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Abstract

The CORBA Event Service provides a flexible model for asyn-
chronous and group communication among distributed and
collocated objects. However, the standard CORBA Event Ser-
vice specification lacks important features required by appli-
cations with real-time requirements, such as low latency, pre-
dictability, event filtering, priority, and event correlation. This
paper describes the design and performance of an object-
oriented, real-time implementation of the CORBA Event Ser-
vice that is designed to meet these requirements.

This paper makes four contributions to the design and per-
formance measurement of object-oriented real-time systems.
First, it illustrates how to extend the CORBA Event Service
so that it is suitable for real-time systems. These extensions
support low latency, periodic rate-based event processing and
efficient event filtering and correlation. Second, it describes
how to develop object-oriented event dispatching and schedul-
ing mechanisms that can provide real-time guarantees. Third,
it describes how to distribute the Event Service effectively and
provide low latency for collocated suppliers/consumers. Fi-
nally, the paper presents benchmarks that empirically demon-
strate the predictability, low latency, and high utilization of
our real-time Event Service.

Keywords: Real-time CORBA event systems, object-
oriented communication frameworks.

1 Introduction

There is a widespread belief in the embedded systems com-
munity that object-oriented (OO) techniques are not suitable
for real-time systems. However, many real-time application
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domains, such as avionics, telecommunications, process con-
trol, and distributed interactive simulation, can leverage the
benefits of flexible and open distributed object computing ar-
chitectures, such as those defined in the CORBA specification
[1]. If these architectures can be implemented in an efficient
and predictable manner, then their benefits make them very
compelling for real-time systems.

In this paper, we describe the design and performance of a
real-time Event Service, which is a key CORBA-based archi-
tecture for push-driven real-time event systems. Our results
desmonstrate that the efficiency and predictability of our real-
time Event Service is sufficient for applications in the domain
of real-time systems such as avionics mission computing [2]
and high-speed network monitoring [3].

This paper also empirically evaluates the dynamic binding
properties of OO programming languages like C++. Histori-
cally, dynamic binding has been viewed as antithetical to real-
time systems, which require deterministic execution behavior
and low latency. However, on modern platforms, compiler op-
timizations can reduce the cost of dynamic binding to a negli-
gible amount.

This paper is organized as follows: Section 2 outlines the
CORBA reference model, the CORBA Event Service, and re-
lated work; Section 3 describes how the CORBA Event Ser-
vice model can help to simplify application development in
real-time domains like avionics; Section 4 discusses the real-
time extensions we added to the CORBA Event Service; Sec-
tion 5 outlines the OO framework for real-time event dis-
patching and scheduling that forms the core of TAO’s Real-
time Event Service; Section 6 shows the results of several
benchmarks performed on our implementation, under different
workloads using Solaris real-time threads; Section 7 discusses
our experiences using OO techniques in a real-time context;
and Section 8 presents concluding remarks.
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2 Background

This section outlines the CORBA reference model, the
CORBA Event Service, and compares this paper with related
work.

2.1 Synopsis of CORBA

CORBA is a distributed object computing middleware stan-
dard being defined by the Object Management Group (OMG).
CORBA is designed to support the development of flexible
and reusable distributed services and applications by (1) sep-
arating interfaces from (potentially remote) object implemen-
tations and (2) automating many common network program-
ming tasks, such as object registration, location, and acti-
vation; request demultiplexing; framing and error-handling;
parameter marshalling and demarshalling; and operation dis-
patching.

Figure 1 illustrates the primary components in the OMG
Reference Model architecture [4]. At the heart of the
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Figure 1:OMG Reference Model Architecture

OMG Reference Model is theObject Request Broker(ORB).
CORBA ORBs allow clients to invoke operations on target ob-
ject implementations without concern for where the object re-
sides, what language the object is written in, the OS/hardware
platform, or the type of communication protocols and net-
works used to interconnect distributed objects [4].

Our prior work on CORBA explored several dimensions of
real-time ORB endsystem design including real-time schedul-
ing [5], real-time request demultiplexing [6], real-time I/O
subsystem integration [7], and real-time concurrency and con-
nection architectures [8]. This paper extends our previous
work [2] on real-time extensions to theCORBA Event Service
by showing how to distribute the Event Service without incur-
ring extra overhead for collocated supplier/consumer pairs and
presenting benchmarks for a federated Event Service configu-
ration.

2.2 Synopsis of the CORBA Event Service

Many distributed applications exchange asynchronous re-
quests usingevent-basedexecution models [9]. To support
these common use-cases, the OMG defined a CORBA Event
Service component in the CORBA Object Services (COS)
layer in Figure 1. The COS specification [10] presents archi-
tectural models and interfaces that factor out common services
for developing distributed applications.

The CORBA Event Service definessupplierandconsumer
participants. Suppliers generate events and consumers process
events received from suppliers. In addition, the CORBA Event
Service defines anEvent Channel, which is a mediator [11]
that propagates events to consumers on behalf of suppliers.

The CORBA Event Service model simplifies application
software by allowing decoupled suppliers and consumers,
asynchronous event delivery, and distributed group commu-
nication [12]. In theory, this model seems to address many
common needs of event-based, real-time applications. In prac-
tice, however, the standard CORBA Event Service specifica-
tion lacks other important features required by real-time ap-
plications such asreal-time event dispatching and scheduling,
periodic event processing, andefficient event filtering and cor-
relation mechanisms.

To alleviate the limitations with the standard CORBA Event
Service, we have developed aReal-time Event Service(RT
Event Service) as part of the TAO project [5] at Washington
University. TAO is a real-time ORB endsystem that provides
end-to-end quality of service guarantees to applications by
vertically integrating CORBA middleware with OS I/O sub-
systems, communication protocols, and network interfaces.
Figure 2 illustrates the key architectural components in TAO
and their relationship to the real-time Event Service.

TAO’s RT Event Service augments the CORBA Event Ser-
vice model by providing source-based and type-based filter-
ing, event correlations, and real-time dispatching. To facil-
itate real-time scheduling policies, such as rate monotonic
(RMS) [13] and maximum urgency first (MUF) [14], TAO’s
RT Event Channels can be configured to support various
strategies for priority-based event dispatching and preemp-
tion. This functionality is implemented using TAO’s real-time
dispatching mechanism that coordinates with its system-wide
real-time Scheduling Service [5].

TAO’s RT Event Service runs on real-time OS platforms
such as VxWorks, LynxOS, and CHORUS/ClassiX, which
provide features and performance suited to real-time systems.
General-purpose operating systems like Windows NT and So-
laris 2.x also provide real-time threads, though they lack cer-
tain features required for hard real-time systems [15, 16].
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Figure 2:TAO: An ORB Endsystem Architecture for High-
Performance, Real-time CORBA

2.3 Related Work

Conventional approaches to quality of service (QoS) enforce-
ment have typically adopted existing solutions from the do-
main of real-time scheduling, [13], fair queuing in network
routers [17], or OS support for continuous media applications
[18]. In addition, there have been efforts to implement new
concurrency mechanisms for real-time processing, such as the
real-time threads of Mach [19] and real-time CPU scheduling
priorities of Solaris [16].

However, QoS research at the network and OS layers has
not necessarily addressed key requirements and usage charac-
teristics of distributed object computing middleware [5]. For
instance, research on QoS for network infrastructure has fo-
cused largely on policies for allocating bandwidth on a per-
connection basis. Likewise, research on real-time operat-
ing systems has focused largely on avoiding priority inver-
sions and non-determinism in synchronization and scheduling
mechanisms. In contrast, the programming model for develop-
ers of OO middleware focuses on invoking remote operations
on distributed objects. Determining how to map the results
from the network and OS layers to OO middleware is the main
focus of our research.

There are several commercial CORBA-compliant Event
Service implementations available from multiple vendors,
such as Expersoft, IONA, and Borland/Visigenic. IONA also
produces OrbixTalk, which is a messaging service based on IP
multicast. Since the CORBA Event Service specification does
not address issues critical for real-time applications, however,

the QoS behavior of these implementations are not acceptable
solutions for many application domains.

The OMG has issued a request for proposals (RFP) on a
new Notification Service [20] that has generated several re-
sponses [21]. The RFP specifies that a proposed Notification
Service must be a superset of the COS Event Service with in-
terfaces for the following features: event filtering, event de-
livery semantics,e.g., at least once, or at most once, security,
event channel federations, and event delivery QoS. The orga-
nizations contributing to this effort have done excellent work
in addressing many of the shortcomings of the CORBA Event
Service [22]. However, the OMG RFP documents do not ad-
dress the implementation issues related to the Notification Ser-
vice.

Although there has been research on formalisms for real-
time objects [23], relatively little published research on the
design and performance of real-time OO systems exists. Our
approach is based on emerging distributed object computing
standards like OMG CORBA ORBs – we focus on the design
and performance of various strategies for implementing QoS
in real-time ORBs [5].

The QuO project at BBN [24] has defined a model for
communicating changes in QoS characteristics between ap-
plications, middleware, and the underlying endsystems and
network. The QuO architecture differs from our work on
RT Event Channels, however, since QuO does not provide
hard real-time guarantees of ORB endsystem CPU schedul-
ing. Other research on the CORBA Event Service [25, 26]
describe techniques for optimizing event service performance
for filtering and message delivery. As with QuO, the focus of
this work is not on guaranteeing CPU processing for events
with hard real-time deadlines.

Rajkumar,et al., describe a real-time publisher/subscriber
prototype developed at CMU SEI [9]. Their Publisher/Sub-
scriber model is functionally similar to the COS Event Ser-
vice, though it uses real-time threads to prevent priority in-
version within the communication framework. An interesting
aspect of the CMU model is the separation of priorities for
subscription and event transfer so that these activities can be
handled by different threads with different priorities. How-
ever, the model does not utilize any QoS specifications from
publishers (suppliers) or subscribers (consumers). As a result,
the message delivery mechanism does not assign thread pri-
orities according to the priorities of publishers or subscribers.
In contrast, the TAO Event Service utilizes QoS parameters
from suppliers and consumers to guarantee the event delivery
semantics determined by a real-time scheduling service.
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3 Overview of the OMG CORBA
Event Service

3.1 Background

The standard CORBA operation invocation model sup-
ports twoway, oneway, and deferred synchronous interac-
tions between clients and servers. The primary strength
of the twoway model is its intuitive mapping onto the
object->operation() paradigm supported by OO lan-
guages like C++ and Java. In principle, twoway invocations
simplify the development of distributed applications by sup-
porting an implicit request/response protocol that makes re-
mote operation invocations transparent to the client.

In practice, however, the standard CORBA operation invo-
cation models are too restrictive for real-time applications. In
particular, these models lack asynchronous message delivery,
do not support timed invocations or group communication, and
can lead to excessive polling by clients. Moreover, standard
oneway invocations are not necessarily reliable and deferred
synchronous invocations require the use of the CORBA Dy-
namic Invocation Interface (DII), which yields excessive over-
head for most real-time applications [27].

The Event Service is a CORBA Object Service that is
designed to alleviate some of the restrictions with standard
CORBA invocation models. In particular, the COS Event Ser-
vice supports asynchronous message delivery and allows one
or more suppliers to send messages to one or more consumers.
Event data can be delivered from suppliers to consumers with-
out requiring these participants to know about each other ex-
plicitly.

3.2 Structure and Participants for the COS
Event Service

Figure 3 shows the key participants in the COS Event Service
architecture. The role of each participant is outlined below:

Suppliers and consumers: Consumers are the ultimate tar-
gets of events generated by suppliers. Suppliers and con-
sumers can both play active and passive roles. An active push
supplierpushesan event to a passive push consumer. Like-
wise, a passive pull supplier waits for an active pull consumer
to pull an event from it.

Event Channel: At the heart of the COS Event Service is
the Event Channel, which plays the role of a mediator between
consumers and suppliers. The Event Channel manages object
references to suppliers and consumers. It appears as a proxy
consumer to the real suppliers on one side of the channel and
as a proxy supplier to the real consumers on the other side.

PUSH

PUSH

PUSH

PULL

PULL

Event
Channel

Consumer

Supplier

Supplier

Consumer

Consumer

Figure 3:Participants in the COS Event Channel Architec-
ture

Suppliers use Event Channels to push data to consumers.
Likewise, consumers can explicitly pull data from suppliers.
The push and pull semantics of event propagation help to
free consumers and suppliers from the overly restrictive syn-
chronous semantics of the standard CORBA twoway commu-
nication model. In addition, Event Channels can implement
group communication by serving as a replicator, broadcaster,
or multicaster that forward events from one or more suppliers
to multiple consumers.

The COS Event Service architecture has two models of par-
ticipant collaborations:pushandpull. This paper focuses on
real-time enhancements to the push model, which allows sup-
pliers of events to initiate the transfer of event data to con-
sumers. Suppliers push events to the Event Channel, which in
turn pushes the events to consumers.

3.3 Applying TAO’s Real-time Event Service to
Real-time Avionics Systems

Modern avionics systems are characterized by processing
tasks with deterministic and statistical real-time deadlines, pe-
riodic processing requirements, and complex data dependen-
cies. Building flexible application software and OO middle-
ware that meets these requirements is challenging because the
need for determinism and predictability often results in tightly
coupled designs. For instance, conventional avionics mission
control applications consist of closely integrated responsibil-
ities that manage sensors, navigate the airplane’s course, and
control weapon release.

Tight coupling often yields highly efficient custom imple-
mentations. As the example below shows, however, the inflex-
ibility of tightly coupled software can substantially increase
the effort and cost of integrating new and improved avionics
features. For example, navigation suites are a source of contin-
ual change, both across platforms and over time. The specific
components that make up the navigation suite,e.g., sensors,
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change frequently to improve accuracy and availability. Many
conventional avionics systems treat each implementation as a
“point solution,” with built-in dependencies on particular com-
ponents. This tight coupling requires expensive and time con-
suming development effort to port systems to newer and more
powerful navigation technologies.

3.4 Overview of Conventional Avionics Appli-
cation Architectures

Figure 4 shows a conventional architecture for distributing pe-
riodic I/O events throughout an avionics application. This ex-
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Figure 4:Example Avionics Mission Control Application

ample has the following participants:

Aircraft Sensors: Aircraft-specific devices generate sensor
data at regular intervals,e.g., 30 Hz (30 times a second), 15 Hz,
5 Hz, etc. The arrival of sensor data generates interrupts that
notify mission computing applications to receive the incoming
data.

Sensor Proxies: Mission computing systems must process
data to and from many types of aircraft sensors, including
Global Position System (GPS), Inertial Navigation Set (INS),
and Forward Looking Infrared Radar. To decouple the details
of sensor communication from the applications, Sensor Proxy
objects are created for each sensor on the aircraft. When I/O
interrupts occur, data from a sensor is given to an appropri-
ate Sensor Proxy. Each Sensor Proxy object demarshals the
incoming data and notifies I/O Facade objects that depend on
the sensor’s data. Since modern aircraft can be equipped with
hundreds of sensors, a large number of Sensor Proxy objects
may exist in the system.

I/O Facade: I/O Facades represent objects that depend on
data from one or more Sensor Proxies. I/O Facade objects
use data from Sensor Proxies to provide higher-level views

to other application objects. For instance, the aircraft posi-
tion computed by an I/O Facade is used by the navigation and
weapon release subsystems.

Thepush-driven model described above is commonly used
in many real-time environments, such as industrial process
control systems and military command/control systems. One
positive consequence of this push-driven model is the efficient
and predictable execution of operations. For instance, I/O Fa-
cades only execute when their event dependencies are satis-
fied, i.e., when they are called by Sensor Proxies.

In contrast, using apull-driven model to design mission
control applications would require I/O Facades that actively
acquire data from the Sensor Proxies. If data was not avail-
able to be pulled, the calling I/O Facade would need to block
awaiting a result. In order for the I/O Facade to pull, the sys-
tem must allocate additional threads to allow the application to
make progress while the I/O Facade task is blocked. However,
adding threads to the system has many negative consequences,
such as increased context switching overhead, synchronization
complexity, and complex real-time thread scheduling policies.
Conversely, by using the push model, blocking is largely alle-
viated, which reduces the need for additional threads. There-
fore, this paper focuses on the push model.

3.5 Drawbacks with Conventional Avionics Ar-
chitectures

A disadvantage to the architecture shown in Figure 4 is the
strong coupling between suppliers (Sensor Proxies) and con-
sumers (I/O Facades). For instance, to call back to I/O Fa-
cades, each Sensor Proxy must know which I/O Facades de-
pend on its data. As a result, Sensor Proxies must be modified
to accommodate changes to the I/O Facade layer,e.g., addi-
tion/removal of a consumer. Likewise, consumers that register
for callbacks are tightly coupled with suppliers. If the avail-
ability of new hardware, such as Forward Looking Infrared
Radar, requires a new Sensor Proxy, I/O Facades must be al-
tered to take advantage of the new technology.

3.6 Alleviating Drawbacks with Conventional
Avionics Architectures

Figure 5 shows how an Event Channel can alleviate the disad-
vantages of the tightly coupled consumers and suppliers shown
in Figure 4. In Figure 5, Sensor Proxy objects are suppliers
of I/O events that are propagated by an Event Channel to I/O
Facades, which consume the demarshalled I/O data. Sensor
Proxies push I/O events to the channel without having to know
which I/O Facades depend on the data. The benefit of using the
Event Channel is that Sensor Proxies are unaffected when I/O
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Facades are added or removed. This architectural decoupling
is described concisely by the Observer pattern [11].

Another benefit of an Event Channel-based architecture is
that an I/O Facade need not know which Sensor Proxies sup-
ply its data. Since the channel mediates on behalf of the Sensor
Proxies, I/O Facades can register for certain types of events,
e.g., GPS and/or INS data arrival, without knowing which Sen-
sor Proxies actually supply these types of events (Section 4.2
discusses typed-filtering). Once again, the use of an Event
Channel makes it possible to add or remove Sensor Proxies
without changing I/O Facades.

4 Overview of TAO’s Real-time Event
Service

4.1 Overcoming Limitations with the CORBA
Event Service

As shown in the previous section, the CORBA COS Event Ser-
vice provides a flexible model for transmitting asynchronous
events among objects. For example, it removes several re-
strictions inherent in synchronous twoway communication.
Moreover, it frees application programmers from the tedious

and error-prone details of handling registrations from multi-
ple consumers and suppliers. In addition, the COS Event Ser-
vice interfaces are fairly intuitive and the consumer/supplier
connections and event delivery models are symmetrical and
straightforward.

However, the standard COS Event Service Specification
lacks several important features required by real-time appli-
cations. Chief among these missing features include real-time
event dispatching and scheduling, periodic event processing,
and centralized event filtering and correlations. To resolve
these limitations, we have developed a Real-time Event Ser-
vice (RT Event Service) as part of the TAO project [5]. TAO’s
RT Event Service extends the COS Event Service specification
to satisfy the quality of service (QoS) needs of real-time ap-
plications in domains like avionics, telecommunications, and
process control.

The following discussion summarizes the features missing
in the COS Event Service and outlines how TAO’s Real-time
Event Service supports them.

4.1.1 Supporting Guarantees for Real-time Event Dis-
patching and Scheduling

In a real-time system, events must be processed so that con-
sumers can meet their QoS deadlines. For instance, the Sensor
Proxies shown in Figure 5 generate notification events that al-
low the I/O Facades who depend on the sensor data to execute.
To enforce a real-time scheduling policy, higher priority I/O
Facades must receive events and be allowed to run to comple-
tion before lower priority I/O Facades receive events.

The COS Event Service has no notion of QoS, however.
In particular, there is no Event Channel interface that con-
sumers can use to specify their execution and scheduling re-
quirements. Therefore, standard COS Event Channels provide
no guarantee that they will dispatch events from suppliers with
the correct scheduling priority, relative to the consumers of
these events.

TAO’s RT Event Service extends the COS Event Service in-
terfaces by allowing consumers and suppliers to specify their
execution requirements and characteristics using QoS param-
eters such as worst-case execution time, rate, etc. These pa-
rameters are used by the channel’s dispatching mechanism to
integrate with the system-wide real-time scheduling policy to
determine event dispatch ordering and preemption strategies.
Section 5.2.1 describes these QoS parameters in detail.

4.1.2 Supporting Centralized Event Filtering and Corre-
lation

Some consumers can execute whenever an event arrives from
any supplier. Other consumers can execute only when an
event arrives from a specific supplier. Still other consumers
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must postpone their execution until multiple events have ar-
rived from a particular set of suppliers,e.g., a correlation of
events.

For instance, an I/O Facade may depend on data from a sub-
set of all Sensor Proxies. Furthermore, it may use data from
many Sensor Proxies in a single calculation of aircraft posi-
tion. Therefore, the I/O Facade can not make progress until
all of the Sensor Proxy objects receive I/O from their external
sensors.

It is possible to implement filtering using standard COS
Event Channels, which can be chained to create an event fil-
tering graph that consumers use to receive a subset of the total
events in the system. However, the filter graph defined in stan-
dard COS increases the number of hops that a message must
travel between suppliers and consumers. The increased over-
head incurred by traversing these hops is unacceptable for real-
time applications with low latency requirements. Furthermore,
the COS filtering model does not address the event correlation
needs of consumers that must wait formultipleevents to occur
before they can execute.

To alleviate these problems, TAO’s RT Event Service pro-
vides filtering and correlation mechanisms that allow con-
sumers to specify logical OR and AND event dependencies.
When those dependencies are met, the RT Event Service dis-
patches all events that satisfy the consumers’ dependencies.
For instance, the I/O Facade can specify its requirements to
the RT Event Service so that the channel only notifies the Fa-
cade object after all its Sensor Proxies have received I/O. At
that time, the I/O Facade receives an IDLsequence with all
the events from the Sensor Proxies it depends on via a single
push operation.

4.1.3 Supporting Periodic Processing

Consumers in real-time systems typically requireC units of
computation time everyP milliseconds. For instance, some
avionics signal processing filters must be updated periodically
or else they will spend a substantial amount of time reconverg-
ing. Likewise, an I/O Facade might guarantee regular delivery
of its data to higher level components, regardless of whether its
Sensor Proxy objects actually generate events at the expected
rate.

In both cases, consumers have strict deadlines by which
time they must execute the requestedC units of computa-
tion time. However, the COS Event Service does not permit
consumers to specify their temporal execution requirements.
Therefore, periodic processing is not supported in standard
COS Event Service implementations.

TAO’s RT Event Service allows consumers to specify event
dependency timeouts. It uses these timeout requests to prop-
agate temporal events in coordination with system scheduling
policies. In additional to the canonical use of timeout events,

i.e., receiving timeouts at some interval, a consumer can re-
quest to receive a timeout event if its dependencies are not
satisfied within some time period,i.e., a real-time “watchdog”
timer. For instance, an I/O Facade can register to receive a
timeout event if its Sensor Proxy dependencies are not satis-
fied after some time interval. This way, it can make best ef-
fort calculations on the older sensor data and notify interested
higher level application components.

4.2 TAO’s RT Event Service Architecture

Figure 6 shows the high-level architecture of TAO’s RT Event
Service implementation. The role of each component in the
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RT Event Service is outlined below:

4.2.1 Event Channel

In the RT Event Service model, the Event Channel plays
the same role as it does in the conventional COS Event
Service. Externally, it provides two factory interfaces,
ConsumerAdmin andSupplierAdmin , which allow ap-
plications to obtain consumer and supplier administration ob-
jects, respectively.
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The Event Channel administration objects allow consumers
and suppliers to connect and disconnect from the channel. In-
ternally, the channel is comprised of several processing mod-
ules based on the ACE Streams framework [28]. As described
below, each module encapsulates independent tasks of the
channel.

4.2.2 Consumer Proxy Module

The interface to the Consumer Proxy Module is identi-
cal to ConsumerAdmin interface defined in the COS
Event ServiceCosEventChannelAdmin module. It pro-
vides factory methods for creating objects that support the
ProxyPushSupplier interface. In the COS model, the
ProxyPushSupplier interface is used by consumers to
connect and disconnect from the channel.

TAO’s RT Event Service model extends the standard
COS ProxyPushSupplier interfaces so that consumers
can register their execution dependencies with a channel.
Figure 7 shows the types of data exchanged and the inter-
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Figure 7:Collaborations in the RT Event Service Architec-
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object collaborations involved when a consumer invokes the
ProxyPushSupplier::connect push consumer
registration operation.

4.2.3 Supplier Proxy Module

The interface to this module is identical to
SupplierAdmin interface defined in the COS Event
Service CosEventChannelAdmin module. It pro-
vides factory methods for creating objects that support
the ProxyPushConsumer interface. Suppliers use the
ProxyPushConsumer interface to connect and disconnect
from the channel.

TAO’s RT Event Service model extends the standard COS
ProxyPushConsumer interface so that suppliers can spec-
ify the types of events they generate. With this information,
the channel’s Subscription and Filtering Module can build data
structures that allow efficient run-time lookups of subscribed
consumers.

ProxyPushConsumer objects also represent the entry
point of events from suppliers into an Event Channel. When
Suppliers transmit an event to theProxyPushConsumer
interface via the proxy’spush operation the channel forwards
this event to thepush operation of interested consumer ob-
ject(s).

4.2.4 Subscription and Filtering Module

The CORBA Event Service defines Event Channels as broad-
casters that forward all events from suppliers to all con-
sumers. This approach has several drawbacks. If consumers
are only interested in a subset of events from the suppliers,
they must implement their own event filtering to discard un-
needed events. Furthermore, if a consumer ultimately discards
an event, then delivering the event to the consumer needlessly
wastes bandwidth and processing.

To address these shortcomings, TAO’s RT Event Service ex-
tends the COS interfaces to allow consumers to subscribe for
particular subsets of events. The channel uses these subscrip-
tions to filter supplier events, only forwarding them to inter-
ested consumers.

There are several reasons why TAO implements filtering in
an Event Channel. First, the channel relieves consumers from
implementing filtering semantics. Second, it reduces network-
ing load by eliminating filtered events in the channel instead of
at consumers. Furthermore, to implement filtering at the sup-
pliers, the suppliers would require knowledge of consumers.
Since this would violate one of the primary motivations for
an event service (that is, decoupled consumers and suppliers),
TAO integrates filtering into the channel.

Adding filtering to an Event Channel requires a well-defined
event type system that includes source ID, type, data, and
timestamp fields. The complete schema for this type system
is beyond the scope of this paper (it is fully described in [29]).
The RT Event Channel uses the event type system in the fol-
lowing ways:

Supplier-based filtering: Not all consumers that connect to
an Event Channel are interested in the same events. In this
case, consumers only register for events generated by certain
suppliers. The event type system includes a source ID field
that allows applications to specify unique supplier identifiers
with each event. The Subscription and Filtering Module uses
this field to locate consumers that have subscribed to particular
suppliers inO(1)worst-case time.

8



Type-based filtering: Each event contains a type field. This
allows consumers to register for events of a particular type.
Since the type field is represented as an enumerated type, the
Subscription and Filtering Module uses a lookup structure to
find type-based subscribers inO(1)worst-case time.

Combined supplier/type-based filtering: Consumers can
register for any combination of supplier and type-based fil-
tering,e.g., only supplier-based, only type-based, or supplier-
based and type-based. To implement this efficiently, the Sub-
scription and Filtering Module maintains type-based subscrip-
tion tables for every supplier in the system.

When an event enters the Subscription and Filtering Mod-
ule, consumers that subscribe to combined supplier/type-based
IDs are located with two table lookups. The first lookup
finds all the type-based subscription tables corresponding to
the event’s source ID. The second lookup finds the consumers
subscribed to the event’s type ID.

The Subscription and Filtering Module permits consumers
to temporarily disable event delivery by the channel through
suspend andresume operations. These are lightweight op-
erations that have essentially the same effect as de-registering
and re-registering for events. Therefore,suspend and
resume are suitable for frequent changes in consumer sets,
which commonly occur during mode changes. By incorpo-
rating suspension and resumption in the module closest to
the suppliers, Event Channel processing is minimized for sus-
pended consumers.

4.2.5 Priority Timers Proxy

The Supplier Proxy Module contains a special-purposePrior-
ity Timers Proxythat manages all timers registered with the
channel. When a consumer registers for a timeout, the Priority
Timers Proxy cooperates with the Run-time Scheduler to en-
sure that timeouts are dispatched according to the priority of
their corresponding consumer.

The Priority Timers Proxy uses a heap-based callout queue
[30] provided by ACE. Therefore, in the average and worst
case, the time required to schedule, cancel, and expire a timer
is O(log N)(whereN is the total number of timers). The timer
mechanism preallocates all its memory, which eliminates the
need for dynamic memory allocation at run-time. Therefore,
this mechanism is well-suited for real-time systems requiring
highly predictable and efficient timer operations.

4.2.6 Event Correlation

A consumer may require certain events to occur before it
can proceed. To implement this functionality, consumers can

specify conjunctive (“AND”) or disjunctive (“OR”) seman-
tics when registering their filtering requirements,i.e., supplier-
based and/or type-based. Conjunctive semantics instruct the
channel to notify the consumer whenall the specified event
dependencies are satisfied. Disjunctive semantics instruct the
channel to notify the consumer(s) whenany of the specified
event dependencies are satisfied. Consumers can register their
filtering requests with a channel multiple times. In this case,
the channel creates a disjunction relation for each of its con-
sumer registrations.

Mechanisms that perform filtering and correlation are called
Event Filtering Discriminators(EFDs). EFDs allow the run-
time infrastructure to handle dependency-based notifications
that would otherwise be performed by each consumer asall
events were pushed to it. Thus, EFDs provide a “data reduc-
tion” service that minimizes the number of events received by
consumers so they only receive events they are interested in.

4.2.7 Dispatching Module

The Dispatching Module determines when events should be
delivered to consumers and pushes the events to them accord-
ingly. To guarantee that consumers execute in time to meet
their deadlines, this module collaborates with the system-wide
Scheduling Service (discussed in Section 5.2).

TAO’s Off-line Scheduler initially implements the rate
monotonic scheduling policy. Section 5 illustrates how adding
new dispatching implementations is straightforward since this
module is well-encapsulated from other components in the
Event Channel’s OO real-time event dispatching framework.

4.3 Federated Event Channels

The original implementation of TAO’s RT Event Channel [2]
was limited to a single processor configuration. However,
modern avionics hardware typically comprises several proces-
sor boards connected through a high-speed interconnect, such
as a fiber channel network or a VME bus. One way to con-
figure TAO’s Event Service is to use a single centralized real-
time Event Channel for the entire system. As shown in Fig-
ure 8, remote invocations are handled by oneway and twoway
CORBA communication mechanisms.

However, the centralized RT Event Channel architecture
incurs excessive overhead because the consumer for a given
supplier is usually located on the same board. Therefore, if
the Event Channel is on a remote board, extra communica-
tion overhead and latency are incurred for the common case.
Moreover, TAO’s collocated method invocation is highly opti-
mized, so it is desirable to exploit this optimization whenever
possible.

To address the limitations of the centralized Event Channel
architecture, TAO’s RT Event Service provides mechanisms to
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connect several Event Channels to form a federation, as shown
in Figure 9.

ORB

E
ve

nt
 C

ha
nn

el

E
ve

nt
 C

ha
nn

el

Host BHost A

ConsumersConsumers

Suppliers SuppliersGatewayGateway

Figure 9:Federated Event Channels.

In the federated architecture, multiple Event Channels are
connected through aGateway. A Gateway is a servant that
connects to one Event Channel as a consumer and forwards all
events it receives to other Event Channels. It therefore plays
the role of supplier for the second Event Channel. The Gate-
way usually connects as a supplier to a collocated Event Chan-
nel. Thus, TAO’s remote communication mechanisms are used
only when events are sent from a remote supplier to a local
consumer.

A Gateway can be collocated with the Event Channel that
supplies events to it. However, the configuration shown in Fig-
ure 9 minimizes network traffic since the Gateway only sub-
scribes to events of interest to its consuming Event Channel.
The Gateway must subscribe to the disjunction of all the sub-
scriptions in its consuming Event Channel since it is possible

that a correlation is satisfied from events arriving from both
local and remote consumers.

TAO’s current RT Event Service implementation requires
that each Event Channel in a federation be connected to every
one of its peers. This is not a problem for avionics applications
that typically have one Event Channel per processor board. In
other domains, however, applications could require hundreds
or thousands of Event Channels. In this case, providing a full
network would not scale. We are investigating techniques for
relaxing this condition.

Other types of distributed applications can benefit from
TAO’s federated Event Service. For instance, distributed in-
teractive simulations can comprise several nodes in different
LANs, where most of the traffic destination is within the same
LAN. Configuring an Event Channel on each LAN helps to
reduce latency by avoiding round-trip delay to remote nodes.

4.4 Static and Dynamic Event Channel Config-
uration

The performance requirements of an RT Event Service may
vary for different types of real-time applications. The pri-
mary motivation for basing the internal architecture of the
TAO Event Channel on the ACE Streams framework is to sup-
port static and dynamic channel configurations. Each module
shown in Figure 7 may contain multiple “pluggable” strate-
gies, each optimized for different requirements. The Streams-
based architecture allows independent processing modules to
be added, removed, or modified without requiring changes to
other modules.

TAO’s Event Channel can be configured in the following
ways to support different event dispatching, filtering, and de-
pendency semantics:

Full Event Channel: The modules implementing a “full”
TAO Event Channel include the Dispatching, Correlation, Fil-
tering, and Consumer/Supplier Proxy modules. A channel that
is configured with all these modules supports type and source-
based filtering, correlations, and priority-based queueing and
dispatching.

Subset Event Channels: As discussed in Section 5, TAO’s
Event Channel Dispatching Module implements several con-
currency strategies. Each strategy caters to the type and avail-
ability of system resources, such as the OS threading model
and the number of CPUs. TAO’s Event Channel framework is
designed so that changing the number of threads in the sys-
tem, or changing to a single-threaded concurrency strategy,
does not require modifications to unrelated components in a
channel.

The following configurations can be achieved by removing
certain modules from an Event Channel:
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� Event Forwarding Discriminator configuration– Remov-
ing the Dispatching Module from the Event Channel
yields an Event Forwarding Discriminator (EFD) con-
figuration that supports event filtering and correlations.
An EFD configuration is shown in Figure 11(C). Since
TAO’s Filtering and Correlation Modules have been im-
plemented to guarantee deterministic run-time perfor-
mance, the EFD configuration is applicable for real-time
applications that do not require priority-based queuing
and dispatching in the Event Channel. As discussed
in Section 5.1.1 below, such systems might implement
real-time dispatching in the ORB’s Object Adapter level,
thereby simplifying the channel.

� Subscription and Filtering configuration– Removing
the Correlation Module from a full TAO Event Channel
yields a Subscription and Filtering configuration. This
configuration is useful for applications that have no com-
plex inter-event correlation dependencies, but only want
to receive events when they match a simple filter.

� Broadcaster Repeater configuration– Removing the Cor-
relation and Dispatching Modules creates a Broadcaster
Repeater configuration. This configuration supports nei-
ther real-time dispatching nor filtering/correlations. In
essence, this implements the semantics of the standard
COS Event Channel push model.

In static real-time environments, such as traditional avion-
ics systems, the configuration of an Event Channel is gen-
erally performed off-line to reduce startup overhead. In dy-
namic real-time environments, such as telecommunication
call-processing, however, component policies may require al-
teration at run-time. In these contexts, it may be unaccept-
able to completely terminate a running Event Channel when a
scheduling or concurrency policy is updated. In general, there-
fore, an RT Event Channel framework must support dynamic
reconfiguration of policies without interruption while continu-
ing to service communication operations [31]. Basing TAO’s
RT Event Channel on the ACE Streams framework supports
both static and dynamic (re)configuration.

5 An Object-Oriented Framework for
Real-time Event Service Dispatching
and Scheduling

Applications and middleware components using TAO’s RT
Event Service can have deterministic and/or statistical dead-
lines. As a result, TAO’s RT Event Channel utilizes a real-time
Scheduling Service [5] to ensure that events are processed be-
fore deadlines are missed. Most real-time scheduling policies,

such as rate monotonic and earliest deadline first (EDF), re-
quire priority-based event dispatching and preemption.

To maximize reuse and allow flexibility between multiple
scheduling policies, TAO’s Event Channel framework sepa-
rates its dispatching mechanism from its scheduling policy.
The dispatching mechanism implements priority-based dis-
patching and preemption, but consults a Run-time Scheduler
to determine the priorities of objects and events.

This section describes the Dispatching Module and
Scheduling Service in TAO’s RT Event Channel.

5.1 The Dispatching Module

The Dispatching Module is responsible for implementing
priority-based event dispatching and preemption. When the
Dispatching Module receives a set of supplier events from the
Event Correlation Module, it queries TAO’s Run-time Sched-
uler to determine the priority of the consumers that the events
are destined for. With that information, the Dispatching Mod-
ule can either (1) insert the events in the appropriate priority
queues (which are dispatched at a later time) or (2) preempt a
running thread to dispatch the new events immediately.

Figure 10 shows the structure and dynamics of the Dispatch-
ing Module in the context of the Event Channel. The partici-
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Figure 10:Event Channel Dispatching

pants in this figure include the following:
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Consumer and Supplier Proxies: The Event Channel uti-
lizes proxies to encapsulate communication with the con-
sumers and suppliers. For a distributed consumer or supplier,
a proxy manages the details of remote communication.

Event filtering and correlation: When events arrive from
consumers, the Event Filtering and Correlation Modules deter-
mine which consumers should receive the events and when to
dispatch the events. These modules forward the events to the
Dispatching Module, which handles the details of dispatching
each event to its consumer(s) in accordance with the priority
of the event/consumer(s) tuple.

Run-time Scheduler: The Dispatching Module collaborates
with the Run-time Scheduler to determine priority values of
the event/consumer tuples. Given an event and the target
consumer, the Run-time Scheduler determines the priority at
which the event should be dispatched to the consumer.

The motivation for decoupling the Run-time Scheduler from
the Dispatching Module is to allow scheduling policies to
evolve independently of the dispatching mechanism. TAO’s
Run-time Scheduler was initially implemented with a rate
monotonic scheduling policy that used the consumer’s rate to
determine the tuple’s priority. Subsequent Run-time Sched-
uler implementations use dynamic scheduling policies such
as EDF and MUF. Thus, by separating the responsibilities of
scheduling from dispatching, the Run-time Scheduler can be
replaced without affecting unrelated components in the chan-
nel.

Priority Queues: Given an event/consumer tuple, the Run-
time Scheduler returns a preemption priority and a sub-
priority. The Dispatching Module maintains a priority queue
of events for each preemption priority used by the Run-time
Scheduler. When an event/consumer tuple arrives, it is in-
serted onto the queue corresponding to the preemption priority
returned by the scheduler. The sub-priority is used by the Dis-
patcher to determine where in the Priority Queue the tuple is
placed.

Dispatcher: The Dispatcher is responsible for removing
event/consumer tuples from the priority queues and forward-
ing the events to consumers by calling theirpush opera-
tions. Depending on the placement of each tuple in the Pri-
ority Queues, the Dispatcher may preempt a running thread to
dispatch the new tuple.

For instance, consider the arrival of an event/consumer tu-
ple in a Dispatching Module implemented with real-time pre-
emptive threads. If the Run-time Scheduler assigns the tuple a
preemption priority higher than any currently running thread,
the Dispatcher will preempt a running thread and dispatch the
new tuple. Furthermore, assuming that lower numbers indicate
higher priority, the Dispatcher in Figure 10 would dispatch all

tuples on queue 0 before dispatching any on queue 1. Simi-
larly, it would dispatch all tuples on queue 1 before those on
queue 2, and so on.

To remove tuples from Priority Queues, the Dispatcher al-
ways dequeues from the head of the queue. The Run-time
Scheduler can determine the order of dequeuing by return-
ing different sub-priorities for different event/consumer tu-
ples. For instance, assume that an implementation of the Run-
time Scheduler must ensure that some eventE1 is always dis-
patched before eventE2, but does not require that the arrival
of E2 preempt a thread dispatchingE1. By assigning a higher
sub-priority to event/consumer tuples containingE1, the tu-
ple will always be queued before any tuples containingE2.
Therefore, the Dispatcher will always dequeue and dispatch
E1 events beforeE2 events.

A benefit of separating the functionality of the Dispatcher
from the Priority Queues is to allow the implementation of
the Dispatcher to change independently of other channel com-
ponents. TAO’s RT Event Channel has been implemented
with four different dispatching mechanisms, as described in
the Subsection 5.1.1.

5.1.1 Dispatcher Preemption Strategies

An important responsibility of the Event Channel’s Dispatcher
mechanism ispreemption. Most real-time scheduling policies
require preemption. For example, if consumer A with a pri-
ority of 2 is executing when consumer B with a priority of 1
becomes runnable, consumer A should be preempted so that
B can run until it completes or is itself preempted by a con-
sumer with a priority of 0. As shown in Figure 11, TAO’s
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Event Channel Dispatching Module supports several levels of
preemption via the following strategies:
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Real-time upcall (RTU) dispatching (with deferred pre-
emption): Figure 11(A) shows a single-threaded implemen-
tation where one thread is responsible for dispatching all
queued requests. This requires that consumers cooperatively
preempt themselves when a higher priority consumer becomes
runnable. This model of “deferred preemption” is based on a
Real-time Upcall (RTU) concurrency mechanism [32].

The primary benefit of the RTU model is its ability to re-
duce the context switching, synchronization, and data move-
ment overhead incurred by preemptive multi-threading imple-
mentations. However, preemption is deferred to the extent that
consumers check to see if they must preempt themselves. This
latency may be unacceptable in hard real-time applications,
such as avionics mission computing. In contrast, deferred pre-
emption may be acceptable for multimedia applications that
have less stringent timing requirements.

Real-time preemptive thread dispatching: Real-time
threads are supported by an increasing number of OS plat-
forms, such as VxWorks, LynxOS, CHORUS/ClassiX, Solaris
2.x, and DEC UNIX. Figure 11(B) shows an implementation
of the Dispatching Module that allocates a real-time thread
(or pool of threads) to each priority queue.

The advantage of this model is that the dispatcher can lever-
age kernel support for preemption by associating appropriate
OS priorities to each thread. For instance, when a thread at
the highest priority becomes ready to run, the OS will preempt
any lower priority thread that is running and allow the higher
priority thread to run. The disadvantage is that this preemption
incurs thread context switching overhead. Moreover, applica-
tions must identify, and synchronize access to, data that can be
shared by multiple threads.

Single-threaded priority-based dispatching: The Dis-
patching Module can also be implemented with no support
for preemption. This is similar to the RTU dispatching mech-
anism in the sense that a single-thread is used to dispatch
events based on priority. However, once a consumer receives
an event, it can run to completion regardless of the arrival of
events for higher priority consumers.

As with the RTU model, single-threaded dispatching ex-
hibits lower context switching overhead than the real-time
thread dispatching model. Moreover, since the channel main-
tains its own thread of control, it does not borrow supplier
threads to propagate events. As a result, the channel is an asyn-
chronous event delivery mechanism for suppliers. However,
since the channel’s dispatching thread does not implement pre-
emption, consumers run to completion regardless of priority.
As a result, single-threaded dispatching can suffer from pri-
ority inversion, which results in lower system utilization and
non-determinism.

EFD dispatching: As discussed in Section 4.4, the Dis-
patching Module can be removed from the channel, yielding a

purely EFD-based Event Channel. This configuration is shown
in Figure 11(C). An EFD channel forwards all events to the
consumers without any priority queueing, real-time schedul-
ing, or context switching. Events are dispatched without at-
tention to priority, and there is no preemption of consumers
when higher priority event/consumer tuples become available.

EFD channels are appropriate in systems that do not have
significant priority-based requirements. In these cases, there
is no overhead incurred by a Dispatching Module. However,
EFD channels are not always suitable when real-time schedul-
ing policies must be enforced. As shown in Section 5, our per-
formance results show that these drawbacks can cause missed
deadlines even under relatively low loads.

5.1.2 Scheduling Enforcement

The real-time scheduling for the version of TAO’s Event Chan-
nel described in this paper is performed off-line. Therefore, no
mechanisms for enforcing component behavior are provided.
Consequently, tasks that overrun their allotted resource alloca-
tions can cause other tasks to miss their deadlines.

An advantage of a “trust”-based scheduling enforcement
policy is there is no overhead incurred by QoS enforcement
mechanisms that would otherwise be necessary to monitor and
enforce the scheduling behavior at run-time. A disadvantage is
that all components must behave properly,i.e., they must use
only the resources allotted to them. Though the architecture of
our Event Service framework supports QoS enforcement, the
decision not to include this mechanism in the Event Channel is
motivated by the static scheduling characteristics and stringent
performance requirements of real-time avionics applications.

5.1.3 Visualization of Dispatching Module Implementa-
tions

To visualize the semantic differences between the four Dis-
patching Module implementations outlined in Section 5.1.1,
we implemented a timeline visualization tool in Java. The
timeline tool reads event logs from RT Event Service test runs
and displays a timeline of supplier and consumer activity. Fig-
ures 12 and 13 show timelines from multi-threaded and single-
threaded implementations of the Dispatching Module, respec-
tively. Each test run consists of 3 suppliers and 3 consumers,
which are listed on the y-axis. Supplier2 and consumer2 run
at the highest frequency (40 Hz), supplier1 and consumer1
run at the next highest frequency (20 Hz), and supplier0 and
consumer0 run at the lowest frequency (10 Hz).

The x-axis denotes time in�seconds. Each consumer and
supplier outputs a point when it receives an event from the
Event Channel. Another point is output when it finishes pro-
cessing the event. Suppliers receive timeouts and generate a
single event for each timeout. Each consumer registers for
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events from a single supplier. A horizontal line indicates the
time span when the respective consumer or supplier runs on
the CPU.

Each figure is explained below:

Real-time multi-threaded dispatching: Figure 12 shows
how OS real-time thread support for preemption results in
supplier0 and consumer0 being preempted whenever higher
priority tasks become runnable. Our performance results (dis-

Figure 12:Timeline from Real-time Multi-Threaded Chan-
nel

cussed in Section 6) demonstrate how Dispatching Module
implementations like real-time thread dispatching, which sup-
port more responsive preemption mechanisms, yield higher re-
source utilization without missing deadlines.

Single-threaded dispatching: Figure 13 shows how a
single-threaded dispatching module can result in deadlines be-
ing missed if lower priority tasks hold the CPU for excessive
periods of time. The negative values next to the end times of
supplier2 and consumer2 show the number of�secs the dead-
lines were missed. In other words, consumer0 held the CPU
too long, so that higher rate suppliers and consumers were un-
able to execute in time to preserve correct application behav-
ior.

5.2 Real-time Scheduling Service

The RT Event Service must guarantee that consumers receive
and process events with sufficient time to meet their deadlines.
To accomplish this, we have developed a Real-time Schedul-
ing Service. The two primary components in the Real-time
Scheduling Service are the Run-time Scheduler and Off-line

Figure 13:Timeline from Single-Threaded Channel

Scheduler, which are summarized below. A complete discus-
sion of these components is beyond the scope of this paper
([29] describes these components in detail).

5.2.1 Run-time Scheduler

The Run-time Scheduler associates priorities with target object
implementation operations at run-time. The implementation
of the Real-time Scheduling Service described in this paper
uses a static scheduling policy. Therefore, thread priorities are
determined prior to run-time by the Off-line Scheduler.

Our Real-time Scheduling Service requires that if an ob-
ject is to be scheduled, each of its operations must export an
RT Info data structure describing the operation’s execution
properties. During schedulingconfiguration runs(described in
Section 5.2.2 below),RT Info s contain execution times and
rate requirements. At run-time, the Static Scheduler need not
know any information about an operation’s execution charac-
teristics. Only the operation’s priority is needed, so the sched-
uler can determine how the operation should be dispatched.
Thus, at run-time, each operation’sRt Info need only con-
tain priority values for the operation.

At run-time, the Dispatching Module queries the Run-time
Scheduler for the priority of a consumer’s push operation.
The Run-time Scheduler uses a static repository that identifies
the execution requirements (including priority) of each oper-
ation. The Event Channel’s Dispatching Module uses the op-
eration priority returned by the Run-time Scheduler to deter-
mine which priority queue an event/consumer tuple should be
inserted into.

All scheduling and priority computation is performed off-
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line. This allows priorities to be computed at run-time ef-
ficiently, i.e., located inO(1) time. Thus, TAO’s Run-time
Scheduler simply provides an interface to the results of the
Off-line Scheduler, discussed below.

5.2.2 Off-line Scheduler

The Off-line Scheduler has two responsibilities. First, it as-
signs priorities to object operations. Second, it determines
whether a current Event Channel configuration is schedulable
given the available resources and the execution requirements
of supplier and consumer operations. Both responsibilities re-
quire that operation interdependencies be calculated by atask
interdependency compilationprocess during during aconfigu-
ration run. Task interdependency compilation builds a repos-
itory that records which objects’ operations call each other.
This can be visualized as a directed graph where the nodes in
the graph are object operations and directed edges indicate that
one operation calls another, as shown in Figure 14.
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Figure 14:Scheduling Service Internal Repository

Once task interdependency compilation is complete, the
Off-line Scheduler assigns priorities to each object operation.
The implementation of the Event Service described in this
paper utilizes a rate monotonic scheduling policy [13, 33].
Therefore, priorities are assigned based on task rates,i.e.,
higher priorities are assigned to threads with faster rates. For
instance, a task that needs to execute at 30 Hz would be as-
signed to a thread with a higher priority than a task that needs
to execute at 15 Hz.

Most operating systems that support real-time threads guar-
antee higher priority threads will (1) preempt lower prior-
ity threads and (2) run to completion (or until higher prior-
ity threads preempt them). Therefore, object operations with
higher priorities will preempt object operations with lower pri-
orities. These priority values are computed by the Off-line

Scheduler and are stored in a table that is queried by the Run-
time Scheduler at execution time.

6 Performance Tests

In our previous work [2] we benchmarked the utilization of a
single processor prototype of TAO’s real-time Event Service.
In the following sections, we extend these benchmarks to to
illustrate how performance is not affected by a complete ORB
and RT Event Channel implementation. We also quantify the
utilization of a federated Event Channel architecture.

6.1 Utilization Measurements

For non-real-time Event Channels,e.g., EFD-based and
Single-Threaded, correctness implies that consumers receive
events when their dependencies are met,i.e., source/type sub-
scriptions and correlations. In contrast, for real-time Event
Channels,e.g., RTUs and real-time threads, correctness im-
plies that all deadlines are met. Therefore, correct RT Event
Service behavior requires that (1) consumers receive events
when their dependencies are satisfiedand (2) consumers re-
ceive these events in time to meet their deadlines.

An important metric for evaluating the performance of the
RT Event Service is theschedulable bound. The schedulable
bound of a real-time schedule is the maximum resource uti-
lization possible without deadlines being missed [32]. Like-
wise, the schedulable bound of the RT Event Service is the
maximum CPU utilization that suppliers and consumers can
achieve without missing deadlines.

For TAO’s Real-time Scheduling Service to guarantee the
schedulability of a system,i.e., that all tasks meet their dead-
lines, high-priority tasks must preempt lower priority tasks.
With rate monotonic scheduling, higher rate tasks preempt
lower rate tasks. The performance tests discussed below were
conducted on a single-CPU 300 Mhz Sun UltraSPARC 30
workstation with 256 MB RAM running Solaris 2.5.1.

We measured the added overhead of the distribution strategy
for TAO’s real-time Event Services over a single collocated
EC. Two separate experiments were conducted: one measured
the utilization of a single Event Channel configuration and an-
other measured the utilization of a federated Event Channel
configuration.

6.1.1 Single Event Channel Utilization

The first experiment used a single Event Channel that was
collocated with a high-priority Supplier/Consumer pair and a
low-priority Supplier/Consumer pair. The processing time for
high-priority events was increased until the low-priority task
could not meet its deadline. In Figure 15 we plot the aver-
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Figure 15:Utilization for a Single Event Channel

age laxity for the high-priority events and for the low-priority
events. The error bars represent the minimum and maximum
laxity for each experiment. Negative laxity means that a dead-
line is missed.

Note that the Event Channel achieved over99% utilization
before its low-priority tasks began to miss deadlines. In con-
trast, the high-priority task laxity also decreases. It is interest-
ing to observe that this decrease in almost linear with the uti-
lization, even when the low-priority task cannot longer meet
its deadlines.

6.1.2 Federated Event Channel Utilization

In the second experiment, two Event Channels were config-
ured in separate OS processes on the same host. No work was
performed when processing the remote events, but the process-
ing time for high-priority events was increased until deadlines
were missed. Figure 16 also depicts the laxity for both high-
priority and low-priority tasks, though performance is affected
the Event Channel can still maintain high utilization (over
96%) before any deadlines were missed. As shown in Sec-
tion 6.2, this small (�3%) loss of utilization yields a perfor-
mance improvement for the common case,i.e., where events
are exchanged with collocated suppliers and consumers.

6.2 Latency Measurements

Another important metric of Event Channel performance is the
latency it introduces between suppliers and consumers. To de-
termine Event Channel latency, we developed an Event La-
tency Test. To obtain the end-to-end supplier! consumer
latency, this test timestamps each event as it originates in the
supplier and subtracts that time from the arrival time at the
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Figure 16:Utilization for a Federated Event Channel

consumer. The consumer does not do anything with the event
other than store the measurement in a preallocated array.

6.2.1 End-to-end Latency Results

The latency tests were run on a Sun UltraSPARC 30 with a
single 300 Mhz CPU, running SunOS 5.5.1. The Event Chan-
nel and test applications were built with Sun C++ 4.2 with
-fast optimization. Two tests were performed. In the first
test the consumers, suppliers, and Event Channel were collo-
cated in the same process to eliminate ORB remote commu-
nication overhead. In the second test two identical processes
were created and the consumers in each process subscribed to
both local and remote events. In both tests, there was no other
significant activity on the workstation during the benchmark-
ing. All tests were run in the Solaris real-time scheduling class
so they had the highest software priority (but below hardware
interrupts) [16].

In the single process case, we determined the best-case
supplier-to-consumer latency was�60 �secs. In each case,
as the number of suppliers and/or consumers increased, the
latency increased as well, as shown in Table 1 and Table 2.

Note how for two processes, the local events exhibit similar
latency to the local events in the single process case. In partic-
ular, no extra overhead is incurred due to possible remote con-
sumers. In contrast, the remote consumer performance is sev-
eral times higher than the local events, though it is still close
to the performance of a typical oneway RPC request [34].

6.2.2 Minimal Event Spacing Results

Another important performance metric is theminimum event
spacing, i.e., the maximum rate at which the Event Channel
can deliver messages before its overhead introduces extra la-
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Latency,�sec
First Consumer Last Consumer

Sup. Con. Min Max Avg Min Max Avg
1 1 53 93 58 53 93 58
1 5 107 189 114 197 284 206
1 10 171 230 183 379 451 393
1 20 291 340 300 741 817 760
2 1 49 67 51 49 67 51
2 5 95 124 100 180 213 187
2 10 159 281 170 360 498 374
2 20 283 333 299 758 828 781

10 1 51 303 72 51 303 72
10 5 100 211 113 187 1,210 284
10 10 167 222 176 369 2,545 576
10 20 211 310 290 741 4,895 1,137

Table 1:Event Latency,�secs, Through Event Channel

Latency,�sec
Local Event Remote Event

Sup. Con. Min Max Avg Min Max Avg
1 1 57 71 63 772 1,078 820
1 5 108 207 155 765 1,995 1,283
1 10 170 598 289 795 5,853 3,544
1 20 303 819 534 756 6,047 3,084
2 1 50 95 57 1,226 2,329 1,297
2 5 101 214 152 1,274 4,577 2,330
2 10 167 421 274 1,226 6,676 3,448
2 20 280 821 519 1,225 20,727 6,038

10 1 49 218 60 1,406 3,969 3,102
10 5 100 1,170 172 1,477 12,773 6,282
10 10 158 2,379 310 1,258 19,153 7,904
10 20 209 4,900 596 1,266 65,449 24,345

Table 2:Event Latency,�secs, Local and Remote Events

tency. This test was executed in a single process, where suppli-
ers generate a fixed number (500) of events, and the consumers
do no work other than maintain simple statistics. We progres-
sively decreased the event generation period and measured the
ratio between the effective event rate and the expected event
rate. As seen in figure 17 the Event Channel is able to deliver
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Figure 17:Minimum Event Spacing

over 50 messages per second before it experiences any notice-
able overhead. We believe this result can be improved and we
are currently experimenting with how to reduce the overhead.

7 Evaluating the Use of OO for Real-
time Systems

While applying OO technologies to real-time systems we en-
countered two issues regarding polymorphism that threatened
to compromise the predictability and performance of our real-
time systems. This section briefly discusses each of the issues
and how our systems address the potential problems.

7.1 The Cost of Dynamic Binding Mechanisms

Since our systems are developed using C++, dynamic binding
is implemented via virtual method tables. As a result, compil-
ers can implement highly optimized virtual method call mech-
anisms that impose constant-time overhead. These algorithms
typically involve loading thethis pointer, adjustment of the
this pointer (for multiple inheritance), lookup of the method
offset in the virtual method table, and final calculation of the
address before invoking the method. However, these steps still
have bounded completion times allowing predictable virtual
method call performance regardless of the degree of inheri-
tance used by applications.

We measured the cost of virtual method calls on these plat-
forms: VxWorks 5.3.1 on a 60 MHz Pentium with Cygnus g++
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Call time,�sec ratio
Global Non-Virtual Virtual Virtual to Virtual to

Platform Function Method Method Global Function Non-Virtual
VxWorks/g++/60 MHz Pentium 0.300 0.450 0.900 3.0 2.0
VxWorks/GHS/200 MHz Pentium 0.174 0.358 0.542 3.1 1.5
VxWorks/GHS/200 MHz PowerPC 0.021 0.021 0.068 3.2 3.2
Solaris/g++/168 MHz Ultrasparc 0.069 0.061 0.173 2.5 2.8
IRIX/CC/180 MHz SGI Origin200 0.061 0.061 0.084 1.4 1.4
NT/MSVC++/200 MHz Pentium 0.030 0.035 0.035 1.2 1.0

Table 3:Cost of Virtual Method Calls

2.7.2-960126, VxWorks 5.3.1 on a 200 MHz Pentium with
GreenHills 1.8.8, VxWorks 5.3.1 on a 200 MHz PowerPC with
GreenHills 1.8.8D, Solaris 2.5.1 on a dual-CPU 168 MHz Sun
UltraSPARC 2 with g++ 2.7.2, Irix 6.4 on a dual-CPU 180
MHz SGI Origin200 with SGI C++ 7.10, and Windows NT
4.0 on a 200 MHz PentiumPro with Microsoft Visual C++ 5.0.
As shown in Table 3, a virtual method call costs roughly 2 to
5 times that of a global function or non-virtual method call.

While these ratios seem high, for some platforms, the abso-
lute time penalty (relative to a global function call) for a virtual
method call was less than 0.6�sec on the tested platforms. Our
experience has been that this is not an impediment to real-time
system performance, though we avoid virtual methods where
not needed. Furthermore, modern compilers implement strate-
gies for replacing indirect virtual method calls with direct non-
virtual calls [35]. The results for the IRIX C++ and Microsoft
VC++ compilers indicate well-optimized virtual method calls.

7.2 The Cost of Polymorphism

Polymorphism facilitates run-time changes in object behav-
ior. Real-time systems often require predictable behavior of all
components. Initially, the flexibility of polymorphism seems
to be at odds with the requirement for real-time predictability.
We resolved this issue using the Off-line Scheduler discussed
in Section 5.2. Since scheduling is performed off-line, all ob-
jects and operations must be known in advance. Therefore,
it is the responsibility of the Off-line Scheduler to determine
whether a particular system configuration will meet all of its
deadlines. As a result, when a virtual method is called at run-
time, the system is not concerned with the actual implementa-
tion being invoked. The Off-line Scheduler has already guar-
anteed that its deadline will be met, based on the published
parameters of each schedulable operation.

One advantage of our approach is that operation invoca-
tions only pay the overhead of the C++ virtual method call.
If the schedule was not determined off-line, a run-time (dy-
namic) scheduler would need to intercede before any abstract
operation was invoked, which incurs additional overhead. For
instance, if a rate monotonic scheduling policy is used, the

scheduler must determine the rate that each object operation
executes in order to calculate its priority. Furthermore, this
type of dynamic scheduler must make some type of guarantee,
either weak or strong, that deadlines will be met.

One way a scheduler could make strong guarantees is to
perform admission control, which permits operations to exe-
cute when the necessary resources are available. Admission
control requires that object operations export execution prop-
erties, such as worst-case execution time. Alternatively, the
scheduler might implement a weaker, “best-effort” admission
policy. For example, if an Earliest Deadline First policy is
used, object operations with the nearest deadlines are given
priority over operations with later deadlines. Such a policy
would require that object operation deadlines be exported or
calculated by the scheduler. This type of support for dynamic
scheduling can incur significant overhead, and thus decrease
effective resource utilization. As a result, dynamic scheduling
solutions are sometimes not viable solutions for systems with
hard deadlines and constrained resources.

Since all objects and operations in TAO’s Real-time Event
Service are determined off-line, one could argue that no real
polymorphism exists. Although this is true to a certain extent,
there are more benefits to dynamic binding than just changing
behavior at run-time. In particular, we found that the abil-
ity to develop components independently of applications that
use them significantly increases the potential for reuse in the
avionics domain. For instance, since the Event Channel pushes
to abstractPushConsumer interfaces, the code for the Event
Channel remains decoupled from the number and type of ap-
plicationPushConsumer objects.

8 Concluding Remarks

Many real-time applications require support for asynchronous,
event-based communication. The CORBA COS Event Service
provides a flexible OO model where Event Channels dispatch
events to consumers on behalf of suppliers. TAO’S Real-time
Event Service described in this paper augments this model
with Event Channels that support source and type-based fil-
tering, event correlations, and real-time event dispatching.
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By configuring different Run-time Scheduler strategies,
TAO’s Event Channels can be configured with multiple
scheduling policies, such as rate monotonic scheduling and
maximum urgency first. Similarly, channels can be built with
varying levels of support for preemption by configuring dif-
ferent Dispatcher preemption strategies, such as EFD, single-
threaded, RTU, and real-time thread Dispatchers. This flex-
ibility allows applications to adapt their scheduling and dis-
patching policies to obtain optimal utilization for different ap-
plication requirements and platform resource characteristics.

Our performance results demonstrate that using a single
Event Channel for distribution yields poor performance and
high latency. We present an architecture to build federations
of Event Channels that yields near optimal performance for
collocated supplier/consumer pairs and does not affect remote
event performance significantly. In addition, our measure-
ments indicate that the dynamic binding mechanisms used by
our C++ compilers are not fundamentally at odds with the de-
terministic execution behavior required by real-time applica-
tions. In general, our results illustrate that it is feasible to apply
CORBA Object Services to develop real-time systems.

The implementation of TAO’s Real-time Event Service de-
scribed in this paper is written in C++ as one of the services in
TAO [5]. TAO is a real-time implementation of CORBA based
on the ACE framework [28]. ACE is a widely used communi-
cation framework that contains a rich set of high-performance
and real-time reusable software components. These compo-
nents automate common communication tasks such as con-
nection establishment, event demultiplexing and event handler
dispatching, message routing, dynamic configuration of ser-
vices, and flexible concurrency control for network services.
ACE has been ported to most real-time OS platforms including
VxWorks, LynxOS, CHORUS/ClassiX, pSoS, Solaris, Win32,
and most POSIX 1003.1c implementations.

TAO’s RT Event Service is currently deployed at Boe-
ing in St. Louis, MO, where it is being used to develop
operation flight programs for next-generation avionics sys-
tems. The source code and documentation for TAO and
its RT Event Service implementation is freely available at
www.cs.wustl.edu/˜schmidt/TAO.html .
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