The Design and Performance of a Real-time CORBA Event Service

Timothy H. Harrison, Carlos O’Ryan, David L. Levine, and Douglas C. Schmidt

{harrison,coryan,levine,schmijd®cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

This paper has been submitted to the IEEE Journal on 8emains, such as avionics, telecommunications, process con-
lected Areas in Communications special issue on Service Eol, and distributed interactive simulation, can leverage the
abling Platforms for Networked Multimedia Systems. benefits of flexible and open distributed object computing ar-

chitectures, such as those defined in the CORBA specification
Abstract [1]. If these architectures can be implemented in an efficient
and predictable manner, then their benefits make them very
The CORBA Event Service provides a flexible model for asgampelling for real-time systems.
chronous and group communication among distributed and
collocated objects. However, the standard CORBA Event Ser- . i
vice specification lacks important features required by appli- I this paper, we describe the design and performance of a
cations with real-time requirements, such as low latency, pf&al-time Event Service, which is a key CORBA-based archi-
dictability, event filtering, priority, and event correlation. Thidcture for push-driven real-time event systems. Our results
paper describes the design and performance of an objeq:?_smonstrate th'at the effl'c[ency and pr.edlc':tabll'lty of our regl—
oriented, real-time implementation of the CORBA Event SHe Event Service is sufficient for applications in the domain
vice that is designed to meet these requirements. of rea]-ﬂme systems such as avionics mission computing [2]

This paper makes four contributions to the design and p&?d high-speed network monitoring [3].
formance measurement of object-oriented real-time systems.

First, it illustrates how to extend the CORBA Event Servicerig paper also empirically evaluates the dynamic binding

so that it is suitable for.rea_tl—time systems. These extgnsi%rr’n perties of OO programming languages like C++. Histori-

support low latency, periodic rate-based event processing a0hy, 4ynamic binding has been viewed as antithetical to real-
efficient event filtering and correlation. Second, it describgg,e systems, which require deterministic execution behavior
how to develop object-oriented event dispatching and schedpllz |, latency. However, on modern platforms, compiler op-

ing mechanisms that can provide real-time guarantees. Thigthi, ations can reduce the cost of dynamic binding to a negli-
it describes how to distribute the Event Service effectively @gle amount
I_

provide low latency for collocated suppliers/consumers.
nally, the paper presents benchmarks that empirically demon-
strate the predictability, low latency, and high utilization of This paper is organized as follows: Section 2 outlines the

our real-time Event Service. CORBA reference model, the CORBA Event Service, and re-
Keywords: Real-time CORBA event systems, objeclated work; Section 3 describes how the CORBA Event Ser-
oriented communication frameworks. vice model can help to simplify application development in

real-time domains like avionics; Section 4 discusses the real-
. time extensions we added to the CORBA Event Service; Sec-
1 Introduction tion 5 outlines the OO framework for real-time event dis-

)) o patching and scheduling that forms the core of TAO'’s Real-
There is a widespread belief in the embedded systems c@fz Event Service; Section 6 shows the results of several
munity that object-oriented (OO) techniques are not suitalygnchmarks performed on our implementation, under different
for real-time systems. However, many real-time applicatiqhk|oads using Solaris real-time threads; Section 7 discusses

*This work was funded in part by Boeing, NSF grant NCR-9628218, aft!l expe'riences using OO techniques in a real-time context;
DARPA contract 9701516, and Section 8 presents concluding remarks.

2 Background 2.2 Synopsis of the CORBA Event Service

This section outlines the CORBA reference model, ttﬂ\ﬁ

CORBA Event Service, and compares this paper with related d'St.”bUtEd gppll((:éatlons_ exchaggle asynchronous re-
work. quests usingevent-baseaxecution models [9]. To support

these common use-cases, the OMG defined a CORBA Event
Service component in the CORBA Object Services (COS)
2.1 Synopsis of CORBA layer in Figure 1. The COS specification [10] presents archi-
tectural models and interfaces that factor out common services
CORBA is a distributed object computing middleware stafpr developing distributed applications.
dard being defined by the Object Management Group (OMG)The CORBA Event Service definssipplierandconsumer

CORBA is des!gngzd to suppprt the dEVqupment of ﬂex'b[g%rticipants. Suppliers generate events and consumers process
and.reu.sable distributed SErvices and appllcagons_ by (1) S&fEnts received from suppliers. In addition, the CORBA Event
arating interfaces from (potentially remote) object mplemeg—ervice defines aBvent Channelwhich is a mediator [11]

tapons and (2) automatmg many common netvyork Prografay propagates events to consumers on behalf of suppliers.
ming tasks, such as object registration, location, and acti-

vation; request demultiplexing; framing and error-handling; The CORBA Event Service model simplifies application

parameter marshalling and demarshalling; and operation @gftware by allowing decoupled suppliers and consumers,

patching. asynchronous event delivery, and distributed group commu-
Figure 1 illustrates the primary components in the om@cation [12]. In theory, this model seems to address many

Reference Model architecture [4]. At the heart of tHeommon needs of event-based, real-time applications. In prac-
tice, however, the standard CORBA Event Service specifica-

tion lacks other important features required by real-time ap-
[APPLICATION] [DOMAIN] [COMMON] plications such aseal-time event dispatching and scheduling
INTERFACES INTERFACES FACILITIES | periodic event processingndefficient event filtering and cor-
s 4 A A A 4 s A % relation mechanisms

Service, we have developedReal-time Event ServicgRT
Event Service) as part of the TAO project [5] at Washington
v] University. TAO is a real-time ORB endsystem that provides
OBJECT end-to-end quality of service guarantees to applications by
SERVICES vertically integrating CORBA middleware with OS 1/O sub-
systems, communication protocols, and network interfaces.
Figure 2 illustrates the key architectural components in TAO
and their relationship to the real-time Event Service.

TAO’s RT Event Service augments the CORBA Event Ser-

CORBA ORBs allow clients to invoke operations on target oljice model by plroyldmg s%urce]bgseddqnd tyE_(a—bas_redfﬁltﬁF
ject implementations without concern for where the object {pg, event correlations, and real-time dispatching. To facil-

: L : ; I-time scheduling policies, such as rate monotonic
sides, what language the object is written in, the OS/hardw e rea . ')
platform, or the type of communication protocols and n T S) [13] and maximum urgency first (MUF) [14], TAO's

works used to interconnect distributed objects [4]. tEvgnt fChanpe!ts (E)an t()je conilgdgredtt?]. supp%rt various
Our prior work on CORBA explored several dimensions sftra €gies lor priority-based event dispatching and preemp-

. S . . ion. This functionality is implemented using TAO's real-time
real-time ORB endsystem design including real-time schedul- . . . > .
: Ispatching mechanism that coordinates with its system-wide
ing [5], real-time request demultiplexing [6], real-time I/

subsystem integration [7], and real-time concurrency and C(r)%gl-Ume Scheduling Service [5].

nection architectures [8]. This paper extends our previousSTAO’s RT Event Service runs on real-time OS platforms
work [2] on real-time extensions to tl@ORBA Event Servicesuch as VxWorks, LynxOS, and CHORUS/ClassiX, which
by showing how to distribute the Event Service without incuprovide features and performance suited to real-time systems.
ring extra overhead for collocated supplier/consumer pairs daéneral-purpose operating systems like Windows NT and So-
presenting benchmarks for a federated Event Service confilguis 2.x also provide real-time threads, though they lack cer-
ration. tain features required for hard real-time systems [15, 16].

{ } To alleviate the limitations with the standard CORBA Event

Figure 1:OMG Reference Model Architecture

OMG Reference Model is th@bject Request Brok€ORB).

the QoS behavior of these implementations are not acceptable

‘,“s\\o REAL-TIME pllsbo solutions for many application domains.
EVENT
CLIENT SERVICE SERVANT The OMG has issued a request for proposals (RFP) on a
Y i new Notification Service [20] that has generated several re-

sponses [21]. The RFP specifies that a proposed Notification
Service must be a superset of the COS Event Service with in-
RIDL . o
TR terfaces for the following features: event filtering, event de-
R‘z";‘;;‘:‘?‘ﬂ livery semanticse.g, at least once, or at most once, security,
apapTER | event channel federations, and event delivery QoS. The orga-
nizations contributing to this effort have done excellent work
in addressing many of the shortcomings of the CORBA Event
Service [22]. However, the OMG RFP documents do not ad-
dress the implementation issues related to the Notification Ser-
vice.

ORB QoS
INTERFACE

OS KERNEL

0S 1/0 SUBSYSTEM

OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK ADAPTERS

Although there has been research on formalisms for real-
time objects [23], relatively little published research on the
design and performance of real-time OO systems exists. Our
Figure 2:TAO: An ORB Endsystem Architecture for High- @pproach is based on emerging distributed object computing
Performance, Real-time CORBA standards like OMG CORBA ORBs — we focus on the design
and performance of various strategies for implementing QoS
in real-time ORBs [5].

NETWORK

2.3 Related Work

Conventional approaches to quality of service (QoS) enforceThe QuO project at BBN [24] has defined a model for
ment have typically adopted existing solutions from the déommunicating changes in QoS characteristics between ap-
main of real-time scheduling, [13], fair queuing in networRlications, middleware, and the underlying endsystems and
routers [17], or OS support for continuous media applicatioRgtwork. The QuO architecture differs from our work on
[18]. In addition, there have been efforts to implement nédf Event Channels, however, since QUO does not provide
concurrency mechanisms for real-time processing, such ashg real-time guarantees of ORB endsystem CPU schedul-
real-time threads of Mach [19] and real-time CPU schedulifftf)- Other research on the CORBA Event Service [25, 26]
priorities of Solaris [16]. describe techniques for optimizing event service performance
However, QoS research at the network and OS layers fgsfiltering and message deIivgry. As with QuO: the focus of
not necessarily addressed key requirements and usage chiiicWork is not on guaranteeing CPU processing for events
teristics of distributed object computing middleware [5]. Fo¥ith hard real-time deadlines.
instance, research on QoS for network infrastructure has fo-
cused largely on policies for allocating bandwidth on a per-Rajkumar,et al,, describe a real-time publisher/subscriber
connection basis. Likewise, research on real-time openatototype developed at CMU SEI [9]. Their Publisher/Sub-
ing systems has focused largely on avoiding priority inveseriber model is functionally similar to the COS Event Ser-
sions and non-determinism in synchronization and schedulinge, though it uses real-time threads to prevent priority in-
mechanisms. In contrast, the programming model for devel@prsion within the communication framework. An interesting
ers of OO middleware focuses on invoking remote operaticaspect of the CMU model is the separation of priorities for
on distributed objects. Determining how to map the resuftsbscription and event transfer so that these activities can be
from the network and OS layers to OO middleware is the mdiandled by different threads with different priorities. How-
focus of our research. ever, the model does not utilize any QoS specifications from
There are several commercial CORBA-compliant Eveptiblishers (suppliers) or subscribers (consumers). As a result,
Service implementations available from multiple vendorthe message delivery mechanism does not assign thread pri-
such as Expersoft, IONA, and Borland/Visigenic. IONA alsorities according to the priorities of publishers or subscribers.
produces OrbixTalk, which is a messaging service based onrRcontrast, the TAO Event Service utilizes QoS parameters
multicast. Since the CORBA Event Service specification daesm suppliers and consumers to guarantee the event delivery
not address issues critical for real-time applications, howew@mantics determined by a real-time scheduling service.

3 Overview of the OMG CORBA w

Event Service
3.1 Background PUSH
The standard CORBA operation invocation model su /
ports twoway, oneway, and deferred synchronous inter PUSH
tions between clients and servers. The primary stren PUSH
of the twoway model is its intuitive mapping onto thi
object->operation() paradigm supported by OO lan-
guages like C++ and Java. In principle, twoway invocations
simplify the development of distributed applications by sup- .) ,
porting an implicit request/response protocol that makes %égure 3:Participants in the COS Event Channel Architec-
mote operation invocations transparent to the client. ture
In practice, however, the standard CORBA operation invo-
cation models are too restrictive for real-time applications. InSuppliers use Event Channels to push data to consumers.
particular, these models lack asynchronous message deliieiRewise, consumers can explicitly pull data from suppliers.
do not supporttimed invocations or group communication, amfle push and pull semantics of event propagation help to
can lead to excessive polling by clients. Moreover, standdfge consumers and suppliers from the overly restrictive syn-
oneway invocations are not necessarily reliable and defergg@onous semantics of the standard CORBA twoway commu-
synchronous invocations require the use of the CORBA Dyication model. In addition, Event Channels can implement
namic Invocation Interface (DII), which yields excessive ovegroup communication by serving as a replicator, broadcaster,
head for most real-time applications [27]. or multicaster that forward events from one or more suppliers
The Event Service is a CORBA Object Service that i multiple consumers.
designed to alleviate some of the restrictions with standardrhe COS Event Service architecture has two models of par-
CORBA invocation models. In particular, the COS Event Setfeipant collaborationspushandpull. This paper focuses on
vice supports asynchronous message delivery and allows @g-time enhancements to the push model, which allows sup-
or more suppliers to send messages to one or more consunpgies's of events to initiate the transfer of event data to con-
Event data can be delivered from suppliers to consumers wigbmers. Suppliers push events to the Event Channel, which in
out requiring these participants to know about each other @xn pushes the events to consumers.
plicitly.

3.3 Applying TAO’s Real-time Event Service to
3.2 Structure and Participants for the COS Real-time Avionics Systems

Event Service Modern avionics systems are characterized by processing

Figure 3 shows the key participants in the COS Event Servféék,s with detgrministic_: and statistical real-time deadlines, pe-
architecture. The role of each participant is outlined below:0dic processing requirements, and complex data dependen-

cies. Building flexible application software and OO middle-
Suppliers and consumers: Consumers are the ultimate tarware that meets these requirements is challenging because the
gets of events generated by Supp“ersl Supp“ers and C@ﬁed for determinism and predictability often results in tlghtly
sumers can both play active and passive roles. An active p&@Hpled designs. For instance, conventional avionics mission
supplierpushesan event to a passive push consumer. Likgontrol applications consist of closely integrated responsibil-
wise, a passive pull supplier waits for an active pull consunié@s that manage sensors, navigate the airplane’s course, and
to pull an event from it. control weapon release.

Tight coupling often yields highly efficient custom imple-

Event Channel: At the heart of the COS Event Service isnentations. As the example below shows, however, the inflex-
the Event Channel, which plays the role of a mediator betwebility of tightly coupled software can substantially increase
consumers and suppliers. The Event Channel manages oltfexeffort and cost of integrating new and improved avionics
references to suppliers and consumers. It appears as a pfeatures. For example, navigation suites are a source of contin-
consumer to the real suppliers on one side of the channel aatichange, both across platforms and over time. The specific
as a proxy supplier to the real consumers on the other sidecomponents that make up the navigation siétg, sensors,

change frequently to improve accuracy and availability. Mahy other application objects. For instance, the aircraft posi-
conventional avionics systems treat each implementation d®a computed by an I/O Facade is used by the navigation and
“point solution,” with built-in dependencies on particular comweapon release subsystems.

ponents. This tight coupling requires expensive and time con-

suming development effort to port systems to newer and mord N€pushdriven model described above is commonly used
powerful navigation technologies. in many real-time environments, such as industrial process

control systems and military command/control systems. One
. . . . positive consequence of this push-driven model is the efficient
3.4 Overview of Conventional Avionics Appli- and predictable execution of operations. For instance, 1/0 Fa-

cation Architectures cades only execute when their event dependencies are satis-

Figure 4 shows a conventional architecture for distributing pfée-d’ i.e., when they are called by Sensor Proxies.

riodic I/O events throughout an avionics application. This ex- N contrast, using gull-driven model to design mission
control applications would require I/O Facades that actively

acquire data from the Sensor Proxies. If data was not avail-
High Level able to be pulled, the calling I/O Facade would need to block
/O Facade) { 1/O Facade) Abstraction awaiting a result. In order for the /0 Facade to pull, the sys-
tem must allocate additional threads to allow the application to
> Bemarshaled dats make progress while the I/O Facade task is blpcked. However,
: i adding threads to the system has many negative consequences,

Sensor Sensor Sensor such as i_ncreased context switphing overhead, synchron?zgtion
Proxy Proxy Proxy complexity, and complex real-time thread scheduling policies.
Conversely, by using the push model, blocking is largely alle-

/:/' viated, which reduces the need for additional threads. There-

i fore, this paper focuses on the push model.

1/0 Facade

Sensor
Proxy

1: /O via interrupt:

Aircraft i L Low Level _ . o
Sensors —1 | Abstraction 3.5 Drawbacks with Conventional Avionics Ar-

chitectures

Figure 4:Example Avionics Mission Control Application A disadvantage to the architecture shown in Figure 4 is the

strong coupling between suppliers (Sensor Proxies) and con-
sumers (I/O Facades). For instance, to call back to I/O Fa-
Aircraft Sensors: Aircraft-specific devices generate sens@ades, each Sensor Proxy must know which 1/0 Facades de-
data at regular intervals,g, 30 Hz (30 times a second), 15 Hzpend on its data. As a result, Sensor Proxies must be modified
5 Hz, etc. The arrival of sensor data generates interrupts fizgadccommodate changes to the 1/0 Facade laygt, addi-
notify mission computing applications to receive the incominign/removal of a consumer. Likewise, consumers that register
data. for callbacks are tightly coupled with suppliers. If the avail-

Sensor Proxies: Mission computing systems must proceg@ility of new hardware, such as Forward Looking Infrared
data to and from many types of aircraft sensors, includiﬁ@darv requires a new Sensor Proxy, I/O Facades must be al-
Global Position System (GPS), Inertial Navigation Set (INSgred to take advantage of the new technology.

and Forward Looking Infrared Radar. To decouple the details

of sensor communication from the applications, Sensor Pr i . .

objects are created for each sensor on the aircraft. Whenq?';é A".eVI.atmg DraWbaCks with Conventional
interrupts occur, data from a sensor is given to an appropri- Avionics Architectures

f"‘te Sgnsor Proxy. Ea_c_h Sensor Proxy O.bJeCt demarshalstie,e 5 shows how an Event Channel can alleviate the disad-
incoming data and notifies I/O Facade objects that depend gli,ges of the tightly coupled consumers and suppliers shown
the sensor’s data. Since modern aircraft can be equipped %tli’ﬁigure 4. In Figure 5, Sensor Proxy objects are suppliers
hundreds ,Of sensors, a large number of Sensor Proxy Obj%‘ftf?o events that are propagated by an Event Channel to I/O
may existin the system. Facades, which consume the demarshalled I/O data. Sensor
I/O Facade: 1/O Facades represent objects that depend Broxies push I/O events to the channel without having to know
data from one or more Sensor Proxies. /0O Facade objemstsch I/O Facades depend on the data. The benefit of using the
use data from Sensor Proxies to provide higher-level vielgent Channel is that Sensor Proxies are unaffected when 1/0

ample has the following participants:

Consumers and error-prone details of handling registrations from multi-

ple consumers and suppliers. In addition, the COS Event Ser-
I/O Facade VO F vice interfaces are fairly intuitive and the consumer/supplier
acade /O Facade connections and event delivery models are symmetrical and
straightforward.
AN)\ ol

However, the standard COS Event Service Specification

3: push (de'marshaled data) lacks several important features required by real-time appli-
cations. Chief among these missing features include real-time
event dispatching and scheduling, periodic event processing,
and centralized event filtering and correlations. To resolve
these limitations, we have developed a Real-time Event Ser-

2: push (demarshaled data) vice (RT Event Service) as part of the TAO project [5]. TAO's

RT Event Service extends the COS Event Service specification
to satisfy the quality of service (QoS) needs of real-time ap-
plications in domains like avionics, telecommunications, and
process control.

The following discussion summarizes the features missing
in the COS Event Service and outlines how TAO’s Real-time
Event Service supports them.

4.1.1 Supporting Guarantees for Real-time Event Dis-
patching and Scheduling

In a real-time system, events must be processed so that con-
Figure 5:Example Avionics Application with Event Chan- sumers can meet their QoS deadlines. For instance, the Sensor
nel Proxies shown in Figure 5 generate notification events that al-

low the 1/0 Facades who depend on the sensor data to execute.

To enforce a real-time scheduling policy, higher priority 1/0

Fa(;:ade_sba:je added (I)r tr)emhovec;). This architectural decoupiiga jes must receive events and be allowed to run to comple-
is described concisely by the Observer pattern [11]. tion before lower priority I/O Facades receive events.

Another benefit of an Event Channel-based architecture ISthe COS Event Service has no notion of QoS, however
that an I/O Facade need not know which Sensor Proxies siipyaticylar, there is no Event Channel interface that con-
ply its data. Since the channel mediates on behalf of the Sensfhers can use to specify their execution and scheduling re-

Proxies, 1/0 Facades can register for certain types of eveR{grements. Therefore, standard COS Event Channels provide

€.9, GPS and/or INS data arrival, without knowing which Se%’(?uarantee that they will dispatch events from suppliers with

sor Proxies actually supply these types of events (Section & c,rect scheduling priority, relative to the consumers of

discusses typed-filtering). Once again, the use of an Evgilise events.

Channel makes it possible to add or remove Sensor Proxiéganyg RT Event Service extends the COS Event Service in-
without changing I/O Facades. terfaces by allowing consumers and suppliers to specify their
execution requirements and characteristics using QoS param-
:) : eters such as worst-case execution time, rate, etc. These pa-
4 Overview of TAO's Real-time Event rameters are used by the channel’s dispatching mechanism to
Service integrate with the system-wide real-time scheduling policy to
determine event dispatch ordering and preemption strategies.

4.1 Overcoming Limitations with the CORBA Section 5.2.1 describes these QoS parameters in detail.

Event Service

. . . 4.,1.2 Supporting Centralized Event Filtering and Corre-
As shown in the previous section, the CORBA COS Event Ser- lation

vice provides a flexible model for transmitting asynchronous

events among objects. For example, it removes several $eme consumers can execute whenever an event arrives from
strictions inherent in synchronous twoway communicatioany supplier. Other consumers can execute only when an
Moreover, it frees application programmers from the tedioergent arrives from a specific supplier. Still other consumers

must postpone their execution until multiple events have ae., receiving timeouts at some interval, a consumer can re-
rived from a particular set of suppliers,g, a correlation of quest to receive a timeout event if its dependencies are not
events. satisfied within some time periode., a real-time “watchdog”

For instance, an /0 Facade may depend on data from a dirber. For instance, an I/O Facade can register to receive a
set of all Sensor Proxies. Furthermore, it may use data frimeout event if its Sensor Proxy dependencies are not satis-
many Sensor Proxies in a single calculation of aircraft pofied after some time interval. This way, it can make best ef-
tion. Therefore, the I/O Facade can not make progress ufdit calculations on the older sensor data and notify interested
all of the Sensor Proxy objects receive I/O from their exterrt@gher level application components.
sensors.

It is possible to implement filtering using standard COS , . .
Event Channels, which can be chained to create an evendi? TAO’S RT Event Service Architecture

tering graph that consumers use to receive a subset of the tlglt I re 6 shows the high-level architecture of TAO's RT Event

events in the system. However, the filter graph defined in star= .~ . . .
. ' rvice implementation. The role of h component in th
dard COS increases the number of hops that a message must o mpieme tatio e role of each component in the

travel between suppliers and consumers. The increased over-
head incurred by traversing these hops is unacceptable for r

time applications with low latency requirements. Furthermo
the COS filtering model does not address the event correla
needs of consumers that must wait fioultipleevents to occur 4

before they can execute. ¥_push (event) ¥

To alleviate these problems, TAO's RT Event Service pr '
vides filtering and correlation mechanisms that allow co Clgnsqmer
sumers to specify logical OR and AND event dependenci roxies
When those dependencies are met, the RT Event Service Dispatching
patches all events that satisfy the consumers’ dependenc Module
For instance, the I/O Facade can specify its requirements ~ EVENT
the RT Event Service so that the channel only notifies the | CHANNEL . Event
cade object after all its Sensor Proxies have received I/O. SOk Flow
that time, the 1/0O Facade receives an IBéquence with all Subscription
the events from the Sensor Proxies it depends on via a sir & Filtering
push operation. — :
Priority| Supplier
) o) Timers| Proxies
4.1.3 Supporting Periodic Processing v \ > _

Consumers in real-time systems typically requireinits of push (event)
computation time every milliseconds. For instance, some
avionics signal processing filters must be updated periodic @
or else they will spend a substantial amount of time reconve
ing. Likewise, an I/O Facade might guarantee regular delivery
of its data to higher level components, regardless of whether its
Sensor Proxy objects actually generate events at the expected
rate.

In both cases, consumers have strict deadlines by whith Event Service is outlined below:
time they must execute the requestedunits of computa-
tion time. Howeverz the QOS Event Servicg does n(_)t Permib 1 Event Channel
consumers to specify their temporal execution requirements.

Therefore, periodic processing is not supported in standérdthe RT Event Service model, the Event Channel plays
COS Event Service implementations. the same role as it does in the conventional COS Event
TAO’s RT Event Service allows consumers to specify eveBervice. Externally, it provides two factory interfaces,

dependency timeouts. It uses these timeout requests to pgmsumerAdmin andSupplierAdmin , which allow ap-
agate temporal events in coordination with system schedulpigations to obtain consumer and supplier administration ob-
policies. In additional to the canonical use of timeout evenjscts, respectively.

Figure 6:RT Event Service Architecture

The Event Channel administration objects allow consumersSFAO’s RT Event Service model extends the standard COS
and suppliers to connect and disconnect from the channel.RrexyPushConsumer interface so that suppliers can spec-
ternally, the channel is comprised of several processing mdg-the types of events they generate. With this information,
ules based on the ACE Streams framework [28]. As descrilibd channel's Subscription and Filtering Module can build data
below, each module encapsulates independent tasks ofstingctures that allow efficient run-time lookups of subscribed
channel. consumers.

ProxyPushConsumer objects also represent the entry
point of events from suppliers into an Event Channel. When
Suppliers transmit an event to tfRroxyPushConsumer
The interface to the Consumer Proxy Module is identiterface via the proxy’push operation the channel forwards
cal to ConsumerAdmin interface defined in the COSthis event to theoush operation of interested consumer ob-
Event ServicaCosEventChannelAdmin module. It pro- ject(s).
vides factory methods for creating objects that support the
ProxyPushSupplier interface. In the COS model, the o o
ProxyPushSupplier interface is used by consumers t4-2-4 Subscription and Filtering Module
conne(?t and disconnect frf’m the channel. The CORBA Event Service defines Event Channels as broad-

TAO's RT Event S_erwce _model extends the standafdqie s that forward all events from suppliers to all con-
Cos PrquPushSuppller . interfaces SO that_ CONSUMETS, mers. This approach has several drawbacks. If consumers
can register their execution dependencies with a Chan%?énonly interested in a subset of events from the suppliers,
Figure 7 shows the types of data exchanged and the 'n[ﬁé'y must implement their own event filtering to discard un-

needed events. Furthermore, if a consumer ultimately discards

4.2.2 Consumer Proxy Module

CONNECT PUSH CE\A/EINTEL an event, then delivering the event to the consumer needlessly
CONSUMER wastes bandwidth and processing.
Object Ref Consumer To address these shortcomings, TAO'’s RT Event Service ex-
Zimdes tends the COS interfaces to allow consumers to subscribe for
RT_Info Dispatching particular subsets of events. The channel uses these subscrip-
Correlation Module tions to filter supplier events, only forwarding them to inter-
Specs Event connEeLPuSH ested consumers.
o Correlation There are several reasons why TAO implements filtering in
Subscription Info Subscription Publish Types an Event Channel. First, the channel relieves consumers from
& Filtering implementing filtering semantics. Second, it reduces network-
Timeout Registration |[Priority] Supplier ing load by eliminating filtered events in the channel instead of
Timers| Proxies Object Ref at consumers. Furthermore, to implement filtering at the sup-
pliers, the suppliers would require knowledge of consumers.

Since this would violate one of the primary motivations for
an event service (that is, decoupled consumers and suppliers),
TAO integrates filtering into the channel.

Adding filtering to an Event Channel requires a well-defined

object collaborations involved when a consumer invokes t¢ent type system that includes source ID, type, data, and

Figure 7:Collaborations in the RT Event Service Architec-
ture

ProxyPushSupplier::connect _push _consumer timestamp fields. The complete schema for this type system

registration operation. is beyond the scope of this paper (it is fully described in [29]).
The RT Event Channel uses the event type system in the fol-
lowing ways:

4.2.3 Supplier Proxy Module

The interface to this module is identical to>UPPlier-based filtering: Not all consumers that connect to
SupplierAdmin interface defined in the COS Evenf" Event Channel are interested in the same events. In this
Service CosEventChannelAdmin module. It pro- case, consumers only register for events generated by certain

vides factory methods for creating objects that suppSHPPliers. The event type system includes a source ID field
the ProxyPushConsumer interface. Suppliers use thdhat allows applications to specify unique supplier identifiers

ProxyPushConsumer interface to connect and disconneith each event. The Subscription and Filtering Module uses
from the channel. this field to locate consumers that have subscribed to particular

suppliers inO(1) worst-case time.

Type-based filtering: Each event contains a type field. Thispecify conjunctive (“AND”) or disjunctive (“OR”) seman-
allows consumers to register for events of a particular typies when registering their filtering requiremerits,, supplier-
Since the type field is represented as an enumerated typeptmed and/or type-based. Conjunctive semantics instruct the
Subscription and Filtering Module uses a lookup structuredbannel to notify the consumer whatl the specified event
find type-based subscribers@{1) worst-case time. dependencies are satisfied. Disjunctive semantics instruct the
channel to notify the consumer(s) whany of the specified
Combined supplier/type-based filtering: Consumers can event dependencies are satisfied. Consumers can register their
register for any combination of supplier and type-based fjlitering requests with a channel multiple times. In this case,
tering, e.g, only supplier-based, only type-based, or suppligfre channel creates a disjunction relation for each of its con-
based and type-based. To implement this efficiently, the Sdlimer registrations.
scription and Filtering Module maintains type-based subscripechanisms that perform filtering and correlation are called
tion tables for every supplier in the system. Event Filtering Discriminator{EFDs). EFDs allow the run-
time infrastructure to handle dependency-based notifications

When an event enters the Subscription and Filtering Md@at would otherwise be performed by each consumeallas
ule, consumers that subscribe to combined supplier/type-ba@énts were pushed to it. Thus, EFDs provide a “data reduc-
IDs are located with two table lookups. The first lookuon” service that minimizes the number of events received by
finds all the type-based subscription tables corresponding@sumers so they only receive events they are interested in.
the event’s source ID. The second lookup finds the consumers
subscribed to the event’s type ID. 4.2.7 Dispatching Module

The Subscription and Filtering Module permits consumers

to temporarily disable event delivery by the channel throu%ll?‘,a Dispatching Module determines when events should be
suspend andresume operations. These are lightweight op_ellvered to consumers and pushes the events to them accord-

erations that have essentially the same effect as de-registdfifly: T guarantee that consumers execute in time to meet
and re-registering for events. Thereforeyspend and their deadlines, this module collaborates with the system-wide
resume are suitable for frequent changes in consumer Se?ghedylmg Service (discussed in Section 5.2).

which commonly occur during mode changes. By incorpo-TAOS Off-line Scheduler initially implements the rate
rating suspension and resumption in the module closestmgnotonic scheduling policy. Section 5 illustrates how adding

the suppliers, Event Channel processing is minimized for sH&W dispatching implementations is straightforward since this
pended consumers. module is well-encapsulated from other components in the

Event Channel’s OO real-time event dispatching framework.

4.2.5 Priority Timers Proxy 4.3 Federated Event Channels
The Supplier Proxy Module contains a special-purpeser- 1, original implementation of TAO’s RT Event Channel [2]

ity Timers Proxythat manages all timers registered with _ﬂ\fvas limited to a single processor configuration. However,

channel. When a consumer registers for a timeout, the Priogf¥dern avionics hardware typically comprises several proces-

Timers Proxy cooperates with the Run-time Scheduler to Fé%r boards connected through a high-speed interconnect, such

sure that timeouts are dispatched according to the priority. a fiber channel network or a VME bus. One way to con-

. . &
their corresponding consumer. figure TAO's Event Service is to use a single centralized real-

The Priority Timers Proxy uses a heap-based callout qugigs Event Channel for the entire system. As shown in Fig-

[30] provided by ACE. Therefore, in the average and Woigle g remote invocations are handled by oneway and twoway
case, the time required to schedule, cancel, and expire a tiBelRBA communication mechanisms.

is O(log N) (whereN is the total number of timers). The timer o vever, the centralized RT Event Channel architecture

mechanism preallocates all its memory, which eliminates the,,rs excessive overhead because the consumer for a given
need for dynamic memory allocation at run-time. Thereforg,pjier is usually located on the same board. Therefore, if
this mechanism is well-suited for real-time systems requirieh, Event Channel is on a remote board. extra communica-
highly predictable and efficient timer operations. tion overhead and latency are incurred for the common case.
Moreover, TAO’s collocated method invocation is highly opti-
4.2.6 Event Correlation mizeq, so it is desirable to exploit this optimization whenever
possible.
A consumer may require certain events to occur before itTo address the limitations of the centralized Event Channel
can proceed. To implement this functionality, consumers carchitecture, TAO's RT Event Service provides mechanisms to

Host A

G Consumers
e

Host B
Cons.JmersG

i

L]
d

S

Q 2L

']

Suppliers

G

O

Suppliers

that a correlation is satisfied from events arriving from both
local and remote consumers.

TAO's current RT Event Service implementation requires
that each Event Channel in a federation be connected to every
one of its peers. This is not a problem for avionics applications
that typically have one Event Channel per processor board. In
other domains, however, applications could require hundreds
or thousands of Event Channels. In this case, providing a full
network would not scale. We are investigating techniques for
relaxing this condition.

Other types of distributed applications can benefit from
TAO's federated Event Service. For instance, distributed in-
teractive simulations can comprise several nodes in different

Figure 8:A Centralized Configuration for the Event Chan-

nel.

LANSs, where most of the traffic destination is within the same
LAN. Configuring an Event Channel on each LAN helps to
reduce latency by avoiding round-trip delay to remote nodes.

connect several Event Channels to form a federation, as shawa Static and Dynamic Event Channel Config-

in Figure 9. uration
Host A Host Bl The performance requirements of an RT Event Service may
G G G vary for different types of real-time applications. The pri-
Consumers Consumers | yary motivation for basing the internal architecture of the
\ / [\ \ TAO Event Channel on the ACE Streams framework is to sup-
ol] <!l] port static and dynamic channel configurations. Each module
% [] %] shown in Figure 7 may contain multiple “pluggable” strate-
S Sl | gies, each optimized for different requirements. The Streams-
SIiC__ 1 I based architecture allows independent processing modules to
. o be added, removed, or modified without requiring changes to
g other modules.
O \O\QE*’ *’QD/ O\‘\O TAO’s Event Channel can be configured in the following
Suppliers Gateway| | Gateway Suppliers |Ways to support different event dispatching, filtering, and de-
pendency semantics:

Figure 9:Federated Event Channels.

Full Event Channel: The modules implementing a “full”
TAO Event Channel include the Dispatching, Correlation, Fil-
tering, and Consumer/Supplier Proxy modules. A channel that

In the federated architecture, multiple Event Channels & onfigured with all these modules supports type and source-

connected through Gateway A Gateway is a servant thatyased filtering, correlations, and priority-based queueing and
connects to one Event Channel as a consumer and forwardgigpatching.

events it receives to other Event Channels. It therefore plays
the role of supplier for the second Event Channel. The Ga&uibset Event Channels: As discussed in Section 5, TAO'’s
way usually connects as a supplier to a collocated Event ChBment Channel Dispatching Module implements several con-
nel. Thus, TAO’s remote communication mechanisms are usedrency strategies. Each strategy caters to the type and avail-
only when events are sent from a remote supplier to a loaaillity of system resources, such as the OS threading model
consumer. and the number of CPUs. TAO’s Event Channel framework is
A Gateway can be collocated with the Event Channel tiggsigned so that changing the number of threads in the sys-
supplies events to it. However, the configuration shown in Figm, or changing to a single-threaded concurrency strategy,
ure 9 minimizes network traffic since the Gateway only sudees not require modifications to unrelated components in a
scribes to events of interest to its consuming Event Chanreslannel.
The Gateway must subscribe to the disjunction of all the sub-The following configurations can be achieved by removing
scriptions in its consuming Event Channel since it is possilertain modules from an Event Channel:

10

e Event Forwarding Discriminator configuratiehRemov- such as rate monotonic and earliest deadline first (EDF), re-
ing the Dispatching Module from the Event Channejuire priority-based event dispatching and preemption.
yields an Event Forwarding Discriminator (EFD) con- To maximize reuse and allow flexibility between multiple
figuration that supports event filtering and correlationscheduling policies, TAO's Event Channel framework sepa-
An EFD configuration is shown in Figure 11(C). Sinceates its dispatching mechanism from its scheduling policy.
TAO's Filtering and Correlation Modules have been inFhe dispatching mechanism implements priority-based dis-
plemented to guarantee deterministic run-time perfgatching and preemption, but consults a Run-time Scheduler
mance, the EFD configuration is applicable for real-time determine the priorities of objects and events.
applications that do not require priority-based queuingThis section describes the Dispatching Module and
and dispatching in the Event Channel. As discussggheduling Service in TAO’s RT Event Channel.
in Section 5.1.1 below, such systems might implement
real-time dispatching in the ORB’s Object Adapter leveh.1 The Dispatching Module

thereby simplifying the channel.
The Dispatching Module is responsible for implementing

* Subscription and Filtering configuratior Removing pyiority-based event dispatching and preemption. When the
the Correlation Module from a full TAO Event Channehjgnatching Module receives a set of supplier events from the
yields a Subscription and Filtering configuration. Thigyent Correlation Module, it queries TAO’s Run-time Sched-
configuration is useful for applications that have no comyrer 1o determine the priority of the consumers that the events
plex inter-event correlation dependencies, but only wagl gestined for. With that information, the Dispatching Mod-
to receive events when they match a simple filter. ule can either (1) insert the events in the appropriate priority

e Broadcaster Repeater configuratielRemoving the Cor- queues (which are dispatched at a later time) or (2) preempt a
relation and Dispatching Modules creates a Broadcadténning thread to dispatch the new events immediately.
Repeater configuration. This configuration supports nei-Figure 10 shows the structure and dynamics of the Dispatch-
ther real-time dispatching nor filtering/correlations. I#g Module in the context of the Event Channel. The partici-
essence, this implements the semantics of the standard
COS Event Channel push model.

Event Channel

In static real-time environments, such as traditional avic
ics systems, the configuration of an Event Channel is gt
erally performed off-line to reduce startup overhead. In d
namic real-time environments, such as telecommunicat
call-processing, however, component policies may require Dispatcher-+¢ ¢ ¢
teration at run-time. In these contexts, it may be unacce 6 dequeue (event, consumer)
able to completely terminate a running Event Channel whe \/
scheduling or concurrency policy is updated. In general, the R
fore, an RT Event Channel framework must support dynan E E E E E
reconfiguration of policies without interruption while continu
ing to service communication operations [31]. Basing TAC Run-Time Scheduler
RT Event Channel on the ACE Streams framework suppc
both static and dynamic (re)configuration.

Consumer Proxies
A

Dispatching Module

Priority Queues

5: enqueue (event, consuner)

4: push (event, consuner) *

Event Correlation

3. push (event, consuner) T
5 An Object-Oriented Framework for Subscription & Filtering
Real-time Event Service Dispatching 2 push (evert) }

and Scheduling @ .| Supplier Proxies
1 push (event)

Applications and middleware components using TAO's F..
Event Service can have deterministic and/or statistical dead-
lines. As aresult, TAO's RT Event Channel utilizes a real-time Figure 10:Event Channel Dispatching
Scheduling Service [5] to ensure that events are processed be-
fore deadlines are missed. Most real-time scheduling policipants in this figure include the following:

11

Consumer and Supplier Proxies: The Event Channel uti- tuples on queue 0 before dispatching any on queue 1. Simi-

lizes proxies to encapsulate communication with the cdarly, it would dispatch all tuples on queue 1 before those on

sumers and suppliers. For a distributed consumer or suppligreue 2, and so on.

a proxy manages the details of remote communication. To remove tuples from Priority Queues, the Dispatcher al-
.)) ways dequeues from the head of the queue. The Run-time

Event filtering and correlation: When events arrive from Scheduler can determine the order of dequeuing by return-

consumers, the Event Filtering and Correlation Modules detﬁ-..r- different sub-priorities for different event/consumer tu-

Dispatching Module, which handles the details of dispatchifgy heq hefore everi,, but does not require that the arrival
each event to its consumer(s) in accordance with the prIOt’(l)tp/EQ preempt a thread dispatchiflg. By assigning a higher
of the event/consumer(s) tuple. sub-priority to event/consumer tuples containkag the tu-

Run-time Scheduler: The Dispatching Module collaborate®'€ Will always be queued before any tuples contairiiag

with the Run-time Scheduler to determine priority values gf'€refore, the Dispatcher will always dequeue and dispatch

the event/consumer tuples. Given an event and the talgefVENts befor&, events. o .

consumer, the Run-time Scheduler determines the priority af* Penefit of separating the functionality of the Dispatcher

which the event should be dispatched to the consumer. from Fhe Priority Queues'ls to allow the implementation of
The motivation for decoupling the Run-time Scheduler frofi€ Dispatcher to change independently of other channel com-

the Dispatching Module is to allow scheduling policies t8onents. TAO's RT Event Channel has been implemented

evolve independently of the dispatching mechanism. TAQNth four dn‘_ferent dispatching mechanisms, as described in

Run-time Scheduler was initially implemented with a raf8€ Subsection 5.1.1.

monotonic scheduling policy that used the consumer’s rate to

deter_mine the tuple’s priority. Subsequent Run-timg Sch%c.illl Dispatcher Preemption Strategies

uler implementations use dynamic scheduling policies such

as EDF and MUF. Thus, by separating the responsibilities/af important responsibility of the Event Channel’s Dispatcher

scheduling from dispatching, the Run-time Scheduler candaechanism ipreemption Most real-time scheduling policies

replaced without affecting unrelated components in the chagquire preemption. For example, if consumer A with a pri-

nel. ority of 2 is executing when consumer B with a priority of 1
o , becomes runnable, consumer A should be preempted so that

Priority Queues: ~ Given an event/consumer tuple, the Ru:g-lcan run until it completes or is itself preempted by a con-

“”,‘e. Schedulgr returps a preemptipn .priority .an.d & SWimer with a priority of 0. As shown in Figure 11, TAO'’s
priority. The Dispatching Module maintains a priority queue

of events for each preemption priority used by the Run-tima

Scheduler. When an event/consumer tuple arrives, it is D';‘;ac}ﬁm”g D',fﬂ%ac}ﬁl'gng Consumer
serted onto the queue corresponding to the preemption prio 4: push (event, 4: push (even, Pr‘;x'es
F . consumer) consumer)
returned by the scheduler. The sub—prlonty isused by the C S — 1] 5 push event, consumen
patcher to determine where in the Priority Queue the tuple -5 P P no dispatching module
placed /I _’2 _’i _’2 _’2 _’2 |
. T O | Event
3: dequeue (event, 3: dequeue (event, l Correlation
i . i i i i consumer) consumer)
Dispatcher: The Dispatcher is rgsponable for removin VN Oy pay
event/consumer tuples from the priority queues and forwa| o 1 2 3 4 o 1 2 3 4 consumer)
ing the events to consumers by calling thpissh opera- EEEEE|EEEE&E Sglllg,slfription
. . . . ° lnterin
tions. Depending on the placement of each tuplg in the F| #(ghene (e AR g
ority Queues, the Dispatcher may preempt a running threar AT RUN-Time 1: push (event)
dispatch the new tuple. Scheduler Scheduler Supplier
For instance, consider the arrival of an event/consumer e | push (vent Proxies
ple in a Dispatching Module implemented with real-time pri| (A) RTU Dispatching | (B) Threaded DispatchindC) EFD Dispatching

emptive threads. If the Run-time Scheduler assigns the tupie a
preemption priority higher than any currently running thread,
the Dispatcher will preempt a running thread and dispatch the

new tuple. Furthermore, assuming that lower numbers indicate

higher priority, the Dispatcher in Figure 10 would dispatch dpvent Channel Dispatching Module supports several levels of
preemption via the following strategies:

Figure 11:Dispatcher Implementations

12

Real-time upcall (RTU) dispatching (with deferred pre- purely EFD-based Event Channel. This configuration is shown

emption): Figure 11(A) shows a single-threaded implemem Figure 11(C). An EFD channel forwards all events to the

tation where one thread is responsible for dispatching etlnsumers without any priority queueing, real-time schedul-

gueued requests. This requires that consumers cooperatively or context switching. Events are dispatched without at-

preempt themselves when a higher priority consumer becortegdion to priority, and there is no preemption of consumers

runnable. This model of “deferred preemption” is based omdnen higher priority event/consumer tuples become available.

Real-time Upcall (RTU) concurrency mechanism [32]. EFD channels are appropriate in systems that do not have
The primary benefit of the RTU model is its ability to resignificant priority-based requirements. In these cases, there

duce the context switching, synchronization, and data moiseno overhead incurred by a Dispatching Module. However,

ment overhead incurred by preemptive multi-threading impIEFD channels are not always suitable when real-time schedul-

mentations. However, preemption is deferred to the extent timaf policies must be enforced. As shown in Section 5, our per-

consumers check to see if they must preempt themselves. Ttrimance results show that these drawbacks can cause missed

latency may be unacceptable in hard real-time applicatiodeadlines even under relatively low loads.

such as avionics mission computing. In contrast, deferred pre-

emption may be acc_:eptable fqr multimedia applications tlgﬁ_z Scheduling Enforcement

have less stringent timing requirements.

Real-time preemptive thread dispatching: Real-time The real-time scheduling for the version of TAO’s Event Chan-

threads are supported by an increasing number of OS pml_described in this paper is performed off-line. Therefore, no
forms, such as VxWorks, LynxOS, CHORUS/ClassiX Solaf@echanisms for enforcing component behavior are provided.
2 % and DEC UNIX. Fig,ure 11(5)’ shows an impleméntatiogonsequenﬂy' tasks that overrun their allotted resource alloca-
of the Dispatching Module that allocates a real-time threH@nS can cause other tasks to miss their deadlines.
(or pool of threads) to each priority queue. An advantage of a “trust”-based scheduling enforcement
The advantage of this model is that the dispatcher can leRRLCY is there is no overhead incurred by QoS enforcement
age kernel support for preemption by associating appropriH}%Cha”'smS that wquld otherywse be ne.cessary'to monitor and
OS priorities to each thread. For instance, when a threa$aorce the scheduling behavior atrun-time. A disadvantage is
the highest priority becomes ready to run, the OS will preenip@t &ll components must behave propeirly, they must use
any lower priority thread that is running and allow the highé’lnly the resources allotted to them. Though the architecture of

priority thread to run. The disadvantage is that this preemptidf Event Service framework supports QoS enforcement, the

incurs thread context switching overhead. Moreover app|ig£cision not to include this mechanism in the Event Channel is

tions must identify, and synchronize access to, data that camsdivated by the static scheduling characteristics and stringent
shared by multiple threads. performance requirements of real-time avionics applications.

Single-threaded priority-based dispatching: The Dis- i o i)
patching Module can also be implemented with no suppdrt-3 Visualization of Dispatching Module Implementa-
for preemption. This is similar to the RTU dispatching mech- tions

anism in the sense that a single-thread is used to dispaigh;isyalize the semantic differences between the four Dis-
events based on priority. However, once a consumer recégghing Module implementations outlined in Section 5.1.1,
an event, it can run to completion regardless of the arrival\gf implemented a timeline visualization tool in Java. The
events for higher priority consumers. _ ~ timeline tool reads event logs from RT Event Service test runs
_As with the RTU model, single-threaded dispatching eXp gisplays a timeline of supplier and consumer activity. Fig-
hibits lower context switching overhead than the real-iMgeg 12 and 13 show timelines from multi-threaded and single-
thread dispatching model. Moreover, since the channel mgjiieaded implementations of the Dispatching Module, respec-
tains its own thread of control, it does not borrow suppligge|y. Each test run consists of 3 suppliers and 3 consumers,
threads to propagate events. As aresult, the channelis an ag¥ih are listed on the y-axis. Supplieand consumerrun
chronous event delivery mechanism for suppliers. Howevgf,ine highest frequency (40 Hz), suppliend consumer
since the channel's dispatching thread does notimplement pig; 4t the next highest frequency (20 Hz), and supplierd
emption, consumers run to completion regardless of priori%nsumeﬁ run at the lowest frequency (10 Hz).
As a result, single-threaded dispatching can suffer from pri-to y_axis denotes time inseconds. Each consumer and
ority inversion, which results in lower system utilization angupplier outputs a point when it receives an event from the

non-determinism. Event Channel. Another point is output when it finishes pro-
EFD dispatching: As discussed in Section 4.4, the Diseessing the event. Suppliers receive timeouts and generate a
patching Module can be removed from the channel, yieldingiagle event for each timeout. Each consumer registers for

13

events from a single supplier. A horizontal line indicates /S —-———
time span when the respective consumer or supplier runs ;]
the CPU. — B ™
Each figure is explained below: o ol o
Real-time multi-threaded dispatching: Figure 12 shows i .
how OS real-time thread support for preemption results
suppliep and consumgrbeing preempted whenever higheg| e — -
priority tasks become runnable. Our performance results (¢
S % 1 T o _r | J
ar, == L Lo L i ¥ L] -H L] -'-_-.
— . 3 iR
¢ I el ™
= [
P . i Figure 13:Timeline from Single-Threaded Channel
: Scheduler, which are summarized below. A complete discus-
e 1 e g g g gy s sion of these components is beyond the scope of this paper
wha | : ([29] describes these components in detail).
b —
ﬂg g -'H 5.2.1 Run-time Scheduler

The Run-time Scheduler associates priorities with target object
implementation operations at run-time. The implementation
of the Real-time Scheduling Service described in this paper

: . . . uses a static scheduling policy. Therefore, thread priorities are
cussed in Section 6) demonstrate how Dispatching Mocj%%termined brior to run-time by the Off-line Scheduler.

implementations like real-time thread dispatching, which su X , i) i
Our Real-time Scheduling Service requires that if an ob-

port more responsive preemption mechanisms, yield higher re="" . -
source utilization without missing deadlines ject is to be scheduled, each of its operations must export an

RT.Info data structure describing the operation’s execution
Single-threaded dispatching: Figure 13 shows how aproperties. During schedulirmpnfiguration rungdescribed in
single-threaded dispatching module can result in deadlines 8eetion 5.2.2 belowRT.Info s contain execution times and
ing missed if lower priority tasks hold the CPU for excessivate requirements. At run-time, the Static Scheduler need not
periods of time. The negative values next to the end timeskeiow any information about an operation’s execution charac-
supplier and consumershow the number gisecs the dead-teristics. Only the operation’s priority is needed, so the sched-
lines were missed. In other words, consugneeld the CPU uler can determine how the operation should be dispatched.
too long, so that higher rate suppliers and consumers were Tims, at run-time, each operatiofiR _Info need only con-
able to execute in time to preserve correct application behtain priority values for the operation.

ior. At run-time, the Dispatching Module queries the Run-time
Scheduler for the priority of a consumer’s push operation.
The Run-time Scheduler uses a static repository that identifies
the execution requirements (including priority) of each oper-
The RT Event Service must guarantee that consumers recelien. The Event Channel’s Dispatching Module uses the op-
and process events with sufficient time to meet their deadlinestion priority returned by the Run-time Scheduler to deter-
To accomplish this, we have developed a Real-time Schedulne which priority queue an event/consumer tuple should be
ing Service. The two primary components in the Real-tiniigserted into.

Scheduling Service are the Run-time Scheduler and Off-lineAll scheduling and priority computation is performed off-

Figure 12:Timeline from Real-time Multi-Threaded Chan-
nel

5.2 Real-time Scheduling Service

14

line. This allows priorities to be computed at run-time eBcheduler and are stored in a table that is queried by the Run-
ficiently, i.e., located inO(1) time. Thus, TAO’s Run-time time Scheduler at execution time.
Scheduler simply provides an interface to the results of the

Off-line Scheduler, discussed below.
6 Performance Tests

2.2 Off-li hedul . e
° Off-line Scheduler In our previous work [2] we benchmarked the utilization of a

The Off-line Scheduler has two responsibilities. First, it asingle processor prototype of TAO's real-time Event Service.

signs priorities to object operations. Second, it determinesthe following sections, we extend these benchmarks to to

whether a current Event Channel configuration is schedulaltilestrate how performance is not affected by a complete ORB

given the available resources and the execution requiremems RT Event Channel implementation. We also quantify the

of supplier and consumer operations. Both responsibilities véHization of a federated Event Channel architecture.

quire that operation interdependencies be calculatedthgla

mtgrdependency compilatigarocess durmg .durlng.nflgu— 6.1 Utilization Measurements

ration run. Task interdependency compilation builds a repos-

itory that records which objects’ operations call each othegr non-real-time Event Channels.g, EFD-based and

This can be visualized as a directed graph where the nodesiifigle-Threaded, correctness implies that consumers receive

the graph are object operations and directed edges indicateghahts when their dependencies are mef,source/type sub-

one operation calls another, as shown in Figure 14. scriptions and correlations. In contrast, for real-time Event
Channelsge.g, RTUs and real-time threads, correctness im-
plies that all deadlines are met. Therefore, correct RT Event

CALL-CHAIN 23 ms/20 Hz=>PRIORITY 1) - i !
LEAF / Service behavior requires that (1) consumers receive events
when their dependencies are satisfétl (2) consumers re-

RT DEFENDINCTS RT_OreraTioN cejve these events in time to meet their deadlines.

Operation | LI LT L]] swsome An important metric for evaluating the performance of the
CALL-CHAIN 1535/10 Hz = PRIORITY 2 RT Event Servicg is thechedulqble boundThe schedulable '
LEAF / bound of a real-time schedule is the maximum resource uti-

— DEPENDENCIES RT OreraTION Ilgatlon possible without deadlines being missed [32]. I'_lke-
RT | | | | | | | | | 5 ms/10 Hz wise, the schedulable bound of the RT Event Service is the
Opciation maximum CPU utilization that suppliers and consumers can
achieve without missing deadlines.
For TAO’s Real-time Scheduling Service to guarantee the
Work DEPENDENCIES RT_OPERATION3 schedulability of a systeni.e., that all tasks meet their dead-
Operation | | | | | | | | | 10 ms lines, high-priority tasks must preempt lower priority tasks.
With rate monotonic scheduling, higher rate tasks preempt
Figure 14:Scheduling Service Internal Repository lower rate tasks. The performance tests discussed below were

conducted on a single-CPU 300 Mhz Sun UltraSPARC 30

Once task interdependency compilation is complete, therkstation with 256 MB RAM running Solaris 2.5.1.
Off-line Scheduler assigns priorities to each object operationWe measured the added overhead of the distribution strategy
The implementation of the Event Service described in tHir TAO's real-time Event Services over a single collocated
paper utilizes a rate monotonic scheduling policy [13, 33C. Two separate experiments were conducted: one measured
Therefore, priorities are assigned based on task rates, the utilization of a single Event Channel configuration and an-
higher priorities are assigned to threads with faster rates. Btiter measured the utilization of a federated Event Channel
instance, a task that needs to execute at 30 Hz would becasfiguration.
signed to a thread with a higher priority than a task that needs
to execute at 15 Hz. , 6.1.1 Single Event Channel Utilization

Most operating systems that support real-time threads guar-
antee higher priority threads will (1) preempt lower prioffhe first experiment used a single Event Channel that was
ity threads and (2) run to completion (or until higher prioeollocated with a high-priority Supplier/Consumer pair and a
ity threads preempt them). Therefore, object operations whthw-priority Supplier/Consumer pair. The processing time for
higher priorities will preempt object operations with lower pririgh-priority events was increased until the low-priority task
orities. These priority values are computed by the Off-lirmuld not meet its deadline. In Figure 15 we plot the aver-

15

80 80

High Prio High Prio
Low Prio ------- 70 Low Prio -------
70 S— — Low Prio --+---

60 T — 60 .
50
50
40
40
g p g 30
Z % 1 : E)
3 i | g 2
20 : | [S - :
oo e R 10 P
10 : I ez : . ¥
0 -10
-10 -20
-20 -30
86 88 90 92 94 96 98 100 102 86 88 90 92 94 96 98 100 102
CPU Utilization CPU Utilization
Figure 15:Utilization for a Single Event Channel Figure 16:Utilization for a Federated Event Channel

age laxity for the high-priority events and for the low-prioritgonsumer. The consumer does not do anything with the event
events. The error bars represent the minimum and maximaifier than store the measurement in a preallocated array.
laxity for each experiment. Negative laxity means that a dead-
line is missed. 6.2.1 End-to-end Latency Results

Note that the Event Channel achieved 098% utilization
before its low-priority tasks began to miss deadlines. In cohe latency tests were run on a Sun UltraSPARC 30 with a
trast, the high-priority task laxity also decreases. It is interesttgle 300 Mhz CPU, running SunOS 5.5.1. The Event Chan-
ing to observe that this decrease in almost linear with the utgl and test applications were built with Sun C++ 4.2 with

lization, even when the low-priority task cannot longer med@ist ~ optimization. Two tests were performed. In the first
its deadlines. test the consumers, suppliers, and Event Channel were collo-

cated in the same process to eliminate ORB remote commu-
o nication overhead. In the second test two identical processes
6.1.2 Federated Event Channel Utilization were created and the consumers in each process subscribed to

. Poth local and remote events. In both tests, there was no other
In the second experiment, two Event Channels were config- ... - . :
significant activity on the workstation during the benchmark-

ured in separate OS processes on the same host. No work SAll tests were run in the Solaris real-time scheduling class

in
ing time for high-priority events was increased until deadlin:eggé%hey had the highest software priority (but below hardware

Rerrupts) [16].
were missed. Figure 16 also depicts the laxity for both hig'H— up).[] .
o o . In the single process case, we determined the best-case
priority and low-priority tasks, though performance is affectescliJ lier-to-consumer latency wass0 usecs. In each case
the Event Channel can still maintain high utilization (over PP y K ' '

96%) before any deadlines were missed. As shown in S(%':lcs the number of suppliers and/or consumers increased, the

! . e . atency increased as well, as shown in Table 1 and Table 2.
tion 6.2, this small £3%) loss of utilization yields a perfor- D

. . Note how for two processes, the local events exhibit similar
mance improvement for the common caise, where events

. . latency to the local events in the single process case. In partic-
are exchanged with collocated suppliers and consumers. y . gie p . P
ular, no extra overhead is incurred due to possible remote con-

sumers. In contrast, the remote consumer performance is sev-
6.2 Latency Measurements eral times higher than the local events, though it is still close
to the performance of a typical oneway RPC request [34].
Another important metric of Event Channel performance s the
Iaten_cy it introduces between suppliers and consumers. To 8'_%‘_2 Minimal Event Spacing Results
termine Event Channel latency, we developed an Event La-
tency Test. To obtain the end-to-end supphlierconsumer Another important performance metric is th@nimum event
latency, this test timestamps each event as it originates in $pacing i.e., the maximum rate at which the Event Channel
supplier and subtracts that time from the arrival time at tiban deliver messages before its overhead introduces extra la-

16

Latency,usec
First Consumer Last Consumer

Sup. | Con. || Min | Max | Avg || Min Max Avg
1 1 53 93 58 53 93 58
1 5 107 | 189 | 114 || 197 284 206
1 10 171 | 230 | 183 || 379 451 393
1 20 291 | 340 | 300 || 741 817 760
2 1 49 67 51 49 67 51
2 5 95 | 124 | 100 || 180 213 187
2 10 159 | 281 | 170 || 360 498 374
2 20 283 | 333 | 299 758 828 781
10 1 51| 303 72 51 303 72
10 5 100 | 211 | 113 187 | 1,210 284
10 10 167 | 222 | 176 || 369 | 2,545 576
10 20 211 | 310 | 290 || 741 | 4,895 | 1,137

Table 1:Event Latency, usecs, Through Event Channel

Latency,usec
Local Event Remote Event
Sup. | Con. || Min Max | Avg Min Max Avg
1 1 57 71 63 772 1,078 820
1 5 108 207 | 155 765 1,995 1,283
1 10 170 598 | 289 795 5,853 | 3,544
1 20 || 303 819 | 534 756 6,047 | 3,084
2 1 50 95 57 || 1,226 | 2,329 | 1,297
2 5 101 214 | 152 || 1,274 | 4,577 | 2,330
2 10 167 421 | 274 || 1,226 | 6,676 | 3,448
2 20 280 821 | 519 || 1,225 | 20,727 | 6,038
10 1 49 218 60 || 1,406 | 3,969 | 3,102
10 5 100 | 1,170 | 172 || 1,477 | 12,773 | 6,282
10 10 158 | 2,379 | 310 || 1,258 | 19,153 | 7,904
10 20 209 | 4,900 | 596 || 1,266 | 65,449 | 24,345

Table 2:Event Latency, usecs, Local and Remote Events

tency. This test was executed in a single process, where suppli-
ers generate a fixed number (500) of events, and the consumers
do no work other than maintain simple statistics. We progres-
sively decreased the event generation period and measured the
ratio between the effective event rate and the expected event
rate. As seen in figure 17 the Event Channel is able to deliver

2.2

2

=
©
L

>l/ —4—1 sup. 1 con.

—&—1 sup. 5 con.
—4—1 sup. 10 con
—>—1 sup. 20 con.
—¥—2 sup. 1 con.

g
o
L

I
i
.

Effective/Expected Rate

I
N
L

H
»*
N
»

o
©

40 50 60 70 80 90 100
Event Rate (Hz)

w
o

Figure 17:Minimum Event Spacing

over 50 messages per second before it experiences any notice-
able overhead. We believe this result can be improved and we
are currently experimenting with how to reduce the overhead.

7 Evaluating the Use of OO for Real-
time Systems

While applying OO technologies to real-time systems we en-
countered two issues regarding polymorphism that threatened
to compromise the predictability and performance of our real-
time systems. This section briefly discusses each of the issues
and how our systems address the potential problems.

7.1 The Cost of Dynamic Binding Mechanisms

Since our systems are developed using C++, dynamic binding
is implemented via virtual method tables. As a result, compil-
ers can implement highly optimized virtual method call mech-
anisms that impose constant-time overhead. These algorithms
typically involve loading thethis pointer, adjustment of the
this pointer (for multiple inheritance), lookup of the method
offset in the virtual method table, and final calculation of the
address before invoking the method. However, these steps still
have bounded completion times allowing predictable virtual
method call performance regardless of the degree of inheri-
tance used by applications.

We measured the cost of virtual method calls on these plat-
forms: VxWorks 5.3.1 on a 60 MHz Pentium with Cygnus g++

17

Call time, usec ratio
Global Non-Virtual | Virtual Virtual to Virtual to
Platform Function Method Method || Global Function| Non-Virtual
VxWorks/g++/60 MHz Pentium 0.300 0.450 0.900 3.0 2.0
VxWorks/GHS/200 MHz Pentium 0.174 0.358 0.542 3.1 15
VxWorks/GHS/200 MHz PowerPG| 0.021 0.021 0.068 3.2 3.2
Solaris/g++/168 MHz Ultrasparc 0.069 0.061 0.173 25 2.8
IRIX/CC/180 MHz SGI Origin200 0.061 0.061 0.084 1.4 1.4
NT/MSVC++/200 MHz Pentium 0.030 0.035 0.035 1.2 1.0

Table 3:Cost of Virtual Method Calls

2.7.2-960126, VxWorks 5.3.1 on a 200 MHz Pentium witkcheduler must determine the rate that each object operation
GreenHills 1.8.8, VxWorks 5.3.1 on a 200 MHz PowerPC witkxecutes in order to calculate its priority. Furthermore, this
GreenHills 1.8.8D, Solaris 2.5.1 on a dual-CPU 168 MHz Stype of dynamic scheduler must make some type of guarantee,
UltraSPARC 2 with g++ 2.7.2, Irix 6.4 on a dual-CPU 188ither weak or strong, that deadlines will be met.
MHz SGI Origin200 with SGI C++ 7.10, and Windows NT One way a scheduler could make strong guarantees is to
4.0 on a 200 MHz PentiumPro with Microsoft Visual C++ 5.(perform admission control, which permits operations to exe-
As shown in Table 3, a virtual method call costs roughly 2 tute when the necessary resources are available. Admission
5 times that of a global function or non-virtual method call. control requires that object operations export execution prop-
While these ratios seem high, for some platforms, the abstties, such as worst-case execution time. Alternatively, the
lute time penalty (relative to a global function call) for a virtuggcheduler might implement a weaker, “best-effort” admission
method call was less than Qu8ec on the tested platforms. Oupolicy. For example, if an Earliest Deadline First policy is
experience has been that this is not an impediment to real-tinsed, object operations with the nearest deadlines are given
system performance, though we avoid virtual methods wheréority over operations with later deadlines. Such a policy
not needed. Furthermore, modern compilers implement straeuld require that object operation deadlines be exported or
gies for replacing indirect virtual method calls with direct norgalculated by the scheduler. This type of support for dynamic
virtual calls [35]. The results for the IRIX C++ and Microsofscheduling can incur significant overhead, and thus decrease
VC++ compilers indicate well-optimized virtual method call€ffective resource utilization. As a result, dynamic scheduling
solutions are sometimes not viable solutions for systems with
hard deadlines and constrained resources.
7.2 The Cost of Polymorphism Since all objects and operations in TAO’s Real-time Event
) B])] Service are determined off-line, one could argue that no real
Polymorphism facilitates run-time changes in object behays|ymorphism exists. Although this is true to a certain extent,
ior. Real-time systems often require predictable bl?haV|0r of@bre are more benefits to dynamic binding than just changing
components. Initially, the flexibility of polymorphism seemgepayior at run-time. In particular, we found that the abil-
to be at odds w_|th the reql_Jlrement for.real—tlme predlc,jtabllna/y to develop components independently of applications that
We resolved this issue using the Off-line Scheduler discussgd them significantly increases the potential for reuse in the
in Section 5.2. Since scheduling is performed off-line, all 0fyjonics domain. For instance, since the Event Channel pushes
jects and operations must be known in advance. TherefqgeapsiracPushConsumer interfaces, the code for the Event

it is the responsibility of the Off-line Scheduler to determingnannel remains decoupled from the number and type of ap-
whether a particular system configuration will meet all of iiﬁicationPushConsumer objects.

deadlines. As a result, when a virtual method is called at run-

time, the system is not concerned with the actual implementa-

tion being invoked. The Off-line Scheduler has already gu@- Conc|uding Remarks

anteed that its deadline will be met, based on the published

parameters of each schedulable operation. Many real-time applications require support for asynchronous,
One advantage of our approach is that operation invoeaent-based communication. The CORBA COS Event Service

tions only pay the overhead of the C++ virtual method cafirovides a flexible OO model where Event Channels dispatch

If the schedule was not determined off-line, a run-time (dgvents to consumers on behalf of suppliers. TAO'S Real-time

namic) scheduler would need to intercede before any abstietnt Service described in this paper augments this model

operation was invoked, which incurs additional overhead. Reith Event Channels that support source and type-based fil-

instance, if a rate monotonic scheduling policy is used, tteging, event correlations, and real-time event dispatching.

18

By configuring different Run-time Scheduler strategieRefel’enceS
TAO’s Event Channels can be configured with multiple
scheduling policies, such as rate monotonic scheduling ahtl Obiect Management Grouhe Common Object Request Bro-
maximum urgency first. Similarly, channels can be built with ker: Architecture and Specificatio@.2 ed., Feb. 1998.
varying levels of support for preemption by configuring dif-[2] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
ferent Dispatcher preemption strategies, such as EFD, single- Sign and Performance of a Real-time CORBA Event Service,”
threaded, RTU, and real-time thread Dispatchers. This flex- N Proceedings of OOPSLA "9fAtlanta, GA), ACM, October
ibility allows applications to adapt their scheduling and dis- 1997,
patching policies to obtain optimal utilization for different ap-[3] G. Parulkar, D. C. Schmidt, E. Kraemer, J. Turner, and

plication requirements and platform resource characteristics. A Kantawala, “An Architecture for Monitoring, Visualization,
and Control and Gigabit Networks/EEE Network vol. 11,

Our performance results demonstrate that using a single september/October 1997.

Eyent Channel for distribution yle_lds poor perfprmance gn 4] S. Vinoski, “CORBA: Integrating Diverse Applications Within
high latency. We present an architecture to build federations’ pisiributed Heterogeneous Environment€EE Communica-
of Event Channels that yields near optimal performance for tjons Magazinevol. 14, February 1997.

collocated supplier/consumer pairs and does not affect remggf D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and

event performance significantly. In addition, our measur Performance of Real-Time Object Request BrokeZgmputer
ments indicate that the dynamic binding mechanisms used by communicationsvol. 21, pp. 294-324, Apr. 1998.

our C++ compilers are not fundamentally at odds with the de-) .
terministic ex%cution behavior re uired)t/) real-time a Iica-6] A. Gokhale and D. C. Schmidt, *Evaluating the Performance
q Y PP of Demultiplexing Strategies for Real-time CORBA,” Rro-

tions. In general, our results illustrate that it is feasible to apply ceedings of GLOBECOM '97Phoenix, AZ), IEEE, November
CORBA Object Services to develop real-time systems. 1997.

The implementation of TAO’s Real-time Event Service def7] D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and
scribed in this paper is written in C++ as one of the services in G. Parulkar, “An ORB Endsystem Architecture for Stati-
TAO [5]. TAO is a real-time implementation of CORBA based cally Scheduled Real-time Applications,” Rroceedings of the
on the ACE framework [28]. ACE is a widely used communi- Workshop on Middleware for Real-Time Systems and Services
cation framework that contains a rich set of high-performance (5an Francisco, CA), IEEE, December 1997.
and real-time reusable software components. These comg8} D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
nents automate common communication tasks such as con- ‘“Alleviating Priority Inversion and Non-determinism in Real-
nection establishment, event demultiplexing and event handler time CORBA ORB Core Architectures,” iRroceedings of the
dispatching, message routing, dynamic configuration of ser- sTJL:::rESIEEEraRr?c?Is-;mg A-;efgEcl’zlogDi;nn‘ibAefTécg'ons Sympo-
vices, and flexible concurrency control for network services. ' ' ‘ '

ACE has been ported to most real-time OS platformsincludidgl R- Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Pub-

VxWorks, LynxOS, CHORUS/ClassiX, pSoS, Solaris, Win32, lisher/Subscriber Inter-Process Communication Model for Dis-
d most POSIX 1003.1¢ implementations tr!buted ReaI-Tlme Systems: Design andllmplementatlon,. in
an)) First IEEE Real-Time Technology and Applications Symposium

TAO’s RT Event Service is currently deployed at Boe- May 1995.

ing in _St- _LOUi5= MO, where it is being gsed to qudOBO] Object Management GrouORBAServices: Common Object
operation flight programs for next-generation avionics sys- Services Specification, Revised Edifi®5-3-31 ed., Mar. 1995.

tems. The source code and documentation for TAO agq_] E. Gamma, R. Helm, R. Johnson, and J. Vlissi@sign Pat-
its RT Event Service implementation is freely available &~ erns: Elements of Reusable Object-Oriented Softwiead-
www.cs.wustl.edu/"schmidt/TAO.html . ing, MA: Addison-Wesley, 1995.

[12] S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA,” inProceedings of the Conference on
Object-Oriented Technologie@Monterey, CA), USENIX, June
1995.

[13] C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time EnvironmeniACM vol. 20,
This work was funded in part by Boeing. We gratefully ac- pp. 46-61, January 1973.
knowlt_adge the support and dlre(_:tllon of the Boe!ng Princi I4] D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “Implementing
Investigator, Bryan Doerr. In addition, we would like to than Real-Time Robotic Systems using CHIMERA II,” Proceed-
Seth Widoff for building the Java visualization tool that gen- ings of 1990 IEEE International Conference on Robotics and
erated the time lines shown in Sections 5 and 6. Automation (Cincinnatti, OH), 1992.

9 Acknowledgments

19

[15] M. Timmerman and J.-C. Monfret, “Windows NT as Real-Timg1] J.-B. Stefani, “Requirements for a real-time ORB,” tech. rep.,

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

0S?,” Real-Time Magazine2Q 1997. http://www.realtime-
info.be/encyc/magazine/97q2/winntasrtos.htm.

S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conferenpp. 375-390,
USENIX Association, 1992.

L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for [33
Packet Switched Networks,” iRroceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMM)
(Philadelphia, PA), pp. 19-29, ACM, Sept. 1990.

G. Coulson, G. Blair, J.-B. Stefani, F. Horn, and L. Hazar

“Supporting the Real-time Requirements of Continuous Medi
in Open Distributed Processing;omputer Networks and ISDN

Systemspp. 1231-1246, 1995.

H. Tokuda, T. Nakajima, and P. Rao, “Real-Time Mach: T

wards Predictable Real-time Systems,USENIX Mach Work- ?35]

shop USENIX, October 1990.

Object Management Groupotification Service Request For
Proposa] OMG Document telecom/97-01-03 ed., January
1997.

Object Management Group Telecommunications Domain Task
Force, “Notification Service RFP (Telecom RFP3),” 1997.

D. C. Schmidt and S. Vinoski, “Object Interconnections: Over-
coming Drawbacks in the OMG Events Servic€¥+ Report,
vol. 9, July-August 1997.

I. Satoh and M. Tokoro, “Time and Asynchrony in Interactions
among Distributed Real-Time Objects,” Rroceedings of 9th
European Conference on Object-Oriented Programmitugg.
1995.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
port for Quality of Service for CORBA ObjectsTheory and
Practice of Object Systemeol. 3, no. 1, 1997.

Y. Aahlad, B. Martin, M. Marathe, and C. Lee, “Asynchronous
Notification Among Distributed Objects,” iRroceedings of the
2n¢ Conference on Object-Oriented Technologies and Systems
(Toronto, Canada), USENIX, June 1996.

C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Ar-
chitecture,” inProceedings of thd"® Conference on Object-
Oriented Technologies and SystetdSENIX, Apr. 1998.

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” Proceed-
ings of GLOBECOM '96(London, England), pp. 50-56, IEEE,
November 1996.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6" USENIX C++ Technical ConferencgCambridge, Mas-
sachusetts), USENIX Assaociation, April 1994.

D. C. Schmidt, D. L. Levine, and T. H. Harrison, “An ORB
Endsystem Architecture for Hard Real-Time Scheduling,” Feb.
1997. Submitted to OMG in response to RFI ORBOS/96-09-02.
R. E. Barkley and T. P. Lee, “A Heap-Based Callout Imple-
mentation to Meet Real-Time Needs,” Rroceedings of the
USENIX Summer Conferengep. 213-222, USENIX Associ-
ation, June 1988.

20

[32]

a4]

ReTINA, 1996.

R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference(Philadelphia, PA),
ACM, May 1996.

] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-

bour,A Practitioner's Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time SysterNsrwell,
Massachusetts: Kluwer Academic Publishers, 1993.

A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM '9§Stanford, CA), pp. 306-317,
ACM, August 1996.

S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Yahav,
“Compiler Optimization of C++ Virtual Function Calls,” igro-
ceedings of th@"? Conference on Object-Oriented Technolo-
gies and SysteméToronto, Canada), USENIX, June 1996.

