Transport System Architecturesfor
High-Per for mance Communications Subsystems

Douglas C. Schmidt and Tatsuya Suda
Department of Information and Computer Science,
University of Caifornia, Irvine
Irving, CA 92717, U.SA.

An earlier version of this paper appeared in the | EEE Jour-
na on Sdlected Areas in Communication, Vol. 11, No. 4,
May 1993.

Abstract

Providing end-to-end gigabit communication support for
bandwidth-intensive distributed applications requires high-
performance transport systems. This paper describes and
classifies transport system mechanisms that integrate oper-
ating system resources (such as CPU(s), virtual memory;,
and network adapters) together with communication pro-
tocols (such as TCP/IP and XTP) to support applications
running on local and wide area networks. A taxonomy is
presented that compares and eval uates four widely available
transport systems in terms of their support for protocol pro-
cessing. The systems covered in this paper include SystemV
UNIX STREAMS, the BSD UNIX networking subsystem, the
x-kernel, and the Conduit framework from the Choi ces oper-
ating system. Thispaper isintendedto hel p researchers navi-
gatethrough the transport systemdesign space by describing
alter native mechanisms for devel oping transport systems.

1 Introduction

The demand for many types of distributed applications is
expanding rapidly, and application requirements and usage
patterns are undergoing significant changes. When coupled
with the increased channel speeds and services offered by
high-performance networks, these changes make it difficult
for existing transport systems to process application data at
network channel speeds.! This paper examines transport
system mechanisms that support bandwidth-intensive mul-
timedia applications such as medica imaging, scientific vi-
sualization, full-motion video, and tele-conferencing. These
applications possess quality-of-service requirementsthat are

1A transport system consists of protocol functions (such as connection
management, end-to-end and layer-to-layer flow control, remote context
management, segmentati on/reassembly, demultiplexing, message buffering,
error protection, and presentation conversions), operating system services
(such as message buffering, asynchronous event invocation, and process
management), and hardware devices (such as high-speed network adapters)
that support distributed applications.

significantly different from conventional data-oriented appli-
cations such as remote login, email, and file transfer.

Multimediaapplicationsinvolve combinations of require-
ments such asextremely highthroughput (full-motionvideo),
gtrict real-time delivery (manufacturing control systems),
low latency (on-linetransaction processing), low delay jitter
(voice conversation), capabilities for multicast (collabora
tive work activities) and broadcast (distributed name res-
olution), high-reliability (medical image transfer), tempo-
ra synchronization (tele-conferencing), and some degree of
loss tolerance (hierarchically-coded video). Applications
also impose different network traffic patterns. For instance,
some applicationsgenerate highly bursty traffic (variable bit-
rate video), some generate continuous traffic (constant bit-
rate video), and others generate short-duration, interactive,
request-response traffic (network file systems using remote
procedure cdls (RPC)).

Application performance is affected by a variety of net-
work and transport system factors. Networks provide a
transmission framework for exchanging various types of in-
formation (such as voice, video, text, and images) between
gateways, bridges, and hosts. Example networks include
the Fiber Distributed Data Interface (FDDI), the Distributed
Queue Dual Bus (DQDB), the Asynchronous Transfer Mode
(ATM), X.25 networks, and |EEE 802 LANSs. Ingeneral, the
lower-layer, link-to-link network protocol s are implemented
in hardware.

Transport systems integrate higher-layer, end-to-end com-
munication protocols such as TCP, TP4, VMTPR, XTR,
RPC/XDR, and ASN.1/BER together with the operating sys-
tem (OS) mechanisms provided by end systems. The tasks
performed by the transport system may be classified into sev-
eral levelsof abstraction. Thehighestlevel providesan appli-
cation interface that mediates access to end-to-end communi-
cation protocols. These protocols represent an intermediate
level of abstraction that provides presentation and transport
mechanismsfor various connecti onl ess, connection-oriented,
and request-response protocols. These mechanisms are im-
plemented via protocol tasks such as connection manage-
ment, flow control, error detection, retransmission, encryp-
tion, and compression schemes. Both the application in-
terface and the protocols operate within an OS framework
that orchestrates various hardware resources (e.g., CPU(9),

primary and secondary storage, and network adapters) and
software components (e.g., virtual memory, process architec-
tures, message managers, and protocol graphs) to support the
execution of distributed applications.

Performance bottlenecks are shifting from the underlying
networks to the transport system. This shift is occurring due
to advancesin VLS| technology and fiber optic transmission
techniques that have increased network channel speeds by
severa orders of magnitude. Increasing channel speeds ac-
centuate certain sources of transport system overhead such as
memory-to-memory copying and process management oper-
ationslike context switching and scheduling. Thismismatch
between the performance of networks and the transport sys-
tem constitutes a throughput preservation problem, where
only aportion of theavail able network bandwidthis actually
delivered to applications on an end-to-end basis.

In general, sources of transport system overhead are not
decreasing as rapidly as network channel speeds are increas-
ing. This results from factors such as improperly layered
transport system architectures [1, 2]. It is dso exacerbated
by the widespread use of operating systemsthat are not well-
suited to asynchronous, interrupt-driven network communi-
cation. For example, many network adapters generate in-
terrupts for every transmitted and received packet, which
increases the number of CPU context switches [3, 4]. De-
spite increasing total MIPS, RISC-based computer architec-
tures exhibiting high context switching overhead that penal-
izes interrupt-driven network communication. This over-
head results from the cost of flushing pipelines, invalidating
CPU ingtruction/datacaches and virtual memory trand ation-
lookaside buffers, and managing register windows[5].

Alleviating the throughput preservation problem and pro-
viding very high dataratesto applicati onsrequiresthe modifi-
cation of conventional transport system architectures[6]. To
help systemresearchersnavigatethrough thetransport system
design space, thispaper presentsataxonomy of six key trans-
port system mechanisms including the process architecture,
virtual remapping, and event management dimensions, as
well as the message management, multiplexing and demulti-
plexing, and layer-to-layer flow control dimensions. Thetax-
onomy is used to compare and contrast four genera -purpose
commercial and experimenta transport systems (System V
STREAMS [7], the BSD UNIX network subsystem [8], the
x-kernel [2], and the Conduit framework from the Choices
operating system [9]). The intent of the paper isto explore
transport system design aternatives that support distributed
applications effectively.

The paper is organized as follows: Section 2 outlines the
general architectural componentsin atransport system; Sec-
tion 3 describes ataxonomy for classifying transport systems
according to their kernel and protocol family architecture di-
mensions; Section 4 providesacomparison of four represen-
tative transport systems; and Section 5 presents concluding
remarks.

INTERNET MODEL 1SO OS| MODEL
TETP J[NFs J[FTP | [X400 J[x500][FTAM]
[ASNT |
[ubP [TcP | [TP4

[FDDI | [ETHerNET |

Figure 1. Protocol Graph for Internet and OSI Communica
tionModels

2 Levelsof Abstraction in a Transport
System Architecture

Transport system architectures provide a framework for im-
plementing end-to-end protocol s that support distributed ap-
plications operating over local and wide area networks. This
framework integrates hardware resources and software com-
ponents used to implement protocol graphs[10]. A protocol
graph characterizes hierarchical relations between protocols
in communication models such as the Internet, OSI, XNS,
and SNA. Figure 1 depicts protocol graphs for the Internet
and OSI communication models. Each node in a protocol
graph represents aprotocol such asRPC/XDR, TCR, IP, TP4,
or CLNP.

Protocol graphs are implemented via mechanisms pro-
vided by thetransport system architecture. Transport systems
may bemodel ed asnested virtual machinesthat constitutedif-
ferent levels of abstraction. Each level of virtual machineis
characterized by the mechanisms it exports to the surround-
ing levels. The model depicted in Figure 2 represents an
abstraction of hardware and software mechanisms found in
conventiona transport systems. Although certain transport
systems bypass or combine adjacent levels for performance
reasons [11, 12], Figure 2 provides a concise model of the
rel ationshi ps between magjor transport system components.

The hierarchical relationships illustrated by the protocol
graphin Figure 1 are generally orthogonal to thelevelsof ab-
straction depicted by the transport system virtua machines
shown in Figure 2. In particular, protocol graphsin Fig-
ure 1 are implemented via the transport system mechanisms
shown in Figure 2. The following paragraphs summarize
the key levelsin the transport system, which consist of the
application interface, session architecture, protocol family
architecture, and kernel architecture.

Asshown by the shaded portionsof Figure 2, thispaper fo-
cusesonthekernel architecture(describedin Section3.1) and
the protocol family architecture (described in Section 3.2).
A thorough discussion of the application interface is beyond
the scope of thispaper and topicsinvolvingthe session archi-
tecture are discussed further in [13]. These two components
are briefly outlined bel ow for compl eteness and to provide a
context for discussing the other levels.

N
APPLICATIONS
APPLICATION INTERFACE
VOICE, VIDEO,
OPEN AND CLOSE ENDPOINTS, DATA. IMAGE. TRANSPORT SYSTEM
Y
SEND AND RECEIVE DATA ARCHITECTURE
AND CONTROL MESSAGES
SESSION ARCHITECTURE PROTOCOL FAMILY
CONNECTION MANAGEMENT, ARCHITECTURE
RELIABILITY MANAGEMENT, SESION MANAGEMENT, MESSAGE
END-TO-END-FLOW CONTROL, MANAGEMENT, MULTIPLEXING,
PRESENTATION SERVICES LAYER-TO-LAYER FLOW CONTROL
HARDWARE DEVICES KERNEL ARCHITECTURE
CPU(S), PRIMARY AND NETWORKS PROCESS ARCHITECTURE,
SECONDARY STORAGE MANAGEMENT, FDDI, DODB EVENT MANAGEMENT,
1 el
NETWORK ADAPTERS ATM. ETHERNET VIRTUAL MEMORY REMAPPING
i
y,

Figure 2: Abstract Architecturefor a Transport System

2.1 Application Interface

The application interface is the outermost-level of a trans-
port system. Since protocol software often resides within
the protected address space of an operating system kernel,
programs utilize this application interface to interact with
inner-level transport system mechanisms. The application
interface transfers dataand control i nformation between user
processes and the session architecture mechanisms that per-
form connection management, option negotiation, datatrans-
mission control, and error protection. BSD UNIX sockets[8]
and SystemVV UNIX TLI [14] are widely available examples
of application interfaces.

Performance measurements indicate that conventional ap-
plication interfaces constitute 30 to 40 percent of the overall
transport system overhead [2, 15]. Much of this overhead
results from the memory-to-memory copying and process
synchronization that occurs between application programs
and the inner-level transport system mechanisms. The func-
tionality and performance of several application interfacesis
evaluated in [16, 17].

2.2 Session Architecture

The next level of the transport system is the session archi-
tecture, which performs “end-to-end” network tasks. Ses-
sion architecture mechanisms are associated with local end-
points of network communication, often referred to as pro-
tocol sessons? A session consists of data structures that
store context information and subroutinesthat implement the
end-to-end protocol state machine operations.

2The term “session” is used in this paper in a manner not equivalent to
the ISO OSl term “session layer.”

Session architecture mechanisms help satisfy end-to-
end application quality-of-service requirements involving
throughput, latency, and reliability [18]. In particular,
quality-of-service is affected by session architecture mech-
anisms that manage connections (e.g., opening and closing
end-to-end network connections, and reporting and updating
connection context information), reliability (e.g., computing
checksums, detecting mis-sequenced or duplicated messages,
and performing acknowledgments and retransmissions), and
end-to-end flow and congestion (e.g., advertizing available
window sizes and tracking round-trip packet delays). In
addition, session architecture mechanisms aso manage per-
connection protocol interpreters (e.g., controllingtransitions
in a transport protocol’s state machine) and presentation
services (e.g., encryption, compression, and network byte-
ordering conversions). Various session architecture issues
are examined in [19, 20, 21, 13].

2.3 Protocol Family Architecture

The protocol family architecture® providesintra- and inter-
protocol mechanisms that operate within and between nodes
inaprotocol graph, respectively. Intra-protocol mechanisms
manage the creation and destruction of sessions that are
managed by the session architecture described above. Inter-
protocol mechanisms provide message management, multi-
plexing and demultiplexing, and layer-to-layer flow control.

The primary difference between the session architecture
and the protocol family architectureis that session architec-

3A protocol family isacollection of network protocolsthat share related
communicationssyntax (e.g., addressing formats), semantics (e.g., interpre-
tation of standard control messages), and operations (e.g., demultiplexing
schemesand checksum computation algorithms). A wide range of protocol
families exist such as SNA, TCP/IB, XNS, and OSl.

[[Category [Dimension Subdimension [Alternatives I

Process (2) Concurrency Models single-threaded, HWP, LWP, coroutines
Kernel Architecture (2) Process Architectures message-based, task-based, hybrid
Architecture | VM Remapping outgoing and/or incoming
Dimensions Event (1) Search Structure array, linked list, heap

Management (2) Time Relationships relative, absolute

Message Management (1) Memory Management uniform, non-uniformperformance
Protocol (2) Memory Copy Avoidance | list-based, DAG-based data structure
Family Muxing and (1) Synchronization synchronous, asynchronous
Architecture | Demuxing (2) Layering layered, de-layered
Dimensions (3) Searching indexing, sequential search, hashing

(4) Caching single-item, multiple-item
Layer-to-Tayer Flow Control per-queue, per-process

Table 1: Transport System Taxonomy Template

ture mechani sms manage the end-to-end processing activities
for network connections, whereas protocol family architec-
ture mechani sms manage thelayer-to-layer processing activ-
ities that occur within multi-layer protocol graphs. In some
cases, these activities are entirely different (e.g., the pre-
sentation services provided by the session architecture such
as encryption, compression, and network byte-ordering are
unnecessary in the protocol family architecture). In other
cases, different mechanisms are used to implement the same
abstract task.

Thelatter pointisexemplified by examining several mech-
anisms commonly used to implement flow control. End-to-
end flow control is a session architecture mechanism that
employs diding window or rate control schemes to synchro-
nize the amount of data exchanged between sender(s) and
receiver(s) communicating at the same protocol layer (e.g.,
between two TCP connection end-points residing on differ-
ent hosts). Layer-to-layer flow control, on the other hand, is
a protocol family architecture mechanism that regul ates the
amount of dataexchanged between adjacent layersin aproto-
col graph (e.g., betweenthe TCPand |P STREAM modulesin
System V STREAMS). In genera, end-to-end flow control
requires distributed context information, whereas layer-to-
layer flow control does not.

Mechanisms in the protocol family architecture are of-
ten reusable across a wide-range of communication proto-
cols. In contrast, session architecture mechanisms tend to be
reusable mostly within a particular class of protocols. For
instance, most communication protocols require some form
of message buffering support (which is a protocol family
architecture mechanism). However, not al communication
protocol srequire retransmission, flow control, or connection
management support. Inaddition, certain protocolsmay only
work with specific session architecture mechanisms (such as
the standard TCP specification that requires diding-window
flow control and cumulative acknowledgment).

2.4 Kerned Architecture

The kernel architecture* provides mechanisms that manage
hardware resources such as CPU(s), primary and secondary
storage, and various!/O devices and network adapters. These
mechanisms support concurrent execution of multiple proto-
col tasks on uni- and multi-processors, virtual memory man-
agement, and event handling. It is crucia to implement
kernel architecture mechanisms efficiently since the applica
tion interface and session and protocol family architectures
ultimately operate by using these mechanisms. The primary
distinction between the protocol family architecture and the
kernel architecture is that kernel mechanisms are aso uti-
lized by user applications and other OS subsystems such as
the graphical user interface or file subsystems. In contrast,
protocol family architecture mechanisms are concerned pri-
marily with the communication subsystem.

3 A Taxonomy of Transport System Ar-
chitecture M echanisms

Table 1 presents a taxonomy of six key kernel architecture
and protocol family architecture mechanisms that support
thelayer-to-layer computing requirements of protocol graphs
end systems. The following section describes the transport
system mechanisms presented in Table 1.

3.1 Kernd Architecture Dimensions

Asdescribed below, the kernd architecture providesthe pro-
cessarchitecture, virtual memory remapping, and event man-
agement mechanisms utilized by the session and protocol
family architectures.

3.1.1 TheProcess Architecture Dimension

A processisacollection of resources (such asfiledescriptors,
signa handlers, a run-time stack, etc.) that may support

4The term “kernel architecture” is used within this paper to identify
mechanisms that form the “nucleus’ of the transport system. However,
protocol and session architecture components may reside within an OS
kernel (BSD UNIX [8], and System V UNIX [7]), in user-space (Mach [22]
and the Conduit [9]), in either location (the x-kernel [2]), or in off-board
processors (Nectar [23] and VMP[4]).

the execution of instructionswithin an address space. This
address space may be shared with other processes. Other
terms (such as threads [24]) are often used to denote the
same basic concept. Our use of the term processis consistent
with the definition adopted in [25].

A process architecture represents a binding between var-
ious units of communication protocol processing (such as
layers, functions, connections, and messages) and various
structural configurations of processes. The process architec-
ture selected for atransport system is one of several factors
(alongwith protocol designs/implementationsand bus, mem-
ory, and network interface characteristics) that impact overall
application performance. In addition, the choice of process
architecture also influences demultiplexing strategies [26]
and protocol programming techniques[2, 27].

Several concurrency models are outlined below. These
models form the basis for implementing the alternative pro-
cess architectures that are examined in detail following con-
currency moddl discussion. In order to produce efficient
transport systems, it is important to match the selected pro-
cess architecture with the appropriate concurrency model.

(1) Concurrency Models: Heavy-weight processes, light-
weight processes, and coroutines are concurrency models
used to implement process architectures. Each model ex-
hibits different performance characteristics and allows dif-
ferent levels of control over process management activi-
ties such as scheduling and synchronization. The following
paragraphs describe key characteristics of each concurrency
mode!:

e Heavy-Weight Processes: A heavy-weight process
(HWP) typically resides in a separate virtua address space
managed by the OS kernel and the hardware memory man-
agement unit. Synchronizing, scheduling, and exchanging
messages between HWPs involves context switching, which
is a relatively expensive operation in many operating sys
tems. Therefore, HWPs may not be an appropriate choice
for executing multipleinteracting protocol processing activ-
ities concurrently.

e Light-Weight Processes: Light-weight processes
(LWPs) differ from HWPs since multiple LWPs generaly
share an address space by default. This sharing reduces the
overhead of LWP creation, scheduling, synchronization, and
communication for the following reasons:

o Context switching between LWPs is | ess time consum-
ing than HWPs since there is less context information
to storeand retrieve

¢ It may not be necessary to perform a “mode switch”
between kernd- and user-mode when scheduling and
executing an LWP [28]

o Communication between LWPsmay useshared memory
rather than message passing

Note that LWPs may be implemented in kernel-space, user-
space, or some hybrid configuration [29].

e Coroutines: In the coroutine model, a developer
(rather than an OS scheduler) explicitly chooses the next
coroutineto run at a particular synchronization point. When
a synchronization point is reached, the coroutine suspends
its activitiesto allow another coroutine to execute. At some
later point, the second coroutine may resume control back
to the first coroutine. Coroutines provide devel opers with
the flexibility to schedule and execute tasks in any desired
manner. However, developers also assume responsibility for
handlingall scheduling details, aswell as avoiding starvation
and deadl ock.

Executing protocol and session mechanisms via multi-
ple processes is often less complicated and error-prone than
synchronizing and scheduling these mechanisms manually
via coroutines. In addition, coroutines support only inter-
leaved process execution, which limits the benefits of multi-
processing since only one process may run at any giventime.
Ingenerd, it appearsthat LWPsare amore appropriatemech-
anism for implementing process architectures than HWPs
since minimizing context switching overhead is essential for
high-performance[2]. Evenwith LWPs, however, toitistill
important to perform concurrent processing efficiently to re-
duce the overhead from (1) preempting, rescheduling, and
synchronizing executing processes and (2) serializing access
to shared resources must be minimized.

(2) Process Architecture Alternatives: Three primary
process architecture components in a communication sub-
system include (1) the processing elements (CPUs), which
are the underlying execution agents for both protocol and
application code, (2) data and control messages, which are
typically sent and received from oneor more applicationsand
network devices, and (3) protocol processing tasks, which
perform protocol-related functions upon messages as they
arrive and depart. Based upon this classification, two basic
categoriesof processarchitecturemay bedistinguished: task-
based and message-based. Each category is characterized by
aternative methods for structuring and composing the three
communication subsystem components outlined above. In
general, task-based process architectures structure multiple
CPUs according to units of protocol functionaity. Con-
versely, message-based process architectures structure the
CPUs according to the protocol control and data messages
received from applications and network interfaces.

Interms of functionality, protocol suites (such asthe I nter-
net and 1SO OSl reference models) may be implemented us-
ing either task-based or message-based process architectures.
However, each category of process architecture exhibits dif-
ferent structura and performance characteristics. The struc-
tural characteristics differ according to (1) the granularity of
the unit(s) of protocol processing (e.g., layer or function vs.
connection or message) that executeinparalld, (2) thedegree
of CPU scalahility (i.e., the ability to effectively use only a
fixed number of CPUs vs. a dynamically scalable amount),
(3) task invocation semantics (e.g., synchronous vs. asyn-
chronous execution) and (4) the effort required to design and

. | S
I
|
|
| LAYER N+1
|
|

e S

I
|
: LAYER N
|
|

SRR A

I
I
I
LAYER N-1 :
I
|

(1) LAYER
PARALLELISM

APPLICATION INTERFACE

H connection |l
I MANAGEMENT {|
1 J

I
|
I
I
] |
i| congEsTION ||,
I| CONTROL 1
1 I

TO RECEVIER

NETWORK INTERFACE

(2) GENERAL
FUNCTIONAL PARALLELISM

R . —
> | ! | PROCESSING |
o | ADDITIONAL : | ELEMENT
Q | processinG | [
o | 1
| FUNCTION
A MM A CALL
| | - — —
& Di?“:?:s roarTr |ri§ﬂ|rL |
[a) . | | | | |
1o 2l I I I
g EHIER ISR TMEﬁgE
122 AN 2119 6 @
i
h_?_ h_4_7h7‘_7h7_’_ h_"_ A conTROL
CpTEsTesEn | PATH
|| rocate |}
1| connecTion |y
L====== 1 DATA
PATH
[v | (e oo
(3) TEMPORAL (4) sPACIAL
FUNCTIONAL FUNCTIONAL
PARALLELISM PARALLELISM
J

Figure 3: Task-based Process Architectures

implement conventional and experimental protocolsand ser-
vices viaa particular process architecture [27]. In addition,
different configurations of application requirements, operat-
ing system (OS) and hardware platforms, and network char-
acterigtics interact with the structural characteristics of pro-
cess architecturestoyield significantly different performance
results. For instance, on certain genera-purpose OS plat-
forms(such asthe SystemV STREAM Sframework on multi-
processor versions of UNIX), fine-grained task-based paral-
lelism resultsin prohibitively high levels of synchronization
overhead [30]. Likewise, asynchronous, rendezvous-based
task invocati on semanti cs often result in high datamovement
and context switching overhead [31].

Theremainder of thissection summarizesthebasic process
architecture categories, classifies related work accordingly
to these categories, and identifies severa key factors that
influence process architecture performance.

o Task-based Process Architectures: Task-based pro-
cess architectures associate OS processes with protocol 1ay-
ers or protocol functions. Two common task-based process
architectures are Layer Parallelism and Functional Paral-
lelism. The primary difference between these two models
involves the granularity of the protocol processing tasks.
In generdl, layers are more “coarse-grained” than functions
since they cluster multiple protocol tasks together to form a
composite service.

o Layer Parallelism — Layer Pardlelism is a relatively
coarse-grained task-based process architecture that as-
soci ates a separate processwith each layer (e.g., thepre-
sentation, transport, and network layers) in a protocol
stack. Certain protocol header and datafields in outgo-
ing and incoming messages may be processed in paralle
asthey flow throughthe“layer pipding’ (showninFig-
ure3(1)). Intra-layer buffering, inter-layer flow control,

and stage balancing are generally necessary since pro-
cessing activitiesin each layer may execute at different
rates. In general, strict adherence to the layer bound-
aries specified by conventional communication models
(suchasthel SO OS referencemodel) complicatesstage
balancing.

Anempirica study of the performance characteristics of
several software architectures for implementing Layer
Parallelism is presented in [31]. Likewise, the XINU
TCP/IP implementation [32] uses a variant of this ap-
proach to simplify the design and implementation of its
communi cation subsystem.

¢ Functional Parallelism — Functional Parallelism is a
more fine-grained task-based process architecture that
appliesone or more processes to execute protocol func-
tions (such as header composition, acknowledgement,
retransmission, segmentation, reassembly, and routing)
in parallel. Figure 3 (2) illustrates a typical Functional
Parallelism design [33], where protocol functions are
encapsulated within paralle finite-state machines that
communicate by passing control and data messages to
each other. Functional Parallelism is often associated
with “de-layered” communication models [3, 34] that
simplify stage balancing by relaxing conventiona lay-
ering boundaries in order to minimize queueing delays
and “pipelinestalls’ within a protocol stack.

Several variantsof Functional Perallelism areillustrated
inFigure3 (3) and Figure 3 (4). Figure3 (3) illustratesa
temporal parallelism configuration [34], where several
cooperating processes are pipelined to execute clusters
of protocol functions on messages flowing through the
sender-side of a connection. Figure 3 (4) illustrates an-
other variant known as spacial parallelism, where mul-
tiple protocol functions (such as retransmission, flow

control, congestion control, and presentation layer con-
versions) are performed in parallel on fields in each
message (the final results may be discarded if errors
are detected at intermediate stages). The Horizontally-
Oriented Protocol Structure (HOPS) architecture[3] and
the Multi-Stream Protocol (MSP) [35] exemplify this
latter approach.

Implementing pipelined, task-based process architectures
is relatively straight-forward since they typicaly map onto
conventional layered communication models using well-
structured “producer/consumer” designs [27]. Moreove,
minimal concurrency control mechanisms are necessary
withinalayer or function since multi-processing istypically
seridized a a service access point (such as the transport or
application layer interface). However, performance experi-
ments [31] indicate that task-based process architectures are
susceptible to high process management and communica-
tion overhead. This becomes particularly problematic if the
number of protocol tasksexceeds the number of CPUs, dueto
the context switching and rescheduling operations performed
when transfering messages between protocol tasks. More-
over, task-based variants provide minimal support for load
balancing since processes are dedicated to specific protocol
layersor functions. In addition, the effectiveness of temporal
or spacia parallelism is highly dependent upon characteris-
tics of the multi-processor hardware platform (such as the
presence of high-speed 1/0 interconnection hardware [33]
and/or lack of rapid access to shared memory) and the net-
work protocol s (such asthe capability to process mis-ordered
data[36]).

e Message-based Process Architectures: Message-
based process architectures associate processes with connec-
tions or messages rather than protocol layers or functions.
Two common message-based process architectures are Con-
nectional Parallelismand Message Parallelism. Theprimary
difference between these approaches involve (1) the class of
protocols that may be supported (e.g., Connectional Paral-
lelism does not directly apply to connectionless protocols)
and (2) the granularity at which messages are demultiplexed
onto processes. For example, Connectiona Parallelism typ-
ically demultiplexes all messages bound for the same con-
nection onto the same process, whereas Message Parallelism
may demultiplex messages onto any suitableprocess. In gen-
eral, various scheduling disciplines such as round-robin [5],
adaptive load balancing, and cache &ffinity [37] preserving
techniques may be used when selecting a suitable process.

o Connectional Parallelism—Connectional Paralelismis
a relatively coarse-grained message-based process ar-
chitecture that associates a separate process with every
open connection. Figure4 (1) illustratesthis approach,
where connections C'y, C, C'3, and C4 execute in sepa-
rate processes that perform the requisite protocol func-
tions on al messages associated with their connection.
Withinaconnection, multipleprotocol processing func-
tions are invoked serially on each message as it flows

C1 C2 C3 Cy

LAYER
N+1

LAYER

z

LAYER
N-1

-\) 7)
NETWORK INTERFACE

APPLICATION INTERFACE

- ———— —————

(1) CONNECTIONAL (2) MESSAGE
PARALLELISM PARALLELISM

Figure 4: Message-based Process Architectures

through a protocol stack. Outgoing messages typically
borrow the thread of control from the application pro-
cess and use it to shepard one or more messages down
aprotocol stack [38]. For incoming messages, a device
driver or packet filter [39] typicaly performs demulti-
plexing operations to determine the correct process for
each message. In genera, Connectional Pardlelismis
well-suited for protocolsthat demultiplex early in their
protocol stack since it is difficult to maintain a strict
process-per-connection associ ation across demultiplex-
ing boundaries[26].

Connectiond Parallelism is relatively simple to imple-
ment if an OS alowsmultipleindependent system calls,
device interrupts, and daemon processes to operate in
paralel [38]. Moreover, if the number of CPUs is
greater than or equal to the number of active connec-
tions, Connectional Parallelism also exhibits low com-
munication, synchronization, and process management
overhead [30] since al connection context information
is localized within a particular process address space.
Thislocalization is beneficia since (1) pointersto mes-
sages may be passed between protocol layersviasimple
procedurecalls (rather than using more complicated and
costly interprocess communi cation mechanisms) and (2)
cache affinity properties may be preserved since mes-
sages are processed largely within a single CPU cache.
The primary limitation of Connectional Paralelism is
that it only utilizes multi-processing to improve aggre-
gateend-system performance since each individual con-
nection still executes sequentially.

Figure 4 (2) illustrates a variation caled Directional
Parallelism that associates a separate process with the
sender-side and the receiver-side of a single connec-
tion [40] in order to improve the utilization of available

CPUs. To be most effective, Directional Parallelism
requires a high degree of independence between the
sender and receiver portions of a protocol, as well as a
bi-directional flow of application control and data mes-
sages [33]. In general, load balancing across multiple
processes is difficult with both Connectional and Direc-
tiona Parallelism since highly active connections may
swamp their processeswith messages, | eaving other pro-
cessing resources tied up at less active or idle connec-
tions.

e Message Parallelism — Message Parallelism is a fine-
grained message-based process architecture that asso-
ciates a separate process with every incoming or outgo-
ing message. Asillustrated in Figure 4 (3), a process
receives amessage from an application or network inter-
face and performs most or all of the protocol processing
functionson that message. Aswith Connectional Paral-
lelism, outgoing messages typically borrow the thread
of control from the application that initiated the mes-
sage transfer. A number of projects have discussed,
simulated, or utilized Message Paralelism as the basis
for their process architecture [5, 41, 2, 42, 25].

Performance experiments [42] indicate that Message
Parallelism scales quite well for connectionless proto-
cols that possess minima interdependencies between
consecutively arriving or departing messages. More-
over, processing loads may be balanced more evenly
among processes since each incoming message may be
dispatched to an available CPU. The primary disadvan-
tages of Message Parallelisminvolveoverhead resulting
from (1) resource management and scheduling support
necessary to associate a process with each message, (2)
maintaining proper sequencing for messages that must
be processed in-order [41, 36], and (3) seriaizing access
to resources (such as protocol control blocks that store
information such as round-trip time estimates, retrans-
mission queues, and addressing information) shared be-
tween messages destined for the same connection. For
connection-oriented protocols (such as TCP or TP4),
this synchronization overhead may significantly limit
speedups obtainable from multiple CPUs [42] and in-
Crease variance in message processing delay.

Compared with task-based approaches, message-based
process architectures are characterized by the potential for
more dynamic process utilization. In genera, alarge degree
of potential parallelism exists with these approachs, depend-
ing on dynamic characteristics (such as messages or connec-
tions), rather than on relatively static characteristics (such
as the number of layers or protocol functions). Depending
on other communication subsystem factors such as memory
and bus bandwidth[43], thisdynamism may enable message-
based process architecturesto scale up to alarger number of
CPUs. Onthe other hand, scalability may be of limited value
if aplatform possessesasmall number of CPUs, whichistyp-
ically the case for modern workstationsand high-end PCs. In

addition, the increased dynamism of message-based process
architectures also entails more sophisticated, and potentialy
less efficient, resource alocation and process management
facilities. For example, a Message Paralelism-based pro-
cess architecture may require more elaborate OS scheduling
mechanisms.

Process Architecture Performance Factors: The perfor-
mance of the process architectures described above is in-
fluenced by various external and internal factors. External
factorsinclude (1) application characteristics—e.g., thenum-
ber of simultaneously active connections, the class of service
required by applications (such as reliable/non-reliable and
real-time/non-real -time), the direction of dataflow (i.e., uni-
directional vs. bi-directiona), and the type of traffic gener-
ated by applications(e.g., bursty vs. continuous), (2) protocol
characteristics — e.g., the class of protocol (such as connec-
tionless, connection-oriented, and request/response) used to
implement application and communication subsystem ser-
vices, and (3) network characteristics — e.g., atributes of
the underlying network environment (such as the delivery
of mis-ordered data due to multipath routing [36]). Interna
factors, on the other hand, represent hardware- and software-
dependent communication subsystem implementation char-
acteristics such as:

o Process Management Overhead — Process architectures
exhibit different context switching and scheduling costs
related to (1) the type of scheduling policies employed
(e.g., preemptive vs. non-preemptive), (2) the protec-
tiondomain (e.g., user-modevs. kernel-mode) in which
taskswithinaprotocol stack execute, and (3) thenumber
of available CPUs. In general, a context switch is trig-
gered when (1) one or more processes must deep await-
ing certain resources (such as memory buffersor I/0O de-
vices) to be come available, (2) preemptive scheduling
isused and a higher priority process becomes runnable,
or (3) when a currently executing process exceeds its
time dice. Depending on the underlying OS and hard-
ware platform, a context switch may be relatively time
consuming due to the flushing of register windows,
instruction and data caches, instruction pipelines, and
trand ation look-aside buffers [44].

¢ Synchroni zation Overhead — I mplementing communi ca:
tion protocol sthat execute correctly on multi-processor
pl atformsrequires synchronization mechanisms that se-
rialize access to shared objects such as messages, mes-
sage queues, protocol context records, and demulti-
plexing tables. Certain protocol and process architec-
ture combinations (such as implementing connection-
oriented protocols via Message Paralelism) may incur
significant synchronization overhead from managing
locks associated with these shared objects [42]. In ad-
dition to reducing overall throughput, synchronization
bottlenecks resulting from lock contention lead to un-
predictable response times that complicate the delivery
of constrained-latency applications. Other sources of
synchronization overhead involve contention for shared

hardware resources such as 1/0 buses and globa mem-
ory [43]. In general, hardware contention represents an
upper limit on the benefits that may accrue from muilti-
processing [31].

e Communication Overhead — Task-based process ar-
chitectures generaly require some form of interpro-
cess communication to exchange messages between
protocol processing components executing on sepa
rate CPUs. Communication costs are incurred by
memory-to-memory copying, message manipulation
operations (such aschecksum cal culations and compres-
sion), and general message passing overhead resulting
from synchronization and process management opera-
tions. Common techniques for minimizing communica-
tion overhead involve (1) buffer management schemes
that minimize data copying [45] and attempt to preserve
cache affinity propertieswhen exchanging messages be-
tween CPUs with separate instruction and data caches,
(2) integrated layer processing techniques [11], and (3)
single-copy network/host interface adapters [46].

¢ Load Balancing — Certain process architectures (such
as Message Parallelism) have the potential for utiliz-
ing multiple CPUs equitably, whereas others (such as
Connectional, Layer, and Functiond Parallelism) may
under- or over-utilize the available CPUs under certain
circumstances (such as bursty network and application
traffic patterns or improper stage balancing).

3.1.2 TheVirtual Memory (VM) Remapping Dimension

Regardless of the process architecture, minimizing the
amount of memory-to-memory copying in atransport system
isessentia to achieve high performance[47]. Ingenerd, data
copying costsprovidean upper bound on application through-
put [11]. As described in Section 3.2.1 below, selecting an
efficient message management mechanism is one method for
reducing data copying overhead. A related approach de-
scribed in this section uses virtual memory optimizationsto
avoid copying data atogether. For example, in situations
where datamust be transferred from one address space to an-
other, the kernel architecture may remap the virtual memory
pages by marking their page table entries as being “copy-
on-write.” Copy-on-write schemes physically copy memory
only if asender or receiver changes apage’s contents.

Page remapping techniques are particularly useful for
transferring large quantities of databetween separate address
spaces on the same host machine. An operation that benefits
from thistechniqueinvol vesdatatransfer between user-space
and kernel-space at the application interface. Rather than
physically copying data from application buffers to kernel
buffers, the OS may remap application pages into kernel-
space instead.

Page remapping schemes are often difficult to implement
efficiently in the context of communication protocols, how-
ever. For example, most remapping schemes require the
alignment of data in contiguous buffers that begin on page

boundaries. These alignment constraints are complicated
by protocol operations that significantly enlarge or shrink
the size of messages. This operations include message de-
encapsulation (i.e., stripping headers and trailers as messages
ascend through a protocol graph), presentation layer expan-
sion [11] (e.g., uncompressing or decrypting an incoming
message), and variable-size header options (such as those
proposed to handle TCP window scaling for long-del ay paths
[18]). Moreover, remapping may not be useful if the sender
or receiver writes on the page immediately since a separate
copy must be generated anyway [8]. In addition, for small
messages, more overhead may beincurred by remapping and
adjusting page table entries, compared with simply copying
the datain thefirst place.

3.1.3 The Event Management Dimension

Event management mechanisms provided by the kernd ar-
chitecture support time-related services for user applications
and other mechanismsin atransport system. Ingeneral, three
basic operations are exported by an event manager:

1. Registering subroutines (caled “event handlers”) that
will beexecuted at some user-specified timeinthefuture

2. Canceling a previoudly registered event handler

3. Invoking an event handler when its expiration time oc-
curs

The data structures and agorithms that implement an event
manager must be selected carefully so that al three types of
operationsare performed efficiently. Inaddition, thevariance
among different event handler invocation times should be
minimized. Reducing variance isimportant for constrained
latency applications, as well as for transport systems that
register and execute alarge number of event handlers during
agiven time period.

At the session architecture level, protocol implementa
tions may use an event manager to perform certain time-
related activities on network connections. In this case, a
reliable connection-oriented protocol implementation regis-
tersa“retransmission-handler” with theevent manager when
aprotocol segment issent. The expirationtimefor thisevent
isusually based on atimeinterval calculated from the round-
trip packet estimate for that connection. If thetimer expires,
the event manager invokesthe handler to retransmit the seg-
ment. The retransmission event handler will be canceled if
an acknowledgement for the segment arrives beforethetimer
expires.

Alternative mechanisms for implementing event managers
include delta lists [32], timing wheels [48], and heap-based
[49] and list-based [8] callout queues. These mechanismsare
built atop ahardware clock mechanism. On each “clock-tick”
the event manager checks whether it is time to execute any
of itsregistered events. If one or more events must be run,
the event manager invokesthe associated event handler. The
different event manager mechanisms may be distinguished
by the following two dimensions:

(1) Search Structure: Severa search structures are com-
monly used to implement different event management mech-
anisms. One approach isto sort the events by their time-to-
execute value and store them in an array. A variant on this
approach (used by delta lists and list-based callout queues)
replaces the array with a sorted linked list to reduce the over-
head of adding or deleting an event [32]. Another approach
isto use a heap-based priority queue[49] instead of a sorted
list or array. In this case, the average- and worst-case time
complexity for inserting or deleting an entry is reduced from
O(n) to O(Ign). Inaddition to improving average-case pef-
formance, heaps & so reduce the variance of event manager
operations.

(2) TimeRelationships: Another aspect of event manage-
ment involves the “time relationships,” (i.e., absolute vs.
relative time) that are used to represent an event’s execu-
tion time. Absolute timeis generaly computed in terms of
a value returned by the underlying hardware clock. Heap-
based search structures typically use absolute time due to
the comparison properties necessary to maintain a heap as a
partially-ordered, a most-complete binary tree. In contrast,
relative-time may be computed as an offset from a particular
starting point and is often used for asorted linked list imple-
mentation. For example, if each item’stime is stored as a
delta relative to the previous item, the event manager need
only examine the first element on every clock-tick to deter-
mineif it should execute the next registered event handler.

3.2 Protocol Family Architecture Dimensions

Protocol family architecture mechanisms pertain primarily to
network protocols and distributed applications. In contrast,
kernel architecture mechanisms are also utilized by many
other applications and OS subsystems. The protocol family
architecture providesintra-protocol and inter-protocol mech-
anisms that may be reused by protocols in many protocol
families. Intra-protocol mechanismsinvolvethecreation and
deletion of sessions, whereas inter-protocol mechanisms in-
volve message management, multiplexing and demultiplex-
ing of messages, and layer-to-layer flow control. Thissection
examines the inter-protocol mechanisms.

321 TheMessage Management Dimension

Transport systems provide mechanisms for exchanging data
and control messages between communicating entitieson lo-
cal and remote end systems. Standard message management
operationsinclude (1) storing messages in buffersasthey are
received from network adapters, (2) adding and/or removing
headers and trailers from messages as they pass through a
protocol graph, (3) fragmenting and reassembling messages
to fit into network maximum transmission units, (4) stor-
ing messages in buffers for transmission or retransmission,
and (5) reordering messages received out-of-sequence [5].
To improve efficiency, these operations must minimize the
overhead of dynamic memory management and also avoid

10

unnecessary data copying, asdescribed inthefollowing para-
graphs:

(1) DynamicMemory Management: Traditiona datanet-
work traffic exhibitsabi-modal distributionof sizes, ranging
from large messages for bulk data transfer to small mes-
sages for remote termina access [50]. Therefore, mes-
sage managers must be capable of dynamically alocating,
deallocating, and codescing fixed-sized and variable-sized
blocks of memory efficiently. However, message manage-
ment schemes are often tuned for a particular range of mes-
sage sizes. For instance, the BSD UNIX message manage-
ment facility dividesitsbuffersinto 112 byte and 1,024 byte
blocks. This leads to non-uniform performance behavior
when incoming and outgoi ng messages vary in size between
small and large blocks. As discussed in [2], more uniform
performance is possibleif message managers support awide
range of message sizes as efficiently as they support large
and/or small messages.

(2) Memory-to-memory Copy Avoidance: Asmentioned
in Section 3.1.2, memory-to-memory copying is a signifi-
cant source of transport system overhead. Naive message
managers that physically copy messages between each pro-
tocol layer are prohibitively expensive. Therefore, more so-
phisticated implementations avoid or minimize memory-to-
memory copying via techniques such as buffer-cut-through
[51, 52] and lazy-evaluation [45]. Buffer-cut-through passes
messages “by reference’ through multiple protocol layersto
reduce copying. Likewise, lazy-evaluation techniques use
reference counting and buffer-sharing to minimize unneces-
sary copying. These schemes may be combined with the
virtual memory remapping optimizations described in Sec-
tion3.1.2.

Message managers use different methods to reduce data
copying and facilitate buffer sharing. For instance, BSD
and System V UNIX attach multiplebufferstogether to form
linked-lists of message segments. Adding data to the front
or rear of a buffer list does not require any data copying
since it only relinks pointers. An dternative approach uses
a directed-acyclic-graph (DAG)-based data structure [45].
A DAG dlows multiple “parents’ to share dl or part of a
message stored in a single “child.” Therefore, this method
improves data sharing between layers in a highly-layered
protocol graph. Thisisimportant for reliable protocols(such
as RPC or TCP) that maintain “logica” copies of messages
at certain protocol layersin case retransmission is necessary.

3.22 TheMultiplexingand Demultiplexing Dimension

Multiplexing (muxing) and demultiplexing (demuxing) se-
lect which of the sessions in an adjacent protocol layer will
receive an incoming or outgoing message. A sender typicaly
performs multiplexing, which directs outgoing messages em-
anating from some number of higher-layer sessions onto a
smaller number of lower-layer sessions [12]. Conversely,
areceiver performs demultiplexing, which directs incoming
messages up to their associated sessions. Multiplexing and

demultiplexing are orthogona to data copying; depending
on the message management scheme, messages need not be
copied asthey are multiplexed and demultiplexed throughout
aprotocol graph [45].

Since senders generally possess knowledge of their en-
tiretransfer context (such as message destination address(es)
like connection identifiers, port numbers, and/or Internet |P
addresses [11], as well as which network interfaces to use)
multiplexing may beless costly than demultiplexing. In con-
trast, when a network adapter receives an incoming message
it generally has no prior knowledge of the message’s validity
or eventual destination. To obtainthisinformation, areceiver
must i nspect the message header and perform demultiplexing
operations that select which higher-layer protocol session(s)
should receive the message.

Multiplexing and demultiplexing may be performed sev-
eral times as messages move to and from network adapters,
protocol layers, and user applications. Depending onthepro-
cessarchitecture sel ected for atransport system, multiplexing
and demultiplexing activitiesmay incur high synchronization
and context switching overhead since one or more processes
may need to be awakened, scheduled, and executed.

As described below, four key multiplexing and de-
multiplexing dimensions include synchronization, layering,
searching, and caching:

(1) Synchronization: Multiplexing and demultiplexing
may occur either synchronously or asynchronously, depend-
ing primarily on whether the transport system uses a task-
based or message-based process architecture. For example,
message-based process architectures (such as the x-kernel)
typically use synchronous multiplexing and demultiplexing
since messages do not pass between separate process address
spaces. Therefore, intra-process upcalls and subroutinecalls
are used to transfer messages up and down a protocol graph
rather than more expensive asynchronousinter-process com-
munication techniques such as message queues. In contrast,
task-based process architectures (such as F-CSS [53]) uti-
lize asynchronous multiplexing and demultiplexing. In this
scheme, message queues are used to buffer data passed be-
tween processes that implement a layered protocol graph.
Since message queues do not necessarily block the sender, it
ispossibleto concurrently process messages in each protocol
layer, which potentially increases throughput. However, this
advantage may be offset by the additional context switch-
ing and data movement overhead incurred to move messages
between separate CPUs[54].

(2) Layering: Asshown in Figure 5 (1), multiplexing and
demultiplexing may occur multiple times as messages tra-
verse up or down a protocol graph. This layered approach
differs from the de-layered approach shown in Figure 5 (2).
Inthe de-layered approach, multiplexingand/or demultiplex-
ing is performed only once, usualy at either the highest- or
lowest-layer of aprotocol graph.

The use of layered multiplexing and demultiplexing pro-
vides several benefits [12]. First, it promotes modularity,
since the interconnected layer components interoperate only

11

(— — — —)
=~=1T, 1T, 1 1 i___1 i___1 i___1 I___'I
i I I [|| ! X X |I [
| 11 11 11 | | | | |
b= eSZa oSga oSl [i i ! |
S
SeZ TS Ly g dal g
| | | 1 I II II || |
I I I I I I I I
Le=== L= | ! ! | I
| | | |
N ERIERIERIRN
! | (e (et (et H(NRD))|
' [[[[[
bem——— [I gl F et B Byl
(1) LAYERED MULTIPLEXING (2) DE-LAYERED MULTIPLEXING
L AND DEMULTIPLEXING AND DEMULTIPLEXING)

QUEUES CALLS

Q- 1
PROTOCOLSAND) | oo |
SESSIONS I |

i MESSAGE 1 SUBROUTINE

Figure5: Layered and De-Layered Multiplexingand Demul -
tiplexing

at well-defined “service access points’ (SAPs). This en-
ables mechanisms offered at one layer to be developed in-
dependently from other layers. Second, it conserves lower-
layer resources like active virtua circuits by sharing them
among higher-layer sessions. Such sharing may be use-
ful for high-volume, wide-area, leased-line communication
linkswhere it is expensive to reestablish a dedicated virtua
circuit for each transmitted message. Finally, layered multi-
plexing and demultiplexing may be useful for coordinating
related streams in multimedia applications (such as interac-
tive tele-conferencing) since messages synchronize at each
SAP boundary.

The primary disadvantages of layered multiplexing and
demultiplexing arise from the additiona processing incurred
at each layer. For example, in atask-based process architec-
ture, multiplelevels of demultiplexing may increase context
switching and synchronization overhead. Thisoverhead also
enlarges packet latency variance (known as “jitter”), which
is detrimenta to the quality-of-service for delay- and jitter-
sensitive multimedia applications such as interactive voice
or video.

De-layered multiplexing and demultiplexing generally de-
creasesjitter sincethereislesscontentionfor transport system
resources a a single lower-layer SAP from multiple higher-
layer data streams [12]. However, the amount of context
information stored within every intermediate protocol layer
increases since sessions are not shared [12]. In addition, de-
layering expands the degree of demultiplexing at the lowest
layer. Thisviolatesprotocol layering characteristicsfoundin
conventional communication models (such as the ISO OSI
referencemodel) sincethelowest layer isnow responsiblefor
demultiplexing on addresses (such as connection identifiers
or port numbers) that are actually associated with protocols
severa layers above in a protocol graph. Packet filters [39]
areatechniqueused to addressthisissue. Packet filtersallow
applications and higher-level protocolsto “program” a net-
work interface so that particular types of incoming PDUs are
demultiplexed directly to them, rather than passing through

aseries of intervening protocol layersfirst.

Note that the use of de-layered multiplexing and demulti-
plexing interacts with the choice of process architecture. For
example, Connectional Parallelism isenhanced by protocols
that demultiplex early in their protocol stack since it is dif-
ficult to maintain a strict process-per-connection association
across demultiplexing boundaries [26].

(3) Searching: Sometypeof search algorithmisrequiredto
implement multiplexing and demultiplexing schemes. Sev-
eral common search agorithmsinclude direct indexing, se-
guential search, and hashing. Each agorithm uses an ex-
ternal identifier search key (such as a network address, port
number, or type-of-service field) to locate an internal iden-
tifier (such as a pointer to a protocol control block or a net-
work interface) that specifies the appropriate session context
record.

Transport protocols such as TP4 and VM TP pre-compute
connection identifiers during connection establishment to
simplify subsequent demultiplexing operations. If these
identifiershave asmall range of values, ademultiplexing op-
eration may simply index directly into an array-based search
structure to locate the associated session context record. Al-
ternatively, asequential search may beused if aprotocol does
not support connectionidentifiers, or if therange of identifier
valuesislargeand sparse. For example, BSD UNIX demuilti-
plexes TCP and UDP associations by performing asequentia
search on external identifiersrepresented by a < source addr,
source port, destination port> tuple. Although sequential
search issimpleto implement, it does not scale up well if the
transport system has hundreds or thousands of external iden-
tifiers representing active connections. In this case, a more
efficient search agorithm (such as bucket-chained hashing)
may berequired.

(4) Caching: Several additional optimizationsmay beused
to augment the search algorithmsdiscussed above. These op-
timizations include (1) single- or multiple-item caches and
(2) list reorgani zation heuristics that move recently accessed
control blocks to the front of the search list or hash bucket-
chain. A single-item cacheisrelatively efficient if thearriva
and departure of application data exhibit “ message-train” be-
havior. A message-train is a sequence of back-to-back mes-
sages that are all destined for the same higher-level session.
However, single-item caching is insufficient if application
traffic behavior isless uniform [55]. When calculating how
well aparticular caching scheme affects the cost of demuilti-
plexing it is important to consider (1) the miss ratio, which
represents how many times the desired external identifier is
not in the cache and (2) the number of list entriesthat must be
examined when a cache miss occurs. In general, the longer
the search list, the higher the cost of a cache miss.

The choice of search agorithm and caching optimization
impacts overall transport system and protocol performance
significantly. When combined with caching, hashing pro-
duces a measurable improvement for searching large lists of
control blocksthat correspond to active network connections

[2].

12

3.2.3 ThelLayer-to-Layer Flow Control Dimension

Layer-to-layer flow control regulates the rate of speed and
amount of data that is processed at various levelsin atrans-
port system. For example, flow control is performed at the
application interface by suspending user processes that at-
tempt to send and/or receive more data than end-to-end ses-
sion buffers are capable of handling. Likewise, within the
protocol family architecture level, layer-to-layer flow con-
trol prevents higher-layer protocol components from flood-
ing lower-layers with more messages than they are equipped
to process and/or buffer.

Layer-to-layer flow control has a significant impact on
protocol performance. For instance, empirical studies [1]
demonstrate the importance of matching buffer sizes and
flow control strategies at each layer in the protocol family
architecture. Inefficiencies may result if buffer sizes are not
matched appropriately in adjacent layers, thereby causing
excessive segmentation/reassembly and additional transmis-
sion delays.

Two general mechanisms for controllingthe layer-to-layer
flow of messages include the per-queue flow control and
per-process flow control schemes outlined below:

e Per-Queue Flow Control: Flow control may be im-
plemented by enforcing a limit on the number of messages
or total number of bytesthat are queued between sessionsin
adjacent protocol layers. For example, atask-based process
architecture may limit the size of the message queues that
store information passed between adjacent sessions and/or
user processes. This approach has the advantage that it en-
ables control of resource utilization at afairly fine-grainlevel
(such as per-connection).

e Per-Process Flow Control: Flow control may also
be performed in a more coarse-grained manner at the per-
process level. This approach is typically used by message-
based process architectures. For example, in the x-kernd,
an incoming message is discarded at anetwork interfaceif a
light-weight process is not available to shepard an incoming
message up through a protocol graph. The advantage of this
approach is that it reduces queueing complexity at higher-
layers. However, it may unfairly penalize connections that
arenot responsi blefor causing message congestion on an end
system.

4 Survey of Existing OSTransport Sys-
tem Architectures

A number of framework have emerged to simplify the de-
velopment and configuration of transport systems by inter-
connecting session and protocol family architecture com-
ponents. In genera, these frameworks encourage the de-
velopment of standard communication-related components
(such as message managers, timer-based event dispatchers,
demultiplexors[45], and assorted protocol functions[13]) by

decoupling protocol processing functionality from the sur-
rounding framework infrastructure. This section surveysthe
transport system architectures for the System VV UNIX, BSD
UNIX, x-kernel, and Choi ces operating systems. Unless oth-
erwise noted, the systems described include System V Re-
lease 4, BSD 4.3 Tahoe, x-kerndl 3.2, and Choices 6.16.91.
Section 4.1 givesabrief summary of each system. Section 4.2
compares and contrasts each system using the taxonomy di-
mensionslisted in Table 1.

4.1 System Overviews

This section outlines the primary software components and
process architectures for each surveyed transport system in
order to highlight the design decisions made by actua sys-
tems. In addition, a transport system profile corresponding
to the taxonomy depicted in Table 1 is presented along with
each overview (note that ND standsfor “not defined”).

411 SystemV STREAMS

The System V STREAMS architecture emphasizes mod-
ular components that possess uniform interfaces. It was
initially developed for termina drivers and was later ex-
tended to support network protocolsand local 1PC viamul-
tiplexor drivers and STREAM pipes, respectively [56]. The
Table 2 illustrates the transport system profile for System
V STREAMS. In the discussion below, the uppercase term
“STREAMS’ referstotheoveral System V transport system
mechanism, whereastheterm“ Stream” refersto afull-duplex
protocol processing and datatransfer path between auser ap-
plication and a device driver.

As shown in Figure 6, the main components in the Sys-
tem V STREAMS architecture include STREAM heads,
STREAM modules, STREAM multiplexors, and STREAM
drivers. A STREAM head segments the user data into dis-
crete messages. These messages are passed “downstream”
fromthe STREAM head though zero or more STREAM mod-
ulesand multiplexorsto the STREAM driver, wherethey are
transmitted by a network adapter to the appropriate network.
Likewise, the driver also receives incoming messages from
the network. These messages are passed “upstream” through
themodulesto the STREAM head, where auser process may
retrieve them. STREAM modules and multiplexors may be
inserted and/or removed dynamically between the head and
the driver. Each module or multiplexor implements pro-
tocol processing mechanisms like encryption, compression,
reliable message delivery, and routing. The following para
graphs describe each STREAM S component:

¢ STREAM Heads: STREAM heads are situated on “top”
of a Stream, directly “below” the user process (as shown
in Figure 6). STREAM heads provide a queueing point for
exchanging data and control information between an appli-
cation (running as a user process) and a Stream (running in
the kernel). Each STREAM component is linked together
with its adjacent components via a pair of queues: one for
reading and the other for writing. These queues hold lists of

13

ﬁ | STREAM
tﬂﬂﬂﬂ: MODULE
= 7

L

KERNEL

STREAM
HEADS

STREAM
MODULE
T~

STREAM
MULTIPLEXOR

DOWNSTRE;

UPSTRE.

STREAM
DRIVER

NETWORK
INTERFACE 8

MESSAGES

Figure6: SystemV STREAMS Architecture

READ
QUEUE

messages sorted by up to 256 different priority levels. Since
the System V applicationinterface doesnot use virtual mem-
ory remapping techniques, the STREAM head also performs
memory-to-memory copying to transfer data between a user
process and the kernel.

e STREAM Modules: Each STREAM module performs
its protocol processing operations on the data it receives be-
fore forwarding the data to the next module. In this way,
STREAM modules are analogous to “filter” programsin a
UNIX shell pipeline. UnlikeaUNIX pipeline, however, data
is passed as discrete messages between modules, rather than
as a byte-stream. Applications may “push” and/or “pop”
STREAM modules on or off a Stream dynamically in “last-
in, first-out” (LIFO) order. Each read and write queuein a
modul e contains pointers to subroutines that (1) implement
the modul € s protocol processing operationsand (2) regulate
layer-to-layer message flow between modules.

Two subroutinesassoci ated with each queuearecalled put
andser vi ce. The put subroutinetypicaly performs syn-
chronous message processing when invoked by an adjacent
gueue (e.g., when auser process sendsamessage downstream
or a message arrives on a network interface). It performs
protocol processing operations that must be invoked imme-
diately (such as handling high-priority TCP “urgent data’
messages).

The ser vi ce subroutine, on the other hand, is used for
protocol operationsthat either do not executein ashort, fixed
amount of time (e.g., performing a three-way handshake to
establish an end-to-end network connection) or that will block
indefinitely (e.g., due to layer-to-layer flow control). The
ser Vi ce subroutinesin adjacent modulesgenerally interact
in a coroutine-like manner. For example, when a queue's
ser vi ce subroutineisrun, it performs protocol processing
operationson all themessageswaitinginthequeue. Whenthe
ser Vi ce subroutine completes, the messages it processed

Process Architecture

(2) coroutines, (2) task-based (process-per-module)

VM Remapping none

Event Management

(1) absolute, (2) heap

Message Buffering

(2) uniform, (2) list-based

M uxing/Demuxing

(1) asynchronous, (2) layered, (3) ND, (4) ND

Flow Control per-queue

Table 2: STREAMS Profile

will have been passed to the appropriate adjacent STREAM
module in the Stream. Next, the ser vi ce routine for any
STREAM modules that now have new messages in their
gueue(s) is scheduled to run.

e STREAM Multiplexors. STREAM multiplexors may
be linked between a STREAM head and a STREAM driver,
similar to STREAM modules. Unlike a STREAM module,
however, amultiplexor driver islinked with multiple Streams
residing directly “above’ or “below” it. Multiplexors are
used to implement network protocols such as TCP and IP
that receive data from multiple sources (e.g., different user
processes) and send data to multiple sources (e.g., different
network interfaces).

e STREAM Drivers:. STREAM drivers are connected at
the “bottom” of a Stream. They typicaly manage hard-
ware devices, performing activities such as handling network
adapter interruptsand convertingincoming packetsinto mes-
sages suitable for upstream modul es and multiplexors.

e Messages: Data is passed between STREAMS compo-
nents in discrete chunks viaan abstraction called a message.
Messages consist of a control block and one or more data
blocks. The control block typically contains bookkeeping
information such as destination addresses and length fiel ds).
The data blocks generaly contain the actual message con-
tents, i.e,, its“ payload.”

To minimize memory-to-memory copying costs, pointers
to message blocks are passed upstream and downstream. A
message is represented as a <message control block, data
control block, variablelength data buffer> tuple. Thistuple
minimizes memory-to-memory copying costs by sharing a
common <data buffer> among severa <message control
block, data control block> portions.

Thetraditional SystemV STREAM Stransport system sup-
ports a variant of the task-based process architecture known
as “process-per-module’ that associates a “logical” process
with a STREAM module's servi ce subroutine. This
process-per-modul e approach is implemented by scheduling
and executing theser vi ce subroutines associated with the
read and write queuesin a STREAM module. Originaly, the
ser Vi ce procedures were run only at certain times (such
as just before returning from a system call and just before
a user process was put to deep). Unfortunately, this design
made it difficult to support applications with isochronous or
congtrained latency requirements since STREAM modules
were not scheduled to run with any precise rea-time guar-
antees. In addition, these subroutines execute outside the

14

context of any kernel or user process, thereby avoiding the
standard UNIX kernel process scheduling mechanism. This
design represents an effort to (1) minimize the kernel state
information required for process management and (2) reduce
context switching overhead when moving messages between
modul e queues.

An increasing number of STREAMS implementations
[28, 38, 25, 30] utilize shared memory, symmetric multi-
processing capabilities within a multi-threaded kernel ad-
dress space. These implementations supports various lev-
els of STREAMS concurrency. These concurrency levels
range from relatively fine-grain parallelism (such as queue-
level with one light-weight process (LWP) for the STREAM
module read queue and one LWP for the STREAM module
write queue and queue-pair-level with one LWP shared by
a STREAM module queue pair) to more coarse-grained ap-
proaches (such as module-level with one LWP shared across
al instances of a STREAM module and module-class-level
with one LWP shared across a particular class of STREAM
modules).

4.1.2 BSD UNIX Network Subsystem

BSD UNIX provides a transport system framework that
supports multiple protocol families such as the Internet,
XNS, and OSl| protocols [8]. BSD provides a general-
purpose application interface called sockets. Sockets allow
bi-directional communication of arbitrary amounts of data
between unrelated processes on loca and remote hosts. Ta-
ble 3illustratesthe transport system profile for BSD UNIX.

The concept of a communication domain is central to
BSD’s multiple protocol family design. A domain speci-
fies both a protocol family and an address family. Each
protocol family implements a set of protocols corresponding
to standard socket typesin the domain (e.g., SOCK_STREAM
for reliable byte-stream communication and SOCK_DGRAM
for unreliable datagram communication). An address fam-
ily defines an address format (e.g., the address size in bytes,
number and type of fields, and order of fields) and a set of
kernel-resident subroutines that interpret the address format
(e.0., to determine which subnet an 1P message is intended
for). The standard BSD rel ease supports address familiesfor
the Internet domain, XEROX NS domain, OSI domain, and
UNIX domain (which only exchanges information between
socketsin processes on aloca host).

There are three main layers in the BSD transport system
design: the socket layer, protocol layer, and network in-

Process Architecture

(1) single-threaded, (2) hybrid message-based

VM Remapping incoming

Event Management

(@) rdlative, (2) linked list

Message Buffering

(2) non-uniform, (2) list-based

M uxing/Demuxing

() hybrid, (2) layered, (3) sequentia, (4) single-item

Flow Control ND

Table 3: BSD UNIX Profile

terface layer. Data are exchanged between these layersin
discrete chunks called mbufs. Socket layer mechanisms are
similar to System V STREAM heads. One difference isthat
a STREAM head supports up to 256 levels of message pri-
ority, whereas sockets only provide 2 levels (“in-band” and
“out-of-band”). The protocol layer coordinates algorithms
and data structures that implement the various BSD protocol
families. The network interfacelayer providesa softwareve-
neer for accessing the underlying network adapter hardware.
The following paragraphs describe the major BSD protocol
layer componentsin detail:

e The Socket Layer: A socket isatyped object that repre-
sents a bi-directiona end-point of communication. Sockets
provide a queueing point for data that istransmitted and re-
ceived between user applications running as user processes
and the protocol layersrunning in the OSkernel. Open sock-
ets are identified via socket descriptors. These descriptors
index into a kernel table containing socket-related informa-
tion such as send and receive buffer queues, the socket type,
and pointersto the associated protocol layer. When a socket
is crested, anew table dot isinitialized based on the speci-
fied “socket type” (e.g., SOCK_STREAM or SOCK_DGRAM).
Socket descriptors share the same name space as UNIX file
descriptors. This alows many UNIX applications to com-
municate transparently using different kinds of devices such
as remote network connections, files, terminds, printers, and
tape drives.

e TheProtocol Layer: BSD’sprotocol layer containsmul-
tiple components organized using a dispatch table format.
Unlike STREAMS, the BSD network architecture does not
allow arbitrary configuration of protocol components at run-
time. Instead, protocol families are created by associating
certain componentswith one another when akernd imageis
statically linked.

In the Internet protocol family, the TCP component is
linked above the IP component. Each protocol component
stores session context information in control blocks that rep-
resent open end-to-end network sessions. Internet domain
control blocksinclude thei npch (which stores the source
and destination host addresses and port numbers) and the
t cpcb (which stores the TCP state machine variables such
as sequence numbers, retransmission timer values, and statis-
tics for network management). Each i npcb aso contains
links to sibling i npcbs (which store information on other
active network sessions in the protocol layer), back-pointers

15

to the socket data structure associated with the protocol ses-
sion, and other relevant information such as routing-table
entries or network interface addresses.

e The Network Interface Layer: Messages arriving on
network interfaces are handled by a software interrupt-based
mechanism, as opposed to dedicating a separate kernd “pro-
cess’ to perform network 1/O. Interrupts are used for two
primary reasons. (1) they reduce the context switching over-
head that would result from using separate processes and (2)
the BSD kernel is not multi-threaded. There are two levels
of interrupts: SPLNET and SPLIMP. SPLNET has higher
priority and is generated when a network adapter signals
that a message has arrived on an interface. However, since
hardware interrupts cannot be masked for very long without
causing other OS devicesto timeout and fail, alower priority
softwareinterrupt level named SPLIMP actually invokesthe
higher-layer protocol processing.

For example, when an SPLNET hardwareinterrupt occurs,
the incoming message is placed in the appropriate network
interface protocol queue (e.g., the queue associated with the
IP protocol). Next, an SPLIMP software interrupt is posted,
informingthekernel that higher-layer protocolsshouldberun
when the interrupt priority level fallsbelow SPLIMP. When
the SPLIMPinterrupt handler is run, the message is removed
from the queue and processed to completion by higher-layer
protocols. If a message is not discarded by a protocol (e.g.,
due to a checksum error) it typically ends up in a socket
receive queue, where a user process may retrieve it.

e Mbufs: BSD UNIX uses the mbuf data structureto man-
age messages as they flow between levels in the network
subsystem. An mbuf’s representation and its associated op-
erations are similar to the System V. STREAMS message
abstraction. Mbuf operationsinclude subroutinesfor allocat-
ing and freeing mbufsand listsof mbufs, aswell asfor adding
and deleting data to an mbuf list. These subroutines are de-
signed to minimize memory-to-memory coping. Mbufsstore
lists of incoming messages and outgoing protocol segments,
aswell as other dynamically alocated objectslikethe socket
datastructure. There are two primary types of mbufs; small
mbufs, which contain 128 bytes (112 bytes of which are used
to hold actual data), and cluster mbufs, which use 1 kbyte
pages to minimize fragmentation and reduce copying costs
viareference counting.

BSD usesasingle-threaded, hybrid message-based process
architecture residing entirely in the kernel. User processes

enter the kernel when they invoke a socket-related system
cal. Due to flow control, multiple user processes that are
sending datato “lower” protocol layersresidingin the kernel
may be blocked simultaneoudly at the socket layer. Blocked
processes are suspended from sending messages down to the
network interface layer until flow control conditions abate.
In contrast, sincethe BSD kernel issingle-threaded, only one
thread of control executes to process incoming messages up
through the higher protocol layers.

413 x-kernd

Thex-kernel isamodular, extensibletransport system kernel
architecture designed to support prototyping and experimen-
tation with aternative protocol and session architectures|[2].
It was devel oped to demonstrate that layering and modular-
ity are not inherently detrimental to network protocol per-
formance [2]. The x-kernel supports protocol graphs that
implement a wide range of standard and experimental proto-
col families, including TCP/IP, Sun RPC, SpriteRCP, VM TR,
NFS, and Psync [57]. Unlike BSD UNIX, whose protocol
family architecture is characterized by a dtatic, relatively
monolithic protocol graph, the x-kernel supports dynamic,
highly-layered protocol graphs. Table 4 illustrates the trans-
port system profile for the x-kernel.

Thex-kernel’sprotocol family architectureprovideshighly
uniform interfaces to its mechanisms, which manage three
communication abstractions that comprise protocol graphs
[2]: protocol objects, session objects, and message objects.
These abstractions are supported by other reusable software
componentsthat include amessage manager (an abstract data
type that encapsul ates messages exchanged between session
and protocol objects), a map manager (used for demulti-
plexing incoming messages between adjacent protocols and
sessions), and an event manager (based upon timing wheels
[48] and used for timer-driven activitieslike TCP' s adaptive
retransmission algorithm). In addition, the x-kerndl provides
a standard library of micro-protocols. These are reusable,
modular software components that implement mechanisms
common to many protocols (such as include diding window
transmission and adaptive retransmission schemes, request-
response RPC mechanisms, and a“blast” protocol that uses
selective retransmission to reduce channel utilization [10]).
The following paragraphs describe the x-kernel’s primary
software components:

¢ Protocol Objects: Protocol objects are software abstrac-
tions that represent network protocols in the x-kernel. Pro-
tocol objects belong to one of two “realms,” either the asyn-
chronousrealm (e.g., TCPR, IP, UDP) or the synchronousrealm
(e.g., RPC). The x-kernd implements a protocol graph by
combining one or more protocol objects. A protocol object
contains a standard set of subroutines that provide uniform
interfaces for two major services: (1) creating and destroy-
ing session objects (which maintain a network connection’s
context information) and (2) demultiplexing message objects
up to the appropriate higher-layer session objects. The x-

16

kernel uses its map manager abstraction to implement effi-
cient demultiplexing. The map manager associates external
identifiers (e.g., TCP port numbers or | P addresses) with in-
ternal data structures (e.g., session control blocks). Itisim-
plemented as a chained-hashing scheme with a single-item
cache.

e Session Objects: A session object maintains context in-
formation associated with alocal end-point of a connection.
For exampl e, a session object stores the context information
for an active TCP state machine. Protocol objects create
and destroy session objects dynamically. When an applica
tion opens multiple connections, one or more session objects
will be created within the appropriate protocol objectsin a
protocol graph. The x-kerndl supports operations on ses-
sion objects that involve “layer-to-layer” activities such as
exchanging messages between higher-level and lower-level
sessions. However, the x-kerndl’s protocol family architec-
ture framework does not provide standard mechanisms for
“end-to-end” session architecture activities such as connec-
tion management, error detection, or end-to-end flow control.
A related project, Avoca, builds upon the basic x-kernd fa-
cilitiesto provide these end-to-end session services [10].

o Message Objects: Message objects encapsulate control
and user data information that flows “upwards’ or “down-
wards’ through a graph of session and protocol objects.
In order to decrease memory-to-memory copying and to
implement message operations efficiently, message objects
are implemented using a “directed-acyclic-graph” (DAG)-
based data structure. This DAG-based scheme uses “lazy-
evaluation” to avoid unnecessary data copying when passing
messages between protocol layers [45]. It aso stores mes-
sage headers in a separate “header stack” and uses pointer
arithmetic on this stack to reduce the cost of prepending or
stripping message headers.

The x-kernel employs a “process-per-message’ message-
based process architecturethat residesin either the OSkernel
orinuser-space. Thekernel implementation maintainsapool
of light-weight processes (LWPs). When a message arrives
at a network interface, a separate LWP is dispatched from
the pool to shepard the message upwards through the graph
of protocol and session objects. In general, only one context
switch is required to shepard a message through the proto-
col graph, regardless of the number of intervening protocol
layers. The x-kerndl also supports other context switch op-
timizations that (1) alow user processes to transform into
kernel processes via system calls when sending message and
(2) alow kernel processes to transform into user processes
via upcalls when receiving messages [58].

414 The Conduit Framework

The Conduit provides the protocol family architecture, ses-
sion architecture, and application interface for the Choices
operating system [59]. Choiceswas developed to investigate
the suitability of object-oriented techniques for designing

Process Architecture

(1) LWR, (2) message-based

VM Remapping

incoming/outgoing

Event Management

@) rdlative, (2) linked list

Message Buffering

(2) uniform, (2) DAG-based

M uxing/Demuxing

(2) synchronous, (2) layered, (3) hashing, (4) single-item

Flow Control per-process

Table 4: x-kernd Profile

and implementing OS kernel and networking mechanisms.®
For example, the design of ZOOT (the Choices TCP/IP im-
plementation) uses object-oriented language constructs and
design methods such as inheritance, dynamic binding, and
delegation [60] to implement the TCP state machine in a
highly modular fashion. Together, Choices and the Conduit
provide a general-purpose transport system. Table 5 illus-
trates the transport system profile for the Choices Conduit.
Inthediscussion below, theterm* Conduit” referstotheover-
all transport system, whereas a “Condui t ” corresponds to
an abstract datatype used to construct and coordinatevarious
network protocols.

There are three mgor components in the Con-
duit: Conduits, Conduit Messages, and Condui t
Addr esses. A Condui t isabi-directional communica
tion abstraction, similar to a System V STREAM module.
It exports operations that allow Condui t s (1) to link to-
gether and (2) to exchange messages with adjacently linked
Condui ts. Conduit Messages are typed objects ex-
changed between adjacent Condui t s in a protocol graph.
Condui t Addr esses are utilized by Condui t s to de-
termine where to deliver Condui t Messages. All three
components are described in the following paragraphs:

e The Conduit Base Classand Subclasses: A Condui t

provides the basis for implementing many types of network
protocolsincluding connectionless (e.g., Ethernet, IR, ICMP,
and UDP), connection-oriented (e.g., TCP and TP4), and
request-response (e.g., RPC and NFS) protocols. It is rep-
resented as a C++ base class that provides two types of op-
erations that are inherited and/or redefined by derived sub-
classes. One type of operation composes protocol graphs
by connecting and disconnecting Condui t s instances. The
other type of operationinserts messages into the “top” and/or
“bottom” of aCondui t . Each Condui t hastwo ends for
processing data and control messages. the top end corre-
sponds to messages flowing down from an application; the
bottom end corresponds to messages flowing up from a net-
work interface.

The Conduit uses C++ mechanisms such as inheritance
and dynamic binding to express the commonality between
the Condui t base class and its various subclasses. These
subclasses represent specializations of abstract network pro-
tocol classes that provide Virtual Circuit and Datagram ser-
vices. For instance, the Vi rtual _C rcuit _Condui t

5Choices and the Conduit are written using C++. All the other surveyed
systemsare written in C.

17

and Dat agramConduit ae standard Conduit sub-
classes. Both subclasses export the “connect, discon-
nect, and message insertion” mechanisms inherited from
the Conduit base class. In addition, they aso ex-
tend the base class interface by supplying operations that
implement their particular mechanisms. For example, a
Virtual G rcuit _Conduit provides an interface for
managing end-to-end “dliding window” flow control. It also
specifies other properitiesassociated with virtua circuit pro-
tocols such as reliable, in-order, unduplicated data delivery.
These two subclasses are themselves used as base classes
for further specializations such as the TCP_Condui t and
Et her net _Condui t subclasses, respectively.

e Conduit Messages: All messages that flow between
Condui t s have a particular type. This type indicates
the contents of a message (e.g., its header and data for-
mat) and specifies the operations that may be performed on
the message. Messages are derived from a C++ base class
that provides the foundation for subsequent inherited sub-
classes. Different message subclasses are associated with
the different Condui t subclasses that represent different
network protocols. For example, the | P_.Message and
TCP_Message subclassescorrespondtothel P_Condui t s
and TCP_Condui t s, respectively. Conduit Message
subclasses may aso encapsulate other messages. For in-
stance, an |P message may contain a TCP, UDP, or ICMP
message in its data portion.

e Conduit Addresses: Conduit Addr esses indicate
where to deliver Conduit Messages. The three main
types of Condui t Addr esses are explicit, implicit, and
embedded. Explicit addresses identify entities that have a
“well-known” format (such as IP addresses). Implicit ad-
dresses, on the other hand, are“keys’ that identify particular
session control blocks associated with active network con-
nections. For example, a socket descriptor in BSD UNIX is
an implicit address that references a session control block.
Finally, an embedded addressisan explicit addressthat forms
part of a message header. For example, the fixed-length, 14
byte Ethernet headers are represented as embedded addresses
sincepassing aseparate explicit address object isneither time
nor space efficient.

The Conduitisimplemented in user-space and therel ation-
ship of processesto Condui t s andCondui t Messages
is a hybrid between message-based and task-based process
architectures. Messages are escorted through the Conduit

Process Architecture

(1) LWP, (2) hybrid (process-per-buffer)

VM Remapping none

Event Management ND

Message Buffering

(2) uniform, (2) list-based

M uxing/Demuxing

(1) ND, (2) layered, (3) ND, (4) ND

Flow Control ND

Table 5: Conduit Profile

protocol graph via “walker-processes,” which are similar to
the x-kernel “ process-per-message” mechanism. Depending
on certain conditions, awalker process escorts outgoing mes-
sages most of theway up or down aprotocol graph. However,
when a message crosses an address space boundary or must
be stored in a buffer due to flow control, it remains there
until it is moved to an adjacent Condui t . This movement
may result from either (1) a daemon process residing in the
Condui t that buffered the message or (2) another process
that knows how to retrieve the message from the flow control
buffer. In general, the number of processes required to escort
a message through the chain of Conduits corresponds to the
number of flow control buffers between the application and
network interface layer.

4.2 Transport System Comparisons

This section compares and contrasts the four surveyed trans-
port systems using the taxonomy dimensions and alterna
tives presented in Table 1. Section 4.2.1 focuses on the
kernel architecture dimensions described in Section 3.1 and
Section 4.2.2 focuses on the protocol family architecture di-
mensions described in Section 3.2.

4.2.1 Comparison of Kernel Architecture Dimensions

The Process Architecture Dimension: The surveyed
transport systems exhibit a range of process architectures.
The conventional SystemVV STREAM Simplementation uses
a variant of the task-based process architecture known as a
“process-per-module’ approach. However, as described in
Section 4.1.1, the standard System V. STREAMS approach
does not associate a heavy-weight OS process per modulein
an effort to reduce context switching overhead and minimize
kernel state information required for process management.

Thex-kernel and BSD UNIX utilizevariantsof amessage-
based process architecture. The x-kernel supports highly-
layered protocol graphsthat use a“ process-per-message’ ap-
proach that istuned to avoid excessive context switching and
IPC overhead. BSD UNIX uses a message-based approach
that behaves differently depending on whether messages are
flowing “up” or “down” through a protocol graph. For ex-
ample, BSD allows multiple processes into the kernel for
outgoing messages, but permits only one process to handle
incoming messages.

The Conduit uses a “ process-per-buffer” approach, which

18

isahybrid between“ process-per-message” and “ process-per-
module.” Each Condui t containing a flow control buffer
may be associated with a separate light-weight process.

The Virtual Memory Remapping Dimension: Recent
versions of x-kernel provide virtual memory remapping [45]
for transferring messages between application process and
the kernel. The Conduit, System V STREAMS and BSD
UNIX, on the other hand, do not generally provide this sup-
port.

The Event Management Dimension: BSD UNIX stores
pointersto subroutinesin a linked-list callout queue. These
preregistered subroutines are called when a timer expires.
System V, on the other hand, maintains a heap-based callout
table, rather than asorted list or array. The heap-based imple-
mentation outperforms the linked-list approach under heavy
loads [49]. The x-kernel uses timing wheels [48] instead of
callout listsor heaps.

4.2.2 Comparison of Protocol Family Architecture Di-
mensions

Compared with the other surveyed transport systems, the
x-kernel is generally more comprehensive in supplying the
interfaces and mechanisms for its protocol family architec-
turecomponents. For example, it providesuniforminterfaces
for operations that manage the protocol, session, and mes-
sage objects comprising its highly-layered protocol graphs.
In addition, it also specifies mechanisms for event manage-
ment and multiplexingand demultiplexingactivities. System
V STREAMS specifies interfaces for the primary STREAM
components, along with certain operations involving layer-
to-layer flow control. BSD UNIX and the Conduit, on the
other hand, do not systematicaly specify the session, de-
multiplexing, and flow control mechanisms in their protocol
family architecture.

The Message Management Dimension: Both System V
STREAM S messages and BSD mbufsuse alinear-list-based
approach. In contrast, the x-kernel uses a DAG-based ap-
proach that separatesmessagesinto * header stacks’ and “ data
graphs.” The x-kernel uses this more complex DAG-based
message manager to handle certain requirements of highly-
layered protocol graphs (such as minimizing the amount of
memory-to-memory copying between protocol layers).

The Multiplexing and Demultiplexing Dimension: The
four surveyed transport systems possess awiderange of mul-

tiplexing and demultiplexing strategies. The x-kernel pro-
vides the most systematic support for these operations. It
provides a map manager that uses a hash table mechanism
withasingle-item cache. Theother transport systemsprovide
less systematic and non-uniform mechanisms.

In particular, System V STREAMS and the Conduit do
not define a standard multiplexing and demultiplexing inter-
face. Moreover, for outgoing messages, the Conduitinvolves
an extra multiplexing operation compared to the x-kernel
scheme. In the x-kernel, a single operation transfers out-
going messages from a higher-layer session object down to
lower-layer session object. A Condui t, on the other hand,
requires two operationsto send a message: (1) it locates the
appropriate session connection descriptor associated with the
lower-level Condui t and (2) then passes the message down
to that associated Condui t .

The BSD UNIX multiplexing and demultiplexing mech-
anisms differ depending on which protocol component and
protocol family are involved. For instance, its IP imple-
mentation uses the 8-bit IP message type-of-service field to
index into an array containing 256 entries that correspond to
higher-layer protocol control structures. On the other hand,
its TCP implementation uses sequential search with a one-
item cache to demultiplex incoming messages to the appro-
priate connection session. Asdescribed in Section 3.2.2, this
implementation is inefficient when application data arriva
patterns do not form message-trains [55].

The Layer-to-Layer Flow Control Dimension: With the
exception of System V STREAMS, the surveyed transport
systems do not provide uniform layer-to-layer flow control
mechanisms. Each STREAM module contains high- and
low-watermarks that manage flow control between adjacent
modules. Downstream flow control operates from the “bot-
tom up.” If al STREAM modules on a Stream cooperate,
it is possible to control the amount and the rate of messages
by exerting “back-pressure” up astack of STREAM modules
to a user process. For example, if the network becomes too
congested to accept new messages (or if messages are being
sent by aprocess faster than they are transmitted), STREAM
driver queuesfill up first. If messages continueflowing from
upstream modul es, the first modul e above the driver that has
aser vi ce subroutinewill fill up next. This back-pressure
potentialy propagates al the way up to the STREAM head,
which then blocksthe user process.

In BSD UNIX, flow control occurs at severd locationsin
the protocol family architecture. The socket level flow con-
trol mechanism uses the high- and low-watermarks stored in
the socket data structure. If a process tries to send more
data than is allowed by a socket’s highwater mark, the BSD
kernel putsthe process to sleep. Unlike System V, however,
BSD UNIX has no standard mechanism for applying back-
pressure between protocol components such as TCP and P,
At the network interface layer, queues are used to buffer
messages between the network adapters and the lowest-level
protocol (e.g., IR, IDR, or CLNP). The queues have a max-
imum length that serves as a simple form of flow control.

19

Subsequent incoming messages are dropped if these queues
become full.

The x-kernd and the Conduit provide |l ess systematic flow
control support. The x-kernel uses a coarse-grained, per-
process flow control by discarding incoming messages if
thereare no light-wei ght processes avail ableto shepard them
up the protocol graph. The Conduit does not provide a stan-
dard mechanism to manage flow control between modules
in a given stack of Condui ts. Each Condui t passes a
message up or down to itsneighbor. If the neighbor isunable
to accept the message, the operation either blocks or returns
an error code (in which case the caller may either discard
the message or retain it for subsequent retransmission). This
approach allows each Condui t to determine whetheritisa
“message-discarding” entity or a“patiently-blocking” entity.

5 Summary

This paper examines the mgjor levels of abstraction in the
transport system architecture. A taxonomy of six key trans-
port system mechanisms is presented and used to compare
different design alternatives found in four existing commer-
cial and experimental operating systems. Our research group
at University of California, Irvineiscurrently using thistax-
onomy to guide the development of a highly modular trans-
port system development environment called called ADAP-
TIVE[61].

ADAPTIVE isanintegrated collection of communication-
rel ated C++ components[62] that may becombined viainher-
itance, templateinstantiation, and object composition. These
components help control for factors (such as concurrency
control schemes, protocol functionality, and application traf-
fic characteristics) that significantly affect transport system
performancein ashared memory, symmetric multi-processor
environment [54]. We are building ADAPTIVE to facilitate
experimentation with various strategiesfor developing trans-
port systemsthat operate efficiently across high-performance
networks.

Based upon our experience with transport systems, com-
bined with our survey of research literatureand existing sys-
tems, we view the following as important open research is-
sues pertinent to the devel opment of transport system archi-
tectures:

o Which transport system levels (e.g., application inter-
face, session architecture, protocol family architecture,
kernel architecture) incur the most communication per-
formance overhead?

e Which choices from among the taxonomy dimensions
and alternativesimprovetheoverall communication per-
formance? For example, which process architecturesre-
sultin the highest performance? Likewise, what combi-
nationsof application requirementsand network charac-
teristicsare most suitable for different transport system
profiles?

o How will the performance bottlenecks shift as the

boundary between hardware and software changes? For
instance, the high cost of message management oper-
ations such as fragmentation and reassembly may be
grestly reduced if they are performed in hardware, as
proposed for ATM.

Which transport system profiles are best suited for mul-
timedia applications running in high-performance net-
work environments? Moreover, what are the appro-
priate design strategies and implementation techniques
required to provide integrated support for multimedia
applications that run on genera-purpose workstation
operating systems?

Much additional empirical research is necessary to address
theseresearch questionsadequately. Wehopethispaper helps
to clarify essentia issues and relationships that arise when
designing high-performance transport system architectures.

References

(1]

(2]

(3]

[4]

(8]

(9]

[10]

[11]

[12]

[13]

J. Crowcroft, 1. Wakeman, Z. Wang, and D. Sirovica, “Is
Layering Harmful?,” IEEE Network Magazine, January 1992.

N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecturefor Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 6476, January
1991.

Z. Haas, “A Protocol Structure for High-Speed Communi-
cation Over Broadband ISDN,” |IEEE Network Magazine,
pp. 64—70, January 1991.

H. Kanakiaand D. R. Cheriton, “The VMP Network Adapter
Board (NAB): High-Performance Network Communication
for Multiprocessors,” in Proceedingsof the SGCOMM Sym-
posium on Communications Architectures and Protocols,
(Stanford, CA), pp. 175-187, ACM, Aug. 1988.

J. Jain, M. Schwartz, and T. Bashkow, “Transport Protocol
Processing at GBPS Rates,” in Proceedingsof the S GCOMM
Sp/n_T)osi um on Communications Architecturesand Protocols,
(Philadelphia, PA), pp. 188-199, ACM, Sept. 1990.

J. Sterbenz and G. Parulkar, “AXON: Application-Oriented
Lightweight Transport Protocol Design,” in International
Conferenceon Computersand Communications, (New Delhi,
India), Nov. 1990.

UNIX Software Operations, UNIX System V Release 4 Pro-
grammer’s Guide: STREAMS. Prentice Hall, 1990.

S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

J. M. Zweig, “The Conduit: a Communication Abstractionin
C++,” in Proceedings of the 2"* USENIX C++ Conference,
pp. 191-203, USENTIX Association, April 1990.

S.W.O'Malley and L. L. Peterson, “A Dynamic Network Ar-
chitecture,” ACM Transactionson Computer Systems, vol. 10,
pp. 110143, May 1992.

D. D. Clark and D. L. Tennenhouse, “ Architectural Consider-
ations for aNew Generation of Protocols,” in Proceedingsof
the SGCOMM %/UPOSi umon Communications Architectures
and Protocols, (Philadelphia, PA), pp. 200208, ACM, Sept.
1990.

D. L. Tennenhouse, “ L ayered Multiplexing Considered Harm-
ful,” in Proceedings of the 1°¢ International Workshop on
High-Speed Networks, May 1989.

D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “ Language Support for Flexible, Application-Tailored
Protocol Configuration,” in Proceedings of the 18°" Confer-

enceon Local Computer Networks, (Minneapolis, Minnesota),
pp. 369378, Sept. 1993.

20

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

SunM icro¥$ems, Network Interfaces Programmer’s Guide,
Chapter 6 (TLI Interface) ed., 1992.

M. S. Atkins, S. T. Chanson, and J. B. Robinson, “LNTP —
An Efficient Transport Protocol for Local Area Networks,”
in Proceedings of the Conference on Global Communications
(GLOBECOM), pp. 705-710, 1988.

D. R. Cheriton, “UIO: A Uniform I/O System Interface for
Distributed Systems,” ACM Transactions on Computer Sys-
tems, vol. 5, pp. 1246, Feb. 1987.

M. D. Ma?gio and D. W. Krumme, “A Flexible System Call
Interface for Interprocess Communication in a Distributed
Memory Multicomputer,” Operating SystemsReview, vol. 25,
pp. 4-21, April 1991.

V. Jacobson, R. Braden, and D. Borman, “ TCP Extensionsfor
High Performance,” Network Information Center RFC 1323,
pp. 1-37, Oct. 1992.

T. F. L. Portaand M. Schwartz, “ Architectures, Features, and
Implementation of High-Speed Transport Protocols,” |EEE
Network Magazine, pp. 14—22, May 1991.

W. Doeringer, D. Dykeman, M. Kaiserswerth, B. Meister,
H. Rudin, and R. Williamson, “A Survey of Light-Weight
Transport Protocols for High-Speed Networks,” |IEEE Trans-
gcticngs9 8n Communication, vol. 38, pp. 2025-2039, Novem-
er .

L. Svobodova, “Implementing OSI Systems,” |IEEE Journal
on Selected Areasin Communications, vol. SAC-7, pp. 1115~
1130, Sept. 1989.

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian,
and M. Young, “Mach: A New Kernel Foundation for UNIX
Development,” in Proceedings of the Summer 1986 USENIX
Technical Conferenceand Exhibition, June 1986.

E. C. Cooper, P. A. Steenkiste, R. D. Sansom, and B. D.
Zill, “Protocol Implementation on the Nectar Communication
Processor,” in Proceedings of the SGCOMM Symposium on
Communications Architectures and Protocols, (Philadelphia,
PA), pp. 135144, ACM, Sept. 1990.

A. Tevanian, R. Rashid, D. Golub, D. Black, E. Cooper, and
M. Young, “Mach Threadsand the Unix Kernel: TheBattlefor
Control,” in Proceedingsof the USENIX Summer Conference,
USENIX Association, August 1987.

D. Presotto, “Multiprocessor Streams for Plan 9,” in Pro-
ceedings of the United Kingdom UNIX User Group Summer
Proceedings, (London, England), Jan. 1993.

D. C. Feldmeier, “Multiplexing Issues in Communications
System Design,” in Proceedings of the SGCOMM Symposium
on Communications Architectures and Protocols, (Philadel-
phia, PA), pp. 209-219, ACM, Sept. 1990.

M. S. Atkins, “Experimentsin SR with Different Upcall Pro-
gram Structures,” ACM Transactions on Computer Systems,
vol. 6, pp. 365-392, November 1988.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
" eyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy, “Scheduler Activiation: Effective Kernel Support for
the User-Level Management of Parallelism,” ACM Transac-
tions on Computer Systems, pp. 53—79, February 1992.

S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan, “Pitfalls in Multithreading SVR4 STREAMS and other
Wei ?htless Processes,” in Proceedings of the Winter USENIX
Conference, (San Diego, CA), pp. 85-106, Jan. 1993.

C. M. Woodside and R. G. Franks, “ Alternative Software Ar-
chitectures for Parallel Protocol Execution with Synchronous
IPC,” IEEE/ACM Transactions on Networking, vol. 1, Apr.
1993.

D. E. Comer and D. L. Stevens, Internetworking with TCP/IP
\ol II: Design, Implementation, and Internals. Englewood
Cliffs, NJ: Prentice Hall, 1991.

T. Braun and M. Zitterbart, “Parallel Transport System De-
sign,” in Proceedings of the 4" IFIP_Conference on High
Performance Networking, (Belgium), IFIP, 1993.

[34]

(39]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M. Zitterbart, “High-Speed Transport Components,” IEEE
Network Magazine, pp. 54-63, January 1991.

T. L. Portaand M. Schwartz, “ Performance Analysis of MSP:
a Feature-Rich High-Speed Transport Protocol,” in Proceed-
ings of the Conferenceon Computer Communications (INFO-
COM), (San Francisco, California), IEEE, 1993.

D. Feldmeier and A. McAuley, “Reducing Ordering Con-
straints to Improve Performance,” in Proceedings of the
374 |FIP Workshop on Protocols for High-Speed Networks,
(Stockholm, Sweden), May 1992.

R. Vaswani and J. Zahorjan, “ Thelmplications of Cache Affin-
ity on Processor Scheduling for Multiprogrammed, Shared
Memory Multiprocessors,” in Proceedings of the 13" Sym-
posiumon Operating System Principles, (Pacific Grove, CA),
pp. 2640, ACM, Oct. 1991.

A. Garg, “Parallel STREAMS: a Multi-Process Implemen-
tation,” in Proceedings of the Winter USENIX Conference,
(Washington, D.C.), Jan. 1990.

S. McCanneand V. Jacobson, “ The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” in Proceedings
of theWinter USENIX Conference, (San Diego, CA), pp. 259—
270, Jan. 1993.

M. H. Nguyen and M. Schwartz, “ Reducing the Complexi-
ties of TCP for a High-Speed Networking Environment,” in
Proceedingsof the Conferenceon Computer Communications
(INFOCOM), (San Francisco, California), IEEE, 1993.

M. Goldberg, G. Neufeld, and M. Ito, “A Parallel Approach
to OSI Connection-Oriented Protocols,” in Proceedingsof the
374 |FIP Workshop on Protocols for High-Speed Networks,
(Stockholm, Sweden), May 1992.

Mats Bjorkman and Per Gunningberg, “Locking Strategiesin
Multiprocessor Implementations of Protocols,” in Proceed-
ings of the SGCOMM Symposium on Communications Ar-
(igggctures and Protocols, (San Francisco, California), ACM,

P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson,
“Network subsystem design,” IEEE Network (Special Issue
SJnI E{lgé%/stem Support for High Speed Networks), vol. 7,
uly :

J. C.Mogul and A. Borg, “ TheEffects of Context Switcheson

Cache Performance,” in Proceedings of the 4" International

Conference on Architectural Support for Programming Lan-
uagesand Operating Systems (ASPLOS), (Santa Clara, CA),
CM, Apr. 1991.

N. C. Hutchinson, S. Mishra, L. L. Peterson, and V. T. Thomas,
“Tools for Implementing Network Protocols,” SoftwarePrac-
tice and Experience, vol. 19, pp. 895-916, September 1989.

G. Watson, D. Banks, C. Calamvokis, C. Dalton, A. Edwards,
and J. Lumley,“ Afterburner,” IEEE Network Magazine,vol. 7,
July 1993.

R. W. Watson and S. A. Mamrak, “Gaining Efficiency in
Transport Services by Appropriate Design and Implemen-
tation Choices,” ACM Transactions on Computer Systems,
vol. 5, pp. 97-120, May 1987.

G. Varghese and T. Lauck, “Hashed and Hierarchical Timin
Wheels: Data Structures for the Efficient Implementation o
aTimer Facility,” in The Proceedingsof the 11" Symposium
on Operating System Principles, November 1987.

R. E. Barkley and T. P. Lee, “A Heap-Based Callout Imple-
mentation to Meet Real-Time Needs,” in Proceedings of the
USENIX Summer Conference, pp. 213-222, USENIX Associ-
ation, June 1988.

R. Caceres, P. Danzig, S. Jamin, and D. Mitzel, “ Character-
istics of Wide-Area TCP/IP Conversations,” in Proceedings
of the SGCOMM Symposium on Communications Architec-
turesand Protocols, (Zurich Switzerland), pp. 101-112, ACM,
Sept. 1991.

C. M. Woodsideand J. R. Montealegre, “ The Effect of Buffer-
ing Strategies on Protocol Execution Performance,” |IEEE
Ig%réwctionson Communications, vol. 37, pp. 545-554, June

21

[52]

(53]

[54]

[59]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

X. Zhang and A. Seneviratne, “An Efficient Implementation
of High-Speed Protocol without Data Copying,” in Proceed-
ings of the 15'" Conference on Local Computer Networks,
(Minneapolis, MN), pp. 443-450, |EEE, Oct. 1990.

M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for High-
Performance Communication Subsystems,” |IEEE Journal on
Selected Areasin Communication, vol. 11, pp. 507-519, May
1993.

D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

P. E. McKenney and K. F. Dove, “ Efficient Demultiplexing of
Incoming TCP Packets,” Tech. Rep. SON TR92-01, Sequent
Computer Systems, Inc., December 1991.

D. Ritchig, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

L. L. Peterson, N. Buchholz, and R. D. Schlichting, “ Preserv-
ing and Using Context Information in Interprocess Commu-
nication,” ACM Transactions on Computer Systems, vol. 7,
pp. 217-246, August 1989.

D. D. Clark, “The Structuring of Systems Using Upcalls,”
in Proceedings of the 10'" Symposium on Operating System
Principles, (Shark Is., WA), 1985.

R. Campbell, V. Russo, and G. Johnson, “ The Design of aMul-

tiprocessor Operating System,” in Proceedingsof the USENIX

g+ +1 gvégr kshop, pp. 109-126, USENIX Association, Novem-
er .

J. M. Zweig and R. Johnson, “Delegation in C++,” Journal
of Object-Oriented Programming, vol. 4, pp. 31-34, Novem-
ber/December 1991.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Jour nal of Concurrency: Prac-
tice and Experience, vol. 5, pp. 269-286, June 1993.

D. C. Schmidt and T. Suda, “ The ADAPTIVE Service eXecu-
tive: an Object-Oriented Architecturefor Configuring Concur-
rent Distributed Applications,” in Proceedingsof the 8" Inter-
national Working Conference on Upper Layer Protocols, Ar-
il;igt)zctur&, and Applications, (Barcelona, Spain), IFIP, June

