [decodero]h[encodero] E"e‘”"py@
In SunSoft IIOP, requests are created and parameters mar- SENDER RECEIVER
shaled using theRequest , NVList , NamedValue, and
TypeCode pseudo-objectinterfaces defined by CORBA.
Pseudo-objects are entities that are neither CORBA primitive
types nor constructed types. Operations on pseudo-object ggfneral-purpose operating systems since the protocol interpreter
erences cannot be invoked using the DIl mechanism since tag be small enough to fit entirely within a processor cache.
interface repository does not keep any information about themEach component of the SunSoft IIOP software architecture is
In addition, pseudo-objects alecality constrainedi.e., they outlined below:

cannot be transferred as parameters to operations of an IDL#, TheTypeCode::traverse method. The SunSoft

terface. . _ IJOP interpreter is implemented within theaverse ~ method
SunSoft IIOP supports dynamic skeletons via the dynamig ihe TypeCode class. All parameter marshaling and demar-

skeleton interface (DSI). The DSl is used by applications arfljing'is performed interpretively by traversing the data struc-
ORB bridges [3] that have no compile-time knowledge of thg, o according to the layout of tHBypeCode /Request  tu-
interfaces they implement. Thus, the DSI parses incoming We passed toraverse . This method is passed a pointer to
guests, unmar'shalstheir parameters, and demultiplexes requestsit  method (described below), which interprets CORBA
to the appropriate servants. _ requests based on thd@iypeCode layout. The request part of
Servers that use the SunSoft DSI mechanism must provifig yple contains the data that was passed by an application on

TypeCode information used to interpretincoming requests anfle cjient-side or received from the OS protocol stack on the
demarshal the parameter$ypeCode s are CORBA pseudo- gapyer-side.

objects that describe the format and layout of primitive and con- o . )
structed IDL data types in the incoming request stream. Tifis>-P Thevisit  method.  TheTypeCode interpreter in-
information is used by SunSoft I1OP’s interpretive marshaling?kes thevisit  method to marshal or demarshal the data as-
engine for each data type as it is marshaled and transmitted cxrated with theTypeCode it is currently interpreting. The

Fig. 2. Components in the SunSoft IOP Implementation

a network. visit method is a pointer that contains the address of one of
the four methods described below:
C.2 The Sunsoft IIOP Software Architecture e TheCDR::encoder method:Theencoder method of

. - the CDRclass converts application data types from their native
The components in SunSoft IIOP are shown in Figure 2. Tlﬂ%st representation into the CDR representation used to transmit

TypeCode (de)marshaling protocolengme is the primary Coms yopa requests over a network.
ponent of SunSoft IIOP. SunSoft IIOP’s protocol engine is an e TheCDR::decoder method:Thedecoder method of

interpreter that encodes or decades parameter data by iden“];)é'CDRclass is the inverse of tlencoder method. It converts

[Pg thce:lrgypet)CFOCJlteS atrun-time using thekind field ofeach o, o5t values from the incoming CDR stream into the native
ypeCode object. host representation.

SunSoft IIOP uses an interpreter to reduce the space utiliza- « The deep _copy method: The deep copy method is

tion of its protocol engine. Minimizing the memory footprint ofEsed by the SunSoft DIl mechanism to allocate storage and mar-

a protocol engine is important for embedded multimedia app, al parameters into the CDR stream usingTeeCode in-
cations, such as hand-held PDAs. SunSoft IIOP’s code Siz\ﬁj?prgter 9T
X-

less than 100 Kbytes on a real-time operating system like

) ) Th f hod: Th i hod i
Works. ORBs with small memory footprints are also usefulchS e Thedeep free method: The deep free method is

ed by the SunSoft DSI server to release dynamically allocated
2See ftp://ftp.omg.org/publinterop/ for the Sunsoft Ilop Mmemory after incoming data has been demarshaled and passed
source code. to a server application.



C.2.c The utility methods. The following SunSoft IOP meth-
ods perform various ORB utility tasks:

( TypeCode::traverse(valuel \

— value2,visit,strm,env)

. . ENDER if primitive typecode)
e The calc _nested _size _and_alignment method: 8 ":‘mewsn?ﬁ;.:;ii;ﬁnz.
This method calculates the size and alignment of composite ID do_call() oo mpscodes
. . - case tk_sequence:
data types likestruct s orunion s. Create a CDR stream to send Octtseq“aog
; Fill GIOP Header bounds s soh Hengt
e Thestruct _traverse method:TheTypeCode inter- Create a GIOP:Request CDR:put_param() g
. . . message oto shared_array_code;
preter uses this method to traverse the fields in andilict Foreach paramete, CDR:zencoder(pararn_t, et

. call CDR::put_param value,0,cdr_strm,env) shared_array_code:
recursively. TypeCode pu 2 =
typecode_param(0, env);
size = te2->size(env);
while(bound:
visit(te2,vall,val2,strm,env);

Section II-C.3 examines the run-time behavior of SunSof ———— .
IIOP by tracing the path taken by requests used to transmit th(¢'0"moctionsimveke0

. CDR::encoder(tc, data, :ﬂ::;:;: M Ezk::**))y\dlllz
sequence of BinStruct s shown below: 0, strm, nv) e
. . . . . . - crca;c an encapsulation
/I BinStruct is 32 bytes (including padding). e o
struct BinStruct case k octet: valZvisi, strmepe);
strm->put_char }
) ' ) oo r ;‘:c}mr *)data);
short s; char c; long |; case tk_short:
. . Strm-> shol
octet o; double d; octet pad|[8] S ot wydata:
} break;
case tk_long:
strm->put_long
Vi RIChly lyped data. breag(long*)dm); struct_traverse(encap,vall,
interface ttcp_throughput case tk_double: val2,visit,strm,env)
- . strm->put_longlong . . B .
{ write() (*(longlong *)data); sll:}p,slrl_ng: % repository id;
typedef sequence<BinStruct> StructSeq; e e et b of mombs
/I similarly for the rest of the types 0ﬂ=(l§ﬁ:g::j;;:; for each member {
strm->put_long ’ fklp:smng; //member name
/I Operations to send various data type sequences. OS KERNEL i calenested size._
oneway void sendStructSeq (in StructSeq ts); case tk struct t— _ and_align(&tc,align);
/I similarly for rest of the types e e visit(ie,vall val2.strm.env);
y yp (data, 0, encoder, vall = size + (char*)vall;
NETWORK strm, env); val2 = size + (char *)val2;
5 N } y

The performance of SunSoft I1OP for these data types is exanrig. 3. sender-side Datapath for the Original SunSoft IIOP Implementation
ined in Section III.

C.3 Tracing the Data Path of a SunSoft IOP Request Thedo_call method creates a CDR stream into which op-
To illustrate the run-time behavior of SunSoft 110P, werations for CORBA parameters are marshaled before they are

trace the path taken by requests that transmséquence of Sent over the network. To marshal the paramewoscall
BinStruct s. We show how thé’ypeCode interpreter con- Uses theCDR::encoder visit method. For primitive

sults theTypeCode information as it (de)marshals parameterdyPes, such actet , short , long , and double , the
We use the Samainstruct in th|S examp|e and in our Opti_ CDR::enCOder method maI’Sha|S them into the CDR stream

mization experiments described in Section I1I-B.1. using the lowest-leveCDR::put methods. For constructed

data types, such as IDktructs  and sequences , the

C.3.a Clientside Data Path. = The client-side data path dg., e, recursively invokes th&ypeCode interpreter.
shown in Figure 3. This figure depicts the path traced by OUt'Thetraverse method of theTypeCode interpreter con-

going client requests through tfigpeCode interpreter. The sults theTypeCode layout passed to it by an application to de-

CDR::encoder method marshals Fhe pgrameters from n.at'\.fgrmine the data types contained in a composite data type, such
host format into a CDR representation suitable for transm|55|grs1 astruct  orunion . For each member of a composite data

on the network. . . . .
. S .. type, the interpreter invokes the sawisit method that in-
The client uses thdo_call - method, which is the static in- voked it. In our case, thencoder is thevisit method that

ﬁgﬁ%%%ggfﬁé;pfgg dépilntrc)err?o\::edtgrj tgymil::; ??hg?):ra-:g‘iélriginally .called the interpreter. This process continue;s recur-
ters and send the client requests. The dynamic invocation in S|}/_ely until aI'I paramet'ers have been marshaleq. .At this point,
face (DII) mechanism uses tli® dynamic call methodto E e request is transmitted over the network via teoke

. - - method of theGIOP::Invocation class.
send client requests.

Although thedo_call anddo_dynamic _call methods C.3.b Server-side Data Path.  The server-side data path is
play similar roles, their type signatures are different. Thshown in Figure 4. This figure depicts the path traced by in-
do_call is used by IDL compiler-generated stubs to sentbming client requests through the SunSoft [IDfpeCode
client requests. Thdo_dynamic _call is used by the ORB'’s interpreter. An event handlefCP.OA waits in the ORB Core
DIl API (i.e, send _.oneway andinvoke ) to send client re- forincoming data. After a CORBA request s received, its GIOP
quests. Thedo_dynamic _call is passed aMNVList that type is decoded and the Object Adapter demultiplexes the re-
contains the parameters of the operation being invoked. In agest to the appropriate operation of the target object. The
dition, it is passed a flag indicating whether the operation @DR::decoder method then unmarshals the parameters from
oneway or two-way, atring  argument that represents the opthe CDR representation into the server’s native host format. Fi-
eration name, andldamedValue pseudo-objectthat holds thenally, the server’s dispatching mechanism dispatches the request

results. to the skeleton of the target object by invoking an upcall on a



— o > this, TAO extends SunSoft IIOP to allow separate IIOP connec-
PARSING PARAMETERS CDR: 'd:ycc‘:ﬁeigcm‘d:‘i') —* ( TypeCode::traverse(valuel,, . iy . . . . . s
for cachparametes soramaryn ) tions to run within real-time threads with suitable priorities [19].

get the typecode, tc
CDR::decoder(te,val, 0=
strm.env)

D.3 Lack of IIOP optimizations

ServerRequest::params()

EVENT HANDLING

TCP_OA:
get_request()

CREATE NVLIST AND
POPULATE IT WITH
PARAMETER TYPECODES

As described in Section Ill, SunSoft IIOP incurs rela-
tively high performance overhead due to excessive marshal-
ing/demarshaling overhead, data copying, and high-levels of
function call overhead. Therefore, we applied the following
optimization principle patterns [14], [6] that improved its per-
formance considerably(1) optimizing for the common case,
(2) eliminating gratuitous waste, (3) replacing general-purpose
methods with efficient special-purpose ones, (4) precomputing
values, if possible, (5) storing redundant state to speed up ex-
pensive operations, (6) passing information between layers, and
(7) optimizing for processor cache affiniths shown in Sec-
tion Ill, our optimizations yielded speedups of 2 to 6.7 for vari-
ous types of OMG IDL data.

_ttep_sequence_

TCP_OA: SendStructSeq_skel()

handle_message()

GIOP:: —
incoming_message() DEMULTIPLEXING/

DISPATCHING
tep_oa_dispatch()

(USER SUPPLIED METHOD)

RECEIVE

MESSAGE tep_oa_dispatcher

(CREATE REQUESTHDR)

read_message() [ EXTRACT GIOP HEADER
DECODE MSG TYPE

struct_traverse(encap,vall,
val2,visit,strm,env)

skip_string; / repository id;
skip_string; // struct name;
‘get number of members;
for cach member {

skip_string; //member name
size =
cale_nested_size_
and_align(&tc.align);
visit(te,valval2,strm,env);
vall = size + (char*)vall;
val2 = size + (char *)val2;
)

RECEIVER

TAO alleviates the limitations with SunSoft IIOP described
Fig. 4. Receiver-side Datapath for the Original SunSoft IOP ImplementatioADOVE to create a complete real-time ORB endsystem. TAO is a
high-performance, real-time ORB endsystem targeted for appli-
cations with deterministic and statistical QoS requirements, as
user-supplied servant method. well as “best-effort” requirements. The TAO ORB endsystem
The SunSoft IIOP receiver supports the DSI mechanisgontains the network interface, OS, communication protocol,
Therefore, arNVList CORBA pseudo-object is created andénd CORBA-compliant middleware components and features
populated with theTypeCode information for the param- shown in Figure 5. TAO supports the standard OMG CORBA
eters retrieved from the incoming request. These param-
eters are retrieved by calling thearams method of the

P
ServerRequest class. Similar to the client-side data path, R ( (CILILIIES J [ SERNVONIS ] z
the server'sTypeCode interpreter uses thEDR::decoder g == — E
visit  method to unmarshal individual data types into a pa- T (ow reQuesT pEMuxER| |13
rameter list. These parameters are subsequently passed to the I RT OBJECT o
server application’s servant method. 1‘];[ ADAPTER (C)
RT ORB CORE P
D. Overview of TAO s Y
To avoid unnecessarily re-inventing existing ORB compo- IC{ B
nents, TAO is based on SunSoft IIOP’s protocol engine. How- E PLUGGABLE PROTOCOLS U
ever, SunSoft IIOP has the following limitations: 3 F
— F
D.1 Lack of complete ORB features ]E“ 1F{
_ R RT I/O H E
Although SunSoft IIOP provides an ORB Core, an IIOP pro- @A SUBSYSTEM S
tocol engine, and a DIl and DSI implementation, it lacks an HIGH-SPEED NETWORK [
IDL compiler, an Implementation Repository, and a Portable INTERFACES

(e.g.. APIC, VME)

Object Adapter (POA). TAO implements these missing features

and provides several new features, such as real-time scheduling

and dispatching mechanisms [8].

D.2 Lack of real-time features Fig. 5. Components in the TAO Real-time ORB Endsystem
SunSoft IIOP provides no support for real-time features. Foeference model [3], with many enhancements [19], [6], [11] de-

instance, it uses a FIFO strategy for scheduling and dispatchgigned to overcome the shortcomings of conventional ORBs for

client IOP requests. FIFO strategies can yield unbounded pribigh-performance and real-time applications.

ity inversions when lower priority requests block the execution TAO is developed atop lower-level middleware called

of higher priority requests [12]. TAO is designed carefully t&\CE [20], which implements core concurrency and distribu-

prevent unbounded priority inversions. For instance, it providéen patterns [21] for communication software. ACE provides

a flexible scheduling service [8], [9] that utilizes QoS informaeusable C++ wrapper facades and framework components that

tion associated with the 1/0 subsystem [11] to schedule and dispport the QoS requirements of high-performance, real-time

patch requests according to their end-to-end priorities. To enabfmplications. ACE runs on a wide range of OS platforms, in-



cluding Win32, most versions of UNIX, and real-time operatingperations defined in the interface. Our hand-crafted client-side
systems like Sun/Chorus ClassiX, LynxOS, and VxWorks.  stubs use SunSoft IIOP’s Sll APilge. thedo_call method.

Thedo_call method provides an interface to pass client opera-

1. OPTIMIZING TAO's IIOP INTERPRETER tion arguments to the ORB's interpretive (de)marshaling engine.

As explained in Section 1I-C, SunSoft IlOP is a protocol erfn the server-side, the Object Adaptor uses a callback method
gine that implements IIOP version 1.0 using'gpeCode in- supplied by thettgp server application to dlspatch incoming
terpreter to (de)marshal operation parameters. The interpref§8Uests and their parameters to the target object.
design and lack of optimizations in SunSoft IOP degrades itsOurttcp  tool measures end-to-end data transfer throughput
performance substantially and renders it unsuitable to supg8rfMbps from a transmitter process to a remote receiver pro-
performance-sensitive embedded multimedia applications. TRESS across an ATM network. The flow of user data for each
section describes how we used a measurement-driven methsdsion ofttcp  is uni-directional, with the transmitter flooding
ology, guided by optimization principle patterns, to improve thide receiver with a user-specified number of data buffers. Vari-

performance of SunSoft IIOP for the TAO real-time ORB. ~ Ous sender and receiver parameters may be selected at run-time.
These parameters include the number of data buffers transmit-

A. CORBA/ATM Testbed Environment ted, the size of data buffers, and the type of data in the buffers. In

all our experiments the underlying socket queue sizes were en-

larged to 64 Kbytes, which is the maximum supported on SunOS
The experiments in this section were conducted using5b.1.

FORE systems ASX-1000 ATM switch connected to two dual- The following data types were used for all the tests: primi-

processor UltraSPARC-2s running SunOS 5.5.1. The ASXve types éhort , char ,long ,octet ,double )and a C++

1000 is a 96 Port, OC12 622 Mbps/port switch. Eacktruct composed of all the primitivesB{nStruct ). The

UltraSparc-2 contains two 168 MHz Super SPARC CPUs wittize of theBinStruct  is 32 bytes. SunSoft IIOP transferred

a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP pratee data types using ID&equences , which are dynamically-

col stack is implemented using the STREAMS communicatiaiized arrays. The sender-side transmitted data buffer sizes of a

framework. Each UltraSparc-2 has 256 Mbytes of RAM and apecific data type incremented in powers of two, ranging from 1

ENI-155s-MF ATM adaptor card, which supports 155 Megabitébytes to 128 Kbytes. These buffers were sent repeatedly until

per-sec (Mbps) SONET multimode fiber. The Maximum Trang:total of 64 Mbytes of data was transmitted.

mission Unit (MTU) on the ENI ATM adaptor is 9,180 bytes.

Each ENI card has 512 Kbytes of on-board memory. A maxi.3 Profiling Tools

mum of 32 Kbytes is allotted per ATM virtual circuit connection The profile information for the empirical analysis was ob-

for receiving apd trangmitting }‘rames (fora t'otal of 64 K). Thi?ained using theQuantify ~ [23] performance measurement
allows up to eight switched wrtugl connegt|0qs per card. TI?SOI. Quantify  analyzes performance bottlenecks and identi-
CORBA/ATM hardware platform is shown in Figure 6. fies sections of code that dominate execution time. Unlike tradi-
tional sampling-based profilers (such as the UNgpfof tool),
E Quantify  reports results without including its own overhead.
In addition,Quantify measures the overhead of system calls
(E and third-party libraries without requiring access to source code.
All data is recorded in terms of machine instruction cycles
and converted to elapsed times according to the clock rate of the
machine. The collected data reflect the cost of the original pro-

A.1 Hardware and Software Platforms

FORE SYSTEMS

:X: ASX 200BX gram’s instructions and automatically exclude &@antify
ATM SWITCH counting overhead.
(16 porT, OC3 Additional information on the run-time behavior of the code
155MBPS/PORT, such as system calls made, their return values, signals, number
ULTRA 9,180 MTU) of bytes written to the network interface, and number of bytes
SPARC 2 read from the network interface are obtained using the UNIX
(FORE ATM truss utility, which traces system calls made by an applica-

== tion. truss was used to observe the return values of system
calls, such asead andwrite , which indicates the number of
times that buffers were written to and read from the network.

ADAPTORS
AND ETHERNET)

Fig. 6. Hardware for the CORBA/ATM Testbed

B. Performance Results and Benefits of Optimization Principle

A.2 Traffic Generator for Throughput Measurements Patterns

Traffic for the experiments was generated and consumed %)} Methodology

an extended version of the widely availabigp [22] protocol CORBA implementations like SunSoft IIOP are representa-
benchmarking tool. We extendétp for use with SunSoft tive of complex communication software. Optimizing such soft-
IIOP. We hand-crafted the stubs and skeletons for the differevdre is hard since seemingly minor “mistakes,” such as ex-



cessive data copying, dynamic allocation, or locking, can re-

duce performance significantly [15], [12]. Therefore, develop- 130.0 ‘ —————
ing high-performance, predictable, and space-efficient ORBs re- 1200 p>e—e . & shors
quires an iterative, multi-step optimization process. First, we 00 e charsoces |
measured the performance of the ORB with blackbox and white- ~ *°*° X—x sincis
box benchmarks to pinpoint key sources of overhead. Next, g Zgz
we analyzed these sources of overhead carefully and systemati-= mjo
cally applied optimization principle patterns to remove the bot- % .
tlenecks. We repeated this optimization process until no major 3 ., |
performance bottlenecks remained. a0

This section describes the optimizations we applied to Sun- 300
Soft IIOP to improve its throughput performance. First, we 200 Fomu =
show the performance of the original SunSoft IIOP for various 100 P -
IDL data types. Next, we usQuantify to illustrate the key 00 00 600 800 1000 1250 1450 16901890
sources of overhead in SunSoft IIOP. Finally, we describe the Sender Buffer Size in Kbytes

benefits applying specific optimization principle patterns to im-
prove the performance of SunSoft I1OP.

The optimizations described in this section are based on the
core principle patterns shown in Table | for implementing presach step, we show the improved throughput measurements for
tocols efficiently. [14], [6] describe a family of optimizationselected data types. In addition, we compare the throughput ob-
tained in the previous steps with that obtained in the current step.

Fig. 7. Throughput for the Original SunSoft IOP Implementation

# __ Principle Pattern The comparisons focus on data types that exhibited the widest
1 | Optimize for the common case . .
2 [ Eliminate gratuftous waste range of performancd,e., double andBinStruct . As
3 | Replace inefficient general-purpose methods with efficignt shown below, the first optimization step did not improve per-
special-purpose ones _ formance significantly. However, this step was necessary since
4 | Precompute values, if possible : : it revealed the actual sources of overhead, which were then alle-
5 | Store redundant state to speedup expensive operations . L .
6 | Pass information between layers viated by the optimizations in subsequent steps.
7 | Optimize for the processor cache o )
TABLE | B.2 Performance of the Original SunSoft IIOP Implementation
OPTIMIZATION PRINCIPLE PATTERNS FOREFFICIENT PROTOCOL B.2.a Sender-side performance. Figure 7 illustrates the sender-
IMPLEMENTATIONS side throughput obtained by sending 64 Mbytes of various data

types for buffer sizes ranging from 1 Kbytes to 128 Kbytes

(incremented by powers of two). The figure compares Sun-
principle patterns and illustrates how they have been appliedSoft IOP with a hand-optimized baseline implementation using
existing protocol implementations, such as TCP/IP. This sectio@P/IP and sockets. These results indicate that different data
focuses on the optimization principle patterns we applied sygpes achieved substantially different levels of throughput.
tematically to improve the performance of SunSoft IIOP. We fo- The highest ORB throughput results from sendilogibles
cused on these principle patterns since our experiments revealedreaBinStructs  displayed the worst behavior. This vari-
they were the most strategic to improving SunSoft IIOP’s pestion in behavior stems from the (de)marshaling overhead for
formance. When describing our optimizations, we refer to theg#ferent data types. In addition, the original implementation of
principle patterns and empirically show how their use is justihe interpretive (de)marshaling engine in SunSoft IIOP incurred
fied. a large number of recursive method calls.

The SunSoft IIOP optimizations were performed in the fol- Figure 8 presents the results of usi@Quantify to send

lowing three steps, corresponding to the principle patterns fr@a Mbytes ofdoubles andBinStructs  using a 128 Kbyte

Table I: sender buffer. The results reveal that the sender spe@d%6
1. Aggressive inlining to optimize for the common casehich  of its run-time performingvrite  system calls to the network.
is discussed in Section 11I-B.3; This overhead stems from the transport protocol flow control

2. Precomputing, adding redundant state, passing informati@mforced by the receiving side, which cannot keep pace with the
through layers, eliminating gratuitous waste, and specializingender due to excessive presentation layer overhead. Table Il

generic methods which is discussed in Section I11-B.4; provides detaile@uantify measurements indicating the time
3. Optimizing for the processor cachewhich is discussed in taken by dominant operations and the number of times they were
Section I1I-B.5. invoked.

The order we applied the principle patterns was based on 3 b Receiver-side performance. T@eantify analysis

most significant sources of overhead identified empirically at . o o
each step and the principle pattern(s) that most effectively 18- the receiver-side is shown in Figure 9 and Table lll. The

duced the overhead. For each step, we describe the princfﬁl%ewer'sme resuftsfor sending primitive data types indicate

patterns and SpeCIfIC Op“m'zaF'Q” technlques'that were applledrhroughput measurements from the receiver-side were nearly identical to the
to reduce the overhead remaining from previous steps. Aft@hder measurements and are not presented here.
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Fig. 9. Receiver-side Overhead in the Original IOP Implementation

Data Type Analysis
Method Name msec Called %
double write 78,051 512 | 93.33
put _longlong 2,250 8,388,608 2.69
CDR::encoder 1,605 8,393,216 1.92
TypeCode::traverse 1,300 1,024 1.55
long write 134,141 512 | 92.92
put _long 3,799 | 16,780,288 2.63
CDR::encoder 3,303 | 16,781,824 2.29
TypeCode::traverse 2,598 1,024 1.80
short write 265,392 512 | 93.02
put _short 7,593 | 33,554,432 2.66
CDR::encoder 6,598 | 33,559,040 2.31
TypeCode::traverse 5,195 1,024 1.82
octet write 530,134 512 | 93.43
CDR::encoder 15,986 | 67,113,472 2.82
put _byte 10,391 | 67,118,080 1.83
TypeCode::traverse 10,388 1,024 1.83
BinStruct write 588,039 512 | 88.65
get _long 19,846 | 44,053,504 2.99
calc _nested _size... 11,499 | 14,683,648 1.73
CDR::encoder 10,394 | 31,461,888 1.57
TypeCode::traverse 8,803 4,195,328 1.33
TABLE Il

SENDER-SIDEOVERHEAD IN THE ORIGINAL [IOP IMPLEMENTATION

Analysis forBinStruct s

3. Thedeep _free method- which deallocates memory.

4. TheCDR::decoder method-The receiver spends a signif-
icant amount of time traversing tH&inStruct TypeCode
(struct _traverse ) and calculating the size and alignment
of each member in thstruct

As noted above, the receiver’s run-time costs adversely affect
the sender by increasing the time required to perfantite
system calls to the network due to flow control.

The remainder of this section describes the various optimiza-
tion principle patterns we applied to SunSoft IOP, as well as the
motivations and consequences of applying these optimizations.
After applying the optimizations, we examine the new through-
put measurements for sending different data types. In addition,
we show how our optimizations affect the performance of the
best casedoubles ) and the worst casé3{nStruct ). Like-
wise, detailed profiling results frorQuantify  are provided
only for the best and the worst cases.

that most run-time overhead is incurred by the following meth-

ods:

1. TheTypeCode interpreter—i.e., thetraverse

classTypeCode.
2. The CDR methods that retrieve the value from the incomihikewise, since the receiver is the bottleneck, we only show its
data—e.g.,get _long andget _short

Figures 8 and 9 illustrate the SunSoft IIOP receiver is the

method in primary performance bottleneck. Therefore, our initial set of

optimizations are designed to improve receiver performance.

Quantify  profile measurements.



Data Type I Analy;i:ec I . methods, we employ a more aggressive inlining strategy. This
Jouble TypeCode:raverse 2508 1530 | 2381 strategyforcibly inlined methods likeptr _align _binary
CDR:get_Jonglong 2,506 | 8,388,608 | 23.80 (which aligns a pointer at the specified byte alignment) using
S e o AL IR T preprocessor macros instead of as @#line  methods.
read _ 1146 1,866 | 10.51 In addition, the Sun C++ compiler did not inline certain meth-
oG gggggggtk;;‘;’erse 5123 8'383'51325 e ods, such askip _string andget _longlong , due to their
CDR::get Jong 4,596 | 16,783,379| 22.40 length. For instance, the code in methgdt _longlong
S e o S T e aos T Tes swaps 16 bytes in a manually un-rolled loop if the arriving data
read _ 1,682 2,574 | 820 was in a different byte order. This increases the size of the code,
m— %g‘;gggg{j‘;&’erse e iemt el Which caused the C++ compiler to ignore théine  keyword.
CDR::get short 9,188 | 33,554,432 24.07 To workaround the compiler design, we defined a helper
e e o R method that performs byte swapping. This helper method is in-
TypeCode:Kind 3,196 | 33,554,944 837 voked only if byte swapping is necessary. This decreases the
octet Eﬁs?;ggﬁ"efse fgg;i - 1%%3;3% fggg size of the code so that the compiler selected the method for in-
deep free 13,187 | 67,100,880 18.50 lining. For our experiments, this optimization was valid since
%E:)Fé-(-:%ed‘e;’;fgg 12;;3; g;:iég:;g 13_-55 transferred data between UltraSPARC machines with the same
BinStruct CDR:.get Jong 35.001 | 83.921.427| 27.65 byte order.
e igjggi 22'%2,’232 Tror B.3.e Optimization results. The throughput measurements af-
?%Z'é%?;igverse 18:33? 32:38;:35; LB ter aggressive inlining are shown in Figure 11. Figures 12 and
deep _free 6,492 | 14,681,089 5.12
CDR::skip _string 6,394 | 33,566,720 5.04
CDR::get byte 3,399 | 21,153,313 2.68 130.0 ‘ ‘ ‘
TABLE IlI 1200 . . e
RECEIVER-SIDEOVERHEAD IN THE ORIGINAL IIOP IMPLEMENTATION 110.0 r.\." — Hg:‘;;uclets ]
—
@ 90.0
S 800
B.3 Optimization Step 1: Inlining to Optimize for the Common = _
Case é eo:o P
B.3.a Problem: high invocation overhead for small, frequently £ 500 |
called methods. This subsection describes an optimiza-'_ 40.0
tion to improve the performance of IIOP receivers. We ap- 30.0
plied principle pattern 1 from Table I, whiabptimizes for the 200 ——
common case Figure 9 illustrates that the appropriaget 10.0 pe—— *
method of the CDR class must be invoked to retrieve the data ~ °%0 200 400 600 80.0 100.0 120.0 140.0 1600 180.0
from the incoming stream into a local copy. For instance, de- Sender Buffer Size in Kbytes
pending on the data type, methods lik®R::get _long or Fig. 11. Throughput After Applying the First Optimization (inlining)

CDR::get _longlong are called between 10-80 million times

to decode 64 Mbytes of data, as indicated in Table Ill. Singg jllustrate the effect of aggressive inlining on the throughput
theseget methods are invoked quite frequently they are primgf doubles andBinStructs . Figures 12 and 13 also com-
targets for our first optimization step. pare the new results with the original results. After aggressive

B.3.b Solution: inline method calls.  Our solution to reduc®lining, the new throughput results indicate only a marginal

invocation overhead for small, frequently called methods wése- 4%) increase in performance. Figures 14 and 15, and Ta-
to inline these methods. |n|t|a”y, we used the Cinline bles IV and V show proflllng measurements for the sender and

language feature. receiver, respectively. As before, the analysis of overhead for
. . the sender-side reveals that most run-time overhead stems from

BSc Problem:_ lack of_C++ compller support for aggressiM@rite  calls to the network.

inlining.  Our intermediat&uantify  results after inlining, The receiver-sid@uantify  profile output reveals that ag-

shown in F|gure 10, reveal that supplylng thizne keyyvord ressive inlining does force operations to be inlined. How-
to the compiler does not always work since the compiler occgver, this inlining increases the code size for other meth-

sionally ignores this “hint.” Likewise, inlining some method%dS such asstruct _traverse CDR:-decoder and
may cause others to become “non-inlined.” This occurs siNGg . nested size _and alignmént fﬁereby inc}easing

the originally inlined operationse(g., ptr _align _binary ) their run-time costs. As shown in Figures 3 and 4, these meth-

now invoke newly |nl!ned operations thereby Increasing theérds are called a large number of times, as indicated in Figure 15
size. The C++ compiler then chooses not to inline operatiofs| Taple v

that were inlined originally. Certain SunSoft IIOP methods such@BR::decoder and
B.3.d Solution: replace inline methods with preprocessdypeCode::traverse are large and general-purpose. In-
macros.  To ensure inlining for all small, frequently calletining the small methods described above causes further “code
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Ecalc_nested_size_and_
alignment
M ptr_align_binary

4.97

7.97
23.28
Ostruct_traverse
7.32 .. 10.56
E Typecode::traverse ..
2562 O CDR::decoder
15.34 B CDR::get_longlong
| :ski i
Ddeep. free 11.30 12.40 CDR::skip_string
O CDR::decoder 1232 OTypeCode::traverse
16.25
23.63 B TypeCode::kind ldeep free
Analysis for double s Analysis forBinStruct s
Fig. 10. Receiver-side Overhead in the IIOP Implementation After Simple Inlining
Data Type Analysis
120.0 Method Name msec Called %
’ ‘f""—- "o " o double write 59,260 512 | 92.40
110.0 { B CDR::encoder 3,154 8,393,216 4.92
100.0 | 1 TypeCode::traverse 1,300 1,024 | 2.03
’ BinStruct write 436,694 512 | 85.29
90.0 R calc _nested _size... 14871 | 14,683,648 3.59
2 g0 1 CDR::encoder 14,101 | 31,461,888 3.40
g : struct _traverse 12,425 2,097,152 3.00
70.0 E
= | TABLE IV
£ 000 //./'_.\_\. 1 SENDER-SIDE OVERHEAD AFTERAPPLYING THE FIRST OPTIMIZATION
2 500 .
g / (INLINING)
F 400 [# :
| @—@ Baseline TCP
3000 =—a Original 4
Opt for expected case
20.0 | 1 Data Type Analysis
10.0 | R Method Name msec Called %
0.0 ) ) ) ) ) ) ) double CDR::decoder 3,402 8,393,237 | 35.11
0.0 200 400 600 80.0 1000 120.0 140.0 gypechdeiitfaverse ivgig 5 383563393 i?-gi
Sender Buffer Size in Kbyt eep _free ; 389, :
ender Buller size in bytes TypeCode::kind 799 8,389,120 8.25
Fig. 12. Throughput Comparison for Doubles After Applying the First Optjj BinStruct Cf“c t—nefted size... 2491';2% 22?3138; gi-gg
At T struct _traverse R R , R
mization (infining) CDR::decoder 14,641 | 33,554,437 | 14.62
TypeCode::traverse 7,032 6,292,481 7.02
TypeCode::param _count 4,020 4,195,846 4.01
deep _free 6,492 | 14,681,089 4.97
120.0 — : :
1100 Il M * —e 1 TABLE V
1000 | S e 1 RECEIVER-SIDE OVERHEAD AFTERAPPLYING THE FIRST OPTIMIZATION
S e e (AGGRESSIVE INLINING)
90.0 E
1%
2 800 .
=
T 700 .
5 b . . . . . . .
;i 600 | 1 at the same time, which explains why inlining does not result in
3 500r 1 significant performance improvement.
= . . . . . .
o400 1 In summary, although our first optimization step did not im-
300 | 1 prove performance dramatically, it helped to reveal the actual
200 | 1 sources of overhead in the code, as explained in Section IlI-B.4.
10.0 f E
00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ B.4 Optimization Step 2: Precomputing, Adding Redundant
00 200 400 600 800 1000 1200 140.0 State, Passing Information Through Layers, Eliminating

Sender Buffer Size in Kbytes i . i
Gratuitous Waste, and Specializing Generic Methods

Fig. 13. Throughput Comparison for Structs After Applying the First Optimiza- . .
tion (inlining) B.4.a Problem: too many method calls. The aggressive in-

lining optimization in Section 111-B.3 did not cause substantial
improvement in performance due to the processor cache effects
bloat” for these methods. Thus, when they call each other recsitown in this section and Section 111-B.5.
sively a large number of times, very high method call overheadTable V reveals that for sendingtructs , the high-
results. In addition, due to their large size, it is unlikely thast cost methods acalc _nested _size _and _alignment
code for both these methods can reside in the processor cacbd::decoder , and struct _traverse . These meth-
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Fig. 14. Sender-side Overhead After Applying the First Optimization (aggressive inlining)
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Fig. 15. Receiver-side Overhead After Applying the First Optimization (aggressive inlining)

ods are invoked a substantial number of times (29,367,8®dr, large amounts of data.
33,554,437, and 4,194,303 times, respectively) to process inSeveral solutions to remedy this problem are outlined below:

coming requests. B.4.b Solution 1: reduce gratuitous waste by precomput-
To see why these methods were invoked so frequently, g values and storing additional state. This solution
analyzed the calls tstruct _traverse . TheTypeCode s motivated by the following two observations.  First,
interpreter invoked struct _traverse 2,097,152 times for incoming sequences the TypeCode of each ele-
for data transmissions of 64 Mbytes isequences ment is constant. Second, ea@inStruct  in the IDL
of 32-byte Binstruct s. In addition, the SunSoftsequence has the same fixed size. These observations en-
IIOP interpreter calculated the size &inStruct  (using apled us to pinpoint a key source gfatuitous waste(prin-
thecalc _nested _size _and_alignment function), which ¢jple pattern 2 from Table 1). In this case, the gratuitous
calledstruct _traverse internally for everyBinStruct . \yaste involves recalculating the size and alignment require-
This accounted for an additional 2,097,152 calls. ments of each element of theequence . In our experi-
Although inlining did not improve performance substanments, the methodsalc _nested _size _and _alignment
tially, it helped to answer a key performance questiovhy andstruct _traverse are expensive. Therefore, it is crucial
were these high cost methods invoked so frequentBased to optimize them.
on our detailed analysis of the SunSoft IIOP implementationTo eliminate gratuitous waste, we cprecomputgprinciple
(shown in Figure 4 and in the explanation in Section II-Chattern 4) the size and alignment requirements of each mem-
we recognized that to demarshal an incomsegluence of ber and store them usirgiditional statg(principle pattern 5) to
BinStructs , the receiver'sTypeCode interpreter method speed up expensive operations. We store this additional state as
TypeCode::traverse must traverse each of its membergrivate data members of the SunSoftigpeCode class. Thus,
using the methosdtruct _traverse . Aseach memberistra-the TypeCode for BinStruct  will calculate the size and
versed, thecalc _nested _size _and_alignment method alignmeninceand store these in the private data members. Ev-
determines the member’s size and alignment requiremeriis; time the interpreter wants to traveBmStruct , it uses
Each call to thecalc nested size _and alignment  theTypeCode for BinStruct  that has already precomputed
method can invoke th€DR::decoder method, whichin turn its size and alignment. Note that our additional state does not
may invoke theraverse  method. affect the IIOP protocol since this state is stored locally in the
Close scrutiny of the CORBA request datapath shown in FigiypeCode interpreter and is not passed across the network.
ure 4 reveals that thstruct _traverse  method calculates In general, allstruct  elements in &sequence may not
the size and alignment requirements every time it is invoked. Aave the same size. For instancesemuence of Anys or
shown above, this yields a substantial number of method caltsuct s with string  fields may have elements with vari-
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able sizes. In such cases, this optimization will not apply. For
theBinStruct  case described in this paper, however, a highly
optimizing IDL compiler, such as Flick [24], could determine
that allsequence elements have identical sizes. It could then
generate stub and skeleton code that can eliminate gratuitous
waste.

130.0
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B.4.c Solution 2: convert generic methods into special-purpose,
efficient ones. To further reduce method call overhead,
and to decrease the potential for processor cache misses, w
moved thestruct _traverse logic for handlingstruct s
into thetraverse  method. In addition, we introduced the 40.0
encoder , decoder , deep _copy, anddeep _free logic 30.0
into thetraverse  method. This optimization illustrates an 20.0
application of principle pattern Z¢nvert generic methods into 10.0
special-purpose, efficient ones 0.0 200 400 600 80.0 1000 120.0 1400 160.0 180.0

We chose to keep theaverse  method generic, yet make Sender Buffer Size in Kbytes
it efficient since we want our (de)marshaling engine to remagfy. 16. Throughput After Applying the Second Optimization (precomputation
in the cache. However, this scheme may not result in opti- and eliminating waste)
mal cache hit performance for embedded system hardware with
small caches since themverse  method is excessively large.
Section I11-B.5 describes optimizations we used to improve pro-

cessor cache performance. 1200
110.0 {4

£

Throu@put

B.4.d Problem: expensive no-ops for memory deallocation.
Figure 15 reveals that the overhead of deep _free  method
remains significant for primitive data types. This method is sim-
ilar to thedecoder method that traverses tfiggpeCode and
deallocates dynamic memory. For instance, dieep _free
method has the same type signature asdieoder method.
Therefore, it can use the recursivaverse  method to navi-
gate the data structure corresponding to the parameter and deal 400 —
locate memory. 300 e -
Careful analysis of theleep free method indicates that 200 | A Preconp e I e ate
memory must be freed for constructed data structures, such as 100}
IDL sequences andstructs . Incontrast, fosequences 0.0

. . 0.0 2(;.0 4(;.0 66.0 8(;.0 106.0 126.0 146.0
of primitive types, thedeep -free method simply deallocates Sender Buffer Size in Kbytes

the buffer Cont'alll’ll.ng t.heequenc.e C. . Fig. 17. Throughput Comparison for Doubles After Applying the Second Opti-
Instead of limiting itself to this simple logic, however, the ™ y7ation (precomputation and eliminating waste)

deep _free method usetraverse to find the element type

that comprises the IDsequence . Then, for the entire length

of thesequence , it invokes thedeep _free method with the

100.0
90.0
80.0
70.0
60.0
50.0

hroughput in Mbps

=

element'sTypeCode. Thedeep _free method immediately 120.0 : : : : :
determines that this is a primitive type and returns. However, 1100 ! - * iy
this traversal process is wasteful since it creates a large number 50, |l e ongnal

of “no-op” method calls. 500 e P conimtaliniats wese

B.4.e Solution: eliminate gratuitous waste. To optimize the 80.0

no-op memory deallocations, we changed the deletion strategy’
for sequences so that the element$ypeCode is checked
first. If it is a primitive type, such adouble , the traversal is
not done and memory is deallocated directly. 400 |

B.4.f Optimization results. The throughput measurements 30.0 [‘—‘/.\F —

recorded after incorporating these optimizations are shown in 200
Figure 16. Figures 17 and 18 illustrate the benefits of the opti- 10.0 i
mizations from s'tep 2 by comparing the throughputobtamed for 00— T 50 B0 1090 o0 10
doubles andBinStructs , respectively, with results from Sender Buffer Size in Kbytes

previous optimization steps. . . Fig. 18. Throughput Comparison for Structs After Applying the Second Opti-
Tables VI and VII, and Figures 20 and 20 depict the ™ mization (precomputation and eliminating waste)

profiling measurements for the sender and receiver, respec-

Mbps

70.0

n

60.0
50.0

Throughput
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Data Type Analysis loaded with the instructions for the same function. However,
Method Name msec Called %

Jouble write 7,060 515 T 6766 for empedded system hardware W.ith smaller cache sizes, it may
TypeCode::fraverse 2,449 1,0247|30.90 be desirable to have smaller functions.
BinStruct write 61,641 512 | 76.83
TypeCode::traverse 17,505 | 2,098,176 21.82 B.5.b Solution: split large functions into smaller ones and out-
TABLE VI lining. This section describes optimizations we used to improve
SENDER-SIDE OVERHEAD AFTERAPPLYING THE SECONDOPTIMIZATION  processor cache affinity for SunSoft IOP. Our optimizations are
(GETTING RID OF WASTE AND PRECOMPUTATION based on two principle patterns described below:

1. Splitting large, monolithic functions into small, mod-
ular functions: In our case, theTypeCode interpreter

Data Type Analysis traverse  method is the prime target for this optimiza-
Method Name msec Called % : ; : : ; :

Souble read 3413 1665 | 5403 tion. As described earlier in Section III-B.4, the logic for
TypeCode: raverse 2,747 1539 | 44.21 encoder , decoder , struct _traverse , deep _free ,

BinStruct TypeCode::traverse 27,976 | 4,195,331 | 91.94 i H i H H
ToeCoder T gnddeep -copy is mgrged into the mterpretgr, which increases
typecode _param its code size. The primary purpose of merging these methods is

TABLE VI to reduce excessive function call overhead.

To improve processor cache affinity, however, it is desirable to
have both smaller functions and minimal function call overhead.
We accomplished this by splitting the interpreter into smaller
functions that are targeted for specific tasks, such as encoding
or decoding individual data types. This strategy is in contrast to
tively. The receiver methods accounting for the most execa-generic encoder or decoder that can marshal any OMG IDL
tion time for doubles includetraverse , decoder , and data type. Thus, to decodesaquence , the receiver uses the
deep free . For BinStructs , the run-time costs of the decode _sequence method of theCDRclass and to decode a
traverse  method in the receiver increases significantly construct , it uses thedecode _struct method.
pared to the previous optimization steps. This is due primarily The decode _sequence method could support more spe-
to the inclusion of thestruct _traverse , encoder , and cialized methods.g.,decode _sequence _long to decode a
decoder logic. Although the run-time costs of the interpretesequence of long s, by further decomposing it. A smaller
increased, the overall performance improved since the numbéi&ce of code that demonstrates high locality of reference is
of calls to functions other than itself decreased. As a resutore likely to reside within processor caches.
this design improved processor cache affinity, which yielded The optimization principle pattern we employed here is sim-
better performance. In addition, due to precomputation, thar to principle pattern 3 from Table I, which replaces general-
calc _nested _size _and_alignment method need not be purpose methods with efficient special-purpose ones. In the
called repeatedly. present case, however, the large, monolithic interpreter is re-

Applying the optimization described above yields a substaplaced by special-purpose methods for encoding and decoding.
tial improvement. This result illustrates that the (de)marshaling 2. Using “outlining” to optimize for the frequently executed
overhead of IIOP need not be a limiting factor in ORB perfocase: Outlining [26] is used to remove gaps that are introduced
mance. in the processor cache as a result of branch instructions arising

from error handling code. Processor cache gaps are undesirable
B.5 Optimization Steps 3 and 4: Optimizing for Process@jecause they waste memory bandwidth and introduce useless
Caches no-op instructions in the cache.

Processor caches are small, very fast memory used to signiffhe purpose of outlining is to move error handling code,
icantly speed up operations [25]. To leverage the advamag\ggch is rarely executed, to the end of the function. This en-
offered by the processor cache it is imperative that operatighles frequently executed code to remain in contiguous memory
footprints be small. locations, thereby preventing unnecessary jumps and hence in-

[26] describes several techniques to improve protocol latengjgasing cache affinity by virtue of spatial locality.

One of the primary areas to be considered for improving proto-Spatial locality is a property whereby data closely associated
col performance is to improve the processor cache effectivena¥ih currently referenced data are likely to be referenced soon.
Hence, the optimizations described in this section are aimed’é&cording to the 90-10 locality principle [25], a program exe-
improving processor cache affinity, thereby improving perfofites 90% of its instructions in 10% of its code. If that 10% of
mance. the code demonstrates spatial locality, we can derive substantial
L ) cache affinity, which improves performance. Increased spatial
B.5.a Problem: very large, monolithic interpreter. Section ”"ocality can be achieved by using outlining, which reduces the

B.4 describes optimizations based on precomputation, e"minﬁ‘fﬁ'mber of gaps in the processor cache.

ing waste, and specializing generic methods. These Optimizabutlining is a technique based on principle patterns 1 and 7

tions yield an efflpl_ent, albeit excessively larggpeCode in- ... from Table I, which optimize for the expected case and optimize
terpreter. The efficiency stems from the fact that the monohtk\a&r the processor cache, respectively

structure results in low function call overhead. Recursive func-
tion calls are affordable since the processor cache is alreadyhe optimizations described in this section were applied in

RECEIVER-SIDE OVERHEAD AFTERAPPLYING THE SECOND
OPTIMIZATION (GETTING RID OF WASTE AND PRECOMPUTATION
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21.82

Ewrite Ewrite

B Typecode::traverse

B Typecode::traverse

76.83

Analysis for double s Analysis forBinStruct s
Fig. 19. Sender-side Overhead After Applying the Second Optimization (getting rid of waste and precomputation)

3.78

@ TypeCode::traverse

44.21
B TypeCode::typecode_param
54.93 Eread yp yp _p
B Typecode::traverse
91.94
Analysis for double s Analysis forBinStruct s

Fig. 20. Receiver-side Overhead After Applying the Second Optimization (getting rid of waste and precomputation)

two steps. Since th@uantify  analysis in the previous steps
revealed the receiver as the source of overhead, we optimized
the receiver side to gain greater processor cache effectiveness.
However, the resultin@uantify — analysis forBinStructs
revealed that the sender-side, which waige -bound after the
optimizations in step 2, spends a substantial amount of time
(88%) in the interpreter. Hence we applied the similar opti-
mizations for the cache for the sender side. Specifically, the 2
sender-side processor cache optimizations involve splitting the £
interpreter into smaller, specialized functions that can encodes,
different OMG IDL data types.

T T T

@—@ Baseline TCH

. [=—=shorts 1
4—= longs

A—a chars/octets | |

¥—¥ doubles

X—X structs

bps

Throug

B.5.c Optimization step 3: receiver-side optimizations. Fig-
ures 19 and 20 reveal that the sender is largeije -bound.
In contrast, the receiver spends most of its time in the inter- ]
preter. Therefore, it is appropriate to optimize the receiver-side 0.0 S S
code first to improve processor cache performance. O O o butfor Sive  Kytas 0
The throughput measurements recorded after incorporatin
these optimizations are shown in Figure 21. Figures 2
and 23 illustrate the benefits of the optimizations from step
3 by comparing the throughput obtained fdoubles and
BinStructs , respectively, with those from the previous op-
timization steps.

. 21. Throughput After Applying the Third Optimization (receiver-side pro-
cessor cache optimization)

Figures 24 and 25, and Tables VIl and IX illustrate the re-|| P2 | oL

maining high cost sender-side and receiver-side methods, rg-double write 3,385 512 | 53.21
i indi it TypeCode::traverse 2,449 1,024 | 38.68

spect.l\{ely. These indicate that for primitive types, the cost———— TypeCodo traverse 75571 2008 176 8516
of writing to the network and reading from the network be- write 1,270 512 | 6.37
comes the primary contributor to the run-time costs. These re- TABLE VIII
sults represent a SUbSt_am'al |mprove'ment over the original I&ENDER-SIDE OVERHEAD AFTERAPPLYING THE THIRD OPTIMIZATION
sults presented in Section 111-B.2 and illustrate that IIOP’s mar- (RECEIVER-SIDE PROCESSOR CACHE OPTIMIZATION

shaling overhead need not unduly limit ORB performance. For
BinStruct s, however, the sender-side, which waste -
bound after the optimizations in step 2, spends a substan-
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Fig. 22. Throughput Comparison for Doubles After Applying the Third OptiFig. 26. Throughput After Applying the Fourth Optimization (sender-side pro-

mization (receiver-side processor cache optimization) cessor cache optimization)
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Fig. 23. Throughput Comparison for Structs After Applying the Third OptiFig. 27. Throughput Comparison for Doubles After Applying the Fourth Opti-
mization (receiver-side processor cache optimization) mization (sender-side processor cache optimization)

tial amount of time (88%) in the interpreter. The receiventerpreter into smaller, specialized functions that can encode
spends most of its time in the specialized functions suclifferent OMG IDL data types.
asdecode _sequence (30%), anddecode _array (26%). The throughput measurements recorded after incorporating
Analysis of the receiver-side revealed that the function call ovehese optimizations are shown in Figure 26. Figures 27
head decreased significantly compared to step 2. and 28 illustrate the benefits of the optimizations from step
THe by comparing the throughput obtained fdoubles and
Ilﬁ'@Structs , respectively, with those from the previous op-
timization steps.

Figures 29 and 30, and Tables X and Xl illustrate the re-

B.5.d Optimization step 4: sender-side optimizations.
sender-side processor cache optimizations involve splitting

Data Type Analysis maining high cost sender-side and receiver-side methods, re-
Method Name msec Called % spectivel
double read 3,302 5,688 | 53.21 p Y.
TypeCode::decode _seq 2,897 512 | 45.43
BinStruct CDR::decode _seq 6,666 512 [ 29.61 IV. MINIMIZING FOOTPRINT OFIDL COMPILER
CDR::decode _array 5,839 | 2,096,128 | 25.94
deep free s8q 2350 51711936 GENERATED STUBS AND SKELETONS
read 3,712 6,379 | 16.49 . .
typecode _param 1,150 | 4,200,963 5.11 A. Motivation
deep free _ 712 | 2,007,152| 3.16 L . .
cop Tee ATy A OMG IDL compiler is responsible for generatisgbsand
TABLE IX skeletonshat marshal and demarshal data types, respectively. In
RECEIVER-SIDEOVERHEAD AFTERAPPLYING THE THIRD OPTIMIZATION genera| compiled (de)marshaling achieve higher run-time effi-
(RECEIVER-SIDE PROCESSOR CACHE OPTIMIZATIONS ciency at the cost of increased memory footprint. Conversely,

interpretive (de)marshaling can be used for applications that can
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6.37
@ TypeCode::traverse
38.68 Ewrite .
Ewrite
53.21 B TypeCode::traverse

88.16
Analysis for double s Analysis forBinStruct s
Fig. 24. Sender-side Overhead After Applying the Third Optimization (receiver-side processor cache optimization)

511 316

E CDR::decode_sequence
29.61
16.49 B CDR::decode_array
MEread Odeep_free_sequence
45.53
53.21 B CDR::decode Oread
_sequence
19.36 W TypeCode::typecode_param
R Ddeep_free_array

Analysis for double s Analysis forBinStruct s
Fig. 25. Receiver-side Overhead After Applying the Third Optimization (receiver-side processor cache optimizations)

Eread
Bwrite B CDR::decode_sequence
B CDR::encode_sequence
8775 4574
53.31
54.3
Analysis for double s Analysis forBinStruct s

Fig. 29. Sender-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimization)

549 398 ECDR::d
::decode_sequence
15.27 Ewrite 5.78
335 B CDR::decode_array

B CDR::encode_sequence

Odeep_free_sequence
JCDR::encode_array 21.9

16.9 OTypeCode::typecode_param
Hread

64.93
29.34

DOdeep_free_array

Analysis for double s Analysis forBinStruct s
Fig. 30. Receiver-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimizations)

afford to trade lower efficiency for a smaller memory footprintand skeletons to enhance the optimization alternatives available
Since neither approach is optimal for all distributed embeddealdevelopers of embedded CORBA applications.
multimedia applications, an OMG IDL compiler should produce

stubs and skeletons that can use comp#ad/or interpretive ] )
(de)marshaling. B. Overview of TAO’s IDL Compiler

This section describes the design of TAO's IDL compiler, Figure 31 illustrates the interaction between the key compo-
which can selectively generate compiled and/or interpreted stutents in the TAO’s IDL Compiler. The TAO IDL compiler is
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interface Test_Param{

IDL
Definition

120.0

» . . . short test_short (inshort X);
110.0 f ; iy b .
: @—® Baseline TCP
B— Original 1
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g %—x Sender cache opt DRI VER
2 800 .
=
T 700 g
5 ]
a2 600 E
‘c;n 500 FRONT END :be interface
P —
F 400 R -
2 A :be_operation
20.0 b § ‘ :beﬁinhtive‘ ‘ : be_ar gunent ‘
3
10.0 R 2 Generated
0.0 200 400 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes |
Fig. 28. Throughput Comparison for Structs After Applying the Fourth Opti- -
mization (sender-side processor cache optimization) GIEL MEEES) -
STRATEGY class Test_Param{
Visitor Strategy pudic:
Data Type Analysis SRR virtua GOFBA  Sort
Method Name msec Called % test_short (GIFBA:Short X);
double write 3,522 512 [ 54301 1 4 . -
CDR:encode _seq 2,448 512 | 37.75 ..
) Generated
BinStruct write 24,430 512 | 64.93 Code h
CDR:encode _seq 6,357 512 | 16.90
CDR:encode _arr 5,744 | 2,097,152 | 15.27
TABLE X Fig. 31. Interactions Between Components in TAO's IDL Compiler

SENDER-SIDE OVERHEAD AFTERAPPLYING THE FOURTH OPTIMIZATION
(SENDER-SIDE PROCESSOR CACHE OPTIMIZATION B.1 The Design of TAO’s IDL Compiler Front-end

TAO’s IDL compiler front-end contains the following com-
ponents adapted from the original SunSoft IDL compiler:

based on the freely available SunSoft IDL comfifeont-end, B-1-2 OMG DL parser:. The parser comprisggsac specifi-
with many portability enhancements and with the defects redtion of the OMG IDL grammar. The action for each grammar
moved. The front-end of the compiler parses OMG DL inplﬂ“e invokes methods of the AST node classes to build the AST.
files and generates an abstract syntax tree (AST) that is stoBetl.b Abstract syntax tree generator:. Different nodes of the
entirely in memory. AST correspond to the different constructs of OMG IDL. The
The back-end of TAO’s IDL compiler processes the AST arfgont-eénd defines a base class calfesiT Decl that maintains
generates C++ source code that is optimized for TAO's ligpformation common to all AST node types. Specialized AST
protocol engine. In addition to generating interpreted stubs af@de classes likaST Interface  inherit from this base class,

skeletons, TAO's back-end can also produce compiled stubs &fhown in Figure 32. .
skeletons. In addition, the front-end defines tHdTL Scope class,

which maintains scoping information, such as the nesting level
and each component of the fully scoped name. All AST
4The original SunSoft IDL compiler implementation is available anodes representing OMG IDL constructs that can define scopes,

ftp:/fftp.omg.org/pub/OMG IDL CFEL1.3. such asstructs  andinterfaces , also inherit from the
UTL_Scope class.

—— — B.1.c Driver program:. The driver program directs the parsing
B e e T and AST generation process. It reads an input OMG IDL file
double read 3,376 5,470 | 5331 and invokes the parser and the AST generator to create the in-

TypeCode::decode _seq 2,897 512 | 45.74 .
ST CbR-decode seq 5666 =15 3350 memory AST and pass it to the back-end code generator.
CDR::decode _array 5,839 | 2,096,128 29.34 )
deep free _seq 4,359 512 | 21.90 B.2 The Design of TAO'’s Back-end Code Generator
typecode _param 1,150 | 4,200,963 5.78
(rjead i 1,323 20917,91%52 35-54:39 The original SunSoft IDL compiler front-end parses OMG
eep _lfree _arra) , , Relel] .
P Y ' IDL and generates a corresponding abstract syntax tree (AST).
TABLE XI

To create a complete OMG IDL compiler for TAO, we devel-
oped a back-end for the OMG IDL-to-C++ mapping. TAO’s
IDL compiler back-end uses several design patterns [21], such
as Abstract Factory Strategy and Visitor. As a consequence

RECEIVER-SIDEOVERHEAD AFTERAPPLYING THE FOURTH
OPTIMIZATION (SENDER SIDE PROCESSOR CACHE OPTIMIZATIONS
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Fig. 32. TAO's IDL Compiler AST Class Hierarchy

of using patterns, TAO’s IDL compiler back-end can be reco
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2. Initialize a table describing the operation, including its name,
whether it is one-way or two-way, the number of parameters it
takes, and a pointer to the table described in Step 1.
3. Avariable for the return value, if any, is allocated.
4. A list that holds all the arguments is created and initialized
with the parameters in the same order they are defined in the
IDL definition of the operation.
5. A stub object is retrieved from the object reference on which
this operation is invoked.
6. Thedo_static _call method is invoked on this stub ob-
ject passing it the operation description table and the argument
list

Thedo_static _call method described above is the inter-
face to TAO's interpretive IIOP protocol engine. It takes the
table describing the parameter types and the argument list as pa-
rameters.

The table-driven technique and tle _static _call inter-
face were provided in the original SunSoft IIOP implementa-
tion.> However, since the SunSoft IIOP implementation did not
have an IDL compiler each stub was hand-crafted. In contrast,

figured readily to produce stubs and skeletons that use eitfft TAO IDL compiler automatically generates stubs that use

compiled and/or interpretive (de)marshaling.
The interpretive stubs and skeletons produced by the bagk?2.b Interpreted skeletons:. SunSoft IIOP skeletons use a Dy-
end of TAO’s IDL compiler integrate with TAO’s highly opti- namic Skeleton Interface (DSI) [3] strategy to demarshal param-
mized IIOP interpretive protocol engine. The interpreted stubgers. The basic (non-optimized) algorithm for an interpreted
and skeletons generated by TAO’s IDL compiler are explaineleleton is shown in Figure 34. Each step is described below:

below.

B.2.a Interpreted stubs:.

s A
INTERPRETED STUB
INIT TABLE ENTRIES
¥
) ALLOCATE RETURN
: VARIABLE (IF ANY)
3. CREATE ARGUMENT LIST
]
4. RETRIEVE STUB OBJECT
v
5. INVOKE DO_STATIC_CALL
|| ey
¥
6 RETURN RETURN
: VALUE (IF ANY)
OBJECT REQUEST BROKER

MARSHALING ENGINE

IIOP CDR INTERPRETIVE

i

f

SEND REQUEST

RECEIVE REPLY

Fig. 33. Interpreted Stubs Generated by TAO's IDL Compiler

step is described below:

1. Initialize table entries describing each parameter’s type

The interpreted stubs produced by
TAO's IDL compiler use a table-driven technique to pass param- 1.
eters to TAO's interpretive IIOP (de)marshaling engine. The ba-
sic structure of an interpretive stub is shown in Figure 33. Each

its TypeCode and its parameter passing mode.

interpretive (de)marshaling.

T
DSI SKELETON

CREATE NVLIST
5 HEAP ALLOCATE
: PARAMETERS
3 POPULATE
: NVLIST
4 UNMARSHAL
: PARAMETERS

6 INSERT RETURN
VALUE INANY

OBJECT REQUEST BROKER

[ FiND skeLETON | [BUILD REPLY MSG |
[Fino TarGET oBuECT | [ SEND REPLY MsG |
[ Recewe ReauesT | [ DEALLOC PARAMS |

Fig. 34. Unoptimized Skeletons

1. Create afNVList , which is a list of “name/value” pairs, to
hold the parameters.

2. Heap allocate all thesturn ,inout , andout parameters
since they are marshaled back into the outgoing stream. The
in parameters can be allocated on the run-time call stack of the
skeleton.

3. Add each parameter value to tN&/List using the opera-

\Hgns provided by the ORB’s DSI mechanism.
5We renamed SunSoft [10P#o _call

todo_static _call
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4. Use the DSI operatioarguments to demarshal incoming and operator>> | respectively, to (de)marshal data types

parameters. to/from the underlying CORBA Common Data Representation
5. Make an upcall on the target object, passing it all the dem&EDR) stream. TAO’s ORB Core provides these operators for
shaled parameters. primitive types. TAO's IDL compiler generates these operators

6. Create £ORBA::Any to hold the return value, if any. for user-defined types.

7. Return from the skeleton and let the ORB Core handle theA significant difference between the compiled skeleton and

task of marshaling theeturn , inout , andout parameters, the interpreted skeleton is that no unnecessary heap allocation

which are returned back to the client. is required in the compiled skeleton. This is because a com-
Memory for theinout , out , andreturn values is allo- piled skeleton has static knowledge of the types it (de)marshals.

cated on the heap, which is necessary because these paramigtersover, all (de)marshaling of the parameters occur in the

are marshaled into the outgoing IIOP Reply message after #umpe of the skeleton. In contrast, the interpretive skeletons in

call to the skeleton has returned. Therefore, it is not possitthee DSI strategy require dynamic allocation since they marshal

to allocate the parameters on the run-time stack of the skaleereturn ,inout ,andout parametersinthe OR&fterthe

ton. The heap allocated data structures are owned by the O&fivation record of the skeleton has been destroyed.

and freed using an interpretive strategy similar to the interpretive

(de)marshaling strategy [27]. C. Techniques for Optimizing Generated Stubs and Skeletons

The TAQ IDL compiler, in contrast, produces an optimized As described in Section IV-A, it is imperative that an IDL

version of these skeletons automatically. These optimizations . )
. . : compiler for embedded applications generate stubs and skele-
include reducing the memory allocation overhead and reducin . i 4
) . . . tons with exhibit small memory footprints. Therefore, we de-
the size of the skeleton, as described in Section IV-C. . . L .
vised a technique to reduce the code size in TAO. Our code-size
B.2.c Compiled stubs and skeletons:. The basic structurerefiuction techniques for interpreted stubs/skeletons are guided

a compiled stub is shown in Figure 35. The compiled stulisy the optimization principle patterns shown in Figure XII.

( —
COMPILED STUB Principle Pattern

Factor out all common features

Avoid unnecessary heap allocation

Leverage compile time knowledge of data typgs

1. RETRIEVE STUB OBJECT

)
ALLOCATE RETURN
2 VARIABLE (IF ANY) TABLE Xl

v

OPTIMIZATION PRINCIPLEPATTERNS FORSMALL FOOTPRINT
3. SETUP CDR STREAM STUBS/SKELETONS
)

MARSHAL IN AND

W[N] |

INOUT PARAMETERS
Implementing these optimizations required the addition of
5 1] CALL INVOKE B several features to TAO's ORB Core. In particular, it was nec-
v essary to provide a pair of methods that marshal and demarshal
6. | [aperset INOUT, OUT, parameters while the activation record of the stub and skeleton
¥ is active. This allows parameters to be allocated on the stack
7. SEISER'(“ISAEI)URN instead of from the heap, thereby eliminating dynamic memory
allocation and locking.
T e T T Belpw, we de.sc'rlbe other techniques we applied in TAO'’s IDL
compiler to optimize the generated stubs and skeletons.
’ SEND REQUEST ‘ ’ RECEIVE REPLY ‘

Fig. 35. Compiled Stubs/Skeletons C.1 Optimizing DSI-style Interpretive Skeletons

As shown in Figure 34, each interpretive skeleton is required
algorithm is very similar to the stub and works as follows:  to create arNVList and populate it with parameters. In ad-

1. Retrieve the stub object from the object reference. dition, memory is allocated from the heap rather than on the
2. Create a CDR stream object into which the parameters wilin-time stack for thénout , out , andreturn  types. This is

be marshaled. necessary since the marshaling of these parameters in the outgo-
3. The CDR stream object is initialized with the details of thi@g stream takes place after the call to the skeleton has returned.
receiving endpoint. Applications using the DSI must comply with the approach

4. Insert each parameter into the stream in the same order thlegwn in Figure 34. However, the ORB Core can be modified to
they are defined in the IDL description. provide the necessary operations that is used by the IDL gener-
5. Send the parameters and wait for return values. ated code. Applications cannot directly access these operations
6. Demarshal all theeturn , inout , andout parameters since they are protected.

and return the results to the client. Close scrutiny of early versions of TAO’s IDL compiler-

The compiled stubs and skeletons use overloaded Cgenerated skeleton code revealed that each skeleton created an
iostream insertion and extraction operatases, operator<< NVList and populated it with parameters. Similarly, the return
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value was stored in @ORBA::Any data structure. However,D.2 Profiling Tools
these common features can be factored out by TAO’s ORB Core’I’he code size information for various methods reported in

Based on our observations, we implemented a table-driv€Q.(ion |V-D is obtained using the GNabjdump binary util-
technique similar to the one used in the interpretive stut?ﬁ, on SunOS 5.5.1 and Linux. On Window NT, we used the
This table-dr_iven ap_proach defin_es_two new inte_rfaces in TAOd%mpbin binary utility. In both cases, we used thisasmand
(de)marshaling engine that are similar todts static - call |i,anymbersoptions to disassemble the object code and insert
method. We could not reuse thio static  call method |ine nympers in the assembly listing, respectively. Code size for
since these two interfaces were required on the server-side fggiqual stubs/skeletons is reported by counting the total num-
quest” object. The space-efficient skeleton is shown in Figa, of pytes of assembly level instructions produced. In addi-
ure 36. tion, we used the UNDétrip  utility to measure the total size

TR of the object code after removing the symbols and other debug

|nf0rmat|0n'. ' ' N '
1 | [_paraveTers The profile information for the empirical analysis was ob-
. UNVARSHAL tained using theQuantify  performance measurement tool.
‘ PARAETERS L Quantify  analyzes performance bottlenecks and identifies
N sections of code that dominate execution time. Unlike tradi-
tional sampling-based profilers, such as the UNpfof tool,
4. paRSHAL Quantify  reports results without including its own overhead.
PARAMETERS . .
— In addition,Quantify measures the overhead of system calls
5. k and third-party libraries without requiring access to source code.
| D.3 Parameter Types for Stubs/Skeletons
[crenteNVLIST | We defined arinterfacein OMG IDL called Param_Test
POrUATENVLSST shown below.
interface Param_Test
/I Primitive types.
OBECTREQUESTBROKER short test_short
(in short s1,
Fig. 36. Optimized DSl-interpretive Skeletons inout short s2,

out short s3);

The main benefit of the table-driven technique is that mar-// Sequences and typedefs.
shaling of outgoing parameters can occur while the activationYPedef sequencesstring> StrSeq;
record on the run-time stack frame of the skeleton is still valid. sirseq test_strseq
As aresult, théenout , out , andreturn parameters need not (in StrSeq sl,
be allocated from the heap. Instead, they can be allocated on the g‘lﬁ“gfgfgqsfﬁ'
call stack using the same technique that TAO’s compiled skele-
tons uses. In addition, if any outgoing types are mapped into// other data types and operations
C++ pointers, we can directly invoke the Ceelete  opera- /I defined in a similar way

tor rather than interpretively deallocating the memory.

D. Benchmarks Comparing Interpreted and Compiled (De)marshiifR§ operations defined on this interface test the four pa-
rameter passing modes: (i), (2) inout , (3) out , and (4)

This section descr.ibes our experiments_ comparing the sigé,m  for a wide range of data types. The data types we
and performance of interpreted anq compiled stubs and skgl&sied include primitives such asort s, and complex data
tons generated by TAO's IDL compiler. types such as unbounded strings, fixed size structures, variable
sized structures, nested structures, sequence of strings, and se-
guence of structures. All operations are two-way. Sequences are

The experiments reported in this section were conducted limited to a length of 9 elements and strings contain 128 charac-
three different combinations of hardware and software, inclugrs,
ing:

« An UltraSPARC-II with two 300 MHz CPUs, a 512 MbyteD.4 Methodology
RAM, running SunOS 5.5.1, and C++ Workshop Compilers ver- we measured the average throughput in terms of number

D.1 Hardware and Software Platforms

sion 4-2[ . . _ of calls made per second by invoking each operation of the
» A Pentium Pro 200 with 128 Mbyte RAM running Windowsparam Test interface 2,000 times. The servant object im-
NT 4.0 and the Microsoft Visual C++ 5.0 compiler; plements each operation by copyingiits parameter into the

« A Pentium Pro 180 with 128Mb RAM running Redhat Linu)ﬂnout , out , and return parametersl For Comp|ex data

4.2 kernel recompiled for SMP S.upport and LinuxThreads 0.§1.pES, such astruct _sequence , this overhead becomes
The GNU g++ 2.7.2.1 C++ compiler was used. significant compared to the others.



We are primarily interested in measuring the performance of
the stubs and skeletons. Therefore, all tests ran in loopback
mode, which avoided network transfer overhead. However, we
do measure OS effects like paging, context switching, and in-
terrupts. In addition, delays incurred due to the run-time costs
of the implementation of the operation by the servant object are
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1400.0

Compiled
Interpreted

1200.0

1000.0

800.0

also measured.

The code size of individual stubs and skeletons is mea- 4000 |
sured using the GNU binary utilitybjdumpand Windows NT's

dumpbinas explained in Section IV-D.2.

D.5 Comparing Interpreted versus Compiled (De)marshaling & © & £ & &

This section describes the results comparing the performance §
and code size of stubs and skeletons using interpretive and com-

600.0 -

Calls per second

200.0 -

0.0

Fig. 39. Linux Performance

piled form of (de)marshaling. As explained in Section I1V-D.4,

each operation of thBaram_Test interface is invoked 2,000

times. The tests are performed in a loopback mode to avoid limdicate that the two-way throughput of the interpreted stubs
necessary network delays. The two-way average throughputinti skeletons is within 75 to 95% of the compiled stubs for
invoking the operations is reported. First, we report the perfgsrimitive types such ashorts , and complex types, such as

mance results followed by comparison of the code sizes.
Figures £omplex types such amequence of string s, sequence

D.5.a Comparing twoway average throughput:.

unbounded strings and fixed size structs. However, for other

38, and 39 depict the two-way average throughput in terms QJfStruct s, variable-sizedtruct s, and nestedtruct s,

calls made per second for invoking different methods of tfige two-way throughput for interpreted stubs/skeletons is com-
Param._Test for 2.000 iterations for the UltraSPARC. a pdParable or exceeds that of the compiled stubs. This is due to
running NT, and PC running Linux, respectively. These figuré'%e optimizations we developed for the TAO ORB core and its
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Fig. 38. NT Performance

interpretive IIOP (de)marshaling engine.

As mentioned in Section IV-D.4, these measurements include
the effects of the OS, as well as the run-time costs of the op-
eration implementations. These run-time operation implemen-
tation costs are more significant for thest _struct _seq
case, where eachkequence of struct s has 9 variable-
sized structs. Each variable-sizettluct  element in turn has
two string members, each of length 128, anseguence of
string member. This member in turn hass@ing ele-
ments, each of length 128.

Figures 37, 38, and 39 indicate that the two-way through-
put for complex user-defined data types such as variable-sized
struct s and sequences is significantly poorer compared to the
primitive types irrespective of the type of (de)marshaling used.
This is due to the costs of copying tie parameter into the
inout , out , andreturn in the server-side implementation
of the operation. Irrespective of the type of (de)marshaling used
by the stubs and skeletons, however, the implementation of the
operations is same in both cases. Thus, our comparisons of two-
way throughput are valid.

The blackbox results presented in Figures 37, 38, and 39
do not convey the effects of the OS or the run-time costs
of the operation implementations. To pinpoint precisely the
run-time costs of the stubs and skeletons in (de)marshaling,
we configured our profiling tooQuantify  to measure only
these costs. Table XIll illustrates the Quantify analysis for the
test _fixed _struct andtheest _strseq testsonthe Ul-
traSPARC platforn.

Table XllI indicates that fofixed _struct the compiled
stubs and skeletons accounted for 47.76 msec compared to
283.56 msec required for the interpretive stubs and skeletons.

6We did not have Quantify for Linux and Windows NT.
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Data Type Role Type Interpreted Compiled Operator Size
msec | called msec | called operator<< (char *) 192

fixed _struct server | marshal 84.21 6,000 13.76 6,000 operator>> (char *) 240
demarshal| 57.29 | 4,000 9.93 | 4,000 operator<< (fixed\_struct) 280

client | marshal 56.17 | 4,000 9.17 | 4,000 operator>> (fixed\_struct) 256

demarshal| 85.89 | 6,000 14.90 | 6,000 operator<< (strseq) 312

strseq server | marshal 335.46 | 6,000 | 279.00 | 6,000 operator>> (strseq) 264
demarshal 98.52 4,000 | 219.00 | 4,000 operator<< (var\_struct) 176

client marshal 95.43 4,000 68.76 4,000 operator>> (var\_struct) 192

demarshal| 256.24 | 6,000 | 665.71 | 6,000 operator<< (nested\_struct) 38

operator>> (nested\_struct) 88

operator<< (struct\_seq) 208

TABLE XIll operator>> (struct\_seq) 208

WHITEBOX ANALYSIS OF PERFORMANCE OFSTUBS/SKELETONS ON
ULTRASPARC TABLE XIV

SIZES OFOVERLOADED OPERATORS FORCOMPILED STUBS/SKELETONS
ON ULTRASPARC

This result explains why the compiled (de)marshaling is signif-
icantly better than the interpretive (de)marshaling for fixed size

. . Stub name [ Interpreted size [ Compiled size
structs. Conversely, f@equence s ofstring s, the compiled Stub | table | total || stb | helper | total
stubs and skeletons required 1,232.47 msec compared to only testshort 320 88 | 408 || 1112 1112
785.65 msec by the interpretive stubs and skeletons. This resuftorooting 1 952 | 88 | 240 | 1000 | 232 | l4%
explains why the interpretive stubs perform better than the com{ teststrseq 496 | 88 | 584 || L1120 576 | 1,696
piled stubs for all the data types that aequence s or have O e oo 1252 | 2120 308 | a8
sequence s as their members. teststruct_seq 496 | 88 | 584 || LI20| 416 | 1536

TAO'’s interpretive IIOP (de)marshaling engine is highly op-
timized for (de)marshalingequence s. It defines a generic TABLE XV
basesequence class with virtual methods. For every user- STUB SIZES ONULTRASPARC

definedsequence , the TAO IDL compiler generates a C++
class that inherits from this basequence class. In accor-
dance with the IDL-to-C++ mapping, the C++ class generated
for thesequence s overrides all the methods of the base clas@ested _struct s helper calls the helper farar _struct
The derived class does not define any data members since #gydo not add the latter's size to the size computation of the
are already defined in the base class. stub/skeleton ofiested _struct

TAO's IlOP interpreter (de)marshasequence s by invok- Figures 40 and 41 illustrate this information graphically for
ing methods on the base class. At run-time, these virtual metibg UltraSPARC platform. The helper operators for primitive
calls are invoked on the appropriate derived class. This de-
sign significantly enhancesequence (de)marshaling perfor- 1800.0 F . Compiled
mance by allowing TAO to use compile-time knowledge of the 1600.0 imerpreted
sequence and its element type for decoding. Thus, there is no 1400.0
need to interpretively decode tlsequence using expensive
typecode traversals.

1200.0

1000.0
D.5.b Comparing code size for stubs and skeletons:. Below, 800.0
we describe the code size measurements we conducted for stubs 600.0
and skeletons. As mentioned in Section IV-D.2, we used the
GNU hinary utility calledobjdump and NT'sdumpbin to
measure the individual code sizes. Table XIV depicts the code
sizes for the overloaded operators used for (de)marshaling user-

Size in bytes

400.0

200.0

0.0

defined IDL data types. The code size of tfested _struct s £ 6?@0\ s «9‘& b?\*"é &x?@&
is only 88 bytes since internally it calls the overloaded operator S < & a
forvar _struct . Fig. 40. UltraSPARC Stub Sizes
Tables XV and XVl illustrate the code sizes for the stubs and
skeletons, respectively. types are not generated by the IDL compiler since they are pro-

We account for the size of the tables in the size of the stubisled by the ORB core. Therefore, they are not shown.
and skeletons using interpreted (de)marshaling. Therefore, th&ables XV and XVI indicate that the stubs for interpretive
total size of the stub/skeleton is the size of the stub/skeleton gdd)marshaling are much smaller than the ones for compiled
the size of the statically allocated tables. (de)marshaling. As shown in Section IV-D.6, the interpretive

For the compiled (de)marshaling, we account for the size stlub sizes are-26-45% of the size of the compiled stubs. As
helper overloaded operator methods used to (de)marshal uskown in Section IV, in addition to explicitly (de)marshaling pa-
defined data types. Since these helper methods are not inlineddgeters, the compiled stub must initialize a GIOP/IIOP request
the compiler, we account for them only once. Thus, although theessage and invoke it.
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Stub name [ Interpreted size [ Compiled size operation Performance | Stub size | Skeleton size
skel | table | total skel | helper total test _short 85.48 36.69 97.06
testshort_skel 440 88 528 544 N/A 544 test _ubstring 85.12 30.73 57.14
testubstring_skel 552 88 640 688 432 | 1,120 test _fixed _struct 74.96 26.21 50.17
test fixed_struct_skel 480 88 568 584 536 | 1,120 test _strseq 106.66 34.43 61.26
teststrseqg.skel 848 88 936 952 576 | 1,528 test _var _struct 99.20 39.25 66.66
testvar_struct_skel 680 88 768 784 368 | 1,152 test _nested _struct 95.77 45.06 80.00
testnestedstruct_skel 680 88 768 784 176 960 test _struct _seq 107.69 38.02 68.42

teststruct_seq.skel 848 88 936 952 416 | 1,368

TABLE XVII
TABLE XVI

COMPARISON OFINTERPRETIVE WITHCOMPILED CODE ON

SKELETON SIZES ONULTRASPARC ULTRASPARCIN PERCENTAGES

1800.0 [ . Compiled
1600.0 imerpreted parable, though the interpreted stubs wer9% the size of the

1400.0 compiled stubs.

12000 D.7 Benefits of TAO’s Interpretive Stubs and Skeletons

1000.0
This section illustrates how the efficiency and small footprint

of TAO’s interpretive stubs and skeletons can be useful in imple-
menting a number of important CORBA services on memory-
constrained systems.

Table XVIII depicts the CORBA Obiject Services provided in
the TAO release. We provide details on the number of user-
defined structures, sequences, and total number of operations
and/or attributes defined by their IDL definitions. We have not

Fig. 41. UltraSPARC Skeleton Sizes reported other data types, such as unions, enums, and exceptions
defined by these IDLs.
As shown in Sections IV and IV-D, the total size of all the

For interpretive stubs, GIOP/IIOP request processing is pefubs/skeletons using compiled form of (de)marshaling will ex-
formed by thedo_static _call method in TAO's ORB Core. ceed that of interpretive (de)marshaling as the number of opera-
This method is an interpreter for stubs generated staticaliyns and user-defined types increase.
by TAO’s IDL compiler. The size of skeletons for compiled Taple XVIII shows examples of standard CORBA Object Ser-
(de)marshaling is relatively smaller than the compiled stubges, such as the Trading service and Naming service, as well as
since theServerRequest  object is already available. several services supported by TAO, such as a real-time Schedul-

The overloaded operators for primitives are provided by thiey service [8]. As shown in the table, the IDL definitions for
ORB Core and no extra code is generated. Therefore, the skele-

800.0

Size in bytes

600.0

400.0

200.0

0.0

ton code size for primitives likehort s andlong s are com- Service Structures | sequences| op/attributes

parable for interpretive and compiled (de)marshaling. However, [ Trading 11 7 63

for non-primitive data types, the skeleton code size for the in- | AV Streams 2 3 50

terpreted (de)marshaling is between 50-80% of the compiled E:Ic;r;gty g g fg
7

form. Naming 2 2 13

] Scheduling 4 4 10

D.6 Summary of Comparisons Logging 1 0 6

. . . . LifeCycle 0 1 6
This section summarizes the results of Sections IV-D.5.a and

IV-D.5.b. Table XVII illustrates how interpreted stubs and TABLE XVIIl

skeletons compared with the cgmplled Versions f(,)r ,the Ultrﬁ_UMBER OF OPERATIONS ANDUSER-DEFINED TYPES IN STANDARD OMG

SPARC platform (all values are in percentages). Similar results SERVICES

are observed for the other two platforms.
Our results comparing the performance of the compiled and

interpretive stubs indicate that on an average, the Interpretiy@se services define a very large number of operations and/or

stubs perform 86% for primitive types, 75% for fixed size SIUGitributes. The total size of stubs and skeletons using compiled

0 .
tures, and over 100% for data types wwhqugnce s as well _(deymarshaling is significantly greater than that of interpretive
as the compiled stubs. However, the code size for user-defi 8 )marshaling

types for interpreted stubs was 26-45% and for interpreted ske e addition, for every user-defined type, the compiled form

tonswa§ 50-80% of_th§_5|ze of the compiled StUb.S and skelet%ﬁr produce overloaded operators to (de)marshal these types.
respectively. For primitive types, the skeleton sizes were COM:’ chown in Section IV-D, the performance of the inter-

"The results of code size measurements for NT and Linux are not shown Wﬁted Stqb/SkEIeton strategy is comparable th or eX_CeEds’
lack of space. However, the results are similar to those for the UltraSparc. the compiled strategy. However, the code size for inter-
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preted stubs/skeletons is much smaller than the compiledt Moving from generic to specialized functionality

stubs/skeletons. [35] describes a facility called fast buffers (FBUFS). FBUFS
combines virtual page remapping with shared virtual memory
to reduce unnecessary data copying and achieve high through-
Techniques for optimizing communication middleware is gsut. This optimization is based on Principle Pattern 2, which
emerging field of study. Our research on CORBA focuses on dpcuses oreliminating gratuitous wastand Principle Pattern 3,
timizing communication middleware at multiple protocol layerg/hich replaces generic schemes with efficient, special purpose
and multiple levels of abstraction including the I/O subsystemnes We applied these principle patterns for I1OP in Section IlI-
communication protocols, and higher-level CORBA implemeiB.4 where we incorporated tistruct _traverse  logic and
tation itself. This section compares our research on TAO with réome of thedecoder logic into theTypeCode interpreter.
lated work on optimizing protocol implementations, generating
efficient stubs for (de)marshaling, and evaluating performandé Improving cache-affinity

of OO middleware. [26] describes a scheme called “outlining” that when used im-
proves processor cache effectiveness, thereby improving perfor-
mance. We describe optimizations for processor cache in Sec-
This section describes results from existing work on protoctibn 111-B.5.

optimization based on one or more of the principle patterns in
Table I. A.6 Efficient demultiplexing

V. RELATED WORK

A. Related Work on Optimization Principle Patterns

Demultiplexing routes messages between different levels of
functionality in layered communication protocol stacks. Most

[28] describes a technique callbdader predictionthat pre- conventional communication models, such as the Internet model
dicts the message header of incoming TCP packets. This teghthe 1ISO/OSI reference model, require some form of multi-
nique is based on the observation that many members in fiexing to support interoperability with existing operating sys-
header remain constant between consecutive packets. Thistetms and protocol stacks. In addition, conventional CORBA
servation led to the creation of a template for the expected packdtBs utilize several extra levels of demultiplexing at the ap-
header. The optimizations reported in [28] are based on Pringlication layer to associate incoming client requests with the ap-
ple Pattern 1, whicloptimizes for the common caard Princi- propriate servant and operation. Layered multiplexing and de-
ple Pattern 3, which iprecompute, if possibleNe present the multiplexing is generally disparaged for high-performance com-
results of applying these principle patterns to optimize IIOP imunication systems [36] due to the additional overhead incurred

A.1 Optimizing for the expected case

Sections IlI-B.3, llI-B.4, and I1I-B.5. at each layer. [34] describes a fast and flexible message demulti-
S . plexing strategy based on dynamic code generation. [37] evalu-
A.2 Eliminating gratuitous waste ates the performance of alternative demultiplexing strategies for

[29], [30], [31] describe the application of an optimizatiof€@-time CORBA. _
mechanism calledntegrated Layer ProcessingLP). ILP is Our results for latency measurements have shown that with
based on the observation that data manipulation loops that opf&fr€asing number of servants, the latency increases. This is
ate on the same protocol data are wasteful and expensive. PRE!Y due to the additional overhead of demultiplexing the re-

ILP mechanism integrates these loops into a smaller numbefigesSt to the appropriate operation of the appropriate servant.

loops that perform all the protocol processing. The ILP opt-i[AO uses a de-layered demultiplexing architecture [37] that can

mization scheme is based on Principle Pattern 2, whéth rid select op.timal demu]tiplexing strategigs based on compile-time
of gratuitous wasteWe demonstrate the application of this prin@nd run-time analysis of CORBA IDL interfaces.

ciple pattern to IIOP in Section IlI-B.4 where we eliminated u
necessary calls to thdeep _free method, which frees primi-
tive data types. [31] cautions against improper use of ILP sinBel Interpretive versus compiled forms of (de)marshaling

this may increase processor cache misses. SunSoft IIOP uses an interpretive (de)marshaling engine. An
alternative approach is to usempiled(de)marshaling. A com-
piled (de)marshaling scheme is basedagoriori knowledge of
Packet filters [32], [33], [34] are a classic example of Princthe type of an object to be marshaled. Thus, in this scheme there
ple Pattern 6, which recommengassing information betweenis no necessity to decipher the type of the data to be marshaled
layers A packet filter demultiplexes incoming packets to that run-time. Instead, the type is known in advance, which can be
appropriate target application(s). Rather than having demuked to marshal the data directly.
tiplexing occur at every layer, each protocol layer passes cer{38] describes the tradeoffs of using compiled and interpreted
tain information to the packet filter, which allows it to identify(de)marshaling schemes. Although compiled stubs are faster,
which packets are destined for which protocol layer. We afitey are also larger. In contrast, interpretive (de)marshaling is
plied Principle Pattern 6 for IIOP in Section 11I-B.4 where weslower, but smaller in size. [38] describes a hybrid scheme that
passed th@ypeCode information and size of the element typecombines compiled and interpretive (de)marshaling to achieve
of asequence to theTypeCode interpreter. Therefore, the better performance. This work was done in the context of the
interpreter need not calculate the same quantities repeatedlyASN.1/BER encoding [39].

"B. Related Work on Presentation Layer Conversions

A.3 Passing information between layers
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According to the SunSoft IIOP developers, interpretiveote side. Instead, IDLs are more restrictive and disallow such
(de)marshaling is preferable since it decreases code size aodstructs. CORBA IDL has the added advantage that it resem-
increases the likelihood of remaining in the processor caclides C++ in many respects and a well-defined mapping from the
As explained in Section VI, we are currently implementing DL to C++ has been standardized.

CORBA IDL compiler [40] that can generate compiled stubs

and skeletons. Our goal is to generate efficient stubs and sk&e3 Application level framing and integrated layer processing
tons by extending optimizations provided in USC [41] and for communication subsystems

“Flick” [24], which is a flexible, optimizing IDL compiler. Flick  Conventional layered protocol stacks and distributed object
uses an innovative scheme where intermediate representatigfifdleware lack the flexibility and efficiency required to meet
guide the generation of optimized stubs. In addition, due to thige quality of service requirements of diverse applications run-
intermediate stages, itis possible for Flick to map different |D|.[ﬁng over high-speed networks. One proposed remedy for this
(e.9.,CORBA IDL, ONC RPC IDL, MIG IDL) to a variety of problem is to usépplication Level FramindALF) [29], [45],

target languages such as C, C++. [46] andIntegrated Layer Processin@_P) [29], [30], [43].
) . ILP ensures that lower layer protocols deal with data in units
B.2 Presentation layer and data copying specified by the application. ILP provides the implementor with

The presentation layer is a major bottleneck in higtihe option of performing all data manipulations in one or two
performance communication subsystems [29]. This layer tramategrated processing loops, rather than manipulating the data
forms typed data objects from higher-level representationsgequentially. [31] have shown that although ILP reduces the
lower-level representations (marshaling) and vice versa (demawmber of memory accesses, it does not reduce the number of
shaling). In both RPC toolkits and CORBA, this transformatioche misses compared to a carefully designed non-ILP imple-
process is performed by client-side stubs and server-side skéxntation.
tons that are generated by interface definition language (IDL)A major limitation of ILP described in [31] is its applicability
compilers. IDL compilers translate interfaces written in an IDLo only non-ordering constrained protocol functions and its uses
(such as Sun RPC XDR [42], DCE NDR, or CORBA CDR [3]pf macros that restrict the protocol implementation from being
to other forms such as a network wire format. A significastynamically adapted to changing requirements.
amount of research has been devoted to developing efficient stuBs shown by our results, CORBA ORBs suffer from a num-
generators. We cite a few of these and classify them as belower of overheads that includes the many layers of software and

e Annotating high level programming languag&e Uni- large chain of function calls. We plan to use integrated layer pro-
versal Stub Compiler (USC) [41] annotates the C programmifgssing to minimize the overhead of the various software layers.
language with layouts of various data types. The USC stub coWfe are developing a factory of ILP basgdine  functions
piler supports the automatic generation of device and protoddat are targeted to perform different functions. This allows us
header marshaling code. The USC tool generates optimizetpalynamically link required functionality as the requirements
code that automatically aligns data structures and performs ridtange and yet have an ILP-based implementation.
work/host byte order conversions.

e Generating code based on control flow analysis of in-
terface specification{38] describes a technique of exploiting The embedded multimedia industry is growing rapidly and
application-specific knowledge contained in the type specifidaand-held devices, such as PIMs, Web-phones, Web-TVs, and
tions of an application to generate optimized marshaling codalm computers, running multimedia applications, such as
This work tries to achieve an optimal tradeoff between inteMIME-enabled email and Web browsing, are becoming ubig-
preted code (which is slow but compact in size) and compileitous. Ideally, these embedded multimedia applications can be
code (which is fast but larger in size). A frequency-based rankeveloped using standard middleware components like CORBA,
ing of application data types is used to decide between intesther than building them from scratch. However, stringent con-
preted and compiled code for each data type. Our implemengéraints on the available memory in embedded systems impose
tions of the stub compiler will be designed to adapt accordirgstringent limit on the footprint of the middleware, particularly
to the runtime access characteristics of various data types #émelstubs and skeletons generated by CORBA IDL compilers.
methods. The runtime usage of a given data type or method caihis paper illustrates the benefits of applying optimization
be used to dynamically link in either the compiled or the inteprinciple patterns to improve the performance of CORBA Inter-
preted version. Dynamic linking has been shown to be use@RB Protocol (IIOP) middleware substantially. The principle
for mid-stream adaptation of protocol implementations [43]. patterns that directed our optimizations inclug&) optimizing

e Using high level programming languages for distributeor the common case, (2) eliminating gratuitous waste, (3) re-
applications: [44] describes a stub compiler for the C++ lanplacing general-purpose methods with efficient special-purpose
guage. This stub compiler does not need an auxiliary interfazees, (4) precomputing values, if possible, (5) storing redundant
definition language. Instead, it uses the operator overloadstgte to speed up expensive operations, (6) passing information
feature of C++ to enable parameter marshaling. This approdogtween layers, (7) optimizing for processor cache affinity, (8)
enables distributed applications to be constructed in a straigfatetoring out common tasks to reduce footprint, and (9) avoid-
forward manner. A drawback of using a programming language heap allocation as much as possible.
like C++ is that it allows programmers to use constructs (such asTable XIX summarizes the problems encountered, the solu-
references or pointers) that do not have any meaning on thetiens we applied, and the optimization principle patterns that

VI. CONCLUDING REMARKS
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[ Problem | Solution | Principle Pattern || an optimizing code generation back-end added to the SunSoft
HighﬂO}/erheadlof ﬁ++inline Optimize for IDL compiler front end. These generated stubs and skeletons
o roduenty ints common case transform C++ methods into/from CORBA requests via our op-
Lack of supportfor | C preprocessor Optimize for timized 1IOP implementation.
aggressive inlining macros common case
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