
Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 1

Enhancing Adaptivity
via Standard Dynamic
Scheduling Middleware
Christopher Gill, Louis Mgeta, Yuanfang
Zhang, and Stephen Torri1
Washington University, St. Louis, MO
{ cdgill, lmm1, yfzhang, storri} @cse.wustl.edu

Yamuna Krishnamurthy
 and Irfan Pyarali
OOMWorks, Metuchen, NJ
{ yamuna, irfan} @ oomworks.com

Douglas C. Schmidt
Vanderbilt University,
Nashville, TN
d.schmidt@vanderbilt.edu

Abstract This paper makes three contributions to research on QoS-enabled middleware for open distrib-

uted real-time embedded (DRE) systems. First, it describes the design and implementation of a
dynamic scheduling framework based on the OMG Real-Time CORBA 1.2 specification
(RTC1.2) that provides capabilities for (1) propagating QoS parameters and a locus of execu-
tion across endsystems via a distributable thread abstraction and (2) enforcing the scheduling
of multiple distributable threads dynamically using standard CORBA middleware. Second, it
examines the results of empirical studies that show how adaptive dynamic scheduling and man-
agement of distributable threads can be enforced efficiently in standard middleware for open
DRE systems. Third, it presents results from case studies of multiple adaptive middleware QoS
management technologies to monitor and control the quality, timeliness, and criticality of key
operations adaptively in a representative DRE avionics system.

Keywords: Real-time CORBA, adaptive systems, dynamic scheduling.

1 This work was supported in part by the DARPA PCES program, contract F33615-03-C-4111

1 Introduction
Emerging trends and challenges for DRE systems and
middleware. Developing distributed real-time and em-
bedded (DRE) systems whose quality of service (QoS)
can be assured even in the face of changes in available
resources or in applications’ QoS requirements is an
important and challenging R&D problem. QoS-enabled
middleware has been applied successfully to closed DRE
systems where the set of tasks that will run in the system
and their requirements for system resources are known in
advance. For example, middleware based on the Real-
time CORBA 1.0 (RTC1) standard [1] supports statically
scheduled DRE systems (such as avionics mission com-
puters and industrial process controllers) in which task
eligibility can be mapped to a fixed set of priorities.

For an important emerging class of open DRE systems
(such as adaptive audio/video streaming [2], collaborative

mission replanning [3], and robotics applications de-
signed for close interaction with their environments [4]),
however, it is often not possible to know the entire set of
application tasks that will run on the system, the loads
they will impose on system resources in response to a
dynamically changing environment, or the order in which
the tasks will execute. This dynamism can occur because
the number of combinations in which application tasks
can be mapped to system resources is too large to com-
pute efficiently or because task run-time behaviors are
simply too variable to predict accurately. In either case,
open DRE systems must be able to adapt dynamically to
changes in resource availability and QoS requirements.

Assuring effective QoS support in the face of dynamically
changing requirements and resources, while keeping
overhead within reasonable bounds, requires a new gen-
eration of middleware mechanisms. In particular, the
following are important limitations with applying RTC1

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 2

middleware capabilities to open DRE systems (e.g., by
manipulating task priorities dynamically at run-time):
• Limits on the number of priorities supported by com-

mon-off-the-shelf (COTS) real-time operating sys-
tems can reduce the granularity at which dynamic
variations in task eligibility can be enforced.

• Without middleware-mediated mechanisms for en-
forcing QoS, the application itself must provide pri-
ority manipulation mechanisms, which is tedious and
error-prone for DRE system developers.

• Without open, well-defined, and replaceable schedul-
ing mechanisms within the middleware itself, it is
hard to integrate middleware features closely for bet-
ter performance or to customize QoS enforcement
policies so they meet the needs of each application.

Solution approach
�� ��

 Adaptive DRE middleware via
dynamic scheduling. The OMG Real-Time CORBA 1.2
specification (RTC1.2) [5] addresses limitations with the
fixed-priority mechanisms specified in RTC1 by -
introducing two new concepts to Real-time CORBA: (1)
distributable threads that are used to map end-to-end QoS
requirements to distributed computations across the
endsystems they traverse and (2) a scheduling service
architecture that allows applications to choose which
mechanisms enforce task eligibility. To facilitate the
study of standards-based dynamic scheduling middleware,
we have implemented a RTC1.2 framework that enhances
on our prior work with The ACE ORB (TAO) [6] (a
widely-used open-source implementation of Real-time
CORBA 1.0 [1]) and its Real-time Scheduling Service
(which supports both static [7] and dynamic scheduling
[8]). This paper describes how we designed and opti-
mized the performance of our RTC1.2 Dynamic Schedul-
ing framework to address the following design challenges
for adaptive DRE systems:
• Defining a means to install pluggable schedulers that

support more adaptive scheduling policies and
mechanisms for a wide range of DRE systems,

• Creating an interface that allows customization of
interactions between an installed RTC1.2 dynamic
scheduler and an application,

• Portable and efficient mechanisms for distinguishing
between distributable vs. OS thread identities, and

• Safe, effective mechanisms for controlling distributed
concurrency, e.g., for canceling distributable threads.

The results of our efforts have been integrated with the
TAO open-source software release and are available from
deuce. doc. wust l . edu/ Downl oad. ht ml .

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes the RTC1.2 speci-
fication and explains the design of our RTC1.2 frame-
work, which has been integrated with the TAO open-
source Real-time CORBA object request broker (ORB);

Section 3 presents micro-benchmarks we conducted to
quantify the costs of dynamic scheduling of distributable
threads in our RTC1.2 framework and also presents two
broader case studies of applying key dynamic scheduling
mechanisms to DRE avionics applications; Section 4
compares our work with related research; and Section 5
offers concluding remarks.

2 A Dynamic Scheduling Framework
for Real-Time CORBA 1.2

This section outlines the RTC1.2 specification and de-
scribes how the RTC1.2 dynamic scheduling framework
we integrated with TAO helps with the development of
adaptive systems.

Object (Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

BSS-A

ESS-A

Client

Service Context

Scheduling
segment

A

Object
AdapterDynamic

Scheduler

BSS-B

ESS-B

Service Context

Scheduling
segment

B

1 Distributable thread

2

Current locus of execution3

B: MUF

A: EDFA: EDF

Segment scheduling policies4

55

Figure 1: TAO’s RTC1.2 Architecture

As shown in Figure 1, the key elements of TAO’s RTC1.2
framework are:
1. Distributable threads, which applications use to trav-

erse endsystems along paths that can be varied on-
the-fly based on ORB- or application-level decisions,

2. Scheduling segments, which map policy parameters
to distributable threads at specific points of execution
so that new policies can be applied and existing poli-
cies can be adapted at finer granularity,

3. Current execution locus, which is the head of an
active distributable thread that acts much like the
head of an application or kernel thread, i.e., it can
take alternative decision branches at run-time based
on the state of the application or supporting system
software,

4. Scheduling policies, which determine the eligibility
of each thread based on parameters of the scheduling
segment within which that thread is executing, and

5. Dynamic schedulers, which reconcile and adapt the
scheduling policies for all segments and threads to
determine which thread is active on each endsystem.

Distributable threads help enhance the adaptivity of DRE
systems by providing an effective abstraction for manag-
ing the lifetime of sequential or branching distributed

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 3

operations dynamically. The remainder of this section
explains the concepts of distributable threads and the
adaptive management of their real-time properties
through the pluggable scheduling framework specified by
RTC1.2. This section also outlines the design of these
concepts in TAO’s RTC1.2 framework implementation.
We describe scheduling points, which govern how and
when scheduling parameter values can be mapped to
distributable threads. We also discuss issues related to
distributable thread identity and examine the interfaces
and mechanisms needed to cancel distributable threads
safely.

2.1 Distributable Threads

DRE systems must manage key resources, such as CPU
cycles and network bandwidth, to ensure predictable
behavior along each end-to-end path. In RTC1-based
static DRE systems, end-to-end priorities can be acquired
from clients, propagated with invocations, and used by
servers to arbitrate access to endsystem resources. For
dynamic DRE systems, the fixed-priority propagation
model provided by RTC1 is insufficient because more
information than priority is required, e.g., they may need
deadline/execution time and the values of these parame-
ters may vary during system execution. A more sophisti-
cated abstraction is therefore needed to identify the most
eligible schedulable entity, and additional scheduling
parameters may need to be propagated with each entity so
it can be scheduled properly.

The RTC1.2 specification defines a programming model
abstraction called a distributable thread, which can span
multiple endsystems and is the primary schedulable entity
in RTC1.2-based DRE systems. Each distributable thread
in RTC1.2 is identified by a unique system wide identifier
called a Globally Unique Id (GUID) [10]. A distributable
thread may also have one or more execution scheduling
parameters, e.g., priority, deadline time-constraints, and
importance. These parameters are used by RTC1.2 sched-
ulers for resource arbitration, and also convey acceptable
end-to-end timeliness bounds for completing sequences of
operations in CORBA object instances that may reside on
multiple endsystems.

On each endsystem, a distributable thread is mapped onto
the execution of a local thread provided by the OS. At a
given instant, each distributable thread has only one exe-
cution point in the whole system, i.e., a distributable
thread does not execute simultaneously on multiple
endsystems it spans. Instead, it executes a code sequence
consisting of nested distributed and/or local operation
invocations, similar to how a local thread makes a series
of nested local operation invocations.

Below, we describe the key capabilities of distributable
threads in the RTC1.2 specification, explain how we

implement these capabilities in TAO, and identify their
relevance to adaptive DRE systems.

Scheduling segment. A distributable thread comprises
one or more scheduling segments, which is a code se-
quence whose execution is scheduled according to a set of
application-specified scheduling parameters, e.g., worst-
case execution time, deadline, and criticality of a real-
time operation is used by the Maximum Urgency First
(MUF) [4] scheduling strategy. These parameters can be
associated with a segment encompassing that operation on
a particular endsystem, e.g., as shown for segment B in
Figure 1. The code sequence that a scheduling segment
comprises can include remote and/or local operation
invocations. It is possible to adapt the values of pa-
rameters for the current scheduling policy within a given
scheduling segment, but to adapt the policy itself, a new
scheduling segment must be entered.

The Current interface. The RTSchedul i ng mod-
ule’s Cur r ent interface defines operations on schedul-
ing segments, including beginning scheduling segments
(begi n_schedul i ng_segment ()), updating the
values of their parameters (updat e_schedul i ng_
segment ()), and ending them (end_schedul i ng_
segment ()), as well as to create (spawn()) distribut-
able threads [9]. Each scheduling segment keeps a unique
instance of its Cur r ent object in local thread specific
storage (TSS) [11] on each endsystem along the path of
the distributable thread. Each nested scheduling segment
keeps a reference to the Cur r ent instance of its enclos-
ing scheduling segment.

Distributable thread location. Now that we have ex-
plained the terminology and interfaces for distributable
threads, we can illustrate how the pieces fit together. A
distributable thread may be entirely local to a host or it
may span multiple hosts by making remote invocations.
Figures 2 and 3 illustrate the different spans that are pos-
sible for distributable threads.

BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 - Way
Invocation

2 - Way
Invocation

DT1

BSS - C

ESS - C

DT2

BSS - D

ESS - B

BSS - E

ESS - E

DT3

Figure 2: Distributable Threads and Hosts They Span

In these figures, calls made by the application are shown
as solid dots, while calls made within the middleware (by
interceptors, which are used to install upcalls to other
services within mechanisms on the end-to-end method

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 4

invocation path [11]) are shown as shaded rectangles.

Host 2

BSS - A

ESS - A

1 - Way
Invocation

Host 3

DT3
DT4

Host 1

spawn ()DT1

DT2

Figure 3: Ways to Spawn a Distributable Thread

In Figure 2, DT1 makes a twoway invocation on an object
on a different host and also has a nested segment started
on Host 2 (BSS-B to ESS-B within BSS-A to ESS-A).
DT2 and DT3 are simple distributable threads that do not
traverse host boundaries. DT2 has a single scheduling
segment (BSS-C to ESS-C), while DT3 has a nested
scheduling segment (BSS-E to ESS-E within BSS-D to
ESS-D). In Figure 3, DT2 is created by the invocation of
the RTSchedul i ng: : Cur r ent : : spawn() opera-
tion within DT1, while DT4 is implicitly created on Host
2 to service a oneway invocation. DT4 is destroyed when
the upcall completes on Host 2.

2.2 Pluggable Scheduling

Different distributable threads in a DRE system contend
for shared resources, such as CPU cycles. To support the
end-to-end QoS demands of open DRE systems, it is
imperative that such contention be resolved predictably –
yet the conditions under which that occurs may vary sig-
nificantly at run-time. This tension between dynamic
environments and predictable resource management ne-
cessitates scheduling and dispatching mechanisms for
these entities that are (1) based on the real-time require-
ments of each individual system, and (2) sufficiently
flexible to be applied adaptively in the face of varying
application requirements and run-time conditions. The
pluggable scheduling mechanisms in RTC1.2 help make
DRE systems more adaptive since different scheduling
strategies can be integrated corresponding to different
application use cases and needs. In the RTC1.2 specifica-
tion, a pluggable scheduling policy decides the sequence
in which the distributable threads should be given access
to endsystem resources and the dispatching mechanism
grants the resources according to the sequence decided by
the scheduling policy.

Various scheduling disciplines exist that require different
scheduling parameters, such as MLF [4], EDF [12], MUF
[4], or RMS+MLF [13]. One or more of these scheduling
disciplines (or any other discipline the system developer
chooses) may be used by an open DRE system to fulfill

its scheduling requirements. Supporting this flexibility
requires a mechanism by which different dynamic sched-
ulers (each implementing one or more scheduling dis-
ciplines) can be plugged into an RTC1.2 implementation.

The RTC1.2 specification provides an IDL interface,
RTSchedul i ng: : Schedul er , that has the semantics
of an abstract class from which specific dynamic sched-
uler implementations can be derived. In RTC1.2, the
dynamic scheduler is installed in the ORB and can be
queried by passing the string “ RTSchedul er ” to the
standard ORB: : r esol ve_i ni t i al _r ef er ences ()
operation. The RTSchedul i ng: : Manager interface
allows the application to install custom dynamic schedul-
ers and obtain a reference to the one currently installed.
The RTSchedul er _Manager object can be obtained
by passing the string “ RTSchedul er _Manager ” to
the ORB: r esol ve_i ni t i al _r ef er ences() op-
eration. The application then interacts with the installed
RTC1.2 dynamic scheduler using operations defined in
the RTSchedul i ng: : Schedul er interface described
in Section 2.3.

2.3 Scheduling Points

To schedule distributable threads in a DRE system, an
application and ORB interact with the RTC1.2 dynamic
scheduler at well-defined points shown in Figure 4.

Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

in args

out args + return value

Operation ()

BSS or Spawn

ESS

USS

Client

Service Context

1
2

3

4

1. BSS - RTScheduling::Current::begin_scheduling_segment() or
 RTScheduling::Current::spawn()
2. USS - RTScheduling::Current::update_scheduling_segment()
3. ESS - RTScheduling::Current::end_scheduling_segment()
4. send_request() interceptor call
5. receive_request() interceptor call
6. send_reply() interceptor call
7. receive_reply() interceptor call

7

5

6 Object
Adapter

Figure 4: RTC1.2 Scheduling Points

These points can be defined a priori in more static sys-
tems, while in adaptive systems, the traversal of these
points can be placed under adaptive control by the distri-
butable threads, as described in Section 2.1. These
scheduling points allow an application and ORB to pro-
vide the RTC1.2 dynamic scheduler up-to-the-instant
information about the competing tasks in the system, so it
can make scheduling decisions in a consistent, pre-
dictable, and adaptive manner. Scheduling points 1-3 in
Figure 4 are points where an application interacts with the

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 5

RTC1.2 dynamic scheduler. The key application-level
scheduling points and their characteristics are described
below.

New distributable threads and segments. When a new
scheduling segment or new distributable thread is created,
the RTC1.2 dynamic scheduler must be informed so that
it can schedule the new segment. The RTC1.2 dynamic
scheduler schedules the new scheduling segment based on
its parameters and those of the active scheduling seg-
ments for other distributable threads in the system. This
occurs whenever code outside a distributable thread calls
begi n_new_schedul i ng_segment () to create a
new distributable thread, or when code within a distribut-
able thread calls begi n_nest ed_schedul i ng_
segment () to create a nested scheduling segment.

Changes to scheduling segment parameters. When
Cur r ent : : updat e_schedul i ng_segment () is
invoked by a distributable thread to adapt its scheduling
parameters, it updates scheduling parameters of the corre-
sponding scheduling segment by calling Schedul er : :
updat e_schedul i ng_segment () .

Termination of a scheduling segment or distributable
thread. The RTC1.2 dynamic scheduler should be called
when Cur r ent : : end_schedul i ng_segment () is
invoked by a distributable thread to end a scheduling seg-
ment or when a distributable thread is cancelled, so it can
reschedule the system accordingly. Hence, the Cur r ent
: : end_schedul i ng_segment () operation invokes
the end_schedul i ng_segment () operation on the
RTC1.2 dynamic scheduler to indicate when the outer-
most scheduling segment is terminated. The dynamic
scheduler then reverts the thread to its original scheduling
parameters. If a nested scheduling segment is terminated,
the dynamic scheduler will invoke the Schedul er : :
end_nest ed_schedul i ng_segment () operation.
The RTC1.2 dynamic scheduler then ends the scheduling
segment and resets the distributable thread to the parame-
ters of the enclosing scheduling segment scope.

A distributable thread can also be terminated by calling
the cancel () operation on the distributable thread.
When this call is made, Schedul er : : cancel () is
called automatically by the RTC1.2 framework, which al-
lows the application to inform the RTC1.2 dynamic
scheduler that a distributable thread has been cancelled.

Scheduling points 4-7 in Figure 4 are points where an
ORB interacts with the RTC1.2 dynamic scheduler, i.e.,
when remote invocations are made between different
hosts. Collocated invocations occur when the client and
server reside in the same process. In collocated twoway
invocations, the thread making the request also services
the request. Unless a scheduling segment begins or ends
at that point, therefore, the distributable thread need not

be rescheduled by the RTC1.2 dynamic scheduler.

The ORB interacts with the RTC1.2 dynamic scheduler at
points where the remote operation invocations are sent
and received. Client- and server-side interceptors are
therefore installed to allow interception requests as they
are sent and received. These interceptors are required to
(1) intercept where a new distributable thread is spawned
in oneway operation invocations and create a new GUID
for that thread on the server, (2) populate the service con-
texts, sent with the invocation with the GUID and re-
quired scheduling parameters of the distributable thread,
(3) recreate distributable threads on the server, (4) per-
form cleanup operations for the distributable thread on
the server when replies are sent back to a client for
twoway operations, and (5) perform cleanup operations
on the client when the replies from twoway operations are
received. These interception points interact with the
RTC1.2 dynamic scheduler so it can make appropriate
scheduling decisions. The key RTC1.2 ORB-level sched-
uling points and their characteristics are described below.

Send request. When a remote operation invocation is
made, the RTC1.2 dynamic scheduler must be informed
so it can (1) populate the service context of the request to
embed the appropriate scheduling parameters of the
distributable thread and (2) potentially re-map the local
thread associated with the distributable thread to service
another distributable thread. As discussed in Section 2.4,
when the distributable thread returns to that same ORB, it
may be mapped to a different local thread than the one
with which it was associated previously. The client
request interceptor’s send_r equest () operation is
invoked automatically just before a request is sent, which
in turn invokes Schedul er : : send_r equest () with
the scheduling parameters of the distributable thread that
is making the request. The scheduling information in the
service context of the invocation enables the RTC1.2
dynamic scheduler on the remote host to schedule the
incoming request appropriately.

Receive request. When a request is received, the server
request interceptor’s r ecei ve_r equest () operation
is invoked automatically by the RTC1.2 framework
before the upcall to the servant is made, which in turn
calls Schedul er : : r ecei ve_r equest () , passing it
the received service context that contains the GUID and
scheduling parameters for the corresponding distributable
thread. The RTC1.2 dynamic scheduler is responsible for
unmarshaling the scheduling information in the service
context that is received. The RTC1.2 dynamic scheduler
uses this information to schedule the thread servicing the
request and the ORB requires it to reconstruct a
RTSchedul i ng: : Cur r ent , and hence a distributable
thread, on the server.

Send reply. When a distributable thread returns via a

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 6

twoway reply to a host from which it migrated, the
RTC1.2 framework calls the send_r epl y() operation
on the server request interceptor just before the reply is
sent. This operation in turn calls the Schedul er : :
send_r epl y() operation on the server-side RTC1.2
dynamic scheduler so it can perform any scheduling of
the thread making the upcall as required by the schedul-
ing discipline used so the next eligible distributable
thread in the system is executed.

Receive reply. Distributable threads migrate across hosts
via twoway calls. The distributable thread returns to the
previous host, from where it migrated, through the reply
of the twoway request. When the reply is received, the
RTC1.2 framework calls the client request interceptor’s
r ecei ve_r epl y() operation, which in turn invokes
Schedul er : : r ecei ve_r epl y() on the client-side
RTC1.2 dynamic scheduler to perform any scheduling
related decisions required by the scheduling discipline.

2.4 RTC1.2 Implementation Challenges

To manage the behavior of distributable threads correctly,
an RTC1.2 framework must resolve a number of design
challenges, including (1) transferring ownership of stor-
age, locks and other reserved system resources between
local threads, (2) switching execution between distribut-
able threads efficiently on an endsystem when one be-
comes more eligible than the other previously executing
one, (3) dynamically scheduling and canceling non-criti-
cal operations when an endsystem is overloaded, and (4)
adjusting operation invocation rates adaptively by coordi-
nating multiple resource management services to avoid
overload and maximize application benefit. We now
summarize how TAO’s RTC1.2 framework addresses
these challenges. Section 3 then presents benchmarks and
case studies that evaluate our solutions.

Distributable vs. OS thread identity. A key design issue
with the RTC1.2 specification is that a distributable
thread may be mapped to several different OS threads on
each endsystem over its lifetime. Figure 5 illustrates how
a distributable thread can use thread-specific storage
(TSS), lock endsystem resources recursively so that they
can be re-acquired later by that same distributable thread,
or perform other operations that are sensitive to the iden-
tity of the distributable thread performing them. In this
figure distributable thread DT1 (mapped to OS thread 1)
writes data into TSS on Host 1 and then migrates to Host
2. Before DT1 migrates back to Host 1, DT2 migrates
from Host 2 to Host 1. For efficiency, flexible con-
currency strategies, such as thread pools [15], may map
distributable threads to whatever local threads are avail-
able. For example, Figure 5 shows DT2 mapped to OS
thread 1 and when DT1 migrates back to Host 1 it is
mapped to OS thread 2.

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

Figure 5: TSS with Distributable Threads

Problems can arise when DT1 wants to obtain the infor-
mation it previously stored in TSS. If OS-level TSS was
used, OS thread 2 cannot access the TSS for OS thread 1,
so DT1’s call to t ss_r ead() in Figure 5 will fail.
Moreover, OS-level TSS does not offer a way to substi-
tute the OS thread identity used for a TSS call, even tem-
porarily. To resolve these problems, a notion of distri-
butable thread identity is needed that is separate from the
identities of OS threads. Likewise, mechanisms are
needed that use distributable thread GUIDs rather than
OS thread IDs, resulting in an emulation of OS mecha-
nisms in middleware that can incur additional overhead,
which we quantify in Section 3.1.

Efficient and portable distributable thread dispatch-
ing. Two competing design forces – efficiency and port-
ability – impact the decision of which dispatching mecha-
nisms are the most suitable for distributable threads.
Dispatching using OS thread priorities can offer low
overhead for each individual context switch between
threads. If a large number of thread schedule reordering
decisions must be made, however, the OS thread priority
approach may incur more calls from user space to the
kernel (e.g., to manipulate thread priorities) and result in
more context switches overall. Conversely, middleware-
based reordering of distributable threads (e.g., in dis-
patching queues using condition variables to signal execu-
tion of a thread) may reduce the number of expensive
calls from user space to the kernel, but may not offer as
fine-grained control over dispatching as the kernel. Since
some operating systems limit the number of thread priori-
ties that can be assigned, middleware-based dispatching
can also be more portable, especially for systems with
very fine-grained adaptation requirements [20]. We
compare the relative costs of middleware and OS dis-
patching approaches in Section 3.1.

Cancellation of operations and distributable threads.
In addition to the issue of canceling entire distributable
threads [9], the issue of canceling (and then possibly
retrying) individual operations performed by distributable
threads is also essential to consider in adaptive systems
using dynamic scheduling techniques. For example, if an

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 7

individual operation in an end-to-end invocation chain
will miss an interim local deadline on a particular endsys-
tem, then dynamic schedulers in the RTC1.2 framework
must be able to decide whether to cancel (and possibly
retry) the operation or to allow it to execute anyway. If
the operation is cancelled and retried, the distributable
thread may miss its end-to-end deadline, but can free up
the CPU so that other distributable threads may still meet
their deadlines. We present results of our empirical stud-
ies of this issue for an avionics application in Section 3.2.

Efficient adaptive rescheduling of operation rates. In
addition to mechanisms that support cancellation of indi-
vidual distributable thread operations, adaptation of pa-
rameters (such as the invocation rate of each distributable
thread) can increase a DRE system’s ability to adapt to
changing application QoS requirements or resource avail-
ability. This adaptivity is especially important in DRE
systems using multiple layers of QoS management, where
dynamic schedulers in the RTC1.2 framework can give
higher QoS management layers a wider range of options
for manipulating scheduling behavior at run-time. Sec-
tion 3.3 describes such a multi-layer QoS management
architecture and present results of studies of the interac-
tions between dynamic schedulers and QoS managers.

3 Empirical Evaluation of RTC1.2
Dynamic Scheduling Issues in TAO

The studies in this section quantify the overhead of
TAO’s RTC1.2 dynamic scheduling framework and the
effectiveness of key dynamic scheduling mechanisms. We
first present micro-benchmarks of our RTC1.2 implemen-
tation described in Section 2. We also describe two case
studies that apply our dynamic scheduling middleware in
the context of real-time avionics computing systems run-
ning on production computing, communication, and avi-
onics hardware. The first case study examines the effects
of applying cancellation mechanisms to non-critical real-
time operations and the second case study examines the
performance of adaptive operation rate re-scheduling in a
multi-layered resource management architecture for real-
time image transfer.

3.1 Micro-benchmark Results

We conducted two micro-benchmarks to asses the per-
formance of our RTC1.2 framework for different classes
of DRE systems. These studies examined two primary
concerns: the overhead of thread ID management and the
responsiveness of distributable thread scheduling.

Overhead of thread ID management. Section 2.4 de-
scribes the challenges associated with emulating distri-
butable thread identity via thread-specific storage (TSS)
in middleware, rather than using OS-level TSS support.

To quantify the additional overhead of TSS support in
middleware, we conducted several experiments to com-
pare and contrast the cost of creating TSS keys, and writ-
ing and reading TSS data on a single endsystem.

The experiments were conducted on a single-CPU 2.8
GHz Pentium 4 machine with 512KB cache and 512Mb
RAM, running Red Hat Linux 9.0 (2.4.18 Kernel) with
the KURT-Linux patches and using ACE version 5.3.2.
The experiments were run as root, in the real-time sched-
uling class, and the experimental data were collected
using the ACE high resolution timer. Experiments to
assess the cost of TSS key creation were run by iteratively
creating 500 different keys and measuring the time it took
to create each one. The experiment to assess the cost of
TSS write and read operations repeatedly wrote and then
read from a storage location associated with one TSS key.

 slope (nsec/key) y-intercept (nsec)

Emulated 2.53 2438

Native OS 1.61 815

Table 3: Cost of OS vs. Emulated TSS Key Creation

Table 3 summarizes the cost of creating the TSS keys,
which our results showed was a linear function of the
number of keys previously created. The key creation cost
in middleware is higher than for creating TSS keys in the
OS. Moreover, the slope at which the cost of key creation
in middleware increased with each additional key was
higher than the slope at which the cost of each additional
key increased with OS-level TSS support. Similarly,
Table 4 summarizes our results for read and write opera-
tions, which showed that the costs of t hese operations
in middleware TSS emulation were again higher than in
OS-level TSS, but did not increase with additional calls.

 read (nsec)
mean/min/max

write (nsec)
mean/min/max

Emulated 686.2 / 609 / 1203 1292.4 / 1203 / 1893

Native OS 70.8 / 68 / 101 77.6 / 71 / 130

Table 4: Cost of OS vs. Emulated TSS Read/Write Operations

Dynamic scheduling performance. To examine the
ability of different scheduling mechanisms to respond
adaptively to changes in parameters like task importance,
we plugged two different implementations of the RTC1.2
Schedul er interface – a Thread Priority scheduler and
a Most Important First scheduler – into the TAO ORB to
test the behavior of its RTC1.2 dynamic scheduling
framework with different scheduling strategies. Both
implementations enforce a scheduling policy that priori-
tizes distributable threads according to their importance.

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 8

The OS Thread Priority (TP) Scheduler is a RTC1.2
implementation that schedules the distributable threads by
mapping each one’s dynamic importance to native OS
priorities. The onus of dispatching the distributable
threads is thus delegated to the OS-level thread scheduler,
according to the native OS priorities assigned to the local
threads to which the distributable threads are mapped.
Conversely, the Most Important First (MIF) Scheduler
uses a ready queue that stores distributable threads in
order of their importance, with the most important distri-
butable thread that is ready for execution at the head of
the queue. The local OS thread to which each distribut-
able thread in the queue is mapped then waits on a condi-
tion variable. When a distributable thread reaches the
head of the queue (i.e., is the next to be executed), the
MIF scheduler awakens the corresponding local thread by
signaling the condition variable on which it is waiting.

The experimental configuration we used to examine both
the TP and MIF schedulers is identical. The test consisted
of a set of local and distributed (spanning two hosts)
distributable threads. The hosts were both running
RedHat Linux 7.1 in the real-time scheduling class. The
local distributable threads consisted of threads performing
CPU bound work for a given execution time. The distrib-
uted distributable threads (1) performed local CPU
bound work on the local host, (2) made a remote invoca-
tion performing CPU bound work on the remote host for a
given execution time, and (3) came back to the local host
to perform the remaining local CPU bound work.

Figure 6 shows how distributable threads are scheduled
dynamically by the MIF scheduler (a nearly identical plot
was seen for the TP scheduler) as they enter and leave the
system across multiple hosts by the TP Scheduler and the
MIF Scheduler respectively. The start times of the distri-
butable threads are offset from T=0 by less than 1 sec,
which is the time taken to initialize the experiments and
start the distributable threads. On host 1, DT1 and DT2
start at time T= 0 and DT3 starts at T=12. Since DT1 is
of higher importance than DT2 it is scheduled to run first.
On host 2, DT4 starts at T=0 and is scheduled for execu-
tion as DT5 is not ready to run till T=9.

After executing for 3 secs DT1 makes a twoway operation
invocation on host 2 and waits for a reply. DT4 is sus-
pended to allow DT1 to execute on host 2 as DT1 is of
higher importance. When DT1 is executing on host 2 the
respective RTC1.2 dynamic scheduler on host 1 continues
to schedule DT2 on host 1 as it has the highest impor-
tance on host1. DT1 completes execution on host 2 after
T=3 and returns to host 1 and resumes execution, for
T=3, after pre-empting DT2. DT4 resumes on host 2.
DT1 completes its execution cycle of T=9 on host 1.
Hence, DT2 is scheduled on host 1 for the next 3 secs. On
host 2 DT5 enters the system at T=9. DT5 pre-empts DT4

as it is of higher importance and executes for 3 secs.

Figure 6: MIF Scheduler Dispatching Graph

At T=12 DT2 has completed 6 secs of local execution
and makes a twoway invocation to host 2. DT3 enters the
system at T=12 and is scheduled for execution for 3secs.
On host 2, DT5 completes its cycle of execution and DT4
is scheduled. DT2 does not get to execute immediately on
host 2 as DT5 is of higher importance. After DT4 com-
pletes execution on host 2, DT2 is scheduled on host 2 for
the next 3 secs. DT3 continues execution on host 1. DT2
completes execution on host 2 and returns to host 1. DT3
completes its cycle of execution and DT2 is scheduled till
its cycle of local execution is complete. Both the TP and
MIF schedulers use the same scheduling policy based on
the importance of the distributable threads. The graphs
are therefore nearly identical, with one important distinc-
tion: in the very last scheduling decision on Host 1 (which
switched from DT3 back to DT2), a larger delay occurred
in the MIF scheduler for that switch, as reflected by the
slope of the line in the graph at T==18 seconds which in
the TP scheduler (and in all other transitions in both
schedulers) was essentially vertical on that time scale.

The experimental results of the TP and MIF schedulers
show that dynamic scheduling can be achieved with
TAO’s RTC1.2 framework when distributable threads
migrate from endsystem to endsystem dynamically. Since
both the TP and MIF schedulers schedule the distribut-
able threads based on their importance, both graphs are
nearly identical. The one small but important difference is
in the times at which the threads are suspended and re-
sumed, due to the context switch time for the MIF sched-
uler (which is at the application level) compared to the TP
scheduler (which is at the OS level). These results vali-
date our hypothesis that dynamic schedulers implement-
ing different scheduling disciplines and even using differ-
ent scheduling mechanisms can be plugged into TAO’s
RTC1.2 framework to schedule the distributable threads
in the system according to a variety of requirements,

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 9

while maintaining reasonable efficiency.

3.2 Case Study 1
�� ��

 Effects of Cancellation of
non-Critical Operations

Overview and configuration. Many complex DRE sys-
tems perform a mixture of critical and non-critical real-
time operations, for which it is desirable to maximize the
ability of non-critical operations to meet their deadlines,
while ensuring that all critical operations also meet their
deadlines. When the CPU is overloaded (which can hap-
pen all too readily in open systems in dynamic operating
environments), canceling some operations so that others
are more likely to meet their deadlines is an important
strategy for ensuring best use of CPU resources. In our
first case study, we used an Operational Flight Program
(OFP) system architecture based upon commercial hard-
ware, software, standards, and practices that supports
reuse of application components across multiple client
platforms. The OFP is primarily concerned with inte-
grating sensors and actuators throughout the aircraft with
the cockpit information displays and controls used by the
pilot and other aircraft personnel.

The system architecture for our first case study included
an OFP consisting of approximately 70 operations, the
Boeing Bold Stroke avionics domain-specific middleware
layer [16] built upon The ACE ORB (TAO) [6], the TAO
Reconfigurable Scheduling Service [7,8], and the TAO
Real-Time Event Service [17], configured for various
scheduling strategies described in Sections 2 and 3. This
middleware isolates applications from the underlying
hardware and OS, enabling hardware or OS advances to
be integrated more easily with the avionics application.

We conducted measurements of two key areas of resource
management: cancellation of non-critical operations that
are at risk of missing their deadlines, and protecting criti-
cal operations. The analysis below features a comparison
of two canonical scheduling strategies, the hybrid
static/dynamic Maximum Urgency First (MUF) [4] strat-
egy, which assigns operations to strict priority lanes ac-
cording to their criticality and then schedules them dy-
namically within each lane according to laxity, and the
static Rate Monotonic Scheduling (RMS) [12] strategy,
which assigns operations to priority lanes according to
their rates of invocation, and schedules each lane in FIFO
order. Measurements were made on 200 MHz Power PC
Single Board Computers running VxWorks 5.3.

Operation cancellation. Figure 7 shows the effects of
canceling non-critical operations in the MUF hybrid
static/dynamic scheduling strategy in conditions of CPU
overload.

Figure 7: Effects of non-Critical Operation Cancellation

Operation cancellation can potentially help reduce the
amount of wasted work performed in operations that miss
their deadlines. This wasted time increases the amount of
unusable overhead. We observed that while the MUF
strategy with operation cancellation was more effective in
limiting the number of operations that were dispatched
and then missed their deadlines, the number of operations
that made their deadlines in each case was comparable.
We attribute this observation to the short execution times
of several of the non-critical operations. In fact, the varia-
tion with cancellation had slightly lower numbers of non-
critical operations that were successfully dispatched, as
operation cancellation is necessarily pessimistic.

Protecting critical operations. We also compared the ef-
fects of non-critical operation cancellation on critical and
non-critical operations under overload in the hybrid
static/dynamic MUF and static RMS scheduling strate-
gies. Figure 8 shows the number of deadlines made and
missed for each strategy.

Figure 8: Effects of Cancellation under Overload Conditions

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 10

With no operation cancellation, MUF met all of its dead-
lines, while RMS missed between 2 and 6 critical opera-
tions per sample. Moreover, MUF successfully dis-
patched additional non-critical operations. We investi-
gated whether adding operation cancellation might reduce
the number of missed deadlines for critical operations
with RMS, by reducing the amount of wasted work. It
appears, however, that the overhead of operation cancel-
lation actually makes matters worse, with between 6 and 7
misses per sample, which we interpret to mean that there
were few opportunities for effective non-critical operation
cancellation in RMS under the experimental conditions.

Case study analysis. The results from our first case study
offer the following insights about the use of adaptive
middleware to support DRE systems more effectively.
First, operation cancellation can be an effective way to
shed tasks that cannot meet their deadlines during re-
source overload. Second, these results indicate that hybrid
static/dynamic scheduling strategies are more likely to
benefit from operation cancellation than purely static ones
since (1) hybrid static-dynamic scheduling strategies
prioritize critical tasks as a whole over non-critical ones
and (2) the availability of the CPU to non-critical tasks is
more variable and more sparse so that more non-critical
tasks are likely potential candidates for cancellation.
Moreover, because operation cancellation is necessarily
pessimistic, it is essential to avoid overestimating the risk
of operations missing their deadlines, which can result in
overly aggressive cancellation degrading – rather than
improving – overall system performance. As usual, the
more accurate the information that the cancellation
mechanism has about deadline failure risks, the more
accurate its cancellation decisions and the better its effect
on overall system performance.

3.3 Case Study 2
�� ��

 Adaptive Scheduling in
Multi-level Resource Management

Overview and configuration. Our second case study
examines the performance of adaptive rescheduling of
operation rates within the context of multi-layered re-
source management [20]. We have applied the layered
resource management architecture shown in Figure 9 to
provide an open systems “bridge” between legacy on-
board embedded avionics systems and off-board informa-
tion sources and systems. The foundation of this bridge is
the interaction of two Real-time CORBA [1] ORBs (TAO
and ORBExpress) using a pluggable protocol to commu-
nicate over a very low (and variable) bandwidth Link-16
data network. Higher-level middleware technologies then
manage key resources and ensure the timely exchange and
processing of mission critical information. In combina-
tion, these techniques support browser-like connectivity
between server and client nodes, with the added assurance
of real-time performance in a resource-constrained and

dynamic environment.

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Figure 9: Multi-Level Resource Management Model

System resource management model. When a client
operator requests an image, that request is sent from the
browser application to an application delegate [20],
which then sends a series of requests for individual tiles
via TAO over a variable low-bandwidth Link-16 connec-
tion to the server. The delegate initially sends a burst of
requests to fill the server request queue; it then sends a
new request each time a tile is received. For each request,
the delegate sends the tile’s desired compression ratio,
determined by the progress of the overall image download
when the request is made.

On the server, an ORBExpress/RT (www. oi s. com) Ada
ORB receives each request from the Link-16 connection,
and from there each tile goes into a queue of pending tile
requests. A collaboration server pulls each request from
that queue, fetches the tile from the server’s virtual folder
containing the image, and compresses the tile at the ratio
specified in the request. The collaboration server then
sends the compressed tile back through ORBExpress and
across Link-16 to the client.

Server-side environmental simulation services emulate
additional workloads that would be seen on the command
and control (C2) server under realistic operating con-
ditions. Back on the client, each compressed tile is re-
ceived from Link-16 by TAO and delivered to a servant
that places the tile in a queue where it waits to be proc-
essed. The tile is removed from the queue, decompressed,
and then delivered by client-side operations to Image
Presentation Module (IPM) hardware which renders the
tile on the cockpit display. The decompression and IPM
delivery operations are dispatched by a TAO Event Ser-
vice [17] at rates selected in concert by the RT-ARM [18]
and the TAO Reconfigurable Scheduler [7,8].

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 11

Schedule re-computation latency. We measured sched-
ule recomputation overhead resulting from priority and
rate reassignment by the TAO Reconfigurable Scheduler.
Figure 10 plots schedule recomputations while the system
is performing adaptation of both image tile compression
and decompression and IPM operation rates, at deadlines
for downloading the entire image of 48, 42, and 38 sec-
onds. The key insight from these results is that the num-
ber and duration of re-scheduling computations is both
(1) reduced overall compared to our earlier results [19]
and (2) proportional to the degree of rate adaptation that
is useful and necessary for each deadline.

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

number of re-scheduling computations performed

co
m

p
u

ta
tio

n
la

te
n

cy
 (

us
ec

)

QuO+RTARM 48 QuO+RTARM 42 QuO+RTARM 38

Figure 10: Adaptive Schedule Computation Latency

The main feature of interest in Figure 10 is the downward
settling of schedule computation times, as ranges of avail-
able rates are narrowed toward a steady-state solution and
the input set over which the scheduler performs its com-
putation is thus reduced. We also observed a phase tran-
sition in the number of re-computations between the in-
feasible and barely feasible deadlines. If we arrange trials
in descending order according to the number of re-com-
putations in each, we get 42, 46, 48, 50, 52, 54, and then
58 seconds, and then finally 38 second and 1 second
deadlines showed the same minimal number of computa-
tions. The duration of the experiment for the 42 second
deadline was comparable to that for other deadlines.

Case study analysis. This case study demonstrates that
adaptive rescheduling techniques can be applied to adjust
the rates of operation invocation at run-time in response
to dynamically varying environments. The convergence
of the scheduling behavior toward lower latencies and
smaller input sets is a good example of desirable adapta-
tion performance in open DRE systems.

4 Related Work
The Quality Objects (QuO) distributed object middleware
is developed at BBN Technologies [20]. QuO is based on
CORBA and provides (1) run-time performance tuning
and configuration and (2) feedback based on a control

loop in which client applications and server objects re-
quest levels of service and are notified of changes in
service. We have integrated our earlier dynamic schedul-
ing service (Kokyu [23]) with the QuO framework in the
context of the case study described in Section 3.3.

The RTC1.2 specification allows pluggable dynamic
schedulers. However, this means that endsystems, or even
segments within an endsystem, along an end-to-end path
could be applying differing scheduling disciplines and
scheduling parameters. For example, one endsystem
could order the eligibility of distributable threads per the
EDF scheduling discipline using deadlines, and another
per the MUF scheduling discipline using criticality, dead-
lines, and execution times. RTC1.2 does not address the
issue of interoperability of schedulers on the endsystems
that a distributable thread spans. Juno [22], a meta-pro-
gramming architecture for heterogeneous middleware
interoperability, addresses the above issues. It formalizes
the above problems, defines formalisms to express differ-
ent instances of the problem and maps the formalisms to a
software architecture based on Real-time CORBA.

5 Concluding Remarks
The OMG Real-time CORBA 1.2 (RTC1.2) specification
defines a dynamic scheduling framework that enhances
the development of open DRE systems that possess dy-
namic QoS requirements. The RTC1.2 framework pro-
vides a distributable thread capability that can support
execution sequences requiring dynamic scheduling and
enforce their QoS requirements based on scheduling
parameters associated with them. RTC1.2 distributable
threads can extend over as many hosts as the execution
sequence may span. Flexible scheduling is achieved by
plugging in dynamic schedulers that implement different
scheduling strategies, such as MUF, or RMS+MLF, as
well as the TP and MIF strategies described in Section 3.

TAO’s RTC1.2 implementation has addressed broader
issues than the standard covers, including mapping distri-
butable and local thread identities, supporting static and
dynamic scheduling, and defining efficient mechanisms
for enforcing a variety of scheduling policies. We learned
the following lessons from our experience developing and
evaluating TAO’s RTC1.2 framework:

• RTC1.2 is a good beginning towards addressing the
dynamic scheduling issues in DRE systems. By inte-
grating our earlier work on middleware scheduling
frameworks [7,8,23] within the RTC1.2 standard, we
have provided an even wider range of scheduling
policies and mechanisms.

• Some features that are implemented for the efficiency
of thread and other resource management can hinder
the correct working of the RTC1.2 framework, e.g.,
managing distributable threads is more costly and

Gill, Krishnamurthy, Schmidt, Enhancing Adaptivity via Standard
Pyarali, Mgeta, Zhang, and Torri Dynamic Scheduling Middleware

 12

complicated due to the sensitivity of key mechanisms
to their identities, as discussed in Section 2.4.

• System-wide dynamic scheduling is not yet as perva-
sive as fixed-priority static scheduling, which has
limited the scope of the RTC1.2 specification, e.g., it
does not yet address interoperability of dynamic
schedulers on different hosts, but only ensures propa-
gation of scheduling parameters across the hosts it
spans so it can be scheduled on each host.

• Empirical case studies based on actual DRE systems
(such as those presented in Section 4) are essential to
(1) understand how techniques such as cancellation
and adaptive rescheduling can be applied effectively
in complex DRE systems and (2) determine the ap-
propriate role of RTC1.2 mechanisms with respect to
other middleware mechanisms that could be used.

References
[1] Real-Time CORBA 1.0 Specification, Aug. 2002,

www.omg.org/docs/formal/02-08-02.pdf

[2] Karr, Rodrigues, Krishnamurthy, Pyarali, and
Schmidt, “Application of the QuO Quality-of-Service
Framework to a Distributed Video Application,”
DOA, Rome, Italy, Sept 2001.

[3] Corman, Gossett, Noll, “Experiences in a Distributed,
Real-Time Avionics Domain - Weapons System Open
Architecture” , ISORC, Washington DC, April 2002.

[4] Stewart and Khosla, “Real-Time Scheduling of Sen-
sor-Based Control Systems,” in Real-Time Program-
ming , Pergamon Press, 1992.

[5] Review Draft of the 1.2 revision to the Real-Time
CORBA Specification (OMG document realtime/03-
08-01). Previously designated Real-Time CORBA
2.0, www.omg.org/docs/ptc/01-08-34.pdf

[6] Schmidt, Levine, Mungee. “The Design and Perform-
ance of the TAO Real-Time Object Request Broker” ,
Computer Communications 21(4), April 1998.

[7] Gill, Levine, Schmidt, “The Design and Performance
of a Real-Time CORBA Scheduling Service,” Real-
Time Systems 20(2), Kluwer, March 2001.

[8] Gill, Schmidt, and Cytron, “Multi-Paradigm Sched-
uling for Distributed Real-Time Embedded Comput-
ing” , IEEE Proceedings 91(1), Jan 2003.

[9] Krishnamurthy, Gill, Schmidt, Pyarali, Mgeta, Zhang,
and Torri, “The Design and Implementation of Real-
Time CORBA 2.0: Dynamic Scheduling in TAO”,
RTAS 2004, Montreal, Canada, May 2004.

[10] Leach and Salz, “UUIDs and GUIDs Internet-Draft” ,
www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

[11] Schmidt, Stal, Rohnert, and Buschmann, "Pattern-
Oriented Software Architecture: Patterns for Concur-
rent and Networked Objects", Wiley, NY, 2000.

[12] Liu and Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,”
JACM, vol. 20, January 1973.

[13] Chung, Liu, Lin, “Scheduling Periodic Jobs that
Allow Imprecise Results,” IEEE Transactions on
Computers, vol. 39, Sept 1990.

[14] Frisbee, Niehaus, Subramonian, and Gill, “Group
Scheduling in Systems Software” , 12th Workshop on
Parallel and Distributed Real-Time Systems (at
IPDPS), April 2004, Santa Fe, NM

[15] Pyarali, Schmidt, Cytron, “Techniques for Enhancing
Real-Time CORBA Quality of Service” , IEEE Proc.,
91(7), July 2003.

[16] Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development” , Soft-
ware Technology Conference, April 1998.

[17] Harrison, Levine, and Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,”
OOPSLA, Atlanta, GA, Oct, 1997.

[18] Huang, Jha, Heimerdinger, Muhammad, Lauzac,
Kannikeswaran, Schwan, Zhao, and Bettati, “RT-
ARM: A Real-Time Adaptive Resource Management
System for Distributed Mission-Critical Applica-
tions", Workshop on Middleware for Distributed
Real-Time Systems, RTSS, San Francisco, CA, 1997.

[19] Doerr, Venturella, Jha, Gill, and Schmidt, “Adaptive
Scheduling for Real-time, Embedded Information
Systems,” DASC, St. Louis, MO, Oct. 1999.

[20] Gossett, Gill, Loyall, Schmidt, Corman, Schantz, and
Atighetchi, “ Integrated Adaptive QoS Management in
Middleware: A Case Study” , RTAS, Montreal, Can-
ada, May 2004.

[21] Zinky, Bakken, and Schantz, “Architectural Support
for Quality of Service for CORBA Objects,” Theory
and Practice of Object Systems, 3(1), 1997.

[22] Corsaro, Schmidt, Gill, and Cytron, “Formalizing
Meta-Programming Techniques to Reconcile Hetero-
geneous Scheduling Policies in Open Distributed
Real-Time Systems”, DOA, Sept. 2001, Rome, Italy.

[23] Loyall, Gossett, Gill, Schantz, Zinky, Pal, Shapiro,
Rodrigues, Atighetchi, and Karr, “Comparing and
Contrasting Adaptive Middleware Support in Wide-
Area and Embedded Distributed Object Applications,”
ICDCS, April 2001, Phoenix, AZ.

