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Abstract Siemens [1] and Kodak [2] and database search engines such
as AltaVista and Lexis-Nexis.
Developers of communication software face many challengesto keep pace with increasing demand, it is essential to de-
Communication software contains both inherent complexitigglop high-performance Web servers. However, developers
such as fault detection and recovery, and accidental compléxce a remarkably rich set of design strategies when config-
ities, such as the continuous re-rediscovery and re-inventigfing and optimizing Web servers. For instance, developers
of key concepts and components. Meeting these challengest select from among a wide range of concurrency mod-
requires a thorough understanding of object-oriented applits (such as Thread-per-RequestThread Pool), dispatching
cation frameworks and patterns. This paper illustrates hawodels (such as synchronous vs. asynchronous dispatching),
we have applied frameworks and patterns for communicatiie caching models (such as LRU vs. LFU), and protocol pro-
software to develop a high-performance Web server callesssing models (such as HTTP/1.0 vs. HTTP/1.1). No sin-
JAWS. gle configuration is optimal for all hardware/software platform
JAWS is an object-oriented framework that supports thad workloads [1, 3].
configuration of various Web server strategies, such as arhe existence of all these alternative strategies ensures that
Thread Pool concurrency model with asynchronous 1/0O aRgeb servers can be tailored to their users’ needs. However,
LRU caching vs.. a Thread-per-Request concurrency moggligating through many design and optimization strategies is
with synchronous 1/0 and LFU caching. Because JAWS iseglious and error-prone. Without guidance on which design
framework, these strategies can be customized systematicgily optimization strategies to apply, developers face the her-
and measured both independently and collaboratively to dgdean task of engineering Web servers from the ground up,
termine the best strategy profiles. Using these profiles, JAWSSulting inad hocsolutions. Such systems are often hard to
can statically and dynamically adaptits behavior to deploy thgaintain, customize, and tune since much of the engineering

most effective strategies for a given software/hardware plaffort is spent just trying to get the system operational.
form and workload. JAWS'’ adaptive software features make

it a powerful application framework for constructing high-
performance Web servers. 1.1 Definitions

We will frequently refer to the term®O class library frame-
1 Introduction work, pattern andcomponentThese terms refer to tools that
are used to build reusable software systems. An OO class

During the past several years, the volume of traffic on tHgarary is a collection of software object implemetations that
World Wide Web (Web) has gr'own dramatically. Traffic inprovide reusable functionality as the user calls into the object
creases are due largely to the proliferation of inexpensive .thOdS' A framework Isa reusable, “semi-complete .appll—
ubiguitous Web browsers such as NCSA Mosaic Netsci%'on that can be specialized to prpduce cgstom applications
Navigator, and Internet Explorer. Likewise, Web protocols and" ’IA‘ patte;n ret;))lresen.tts;].a recur[.l ngl solut|ctm ':oSa i)ftware
browsers are increasingly applied to specialized computatigﬁye opment problem within a particular context [5]. A com-

ally expensive tasks, such as image processing servers us nt refers o a re|f|able_ object. Both OO class I|brar!gs
and frameworks are collections of components that are reified

*The work described here was made possible by funds from Siemens ,Q(Y .inStamiation an.d. Sp?Cialization- A pattern component is
Eastman Kodak, and NSF Research Grant NCR-9628218. reified through codification.




1.2 Overview 2.1 Common Pitfalls of Developing Web Server

Software

This paper illustrates how to produce flexible and efficient i
Web servers using O@pplication frameworkanddesign pat- Developers of Web servers confront recurring challenges that

terns Patterns and frameworks can be applied synergistic&ll§ 12rgely independent of their specific application require-
to improve the efficiency and flexibility of Web servers. paffients. For instance, like other communication software, Web
terns capture abstract designs and software architectureSE5Yers must perform various tasks related to the following:
high-performance and adaptive Web servers in a system&fgnection estabhshment,_ service |n|t!aI|zat|on, event demu!—
and comprehensible format. Frameworks capture the concHRgxing, event handler dispatching, interprocess communi-
designs, algorithms, and implementations of Web server<f#ion, memory management and file caching, static and dy-

a particular programming language, such as C++ or Java.filic component configuration, concurrency, synchroniza-

contrast,00 class librariesprovide the raw materials necestion, and persistence. In most Web servers, these tasks are

sary to build applications, but no guidance as to how to put f#ifaPlemented in amd hocmanner using low-level native OS
pieces together. application programming interfaces (APIs), such as the Win32

or POSIX, which are written in C.

This paper focuses on the patterns and framework COmpq'anfortunately, native OS APIs are not an effective way to

nents used to develop a high-performance Web server cagé ot :
: elop Web servers or other types of communication middle-
JAWS [1.’ 3]. JAWS is both a Weh server a”?' a framewoy, re and applications [10]. The following are common pitfalls
from which other types of servers can be built. The JAW, sociated with the use of native OS APIs:

framework itself was developed using the ACE framewor

[6, 7]. The ACE framework reifies key patterns [5] in the dd=xcessive low-level details: Building Web servers with na-
main of communication software. The framework and patteriiee OS APIs requires developers to have intimate knowl-
in JAWS and ACE are representative of solutions that hagege of low-level OS details. Developers must carefully track
been applied successfully to communication systems rangivigich error codes are returned by each system call and han-
from telecommunication system management [8] to enterprile these OS-specific problems in their server. Such details
medical imaging [2] and real-time avionics [9]. divert attention from the broader, more strategic issues, such

This paper is organized as follows: Section 2 presents &hSemantics and program structure. For example, UNIX de-
overview of patterns and frameworks and motivates the n&&PPers who use theait - system call must distinguish the
for the type of communication software framework providegftween return errors due to no child processes being present
by JAWS: Section 3 illustrates how patterns and componefifd! errors from signal interrupts. In the latter caseyviag
can be applied to develop high-performance Web servers; S8St be reissued.

tion 4 compares the performance of JAWS over high-speg@ntinuous rediscovery and reinvention of incompatible
ATM networks W|th Other high-performance Web Servers, a%her_|eve| programming abstractions: A common rem-
Section 5 presents concluding remarks. edy for the excessive level of detail with OS APIs is to define
higher-level programming abstractions. For instance, many
Web servers create a file cache to avoid accessing the filesys-
tem for each client request. However, these types of abstrac-
2 Applying Patterns and Frameworks tions are often rediscovered and reinvented independently by
to Web Servers each developer or project. Thisl hocprocess hampers pro-
ductivity and creates incompatible components that are not
readily reusable within and across projects in large software
There is increasing demand for high-performance Web serveiganizations.
that can provide services and content to the growing numbemké
Internet and intranet users. Developers of Web servers striv
build fast, scalable, and configurable systems. This task can
difficult, however, if care is not taken to avoid common traq
and pitfalls, which include tedious and error-prone low-lev:
programming details, lack of portability, and the wide ran
of design alternatives. This section presents a road-ma|
these hazards. We then describe how patterns and framewor
can be applied to avoid these hazards by allowing developeask of portability: Low-level OS APIs are notoriously
to leverage both design and code reuse. non-portable, even across releases of the same OS. For in-

h potential for errors: Programming to low-level OS

s is tedious and error-prone due to their lack of type-
Fety. For example, most Web servers are programmed with
ﬁe Socket API [11]. However, endpoints of communication
il the Socket API are represented as untyped handles. This
Ycreases the potential for subtle programming mistakes and
-Stime errors.



stance, implementations of the Socket APl on Win32 pladbject [15] patterns are widely used as Web server dispatch-
forms (WinSock) are subtly different than on UNIX plating and concurrency strategies, respectively. These patterns
forms. Moreover, even WinSock implementations on diffeare generalizations of object-structures that have proven use-
ent versions of Windows NT possess incompatible timinfyd to build flexible and efficient Web servers.
related bugs that cause sporadic failures when performing norifraditionally, these types of patterns have either been locked
blocking connections. in the heads of the expert developers or buried deep within
. ] . .the source code. Allowing this valuable information to reside
Steep learning curve: Due to the excessive level of detall

e et equred 0 master OS evel APt can b vy i1 o5 00811 1oy spensie nouever For,
For instance, it is hard to learn how to program with POSI ' 9 P 9

. e lost over time if they are not documented. Likewise, sub-
asynchronous I/O [12] correctly. It is even harder to learn how_ . .

. L . stantial effort may be necessary to reverse engineer patterns
to write aportableapplication using asynchronous 1/0O mecr}

anisms since they differ widely across OS platforms. rom existing source code. Therefore, capturing and docu-

menting Web server patterns explicitly is essential to preserve
Inability to handle increasing complexity: OS APIs de- design information for developers who enhance and maintain
fine basic interfaces to mechanisms like process and threaiting software. Moreover, knowledge of domain-specific
management, interprocess communication, file systems, patterns helps guide the design decisions of developers who
memory management. However, these basic interfaces doatetbuilding new servers in other domains.
scale up gracefully as applications grow in size and complex-
ity. For instance, a typical UNIX process allows a backlog ?)?
only ~7 pending connections [13]. This number is inadequeﬂe .
; ance costs. However, reuse of patterns alone is not suf-
for heavily accessed Web servers that must handle hundretfs 0 . -
X ; iclent to create flexible and efficient Web server software.
simultaneous clients. : : .
While patterns enable reuse of abstract design and architec-
ture knowledge, abstractions documented as patterns do not
2.2 Overcoming Web Server Pitfalls with Pat- directly yield reusable code [16]. Therefore, it is essential to
terns and Frameworks augment the study of patterns with the creation and use of
_ _ ~ application frameworks. Frameworks help developers avoid
Software reuse is a a widely touted method of reducing dgystly re-invention of standard Web server components by im-

velopment effort. Reuse leverages the domain knowledge gyénenting common design patterns and factoring out com-
prior effort of experienced developers. When applied effegmn implementation roles.

tively, reuse can avoid re-creating and re-validating common

solutions to recurring application requirements and software . .
design challenges. 2.3 Relationship Between Frameworks, Pat-

Java’sjava.lang.net and RogueWavéleth++ are terns, and Other Reuse Techniques

two common examples of applying reusable OO class Iibrarigr%

- . . meworks provide reusable software components for ap-
to communication software. Although class libraries effec- P P P

tively support component reuse-in-the-small, their scope%cations by integrating sets of abstract classes and defining

overly constrained. In particular, class libraries do not capt rtgmdard ways that instances of these classes collaborate [4].

the canonical control flow and collaboration among familics general, the componenps are'not self-contalned, since they
ally depend upon functionality provided by other compo-

of related software components. Thus, developers who ap ts within the framework. However, the collection of these
class library-based reuse often re-invent and re—implement(t:Om onents forms a artiall - Ieme|'1tatidm an apolica-
overall software architecture for each new application. P P P " pp

A more powerful way to overcome the pitfalls describettljon skeleton. This skeleton can be customized by inheriting

above is to identify thepatternsthat underlie proven Weban_?hlgséigtlztggrgﬁgriiusa\‘/k\)/:aebcsg\?:rnﬁ gﬁg\;vtohri g:?s\évzzk'_
servers and to reify these patternsahject-oriented appli- P 9

cation frameworks Patterns and frameworks help a”eviatgificantlyIargerthan using traditional function libraries or OO

. ; : . lass libraries of components. In particular, the JAWS frame-
h | re- - f key Web senfep €59 onens. 1 >
the continual re-discovery and re-invention of key Web servg k described in Section 3 is tailored for a wide range of Web

concepts and components by capturing solutions to commio . RN
software development problems [5]. server tasks. These tasks include service initialization, error

handling, flow control, event processing, file caching, concur-
The benefits of patterns for Web servers: Patterns doc- rency control, and prototype pipelining. It is important to rec-
ument the structure and participants in common Web serognize that these tasks are also reusable for many other types
micro-architectures. For instance, the Reactor [14] and Activecommunication software.

e benefits of frameworks for Web servers: Knowledge
patterns helps to reduce development effort and mainte-



In general, frameworks and patterns enhance reuse tdatameworks are active and exhibit “inversion of control”
nigues based on class libraries of components in the followaig run-time:  Class library components generally behave
ways. passively In particular, class library components often per-

form their processing by borrowing the thread(s) of control
Frameworks define “semi-complete” applications that em- from application objects that are “self-directed.” Because ap-
body domain-specific object structures and functionality: plication objects are self-directed, application developers are
Class libraries provide a relatively small granularity of reuskrgely responsible for deciding how to combine the compo-
For instance, the classes in Figure 1 are typically low-levegnts and classes to form a complete system. For instance,
relatively independent, and general-purpose components Ifke code to manage an event loop and determine the flow of

Strings, complex numbers, arrays, and bit sets.
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Figure 1: Class Library Component Architecture

control among reusable and application-specific components
is generally rewritten for each new application.

The typical structure and dynamics of applications built
with class libraries and components is illustrated in Figure 1.
This figure also illustrates how design patterns can help guide
the design, implementation, and use of class library compo-
nents. Note, that the existence of class libraries, while provid-
ing tools to solve particular tasks.@, establishing a network
connection) do not offer explicit guidance to system design. In
particular, software developers are solely responsible for iden-
tifying and applying patterns in designing their applications.

In contrast to class libraries, components in a framework
are moreactive In particular, they manage the canonical flow
of control within an application via event dispatching patterns
like Reactor [14] and Observer [5]. The callback-driven run-
time architecture of a framework is shown in Figure 2.

Figure 2 illustrates a key characteristic of a framework: its
“inversion of control” at run-time. This design enables the

In contrast, components in a framework collaborate to prganonical application processing steps to be customized by

vide a customizable architectural skeleton for a family of revent handler objects that are invoked via the framework’s

lated applications. Complete applications can be composeddwctive dispatching mechanism [14]. When events occur,
inheriting from and/or instantiating framework componentsie framework’s dispatcher reacts by invoking hook methods
As shown in Figure 2, frameworks reduce the amount ef pre-registered handler objects, which perform application-
application-specific code since much of the domain-specijsecific processing on the events.

processing is factored into generic framework components.  Inversion of control allows the framework, rather than each

application, to determine which set of application-specific

methods to invoke in response to external events (such as
HTTP connections and data arriving on sockets). As a re-
sult, the framework reifies an integrated set of patterns, which
are pre-applied into collaborating components. This design
reduces the burden for software developers.

Active Object
NETWORKING

MATH,

APPLICATION
- EVENT . Lo

INVOCATIONS SPEClFIE LOOP In practice, frameworks, class libraries, and components are
LOGIC complementary technologies. Frameworks often utilize class

libraries and components internally to simplify the develop-

e CALLBACKS . )

P ment of the framework. For instance, portions of the JAWS

Singleton framework use the string and vector containers provided by

Figure 2: Application Framework Component Architectur

DATABASE

GRAPHICS

OO DESIGN

the C++ Standard Template Library [17] to manage connec-

tion maps and other search structures. In addition, application-
specific callbacks invoked by framework event handlers fre-

qguently use class library components to perform basic tasks
esuch as string processing, file management, and numerical
analysis.



To illustrate how OO patterns and frameworks have beienACE [18]. The collaborations among JAWS components
applied successfully to develop flexible and efficient command frameworks are guided by a family of patterns, which are
nication software, the remainder of this paper examines tlsted along the borders in Figure 3. An outline of the key
structure, use, and performance of the JAWS framework. frameworks, components, and patterns in JAWS is presented

below. A more detailed description of how these patterns have
been applied to JAWS’ design will be shown in Section 3.2.

3 The JAWS Adaptlve Web Server Event Dispatcher: This component is responsible for co-
dinating JAWS’Concurrency Strategwith its I/O Strategy

The benefits of applying frameworks and patterns to comnfl} ; ) ; . :
PRYINg b W%fae passive establishment of connections with Web clients fol-

nication software are best illustrated by example. This secti the A ; ft 191 New i : i
describes the structure and functionality of the JAWS. JAW Qs theAcceptorpatiern [19]. New incoming requests are
viced by a concurrency strategy. As events are processed,

a high-performance and adaptive Web server that impleme . L
the HTTP protocol. It is also a platform-independent app}—ey are dispatched to tiRgotocol Handley which is parame-

cation framework from which other types of communicatiotﬁrized by an /O strategy. The ability to dynamically bind to a
servers can be built particular concurrency strategy and I/O strategy from a range

of alternatives follows th&trategypattern [5].

3.1 Overview of the JAWS Framework Concurrency Strqtegy: This framework implements con-
currency mechanisms (such as Single Threaded, Thread-per-

Figure 3 illustrates the major structural components and dequest, or Thread Pool) that can be selected adaptively
sign patterns that comprise the JAWS Adaptive Web Ser@érrun-time using theéStatepattern [S] or pre-determined at

(JAWS) framework. JAWS is designed to allow various Webitialization-time. TheService Configuratopattern [20] is
used to configure a particular concurrency strategy into a

Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that follow
the Active Objecpattern [15].

Reactor/Proactor Singleton

1/0O Strategy
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Asynchronous Completion Token
Protocol
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Protocol
Filter \@_

Service Configurator |

Strategy
Cached Virtual

Filesystem %[

Tilde =~
Expander \/home’

I/O Strategy: This framework implements various /O
mechanisms, such as asynchronous, synchronous and reac-
tive I/O. Multiple I/O mechanisms can be used simultaneously.
Asynchronous I/O is implemented via tiRgoactor[21] and
Asynchronous Completion Tokg2R] patterns. Reactive 1/0

is accomplished through thReactorpattern [14]. Reactive

I/O utilizes theMementattern [5] to capture and externalize
the state of a request so that it can be restored at a later time.

Event Dispatcher

Service Configurator

Protocol Pipeline
Framework

Pipesand Filters

S

Concurrency Protocol Handler:  This framework allows system develop-
ers to apply the JAWS framework to a variety of Web system
applications. AProtocol Handleris parameterized by a con-
currency strategy and an I/O strategy. These strategies remain
opague to the protocol handler by following tAdapter[5]

Figure 3: Architectural Overview of the JAWS Framework pattern. In JAWS, this component implements the parsing and

handling of HTTP/1.0 request methods. The abstraction al-

server strategies to be customized in response to environmews for other protocols (such as HTTP/1.1 and DICOM) to be
tal factors. These factors includtaticfactors, such as supporincorporated easily into JAWS. To add a new protocol, devel-
for kernel-level threading and/or asynchronous I/O in the Ofpers simply write a newrotocol Handlerimplementation,
and the number of available CPUs, as weltigaamicfactors, which is then configured into the JAWS framework.

such as Web traffic patterns and workload characteristics. o . . )
JAWS is structured as iamework of frameworks The Protocol Pipeline:  This framework allows filter operations

overall JAWS framework contains the following componen@ be incorporated egsily with t.he ‘?'ata bging processed py the
and frameworks: arEvent DispatcherConcurrency Strat- Protocol Handler This integration is achieved by employing

egy, I/0O Strategy Protocol Pipeline Protocol Handlers and the Adapter pattern. Pipelines follow tipes and Filters

Cached Virtual FilesystemEach framework is structured a®attern [23] for input processing. Pipeline components can be

a set of collaborating objects implemented using componelf'ﬁ%ted dynamically at run-time using ttervice Configurator
pattern.

Active Object

5



Cached Virtual Filesystem: The componentimproves WebThe Acceptor pattern: This pattern decouples passive con-
server performance by reducing the overhead of filesystemiagetion establishment from the service performed once the
cesses. Various caching strategies, such as LRU, LFU, Hintahnection is established [19]. JAWS uses the Acceptor pat-
and Structured, can be selected following 8teategypattern tern to adaptively change its concurrency and I/O strategies
[5]. This allows different caching strategies to be profiled fandependently from its connection management strategy. Fig-
effectiveness and enables optimal strategies to be configuresl 5 illustrates the structure of the Acceptor pattern in the
statically or dynamically. The cache for each Web serverdsntext of JAWS. TheAcceptoris a factory [5]. It creates,
instantiated using th8ingletorpattern [5]. accepts, and activates a n&sotocol Handlerwhenever the

] ) ) Event Dispatchenotifies it that a connection has arrived from
Tilde Expander: This component is another cache comp@-client.

nent that uses a perfect hash table [24] that maps abbrevi- )

ated user login names.g, ~schmidt ) to user home direc- The Reactor pattern: This pattern decouples the syn-
tories €.g, /home/cs/faculty/schmidt ). When per- chronous event demultiplexing and event handler notification
sonal Web pages are stored in user home directories, and diggatching logic of server applications from the service(s)
directories do not reside in one common root, this compon®&fformed in response to events [14]. JAWS uses the Reactor
substantially reduces the disk 1/0 overhead required to acdeé@$ern to process multiple synchronous events from multiple
a system user information file, such fasc/passwd . By Sources of eventsyithoutpolling all event sources or blocking
virtue of theService Configuratopattern, the Tilde Expande,indefinitely on any single source of eyents. Figure 6 illustrates
can be unlinked and relinked dynamically into the server whil¢ structure of the Reactor pattern in the context of JAWS.

a new user is added to the system, for example.
\ InputOutput e‘; InputOutput Handler ‘e{ Protocol Pipeline \
4

N
3.2 Overview of the Design Patterns in JAWS _,>

eH
)
oll=
The JAWS architecture diagram in Figure 3 illustrabesv ||| 3||Reactor — Reactive |0 Handler
JAWS is structured, but nethyit is structured this particular | || & |send_file() handl e_i nput ()
. S|l =l |recv_file() handl e_out put ()
way. To understand why JAWS contains frameworks and cof £ || S| | send_dat a()
ponents like the&€oncurrency Strategy/O Strategy Protocol ||| &| " ecv_data() el
Handler, andEvent Dispatcherequires a deeper understand- I nitiation Dispatcher Timer Queue
ing of the design patterns underlying the domain of commu- handl e_event s() schedul e_ti mer (h)
. . . . . regi st er_handl er ( h) cancel _timer (h)
nication software, in general, and Web servers, in particular. remove_handl er (h) expi re_ti mers(h)

Figure 4 illustrates thstrategicandtactical patterns related to

JAWS. These pattemns are summarized below. Figure 6: Structure of the Reactor Pattern in JAWS

3.2.1 Strategic Patterns ] ) ) )
JAWSReactive |0 Handleobjects register themselves with

The following patterns arstrategicto the overall software ar-the Initiation Dispatcherfor events,i.e,, input and output
chitecture of Web servers. Their use widely impacts the letktough connections established by HTTP requests. Ifikhe
of interactions of a large number of components in the systetation Dispatcherinvokes thehandle _input notification

These patterns are also widely used to guide the architectuvek method of thesReactive |0 Handleobjects when their

of many other types of communication software. associated events occur. The Reactor pattern is used by the
Single-Threaded Web server concurrency model presented in
 Protocol Handler ' Section 3.3.2.
fffffffffffffff : +grc?iavtaete Protocol Handler .
Acceptor — [Tas ‘<> —————— = peer_stream_ The Proactor pattern pattern: This pattern decouples the
peer_acceptor _ open() asynchronous event demultiplexing and event handler com-
accept () pletion dispatching logic of server applications from the ser-
vice(s) performed in response to events [21]. JAWS uses the
Event Dispatcher }%‘ e — ‘ notifies Proactor pattern to perform server-specific processing, such as

parsing the headers of a request, while asynchronously pro-
cessing other 1/0 events. Figure 7 illustrates the structure of
Figure 5: Structure of the Acceptor Patternin JAWS  he Proactor pattern in the context of JAWS. JAR®active
IO Handler objects register themselves with t@@mpletion
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Figure 4: Design Patterns Used in the JAWS Framework

[Inputoutput | =="InputOutput Handler |<— Protocal Pipeline | The Active Object pattern: This pattern decouples method
(AT invocation from method execution, allowing methods to run
o concurrently [15]. JAWS uses the Active Object pattern to exe-
2 R > cute client requests concurrently in separate threads of control.
g % Proactor [ "7 il = Proactive 10 Handler Figure 8 illustrates the structure of the Active Object pattern
£||Z| |send_file() : handl e_read_file() in the context of JAWS.
g § recv_file() |[AynchOp handl e write file()
| |send_dat a() open()
recv_data() ||cacnel () 5 Protocol Handler
Completion Dispatcher Timer Queue fé’ http_request ()
handl e_event s() schedul e_t i ner (h) % ftp_request ()
regi st er _handl er (h) cancel _ti mer(h) snmp_r equest ()
renove_handl er (h) expire_timers(h)
Scheduler Activation Queue
. . http_request() Of--------- ‘ insert()
Figure 7: Structure of the Proactor Pattern in JAWS ftp_request () ; renove()
snnp_request () !
di spatch() O----- bt :
Resour ce Representation i i A
for (:: ‘ i Protocol Plpellne
Dispatcherfor eventsie, receiptand delivery of files through m = aq >r enove() ;
connections established by HTTP requests). di spatch(nj;
} ‘aq >insert (http) H

The primary difference between the Reactor and Proactor
patterns is that theroactive 10 Handlerdefinescompletion  Figure 8: Structure of the Active Object Pattern in JAWS
hooks, whereas thReactive 10 Handlerdefinesinitiation
hooks. Therefore, when asynchronously invoked operations

like recv file orsend file complete, theCompletion  The Protocol Handlerissues requests to thecheduler
Dispatcherinvokes the appropriate completion hook methaghich transforms the request method (such as an HTTP re-
of theseProactive 10 Handleobjects. The Proactor pattern igjuest) intoMethod Objectghat are stored on aActivation

used by the asynchronous variant of the Thread Pool in Segreue The Schedulerwhich runs in a separate thread from
tion 3.3.2.



the client, dequeues theddethod Objectsand transforms [5]. JAWS uses this pattern extensively to selectively config-
them back into method calls to perform the specified protocole different cache replacement strategies without affecting the
The Active Object pattern is used in the Thread-per-Requestie software architecture of the Web server.

Thread Pool, and Thread-per-Session concurrency models ge: Adapter pattern: This pattern transforms a non-
scribed in Section 3.3.2.

conforming interface into one that can be used by a client
The Service Configurator pattern: - This pattern decouples[5]. JAWS uses this pattern in its I/O Strategy Framework to
the implementation of individual componentsin a system froufiformly encapsulate the operations of synchronous, asyn-
thetimewhen they are configured into the system. JAWS usglyronous and reactive 1/0 operations.
the Service Configurator pattern to dynamically optimize, COPRe State pattern:

trol, and reconfigure the behavior of Web server strategieﬁ@‘dlt whose behavior depends upon its state [5]. Efent
installation-time or during run-time [25]. Figure 9 iIIustrate<I§)iSpatCher component in JAWS uses the State pattern to

the structure of the Serwge Conﬁguratpr pattern n the Contgétamlessly support different concurrency strategies and both
of theProtocol Pipeline FiltersandCaching Strategies synchronous and asynchronous /O

The Singleton pattern: This pattern ensures a class only
has one instance and provides a global point of access to it

[5]. JAWS uses a Singleton to ensure that only one copy of its

This pattern defines a composite ob-

Service Cached Virtual Filesystem exists in a Web server process.
/] init()
fsluglp(eLd() In contrast to the strategic patterns described earlier, tactical
resume() pattern have a relatively localized impact on a software de-
= Cache Strategy Repository | LL1100) sign. For instance, Singleton is a tactical pattern that is often
/ used to consolidate certain globally accessible resources in a
[Protocol Pipeline |[DLL |- [CacheStrategy | Web server. Although this pattern is domain-independent and

thus widely applicable, the problem it addresses does not im-
| Read Reguest | [Filter | [LRU Strategy |[LFU Strategy | pact Web server software architecture as pervasively as strate-
gic patterns like the Active Object and Reactor. A thorough
understanding of tactical patterns is essential, however, to im-

plement highly flexible software that is resilient to changes in

\IJ:IAthJ/rSe 9: Structure of the Service Configurator Pattern dpyjication requirements and platform characteristics.

‘ParseRequest ‘ ‘LogRequeﬂ ‘

The remainder of this section discusses the structure of
JAWS’ frameworks for concurrency, /O, protocol pipelining,
The figure depicts how th&ervice Configuratocan dy- and file caching. For each framework, we describe the key de-
namically manageDLLs, which are dynamically linked li- sign challenges and outline the range of alternatives solution
braries. This allows the framework to dynamically configuksrategies. Then, we explain how each JAWS framework is
different implementations of server strategies at run-time. Téteuctured to support the configuration of alternative strategy
Filter RepositoryandCache Strategy Repositoiryherit func- profiles.
tionality from theService RepositoryLikewise, the strategy
implementations (such &arse Requesind LRU Strategy .
borrow interfaces from th&ervicecomponent of the pattern3'3 Concurrency Strategies
so that they can be managed dynamically by the repository3 3.1 Design Challenges

Concurrency strategies impact the design and performance of
a Web system significantly. Empirical studies [3] of exist-

Web servers also utilize martactical patterns, which are "9 Web servers, including Roxen, Apache, PHTTPD, Zeus,
more ubiquitous and domain-independent than the stratddfiScape and the Java Web server, indicate that a large por-

patterns described above. The following tactical patterns Jg 0f non-l/O related Web server overhead is due to the Web
used in JAWS: server's concurrency strategy. Key overheads include syn-

chronization, thread/process creation, and context switching.
The Strategy pattern: This pattern defines a family of algo-Therefore, choosing an efficient concurrency strategy is cru-
rithms, encapsulates each one, and make them interchangezadiléo achieve high-performance.

3.2.2 Tactical Patterns



3.3.2 Alternative Solution Strategies Thread-per-Session: A sessionis a series of requests that
) ) ] o one client makes to a server. In Thread-per-Session, all of
Selecting the right concurrency strategy is nontrivial. Thgese requests are submitted through a connection between

factors influencing the decision are both static and dynamigp, client and a separate thread in the Web server process.
Staticfactors can be determinadriori. These factors '”C|“deTherefore, this model amortizes both thread creation and con-

hardware configuratiore(g, number of processors, amount o ection establishment costs across multiple requests.

memory, and speed of network connection), OS platf@@,(  Thread-per-Session is less resource intensive than Thread-

availability of threads and asynchronous 1/0), and Web Seryer pequest since it does not spawn a separate thread for each
use casedg, database interfacing, image server, or HTMleqest. However, it is still vulnerable to unbounded resource

server). Dynamicfactors are those detectable and measinsumption as the number of clients grows. Also, the use

able conditions that occur during the execution of the SyStef-Thread-per-Session requires both the client and server to
These factors include machine load, number of simultaneQys nort the concept of re-using an established connection with
requests, dynamic memory use, and server workload. 1 ytinle requests. For example, if both the Web client and
Existing Web servers use a wide range of concurrengp server are HTTP/1.1 compliant, Thread-per-Session can
strategies, reflecting the numerous factors involved. Thege,sed between them. However, if either the client or server

strategies include single-threaded concurreecy,(Roxen), only supports HTTP/1.0, then Thread-per-Session degrades to
process-based concurrencg.q, Apache and Zeus), a”dThread-per-Request [26, 27].

multi-threaded concurrencg (g, PHTTPD, and JAWS). Each )
strategy offers positive and negative benefits, which must baead Pool: In this model, a group of threads are pre-
analyzed and evaluated in the context of both static and &pawned during Web server initialization. Each thread from

namic factors. These tradeoffs are summarized below. ~ the pool retrieves a task from a job queue. While the thread is
processing the job, it is removed from the pool. Upon finish-

Thread-per-Request: This model handles each requesng the task, the thread is returned to the pool. As illustrated in
from a client in a separate thread of control. Thus, as edélhure 11, the job being retrieved is completion of Awzep-
request arrives, a new thread is created to process the reqtmstWhen it completes, the thread creatd2ratocol Handler
This design allows each thread to use well understood sgnd lends its thread of control so that the handler can process
chronous I/O mechanisms to read and write the requested fhe. connection.
Figure 10 illustrates this model in the context of the JAWS Thread Pool has lower overhead than Thread-per-Request
framework. Here, there is aAcceptorthread that iteratessince the cost of thread creation is amortized through pre-
on waiting for a connection, creatingraotocol Handlerand spawning. Moreover, the number of resources the pool can
spawning a new thread so that the handler can continue peasume is bounded since the pool size is fixed. However,
cessing the connection. if the pool is too small, it can be depleted. This causes new
The advantage of Thread-per-Request is its simplicity aimdoming requests to be dropped or wait indefinitely. Further-
its ability to exploit parallelism on multi-processor platformsnore, if the pool is too large, resource consumption may be no
Its chief drawback is lack of scalabilitiye., the number of run- better than using Thread-per-Request.
ning threads may grow without bound, exhausting available

memory and CPU resources. Therefore, Thread-per-Request Soooo - andie Protocol

is adequate for lightly loaded servers with low latency. Hov | Protocol Handler | Handler @

ever, it may be unsuitable for servers that are accessed @

quently to perform time consuming tasks. + Cormplete Eﬁgfgf‘

\Acceptor \é{ Task \<> ””” =
Protocol - j Protocol
Handler @ \ Event Dispatcher }%\ Thread Pool [ asifies Hrz;]glcgr
| Protocol Handler

fffffffffffffff ' +create Protocol
spawns . .
| Acceptor [<=—{Tax |= """ = Handler Figure 11: Thread Pool Strategy in JAWS
notifies
ispatch Thread-per-Request J Protocol
‘Event Dispatcher }%‘ read-per-Requ Handler

Single-Threaded: In this model, all connections and re-
guests are handled by the same thread of control. Simple im-
Figure 10: Thread-per-Request Strategy in JAWS  plementations of Single-Threaded servers process requests it-
eratively. This is usually inadequate for high volume produc-



tion servers since subsequent requests are blocked until {Event Dispatcher oY ="

are reached, creating unacceptable delays. di spatch() © Acceptor Protocol Handler
More sophisticated Single-Threaded implementations : accept () open()

tempt to process multiple requests concurrently using as| server - >di Spatch()ﬁ

chronous or reactive 1/0 (which are described in Section 3.4 acceptor | handler

Single-threaded concurrency strategies can perform better Concurrency task Task

than multi-threaded solutions on uni-processor machines that di spat ch() accept () O~

support asynchronous 1/O [1]. Since JAWS' I/O framework / \ Zﬁ;{lg?;e() |

is orthogonal to its concurrency framework, we consider t[ Thread-per-Connection | | Thread Pool deque()

Single-Threaded concurrency strategy as a special case o[ di spatch() O dispatch() O SE(0) j

Thread Pool where the pool size is 1. ! ! :
Experiments in [1] and [3] demonstrate that the choice o) Ziﬁf?b’;&ﬁ task->enque() | accept °">a°°em()ﬁ

concurrency and event dispatching strategies significantly ar-
fect the pe;rformance of.Web SEIVers that experience Vary'ff‘i%ure 12: Structure of the Concurrency Strategy Framework
load conditions. In particular, no single server strategy pro-
vides optimal performance for all cases. Thus, a server frame-
work should provide at least two degrees of freedom:
Object or a collection ofActive Objects The behavior of
1. Static adaptivity- The framework should allow the Welthe Concurrencyobject follows theAcceptorpattern. This ar-
server developers to select the concurrency strategy dfitecture enables the server developer to integrate alternate
best meets the static requirements of the system. For@mncurrency strategies. With the aid of a strategy profile, the
ample, a multi-processor machine may be more suitegrver can dynamically choose different strategies at run-time
to multi-threaded concurrency than a uni-processor ma-achieve optimal performance.
chine.

2. Dynamic adaptivity- The framework should allow itsg 4 |/ Strategies
concurrency strategy to adapt dynamically to current
server conditions to achieve optimal performance in tBe4.1 Design Challenges
presence of dynamic server load conditions. For instance, ) )
in order to accommodate unanticipated load usage, it rr,ﬁ;gother key challenge for Web server developers is to devise

be necessary to increase the number of available thre@ jgient data retrieval and delivery strategies, collectively re-
in the thread pool. ferred to ad/O. The issues surrounding efficient I1/0O can be

quite challenging. Often, a system developer must resolve
how to arrange multiple 1/0 operations to utilize concurrency
available from the hardware/software platform. For instance,

As discussed above, no single concurrency strategy perfofrfdgh-performance Web server should simultaneously trans-

optimally under for all conditions. However, not all platformr files to and from the network, while concurrently parsing

can make effective use of all available concurrency strafgWly obtained incoming requests from other clients.

gies. To address these issues, the JAWS Concurrency Strate§ertain types of I/O operations have different requirements

Framework supports both static and dynamic adaptivity wiihan others. For example, a Web transaction involving mon-

respect to its concurrency and event dispatching strategiesetary fund transfer may need to rsynchronouslyi.e, to
Figure 12 illustrates the OO design of JAWS' Concufonclude before the user can continue. Conversely, Web ac-

rency Strategy framework. Thevent Dispatcheand Con- C€SSes to static information, such as CGl-based search engine

currency objects interact according to thState pattern. dueries, may rumsynchronouslgince they can be cancelled

As illustrated, server can be changed to eithdread- atany time. Resolving these various requirements have led to

per-Connectioror Thread Poolbetween successive calls télifferent strategies for performing I/O.

server->dispatch() , allowing different concurrency

mechanisms to taKe effect. Th@read-per-Connectiostrat- 3 4 5 Ajternative Solution Strategies

egy is an abstraction over both the Thread-per-Request and

Thread-per-Session strategies discussed above. Each coraimdicated above, various factors influence which 1/O strat-

rency mechanism makes use offask Depending on the egy to choose. Web servers can be designed to use several

choice of concurrency, daskmay represent a singlective different 1/0 strategies, includingynchronousreactive and

3.3.3 JAWS Concurrency Strategy Framework
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asynchronou#/O. The relative benefits of using these stratasynchronous programs can be more complicated than writing
gies are discussed below. synchronous programs [21, 22, 28].

The synchronous I/O strategy: Synchronous I/O describes
the model of I/O interaction between a Web server proces4-3 JAWS I/O Strategy Framework

and the kernel. In this model, the kernel does not return € sirical studies in [1] systematically subjected different
thread of control to the server until the requested I/O operation P y Y I

. . : server strategies to various load conditions. The results re-
either completes, completes partially, or fails. [1] shows tha . .

. veal that each 1/O strategy behaves differently under differ-

synchronous I/O usually performs well for small file transfers

. hh ent load conditions. Furthermore, no single I/O strategy per-
on Windows NT over high-speed ATM networks. formed optimally under all load conditions. The JAWS 1/O

Synchronous I/O is well known to UNIX server IorogramStrategy Framework addresses this issue by allowing the 1/0

mers and is arguably the easiest to use. However, there are . . .
. . o . o rategy to adapt dynamically to run-time server conditions.
disadvantages to this model. First, if combined with a Single- 9y pt dy ca’ly 10 run-i v "

D . rthermore, if a new OS provides a custom I/O mechanism
Threaded concurrency strategy, it is not possible to perfo 1 ! W provi u !

m .
multiple synchronous I/O operations simultaneously. Secor{%’lc.h as, asynchronous scatter/gather 1/0) that can potentially

; . R - provide better performance, the JAWS 1/O Strategy framework
when using multiple threads (or processes), it is still possﬂa

€ ; .
for an I/0O request to block indefinitely. Thus, finite resourcecg‘n easily be adapted to use it
(such as socket handles or file descriptors) may become gx-

. . Perf Request
hausted, making the server unresponsive. l’ Sjcz’;mef’f’f‘im i o->send_file(*index. htn ..)H
The reactive I/O strategy: Early versions of UNIX pro- io h
vided synchronous I/O exclusively. System V UNIX intro !nputOutput Handler — (DR -~~~ -~ - !
duced non-blocking I/ to avoid the blocking problem. How{ ¢e N e o :
ever, non-blocking I/0 requires the Web server to poll the k¢send_file() send_file() )
nel to discover if any input is available [11]. Reactive I/¢Se"9-9ata0 send_dat a() Filecache Handle
alleviates the blocking problems of synchronous 1/0 witho £7%1 & €0
resorting to polling. In this model, a Web server uses am
OS event demultiplexing system cadl.§. select in UNIX Asynchronous |0 Reactive |0
or WaitForMultipleObjects in Win32) to determine zzc:irssz’si'li() receve fi1e0) recel ve fi1e0)
which socket handles can perform I/O. When the call retur| ecei ve_dat a() send_file() O send_file() O
the server can perform 1/O on the returned handles,the |send_file() © send_data() . send_data() .

; ; send_data() Pr oact or ! React or !
serverreactsto multiple events occurring on separate handlés- ; ; ;
Reactive 1/0 is widely used by event-driven applications ! !

. I P tor-> React or - >

(such as X windows) and has been codified asRleactor wite(th) H ’S"e";‘@_‘f’r‘ L e(th) Sif]d‘ir“ Le(th)

design pattern [14]. Unless reactive 1/O is carefully encap
sulated, however, the technique is error-prone due to the com-
plexity of managing multiple I/O handles. Moreover, reactive
I/0 may not make effective use of multiple CPUs.

Figure 13: Structure of the 1/0 Strategy Framework

The asynchronous I/O strategy: Asynchronous I/O sim-  Figure 13 illustrates the structure of the 1/0O Strategy Frame-
plifies the de-multiplexing of multiple events in one or moreork provided by JAWS Perform Requests a Filter that
threads of control without blocking the Web server. Whenderives fromProtocol Pipeling which is explained in Sec-
Web server initiates an 1/0 operation, the kernel runs the op@sn 3.5. In this exampleRerform Requesssues an I/O re-
ation asynchronously to completion while the server procesgegst to itsinputOutput Handler The InputOutput Handler
other requests. For instance, theansmitFile operation delegates I/O requests made to it to iyeutOutputobject.
in Windows NT can transfer an entire file from the server to The JAWS framework providesynchronousAsynchronous
the client asynchronously. andReactive IGcomponent implementations derived from

The advantage of asynchronous I/O is that the Web serpatOutput Each 1/O strategy issues requests using the appro-
need not block on I/O requests since they complete aspriate mechanism. For instance, tBgnchronous |@ompo-
chronously. This allows the server to scale efficiently for opent utilizes the traditional blockimgad andwrite system
erations with high I/O latency, such as large file transfers. Teals; theAsynchronous I@erforms requests according to the
disadvantage of asynchronous I/O is that it is not available Broactor pattern [21]; andReactive |Outilizes theReactor
many OS platforms (particularly UNIX). In addition, writingpattern [14].
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HTTP/ 1.0 200 X

An InputOutputcomponent is created with respect to the bate: Thu 09 Cot 1997 O 26: 00 GMF

stream associated by tiheceptorfrom the Taskcomponent [cowecti v | keep- Al i ve Server: JAVS/ 1.0
described in Section 3.3. File operations are performed Wither AGENT | mothra/o.1 Last-Modified: \Wed, 08 Oct 1997 -
: . . Content - Lengt h: 12345

respect to d&ilecache Handlecomponent, described in SecrHst any. net Cont ent - Type: text/ht i
tion 3.6. For example, send _file  operation sends the file[A<="T | Tege/ gi f

. ACCEPT i mage/ j peg <HTM.>
represented by Bilecache Handleo the stream returned by, o <TI TLE>Homepage</ TI TLE>
the Acceptor <HL>Wel comes/ HL>

</ HTNL>
3.5 Protocol Pipeline Strategies Read Parse Parse perform [ Log
Request Request Headers Request Request
3.5.1 Design Challenges
. , i LD GET

EarIy'Web' servers, I|.ke NCSAS'OrIgInbﬂttpd , performed /user s/ | xh/ publ i c_ht m / home. ht m
very little file processing. They simply retrieved the requested HTTP/ 1.0
file and transfered its contents to the requester. However, M@&- _j i home. htm HITPI 1. 0 any. net - -
ern Web servers perform data processing other than file g@pection: Keep-Alive [ 09/ Cct/1997: 01: 26: 00 - 0500]

) . er-Agent: Mthra/0.1 "CET /~j xh/ hone. htm HTTP/1.0"
trieval. For instance, the HTTP/1.0 protocol can be used to &‘t: any. net

termine various file characteristics, such as the file tgpg, ( Accert: imoe/gif. imagel]peg.
text, image, audio or video), the file encoding and compres- o
sion types, the file size and its date of last modification. THi&ure 14: The Pipeline of Tasks to Perform for HTTP Re-
information is returned to requesters via an HTTP header. Uests

With the introduction of CGI, Web servers have been able to
perform an even wider variety of tasks. These include search

engines, map generation, interfacing with database systegggnpiling applet code. Incorporating static pipelines into the
and secure commercial and financial transactions. Howe@hyer makes it possible to extend server functionality without
a limitation of CGl is that the server must spawn a M@ resorting to spawning external processes. The Apache Web
cessto extend server functionality. It is typical for each reseryer provides this type of extensibility by allowimpdules
quest requiring CGI to spawn its own process to handlejfhich encapsulate static processing, to be dynamically linked
causing the server to behave aBracess-per-Requeserver, g the Web server.

which is a performance inhibitor [3]. The challenge for a high- However, situations may arise that require a pipeline of op-

performance Web server framework is to allow developersdpytions to be configuretynamically These occur when Web

extend server functionality without resorting to CGI processeg,er extensions involve arbitrary processing pipeline config-

urations, so the number is essentially unlimited. This can hap-
3.5.2 Alternative Solution Strategies pen if there is a large number of intermediary pipeline com-

ponents that can be arranged into arbitrary sequences. If the
Most Web servers conceptually process or transform a stregirations on the data are known only during the execution of
of data in several stages. For example, the stages of procggSprogram, dynamic construction of the pipeline from com-
ing an HTTP/1.0 request can be organized as a sequencsdpgms provides an economical solution. There are many ex-

ing the request, (3) parsing the request header information, i) following:

performing the request, and (5) logging the request. This se-

guence forms aipelineof tasks that manipulate an incominghdvanced search engines: Search engines may construct

request, as shown in Figure 14. data filters dynamically depending on the provided query
The tasks performed to process HTTP/1.0 requests hawdrang. For instance, a query such ggérformance AND

fixed structure. Thus, Figure 14 illustratessiatic pipeline (NOT symphonic)) ", requesting for Web pages contain-

configuration. Static configurations are useful for server érg the word “performance” but not the word “symphonic”,

tensions that are requested to perform a limited number of prould be implemented as a pipeline of a positive match com-

cessing operations. If these operations are relatively few ghent coupled with a negative match component.

knowna priori, they can be pre-fabricated and used directly ] .

during the execution of the server. Examples of static proce$8age servers: Image servers may construct filters dynami-

ing operations include: marshalling and demarshaling dta!ly depending on the operations requested by the user. As an

data demultiplexing through custom Web protocol layers, afi@MPple, a user may request that the image be cropped, scaled,
rotated, and dithered.

* [ *
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Adaptive Web content: Web content can be dynamicallyp oo randier H2-2%[Protocol Pipdine Ao IR, i

Filter

delivered dependent on characteristics of the end-user. For sve()

example, a Personal Digital Assistant (PDA) should receive /

Web content overviews and smaller images, whereas a work- e B\

station could receive full multimedia enriched pages. Like- sve() © conponent

wise, a home computer user may choose to block certain types svo() O * component - >sve() \_\

of content. ‘ i 0->recei ve_dat ak)
Existing solutions that allow server developers to enhance //W B\V\
Web server functionality dynamically are either too applica-

tion specific, or too generic. For example, Netscape’s Net[] :\‘j"fcs(e)Reg‘fé Sp\a/rcs(e)Headers :fcf?;mgf‘f’f Is_sg(R)eqést
namics focuses entirely on integrating Web servers with exi parse() ! parse() perforn() | log() |
ing database applications. Conversely, Java-based Web servers | |
(such as Sun’s Java Server and W3C's Jigsaw) allow for ai pi pi
trary server extensibility, since Java applications are capabl{ Fi I ter::svc() Filter::sve() ||Filter::sve()
dynamically executing arbitrary Java code. However, the pr parse() perfor ) ' 090)

lem of howto provide a dynamically configurable pipeline of

operations is still left to be resolved by the server developersFigure 15: Structure of the Protocol Pipeline Framework
Thus, developers are left to custom engineer their own solu-

tions without the benefits of an application framework based

on design patterns.

Structuring a server to process data in logical stagesfiist calls into the parensvc , which retrieves the data to
known as the&Pipes and Filtergattern [23]. While the patternbe processed, and then performs its component specific logic
helps developers recognize how to organize the componeutsn the data. The parent invokes five method of the pre-
of a processing pipeline, it does not provide a framework feeding component. Thus, the composition of the components
doing so. Without one, the task of adapting a custom sercauses a chain of calls pulling data through the pipeline. The
to efficiently adopt new protocol features may be too costbhain ends at the component responsible for retrieving the raw
difficult, or result in high-maintenance code. input, which derives directly frorProtocol Pipelineabstrac-

tion.

3.5.3 JAWS Protocol Pipeline Strategy Framework

The preceding discussion motivated the need for developers to

extend server functionality without resorting to external prg-g  Fjle Caching Strategies
cesses. We also described how Bipes and Filtergpattern
can be applied to create static and and dynamic informat
processing pipelines. JAW®rotocol Pipeline Framework

is designed to simplify the effort required to program these ) ] ] ) )
pipelines. This is accomplished by providitask skeletons The results in [3] show that accessing the filesystem is a sig-

of pipeline components. When the developer completes pificant source of overhead for Web servers. Most distributed
pipeline component logic, the component can then be Coﬁpplicqtions can benefit.from cachirjg, and Web servers are no
posed with other components to create a pipeline. The cdxception. Therefore, it is not surprising that research on Web

pleted components are stored into a repository so that theySg&er performance focuses on file caching to achieve better

accessible while the server is running. This enables the seR@iformance [29, 30].
framework to dynamically create pipelines as necessary whilé\ cache is a storage medium that provides more efficient
the Web server executes. retrieval than the medium on which the desired information
Figure 15 provides an illustration of the structure of the normally located. In the case of a Web server, the cache
framework. The figure depicts Rrotocol Handlerthat uti- resides in the server’'s main memory. Since memory is a lim-
lizes theProtocol Pipelineto process incoming requests. Ated resource, files only reside in the cache temporarily. Thus,
Filter component derives frorRrotocol Pipeling and serves the issues surrounding optimal cache performance are driven
as a task skeleton for the pipeline component. by quantity (how much information should be stored in the
Pipeline implementors derive frofilter to create pipeline cache) andluration (how long information should stay in the
components. Thevc method of each pipeline componentache).

8.1 Design Challenges
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3.6.2 Alternative Solution Strategies [31]. The JAWS Cached Virtual Filesystem Framework ad-

dresses this issue in two ways. For one, it allows the cache

Quantity and duration are strongly influenced by the size alt%'placement algorithms and cache strategy to be easily inte-

cated to the cache. If memory is scarce, it may by undesira&lgted into the framework. Furthermore, by utilizing strat-

to cache a few large files since caching many smaller files v;géy profiles, these algorithms and strategies can be dynami-

give better average performance. If more memory is availallgy, sejected in order to optimize performance under chang-
caching larger files may be feasible. ing server load conditions

Least Recently Used (LRU) caching: This cache replace- Figure 16 illustrates to components in JAWS that
ment strategy assumes most requests for cached files §@li@borate to make the Cached Virtual Filesystem Frame-
temporallocality, i.e., a requested file will soon be requested

; . ; L fh f
again. Thus, when the act of inserting a new file into t!nputOutput - = = Filecache Handle =] Filecache Object
. . . . P 1
cached requires the removal of another file, the file that w' eceive_file() handl e() i |handl e()
R . . send_file() © mapaddr () | mapaddr ()
least recently useis removed. This strategy is relevant t filename ! name() 1| name()
Web systems that serve content with temporal properties (sucr : size() o R EIEL
as daily news reports and stock quotes). open() ¢ ovf
| | I
Least Frequently Used (LFU_) caching: This cache re- fh_>0pen(fi,e)j Cvf_mpen(me,fo)ﬁi Hashtable
placement strategy assumes files that have been requeste - |
quently are more likely to be requested again, another form of el ~—"" e ht
temporal locality. Thus, cache files that have bésast fre- insert() ;i ndg)
quently usedare the first to be replaced in the cache. This / \ ,gﬁgvé%)
strategy is relevant to Web systems with relatively static can- fCIf ﬁlatsﬁgg
tent, such as Lexis-Nexis and other databases of historical f{-RY Strategy LFU Strategy fw | ock(]
insert() © insert() © -

Hinted caching: This form of caching is proposed in [29] \ \
This strategy stems from analysis of Web page retrieval p ' epl ace | east \W repl ace | east \W
terns that seem to indicate that Web pages Ispagial local- recently used frequently used

ity. Thatis, a user browsing a Web page is likely to browse the

links within the page. Hinted caching is relategte-fetching Figure 16: Structure of the Cached Virtual Filesystem
though [29] suggests that the HTTP protocol be altered to al-

low statistical information about the links (bints) to be sent K Th biect | . i h dl
back to the requester. This modification allows the client {fPr- ThelnputOutpubbjectinstantiates@lecache Handle

decide which pages to pre-fetch. The same statistical inforf§©Ugh which file interactions, such as reading and writing,

tion can be used to allow the server to determine which pagt§ conducted. Theilecache Handleeferences &ilecache
to pre-cache bject which is managed by thEilecachecomponent. The

Filecache Objecmaintains information that is shared across
Structured caching: This refers to caches that have knowlll handles that reference it, such as the base address of the
edge of the data being cached. For HTML pages, structuradmory mapped file. Thilecachecomponent is the heart of
caching refers to storing the cached files to support hierarchie Cached Virtual Filesystem Framework. It manaigites
cal browsing of a single Web page. Thus, the cache takaghe Objectshrough hashing, and follows ti&tatepattern
advantage of the structure that is present in a Web pagedat is choosing &ache Strateggo fulfill the file request. The
determine the most relevant portions to be transmitted to tbache Strateggomponent utilizes th&trategypattern to al-
client (e.g, a top level view of the page). This can potentiallipw different cache replacement algorithms, such as LRU and
speed up Web access for clients with limited bandwidth anBU, to be interchangeable.
main memory, such as PDAs. Structured caching is related to
the use of B.-tree structures m_databases, which minimize §’l% The JAWS Framework Revisited
number of disk accesses required to retrieve data for a query.

Section 2 motivated the need for frameworks and patterns to
3.6.3 JAWS Cached Virtual Filesystem Framework build high-performance Web servers. We used JAWS as an

example of how frameworks and patterns can enable program-
The solutions described above present several strategiegrfers to avoid common pitfalls of developing Web server soft-
implementing a file cache. However, employing a fixaedare. Together, patterns and frameworks support the reuse of
caching strategy does not always provide optimal performamuegrated components and design abstractions [4].
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Section 3 has described how the JAWS framework is arcle configuration performs optimally for all load conditions.
tected and the strategies it provides. To articulate the orgdriis demonstrates the need for flexible frameworks like JAWS
zation of JAWS'’ design, we outlined the strategic and tactidhit can be reconfigured to achieve optimal performance under
design patterns that had the largest impact on the JAWS fracteganging load conditions.
work. TheAcceptor Reactor Proactor, Active Objectand
Service Configuratopatterns are among the most significa
strategic patterns. THatrategy Adapter State andSingleton Qf'l Hardware Testbed
patterns are influential tactical patterns used in JAWS. Our hardware testbed is shown in Figure 18. The testbed con-

These patterns were chosen to provide the scaffolding of
the JAWS architecture. The patterns described the neces:
collaborating entities, which took the form of smaller con 5 »E @D
ponents. From this, the major components of the framewa ,2 Request a2
(i.e., theConcurrency StrategyO StrategyProtocol Pipeline ‘i Requests ——_4 HITESTERR t
and theCached Virtual Filesystenframeworks), were con- *g o o
structed and integrated into a skeleton application. Develog
can use this skeleton to construct specialized Web server s| Web Client Web Server
ware systems by customizing certain sub-components of
framework €.g, Filters andCache Strategigs

Figure 17 shows how all the patterns and components
the JAWS framework are integrated. The JAWS framewc
promotes the construction of high-performance Web serv
in the following ways. First, it provides several pre-configure
concurrency and 1/O dispatching models, a file cache offering
standard cache replacement strategies, and a framework for ~ Figure 18: Benchmarking Testbed Overview
implementing protocol pipelines. Second, the patterns used in
the JAWS framework help to decouple Web server strategies . ] ) )
from (1) implementation details and (2) configuration tim&iSts of two Micron Millennia PRO2 plus workstations. Each
This decoupling enables new strategies to be integrated 64302 has 128 MB of RAM and is equipped with 2 Pen-
ily into JAWS. Finally, JAWS is designed to allow the servdfimPro processors. The client machine has a clock speed of
to alter its behavior statically and dynamically. For instance?0 MHz, while the server machine runs 180 MHz. In ad-
with an appropriate strategy profile, JAWS can accommod8iion, each PRO2 has an ENI-155P-MF-S ATM card made
different conditions that may occur during the run-time ex@Y Efficient Networks, Inc. and is driven by Orca 3.01 driver
cution of a Web server. By applying these extensible straf9ftware. The two workstations were connected via an ATM
gies and components with dynamic adaptation, JAWS simpletwork running through a FORE Systems ASX-200BX, with

fies the development and configuration of high-performarfeénaximum bandwidth of 622 Mbps. However, due to lim-
Web servers. itations of LAN emulation mode, the peak bandwidth of our

testbed is approximately 120 Mbps.

0

ATM Switch

Millennia PRO2 plus Millennia PRO2 plus

4 Web Server Benchmarking Testbed 4.2 Software Request Generator

and Empirical Results We used the WebSTONE [32] v2.0 benchmarking software to
collect client- and server-side metrics. These metrics included
Section 3 described the patterns and framework componesrage server throughpuandaverage client latencyWeb-
that enable JAWS to adapt statically and dynamically to its é5iFONE is a standard benchmarking utility, capable of gener-
vironment. Although this flexibility is beneficial, the successting load requests that simulate typical Web server file access
of a Web server ultimately depends on how well it meets tpatterns. Our experiments used WebSTONE to generate loads
performance demands of the Internet, as well as corporatednel gather statistics for particular file sizes in order to deter-
tranets. Satisfying these demands requires a thorough undene the impacts of different concurrency and event dispatch-
standing of the key factors that affect Web server performanicgy strategies.
This section describes performance results obtained whilé he file access pattern used in the tests is shown in Table 1.
systematically applying different load conditions on differefthis table represents actual load conditions on popular servers,
configurations of JAWS. The results illustrate how no silvased on a study of file access patterns conducted by

15



Acceptor Active Object Service Configurator Pipes and Filters = Service Configurator

State 7 7 Adapter
Concurrency Strategy Framewor k Protocol Pipeline Strategy Framework
‘ Event Dispatcher ‘ Protocol Handler }%
| v
Filter
‘Concurrency }%‘ Task ‘
\ Thread-per-Connection H Thread Pool \ \ Par se Request H Parse Headers HPerform Request H L og Request \

%‘ InputOutput Handler ’%g InputOutput } ffffff = ‘Filecache Handle }—%‘ Filecache Object Z

‘Cache Strategy ‘é{ Filecache }%‘ Hashtable

‘&/nchronouslo HAsynchronousIO H Reactive 10 ‘ ‘ LRU Strategy H LFU Strategy ‘

e 1/O Strategy Framewor k Cached Virtual Filesystem Framework
P S
e ——

Figure 17: The JAWS Web Server Framework

Document Size| Frequency Win32 function that sends file data over a network con-

500 bytes 35% nection, either synchronously or asynchronously.

5 Kbytes 50% . i .

50 Kbytes 14% Throughput is defined as the average numb.er of bits re-
5 Mbytes 1% ceived per second by the client. A high-resolution timer for

throughput measurement was started before the client bench-
marking software sent the HTTP request. The high-resolution
timer stops just after the connection is closed at the client end.
The number of bits received includes the HTML headers sent

Table 1: File Access Patterns

SPEC [33]. by the server.
Latency is defined as the average amount of delay in mil-
4.3 Experimental Results liseconds seen by the client from the time it sends the request

to the time it completely receives the file. It measures how
The results presented below compare the performance of $eng an end user must wait after sending an HEPTrequest
eral different adaptations of the JAWS Web server. We dig-a Web server, and before the content begins to arrive at the
cuss the effect of different event dispatching and 1/0O modelient. The timer for latency measurement is started just before
on throughput and latency. For this experiment, three adapkg client benchmarking software sends the HTTP request and
tions of JAWS were used. stops just after the client finishes receiving the requested file

) . . from the server.
1. Synchronous Thread-per-Request:In this adaptation, The five graphs shown for each of throughput and la-

JAWS was configured to spawn a new thread to hangle . S : .
. ) . ency represent different file sizes used in each experiment,
each incoming request, and to utilize synchronous 1/0

'500 bytes through 5 Mbytes by factors of 10. These files sizes

2. Synchronous Thread Pool: JAWS was configured torepresent the spectrum of files sizes benchmarked in our ex-
pre-spawn a thread pool to handle the incoming reque@riments, in order to discover what impact file size has on
while utilizing synchronous I/O. performance.

3. Asynchronous Thread Pool: For this configuration :
. '4.3.1 Throughput Comparisons
JAWS was configured to pre-spawn a thread pool to han- ughpu par
dle incoming requests, while utilizingransmitFile Figures 19-23 demonstrate the variance of throughput as the
for asynchronous I/OTransmitFile is a custom size of the requested file and the server hit rate are systemat-
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ically increased. As expected, the throughput for each caéency than the asynchronous model. Under heavy loads and
nection generally degrades as the connections per seconavith large file transfers, however, the asynchronous model us-
creases. This stems from the growing number of simultanetgTransmitFile provides better quality of service. Thus,
connections being maintained, which decreases the througlimgter Windows NT, an optimal Web server should adapt itself
per connection. to either event dispatching and file /O model, depending on

As shown in Figure 21, the throughput of Thread-pethe server’s workload and distribution of file requests.
Request can degrade rapidly for smaller files as the connection
load increases. In contrast, the throughput of the synchronous
Thread Pool implementation degrade more gracefully. The
reason for this difference is that Thread-per-Request incg?s
higher thread creation overhead since a new thread is spawing
for eachGETrequest. In contrast, thread creation overheackin
the Thread Pool strategy is amortized by pre-spawning threaf
when the server begins execution. o » " " - . " "

The results in figures 19-23 illustrate tifatnsmitFile Coneurrent Clients Coneurrent Clients
performs extremely poorly for small filesi.é., < 50 Figure 19: Experiment Results from 500 Byte File
Kbytes). Our experiments indicate that the performance of
TransmitFile depends directly upon the number of simul-
taneous requests. We believe that during heavy server Icgac
(i.e., high hit rates) TransmitFile is forced to wait while % -
the kernel services incoming requests. This creates a rﬂgl
number of simultaneous connections, degrading server perfor
mance. Y e Y o

As the size of the file grows, howevelransmitFile
rapidly outperforms the synchronous dispatching models. For Figure 20: Experiment Results from 5K File
instance, at heavy loads with the 5 Mbyte file (shown in._
Figure 23), it outperforms the next closest model by neaglg?
40%. TransmitFile is optimized to take advantage oéw
Windows NT kernel features, thereby reducing the numbergeﬂf

2 20

data copies and context switches. £

read/Request
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?

mThread/Request
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W Thread/Request
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Concurrent Clients Concurrent Clients

4.3.2 Latency Comparisons

. . Figure 21: Experiment Results from 50K File
Figures 19-23 demonstrate the variance of latency perfor- 'qu xper ! !

mance as the size of the requested file and the server hit rate
crease. As expected, as the connections per second increasg
the latency generally increases, as well. This reflects the %q
ditional load placed on the server, which reduces its abllltyaq
service new client requests. £ o
As before, TransmitFile performs extremely poorly °" 5 N s T s 0 s
for small files. However, as the file size grows, its latency Coneurrent Clents Coneurrent Gients
rapidly improves relative to synchronous dispatching during Figure 22: Experiment Results from 500K File
light loads.
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4.3.3 Summary of Benchmark Results
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As illustrated in the results in this section, there is S|gn§‘ °
icant variance in throughput and latency depending on the omice
concurrency and event dispatching mechanisms. For small oo ST
files, the synchronous Thread Pool strategy provides bet- . ) )
ter overall performance. Under moderate loads, the syn- Figure 23: Experiment Results from 5M File
chronous event dispatching model provides slightly better la-

1000
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4.4 A Summary of Techniques for Optimizing HTTP request from the client and before it sends out the re-
Web Servers guested file. The time taken to execute the request lifecycle
directly impacts the latency observed by clients. Therefore, it
From our research, we have found that tis possible to impr@¥@mportant to minimize system call overhead and other pro-
server performance with a superior server design (a similar @essing in this path. The following describes various places in
servation was made in [34]). Thus, while it is undeniable thai@geh servers where such overhead can be reduced.
“hard-coded” serveli ., one that uses fixed concurrency, I/Q, Reducing synchronization: When dealing with concur-
and caching strategies) can provide excellent performanceegcy, synchronization is often needed to serialize access
flexible server framework, such as JAWS, does not necessagilyshared resources (such as the Cached Virtual Filesys-
correlate with poor performance. tem). However, the use synchronization penalizes perfor-
This section summarizes the most significant determinapigince. Thus, it is important to minimize the number of locks
of Web server performance. These observations are based@juired (or released) during the request lifecycle. In [3], it is
our studies [1, 3] of existing Web server designs and implghown that servers that average a lower number of lock oper-
mentation strategies, as well as our experience tuning JAV¥fons per request perform much better than servers that per-
These studies reveal the primary targets for optimizationsfgm a high number of lock operations.
develop high performance Web servers. In some cases, acquiring and releasing locks can also result
in preemption Thus, if a thread reads in an HTTP request
d then attempts to acquire a lock, it might be preempted,

In multi-processor systems, a process-based concurre d may wait for a relatively long time before it is dispatched

mechanism might perform well, especially when thember again. This increases the latency incurred by a Web client.
of processes are equal to the number of processtmsthis ° Ca_chmg files: If the Web server does not _perform f||§:
case, each processor can run a Web server process and co‘f’ﬁ&ﬂr?g' at least wo sources of overhead are incurred. First,
switching overhead is minimized. there is overhead from thapen system call. Second, there

In general, processes shouldgre-forkedto avoid the over- IS {:tlccumulflted ovlclerr:ead from 'ttﬁ raftnv € us;e oﬂldereld art]: il
head of dynamic process creation. However, it is preferablev‘fg € system calls 1o access Ine Tiesystem, uniess the e
use lightweight concurrency mechanisnesy, using POSIX Is small enough to be retrieved or saved in a single call.

threads) to minimize context switching overhead. As with prg_achlng can be effectively performed using memory-mapped

cesses, dynamic thread creation overhead can be avoide l?L)?s available in most forms of UNIX and on Windows NT.

pre-spawninghreads into a pool at server start-up. e Using “gather-write™. - On UNIX systems, thewritev
system call allows multiple buffers to be written to a device in

Specialized OS features: Often times, OS vendors will a single system call. This is useful for Web servers since the
provide specialized programming interfaces which may gitypical server response contains a number of header lines in
better performance. For example, Windows NT 4.0 praeddition to the requested file. By using “gather-write”, header
vides theTransmitFile function, which uses the Windowsdines need not be concatenated into a single buffer before being
NT virtual memory cache manager to retrieve the file datent, avoiding unnecessary data-copying.
TransmitFile allows data to be prepended and appendedPre-computing HTTP responses:Typical HTTP requests
before and after the file data, respectively. This is particularBsult in the server sending back the HTTP header, which con-
well-suited for Web servers since they typically send HTTins the HTTP success code and the MIME type of the file re-
header data with the requested file. Hence, all the data todnested, €.g, text/plain ). Since such responses are part
client can be sent in a single system call, which minimize$ the expected case they can fire-computed When a file
mode switching overhead. enters the cache, the corresponding HTTP response can also
Usually, these interfaces must be benchmarked careflily stored along with the file. When an HTTP request arrives,
against standard APIs to understand the conditions for whibk header is thus directly available in the cache.

the special interface will give better performance. In the case | _
of TransmitFile , our empirical data indicate that the asyr-099ing overhead: Most Web servers support features that

chronous form ofransmitFile is the most efficient mech- allow administrators to log the number of hits on various pages

anism for transferring large files over sockets on Windows Nfi€Y Serve. Logging is often done to estimate the load on the
as shown in Section 4. server at various times during the day. It is also commonly

performed for commercial reasoresg, Web sites might base
Request lifecycle system call overhead: The request life- their advertising rates on page hit frequencies. However, log-
cycle in a Web server is defined as the sequence of instrgictg HTTP requests produces significant overhead for the fol-
tions that must be executed by the server after it received@ming reasons:

Lightweight concurrency: Process-based concurrenc
mechanisms can yield poor performance, as seen in
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¢ Filesystem accessA heavily loaded Web server makes &an often result in data getting delayed by the network layer
significant number of 1/0 calls, which stresses the filesystdrafore it is actually sent over the network. Several latency-
and underlying hardware. Writing data to log files increasestical applications (such as X-Windows) disable this algo-
this stress and thus contributes to lower performance. Keepiitigm, (e.g, Solaris supports theCP-NQDELAYsocket op-

log files and the HTTP files on separate filesystems andtidin). Disabling this algorithm can improve latency by forcing
possible, on separate physical devices can limit this overhetheé. network layer to send packets out as soon as possible.

e Synchronization overhead:A typical Web server has mul-

tiple active threads or processes serving requests. If these .

threads/processes are required to log requests to a comfon Concludlng Remarks

shared log file, access to this log file needs to be synchronized,

i.e., at most one thread/process can write to the shared logfifecomputing power and network bandwidth have increased
at any time. This synchronization introduces additional ovéttamatically over the past decade, so has the complexity in-
head and is thus detrimental to performance. This overh&gatved in developing communication software. In particu-
can be reduced by keeping multiple independent log files.af, the design and implementation of high-performance Web
memory buffers are used, these should be storetirend- Server software is expensive and error-prone. Much of the cost
specific storagéo eliminate locking contention. and effort stems from the continual rediscovery and reinven-
e Reverse hostname lookups:The IP address of the cliention of fundamental design patterns and framework compo-
is available to a Web server locally. However, the hostnam@nts. Moreover, the growing heterogeneity of hardware ar-
is typically more useful information in the log file. Thus, th&hitectures and diversity of OS and network platforms make it
IP address of the client needs to be converted into the coftatd to build correct, portable, and efficient Web servers from
sponding host name. This is typically done usiagerse DNS scratch.

lookups Since these lookups often involve network 1/O, they Building a high-performance Web server requires an un-
are very costly. Therefore, they should be avoided or cofirstanding of the performance impact of each subsystem in
pleted asynchronously (using threads or asynchronous I/O}he serverg.g, concurrency and event dispatching, server re-
« Ident lookups: The Ident protocol [35] allows a Web servefluest processing, filesystem access, and data transfer. Ef-
to obtain the user name for a given HTTP connection. THigiently implementing and integrating these subsystems re-
typically involves setting up a new TCP/IP connection to tiBlires developers to meet various design challenges and nav-
user’s machine and thus involves a round_trip de|ay_ AlSO, t‘%te through alternative solutions. Understanding the trade-
ident lookup must be performed while the HTTP connecti®ffs among these alternatives is essential to providing optimal
is active and therefore cannot be performed lazily. To achi®fformance. However, the effort required to deveddrhoc

high performance, such lookups must thus be avoided whesigns is often not cost effective as requirements (inevitably)
ever possible. change. As examples, the performance may prove to be inad-

equate, additional functionality may be required, or the soft-
Transport layer optimizations: The following transport ware may need to be ported to a different architecture.
layer options should be configured to improve Web server perQbject-oriented application frameworks and design patterns
formance over high-speed networks: help to reduce the cost and improve the quality of software
e The listen backlog: Most TCP implementations buffer in-by leveraging proven software designs and implementations
coming HTTP connections on a kernel-resident “listen queue’ produce reusable components that can be customized to
so that servers can dequeue them for servicing umiogpt . meet new application requirements. The JAWS framework
If the TCP listen queue exceeds the “backlog” parameterdescribed in this paper demonstrates how the development
thelisten  call, new connections are refused by TCP. Thusf high-performance Web servers can be simplified and uni-
if the volume of incoming connections is expected to be higled. The key to the success of JAWS is its ability to capture
the capacity of the kernel queue should be increased by giviagnmon communication software design patterns and consol-
a higher backlog parameter (which may require modificaticiggite these patterns into flexible framework components that
to the OS kernel). efficiently encapsulate and enhance low-level OS mechanisms
e Socket send buffers:Associated with every socket is a sentbr concurrency, event demultiplexing, dynamic configuration,
buffer, which holds data sent by the server, while it is band file caching. The benchmarking results presented here
ing transmitted across the network. For high performaneerve to illustrate the effectiveness of using frameworks to de-
it should be set to the highest permissible limie( large velop high-performance applications. It brings to light that
buffers). On Solaris, this limit is 64k. flexible software is not antithetical to performance.
¢ Nagle’s algorithm (RFC 896): Some TCP/IP implementa- The source code and documentation for JAWS are available
tions implement Nagle’s Algorithm to avowbngestion This atwww.cs.wustl.edu/ ~schmidt/ACE.html
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