
JAWS: A Framework for High-performance Web Servers

James C. Hu
jxh@cs.wustl.edu

�Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University
St. Louis, MO 63130

Abstract

Developers of communication software face many challenges.
Communication software contains both inherent complexities,
such as fault detection and recovery, and accidental complex-
ities, such as the continuous re-rediscovery and re-invention
of key concepts and components. Meeting these challenges
requires a thorough understanding of object-oriented appli-
cation frameworks and patterns. This paper illustrates how
we have applied frameworks and patterns for communication
software to develop a high-performance Web server called
JAWS.

JAWS is an object-oriented framework that supports the
configuration of various Web server strategies, such as a
Thread Pool concurrency model with asynchronous I/O and
LRU caching vs.. a Thread-per-Request concurrency model
with synchronous I/O and LFU caching. Because JAWS is a
framework, these strategies can be customized systematically
and measured both independently and collaboratively to de-
termine the best strategy profiles. Using these profiles, JAWS
can statically and dynamically adapt its behavior to deploy the
most effective strategies for a given software/hardware plat-
form and workload. JAWS’ adaptive software features make
it a powerful application framework for constructing high-
performance Web servers.

1 Introduction

During the past several years, the volume of traffic on the
World Wide Web (Web) has grown dramatically. Traffic in-
creases are due largely to the proliferation of inexpensive and
ubiquitous Web browsers such as NCSA Mosaic, Netscape
Navigator, and Internet Explorer. Likewise, Web protocols and
browsers are increasingly applied to specialized computation-
ally expensive tasks, such as image processing servers used by

�The work described here was made possible by funds from Siemens AG,
Eastman Kodak, and NSF Research Grant NCR-9628218.

Siemens [1] and Kodak [2] and database search engines such
as AltaVista and Lexis-Nexis.

To keep pace with increasing demand, it is essential to de-
velop high-performance Web servers. However, developers
face a remarkably rich set of design strategies when config-
uring and optimizing Web servers. For instance, developers
must select from among a wide range of concurrency mod-
els (such as Thread-per-Requestvs.Thread Pool), dispatching
models (such as synchronous vs. asynchronous dispatching),
file caching models (such as LRU vs. LFU), and protocol pro-
cessing models (such as HTTP/1.0 vs. HTTP/1.1). No sin-
gle configuration is optimal for all hardware/software platform
and workloads [1, 3].

The existence of all these alternative strategies ensures that
Web servers can be tailored to their users’ needs. However,
navigating through many design and optimization strategies is
tedious and error-prone. Without guidance on which design
and optimization strategies to apply, developers face the her-
culean task of engineering Web servers from the ground up,
resulting inad hocsolutions. Such systems are often hard to
maintain, customize, and tune since much of the engineering
effort is spent just trying to get the system operational.

1.1 Definitions

We will frequently refer to the termsOO class library, frame-
work, pattern, andcomponent. These terms refer to tools that
are used to build reusable software systems. An OO class
libarary is a collection of software object implemetations that
provide reusable functionality as the user calls into the object
methods. A framework is a reusable, “semi-complete” appli-
cation that can be specialized to produce custom applications
[4]. A pattern represents a recurring solution to a software
development problem within a particular context [5]. A com-
ponent refers to a “reifiable” object. Both OO class libraries
and frameworks are collections of components that are reified
by instantiation and specialization. A pattern component is
reified through codification.

1



1.2 Overview

This paper illustrates how to produce flexible and efficient
Web servers using OOapplication frameworksanddesign pat-
terns. Patterns and frameworks can be applied synergistically
to improve the efficiency and flexibility of Web servers. Pat-
terns capture abstract designs and software architectures of
high-performance and adaptive Web servers in a systematic
and comprehensible format. Frameworks capture the concrete
designs, algorithms, and implementations of Web servers in
a particular programming language, such as C++ or Java. In
contrast,OO class librariesprovide the raw materials neces-
sary to build applications, but no guidance as to how to put the
pieces together.

This paper focuses on the patterns and framework compo-
nents used to develop a high-performance Web server called
JAWS [1, 3]. JAWS is both a Web server and a framework
from which other types of servers can be built. The JAWS
framework itself was developed using the ACE framework
[6, 7]. The ACE framework reifies key patterns [5] in the do-
main of communication software. The framework and patterns
in JAWS and ACE are representative of solutions that have
been applied successfully to communication systems ranging
from telecommunication system management [8] to enterprise
medical imaging [2] and real-time avionics [9].

This paper is organized as follows: Section 2 presents an
overview of patterns and frameworks and motivates the need
for the type of communication software framework provided
by JAWS; Section 3 illustrates how patterns and components
can be applied to develop high-performance Web servers; Sec-
tion 4 compares the performance of JAWS over high-speed
ATM networks with other high-performance Web servers; and
Section 5 presents concluding remarks.

2 Applying Patterns and Frameworks
to Web Servers

There is increasing demand for high-performance Web servers
that can provide services and content to the growing number of
Internet and intranet users. Developers of Web servers strive to
build fast, scalable, and configurable systems. This task can be
difficult, however, if care is not taken to avoid common traps
and pitfalls, which include tedious and error-prone low-level
programming details, lack of portability, and the wide range
of design alternatives. This section presents a road-map to
these hazards. We then describe how patterns and frameworks
can be applied to avoid these hazards by allowing developers
to leverage both design and code reuse.

2.1 Common Pitfalls of Developing Web Server
Software

Developers of Web servers confront recurring challenges that
are largely independent of their specific application require-
ments. For instance, like other communication software, Web
servers must perform various tasks related to the following:
connection establishment, service initialization, event demul-
tiplexing, event handler dispatching, interprocess communi-
cation, memory management and file caching, static and dy-
namic component configuration, concurrency, synchroniza-
tion, and persistence. In most Web servers, these tasks are
implemented in anad hocmanner using low-level native OS
application programming interfaces (APIs), such as the Win32
or POSIX, which are written in C.

Unfortunately, native OS APIs are not an effective way to
develop Web servers or other types of communication middle-
ware and applications [10]. The following are common pitfalls
associated with the use of native OS APIs:

Excessive low-level details: Building Web servers with na-
tive OS APIs requires developers to have intimate knowl-
edge of low-level OS details. Developers must carefully track
which error codes are returned by each system call and han-
dle these OS-specific problems in their server. Such details
divert attention from the broader, more strategic issues, such
as semantics and program structure. For example, UNIX de-
velopers who use thewait system call must distinguish the
between return errors due to no child processes being present
and errors from signal interrupts. In the latter case, thewait
must be reissued.

Continuous rediscovery and reinvention of incompatible
higher-level programming abstractions: A common rem-
edy for the excessive level of detail with OS APIs is to define
higher-level programming abstractions. For instance, many
Web servers create a file cache to avoid accessing the filesys-
tem for each client request. However, these types of abstrac-
tions are often rediscovered and reinvented independently by
each developer or project. Thisad hocprocess hampers pro-
ductivity and creates incompatible components that are not
readily reusable within and across projects in large software
organizations.

High potential for errors: Programming to low-level OS
APIs is tedious and error-prone due to their lack of type-
safety. For example, most Web servers are programmed with
the Socket API [11]. However, endpoints of communication
in the Socket API are represented as untyped handles. This
increases the potential for subtle programming mistakes and
run-time errors.

Lack of portability: Low-level OS APIs are notoriously
non-portable, even across releases of the same OS. For in-

2



stance, implementations of the Socket API on Win32 plat-
forms (WinSock) are subtly different than on UNIX plat-
forms. Moreover, even WinSock implementations on differ-
ent versions of Windows NT possess incompatible timing-
related bugs that cause sporadic failures when performing non-
blocking connections.

Steep learning curve: Due to the excessive level of detail,
the effort required to master OS-level APIs can be very high.
For instance, it is hard to learn how to program with POSIX
asynchronous I/O [12] correctly. It is even harder to learn how
to write aportableapplication using asynchronous I/O mech-
anisms since they differ widely across OS platforms.

Inability to handle increasing complexity: OS APIs de-
fine basic interfaces to mechanisms like process and thread
management, interprocess communication, file systems, and
memory management. However, these basic interfaces do not
scale up gracefully as applications grow in size and complex-
ity. For instance, a typical UNIX process allows a backlog of
only�7 pending connections [13]. This number is inadequate
for heavily accessed Web servers that must handle hundreds of
simultaneous clients.

2.2 Overcoming Web Server Pitfalls with Pat-
terns and Frameworks

Software reuse is a a widely touted method of reducing de-
velopment effort. Reuse leverages the domain knowledge and
prior effort of experienced developers. When applied effec-
tively, reuse can avoid re-creating and re-validating common
solutions to recurring application requirements and software
design challenges.

Java’sjava.lang.net and RogueWaveNet.h++ are
two common examples of applying reusable OO class libraries
to communication software. Although class libraries effec-
tively support component reuse-in-the-small, their scope is
overly constrained. In particular, class libraries do not capture
the canonical control flow and collaboration among families
of related software components. Thus, developers who apply
class library-based reuse often re-invent and re-implement the
overall software architecture for each new application.

A more powerful way to overcome the pitfalls described
above is to identify thepatterns that underlie proven Web
servers and to reify these patterns inobject-oriented appli-
cation frameworks. Patterns and frameworks help alleviate
the continual re-discovery and re-invention of key Web server
concepts and components by capturing solutions to common
software development problems [5].

The benefits of patterns for Web servers: Patterns doc-
ument the structure and participants in common Web server
micro-architectures. For instance, the Reactor [14] and Active

Object [15] patterns are widely used as Web server dispatch-
ing and concurrency strategies, respectively. These patterns
are generalizations of object-structures that have proven use-
ful to build flexible and efficient Web servers.

Traditionally, these types of patterns have either been locked
in the heads of the expert developers or buried deep within
the source code. Allowing this valuable information to reside
only in these locations is risky and expensive, however. For in-
stance, the insights of experienced Web server designers will
be lost over time if they are not documented. Likewise, sub-
stantial effort may be necessary to reverse engineer patterns
from existing source code. Therefore, capturing and docu-
menting Web server patterns explicitly is essential to preserve
design information for developers who enhance and maintain
existing software. Moreover, knowledge of domain-specific
patterns helps guide the design decisions of developers who
are building new servers in other domains.

The benefits of frameworks for Web servers: Knowledge
of patterns helps to reduce development effort and mainte-
nance costs. However, reuse of patterns alone is not suf-
ficient to create flexible and efficient Web server software.
While patterns enable reuse of abstract design and architec-
ture knowledge, abstractions documented as patterns do not
directly yield reusable code [16]. Therefore, it is essential to
augment the study of patterns with the creation and use of
application frameworks. Frameworks help developers avoid
costly re-invention of standard Web server components by im-
plementing common design patterns and factoring out com-
mon implementation roles.

2.3 Relationship Between Frameworks, Pat-
terns, and Other Reuse Techniques

Frameworks provide reusable software components for ap-
plications by integrating sets of abstract classes and defining
standard ways that instances of these classes collaborate [4].
In general, the components are not self-contained, since they
usually depend upon functionality provided by other compo-
nents within the framework. However, the collection of these
components forms a partial implementation,i.e., an applica-
tion skeleton. This skeleton can be customized by inheriting
and instantiating from reusable components in the framework.

The scope of reuse in a Web server framework can be sig-
nificantly larger than using traditional function libraries or OO
class libraries of components. In particular, the JAWS frame-
work described in Section 3 is tailored for a wide range of Web
server tasks. These tasks include service initialization, error
handling, flow control, event processing, file caching, concur-
rency control, and prototype pipelining. It is important to rec-
ognize that these tasks are also reusable for many other types
of communication software.

3



In general, frameworks and patterns enhance reuse tech-
niques based on class libraries of components in the following
ways.

Frameworks define “semi-complete” applications that em-
body domain-specific object structures and functionality:
Class libraries provide a relatively small granularity of reuse.
For instance, the classes in Figure 1 are typically low-level,
relatively independent, and general-purpose components like
Strings, complex numbers, arrays, and bit sets.

INVOCATIONS

SELECTIONS

EVENT
LOOP

OO DESIGN

APPLICATION
SPECIFIC LOGIC

Reactor Adapter

State Active Object

Singleton Strategy

DATABASE ADTs

MATH NETWORKING

GRAPHICS GUI

DESIGN PATTERNS

CLASS LIBRARIES

Figure 1: Class Library Component Architecture

In contrast, components in a framework collaborate to pro-
vide a customizable architectural skeleton for a family of re-
lated applications. Complete applications can be composed by
inheriting from and/or instantiating framework components.
As shown in Figure 2, frameworks reduce the amount of
application-specific code since much of the domain-specific
processing is factored into generic framework components.

Active Object

Singleton Adapter

State

ReactorMATH

ADTs

GRAPHICS

LOOP

GUI

OO DESIGN

INVOCATIONS

CALLBACKS

DATABASE

EVENT

NETWORKING

LOGIC

APPLICATION
SPECIFIC

Figure 2: Application Framework Component Architecture

Frameworks are active and exhibit “inversion of control”
at run-time: Class library components generally behave
passively. In particular, class library components often per-
form their processing by borrowing the thread(s) of control
from application objects that are “self-directed.” Because ap-
plication objects are self-directed, application developers are
largely responsible for deciding how to combine the compo-
nents and classes to form a complete system. For instance,
the code to manage an event loop and determine the flow of
control among reusable and application-specific components
is generally rewritten for each new application.

The typical structure and dynamics of applications built
with class libraries and components is illustrated in Figure 1.
This figure also illustrates how design patterns can help guide
the design, implementation, and use of class library compo-
nents. Note, that the existence of class libraries, while provid-
ing tools to solve particular tasks (e.g., establishing a network
connection) do not offer explicit guidance to system design. In
particular, software developers are solely responsible for iden-
tifying and applying patterns in designing their applications.

In contrast to class libraries, components in a framework
are moreactive. In particular, they manage the canonical flow
of control within an application via event dispatching patterns
like Reactor [14] and Observer [5]. The callback-driven run-
time architecture of a framework is shown in Figure 2.

Figure 2 illustrates a key characteristic of a framework: its
“inversion of control” at run-time. This design enables the
canonical application processing steps to be customized by
event handler objects that are invoked via the framework’s
reactive dispatching mechanism [14]. When events occur,
the framework’s dispatcher reacts by invoking hook methods
on pre-registered handler objects, which perform application-
specific processing on the events.

Inversion of control allows the framework, rather than each
application, to determine which set of application-specific
methods to invoke in response to external events (such as
HTTP connections and data arriving on sockets). As a re-
sult, the framework reifies an integrated set of patterns, which
are pre-applied into collaborating components. This design
reduces the burden for software developers.

In practice, frameworks, class libraries, and components are
complementary technologies. Frameworks often utilize class
libraries and components internally to simplify the develop-
ment of the framework. For instance, portions of the JAWS
framework use the string and vector containers provided by
the C++ Standard Template Library [17] to manage connec-
tion maps and other search structures. In addition, application-
specific callbacks invoked by framework event handlers fre-
quently use class library components to perform basic tasks
such as string processing, file management, and numerical
analysis.

4



To illustrate how OO patterns and frameworks have been
applied successfully to develop flexible and efficient commu-
nication software, the remainder of this paper examines the
structure, use, and performance of the JAWS framework.

3 The JAWS Adaptive Web Server

The benefits of applying frameworks and patterns to commu-
nication software are best illustrated by example. This section
describes the structure and functionality of the JAWS. JAWS is
a high-performance and adaptive Web server that implements
the HTTP protocol. It is also a platform-independent appli-
cation framework from which other types of communication
servers can be built.

3.1 Overview of the JAWS Framework

Figure 3 illustrates the major structural components and de-
sign patterns that comprise the JAWS Adaptive Web Server
(JAWS) framework. JAWS is designed to allow various Web

Cached Virtual
Filesystem

Expander

Framework

I/O Strategy

Strategy
Concurrency

Protocol Pipeline
Framework

Framework

Tilde ~
/home/...

Event Dispatcher

A
cceptor

Asynchronous Completion Token

Reactor/Proactor

Pipes and Filters

St
at

e

Singleton

Handler
Protocol

Protocol
Filter

A
dapter

Strategy

Service Configurator

Active Object

Se
rv

ic
e 

C
on

fi
gu

ra
to

r
St

at
e

M
em

ento

Strategy

Figure 3: Architectural Overview of the JAWS Framework

server strategies to be customized in response to environmen-
tal factors. These factors includestaticfactors, such as support
for kernel-level threading and/or asynchronous I/O in the OS,
and the number of available CPUs, as well asdynamicfactors,
such as Web traffic patterns and workload characteristics.

JAWS is structured as aframework of frameworks. The
overall JAWS framework contains the following components
and frameworks: anEvent Dispatcher, Concurrency Strat-
egy, I/O Strategy, Protocol Pipeline, Protocol Handlers, and
Cached Virtual Filesystem. Each framework is structured as
a set of collaborating objects implemented using components

in ACE [18]. The collaborations among JAWS components
and frameworks are guided by a family of patterns, which are
listed along the borders in Figure 3. An outline of the key
frameworks, components, and patterns in JAWS is presented
below. A more detailed description of how these patterns have
been applied to JAWS’ design will be shown in Section 3.2.

Event Dispatcher: This component is responsible for co-
ordinating JAWS’Concurrency Strategywith its I/O Strategy.
The passive establishment of connections with Web clients fol-
lows theAcceptorpattern [19]. New incoming requests are
serviced by a concurrency strategy. As events are processed,
they are dispatched to theProtocol Handler, which is parame-
terized by an I/O strategy. The ability to dynamically bind to a
particular concurrency strategy and I/O strategy from a range
of alternatives follows theStrategypattern [5].

Concurrency Strategy: This framework implements con-
currency mechanisms (such as Single Threaded, Thread-per-
Request, or Thread Pool) that can be selected adaptively
at run-time using theStatepattern [5] or pre-determined at
initialization-time. TheService Configuratorpattern [20] is
used to configure a particular concurrency strategy into a
Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that follow
theActive Objectpattern [15].

I/O Strategy: This framework implements various I/O
mechanisms, such as asynchronous, synchronous and reac-
tive I/O. Multiple I/O mechanisms can be used simultaneously.
Asynchronous I/O is implemented via theProactor [21] and
Asynchronous Completion Token[22] patterns. Reactive I/O
is accomplished through theReactorpattern [14]. Reactive
I/O utilizes theMementopattern [5] to capture and externalize
the state of a request so that it can be restored at a later time.

Protocol Handler: This framework allows system develop-
ers to apply the JAWS framework to a variety of Web system
applications. AProtocol Handleris parameterized by a con-
currency strategy and an I/O strategy. These strategies remain
opaque to the protocol handler by following theAdapter[5]
pattern. In JAWS, this component implements the parsing and
handling of HTTP/1.0 request methods. The abstraction al-
lows for other protocols (such as HTTP/1.1 and DICOM) to be
incorporated easily into JAWS. To add a new protocol, devel-
opers simply write a newProtocol Handlerimplementation,
which is then configured into the JAWS framework.

Protocol Pipeline: This framework allows filter operations
to be incorporated easily with the data being processed by the
Protocol Handler. This integration is achieved by employing
the Adapter pattern. Pipelines follow thePipes and Filters
pattern [23] for input processing. Pipeline components can be
linked dynamically at run-time using theService Configurator
pattern.

5



Cached Virtual Filesystem: The component improves Web
server performance by reducing the overhead of filesystem ac-
cesses. Various caching strategies, such as LRU, LFU, Hinted,
and Structured, can be selected following theStrategypattern
[5]. This allows different caching strategies to be profiled for
effectiveness and enables optimal strategies to be configured
statically or dynamically. The cache for each Web server is
instantiated using theSingletonpattern [5].

Tilde Expander: This component is another cache compo-
nent that uses a perfect hash table [24] that maps abbrevi-
ated user login names (e.g.,�schmidt ) to user home direc-
tories (e.g., /home/cs/faculty/schmidt ). When per-
sonal Web pages are stored in user home directories, and user
directories do not reside in one common root, this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd . By
virtue of theService Configuratorpattern, the Tilde Expander
can be unlinked and relinked dynamically into the server when
a new user is added to the system, for example.

3.2 Overview of the Design Patterns in JAWS

The JAWS architecture diagram in Figure 3 illustrateshow
JAWS is structured, but notwhy it is structured this particular
way. To understand why JAWS contains frameworks and com-
ponents like theConcurrency Strategy, I/O Strategy, Protocol
Handler, andEvent Dispatcherrequires a deeper understand-
ing of the design patterns underlying the domain of commu-
nication software, in general, and Web servers, in particular.
Figure 4 illustrates thestrategicandtacticalpatterns related to
JAWS. These patterns are summarized below.

3.2.1 Strategic Patterns

The following patterns arestrategicto the overall software ar-
chitecture of Web servers. Their use widely impacts the level
of interactions of a large number of components in the system.
These patterns are also widely used to guide the architecture
of many other types of communication software.

notifies

Acceptor

accept()
peer_acceptor_

Protocol Handler
create

+ activate
Protocol Handler
peer_stream_
open()

ConcurrencyEvent Dispatcher

Task

Figure 5: Structure of the Acceptor Pattern in JAWS

The Acceptor pattern: This pattern decouples passive con-
nection establishment from the service performed once the
connection is established [19]. JAWS uses the Acceptor pat-
tern to adaptively change its concurrency and I/O strategies
independently from its connection management strategy. Fig-
ure 5 illustrates the structure of the Acceptor pattern in the
context of JAWS. TheAcceptoris a factory [5]. It creates,
accepts, and activates a newProtocol Handlerwhenever the
Event Dispatchernotifies it that a connection has arrived from
a client.

The Reactor pattern: This pattern decouples the syn-
chronous event demultiplexing and event handler notification
dispatching logic of server applications from the service(s)
performed in response to events [14]. JAWS uses the Reactor
pattern to process multiple synchronous events from multiple
sources of events,withoutpolling all event sources or blocking
indefinitely on any single source of events. Figure 6 illustrates
the structure of the Reactor pattern in the context of JAWS.

Timer Queue
schedule_timer(h)
cancel_timer(h)
expire_timers(h)

Reactive IO

InputOutput InputOutput Handler Protocol Pipeline

Reactor Reactive IO Handler
handle_input()
handle_output()

IO Handle

Initiation Dispatcher
handle_events()
register_handler(h)
remove_handler(h)

Sy
nc

hr
on

ou
s 

IO

A
sy

nc
hr

on
ou

s 
IO

send_file()
recv_file()
send_data()
recv_data()

Filecache Handle

Figure 6: Structure of the Reactor Pattern in JAWS

JAWSReactive IO Handlerobjects register themselves with
the Initiation Dispatcher for events, i.e., input and output
through connections established by HTTP requests. TheIni-
tiation Dispatcherinvokes thehandle input notification
hook method of theseReactive IO Handlerobjects when their
associated events occur. The Reactor pattern is used by the
Single-Threaded Web server concurrency model presented in
Section 3.3.2.

The Proactor pattern pattern: This pattern decouples the
asynchronous event demultiplexing and event handler com-
pletion dispatching logic of server applications from the ser-
vice(s) performed in response to events [21]. JAWS uses the
Proactor pattern to perform server-specific processing, such as
parsing the headers of a request, while asynchronously pro-
cessing other I/O events. Figure 7 illustrates the structure of
the Proactor pattern in the context of JAWS. JAWSProactive
IO Handler objects register themselves with theCompletion

6



Singleton

Pipes and Filters

Acceptor

Service Configurator

Adapter

State

Service Configurator

Service Configurator

State

Strategy

Memento

Reactor

Adapter

Proactor

Service Configurator

Active Object

Concurrency Strategy
Framework

Protocol Pipeline Strategy
Framework

I/O Strategy Framework
Cached Virtual Filesystem

Framework

Figure 4: Design Patterns Used in the JAWS Framework

Asynch Op
open()
cacnel()

expire_timers(h)

Timer Queue

IO Handle

cancel_timer(h)
schedule_timer(h)

Proactor

Completion Dispatcher
handle_events()
register_handler(h)
remove_handler(h)

send_file()
recv_file()
send_data()
recv_data()

Proactive IO Handler
handle_read_file()
handle_write_file()

Filecache Handle

Sy
nc

hr
on

ou
s 

IO

R
ea

ct
iv

e 
IO

InputOutput InputOutput Handler Protocol Pipeline

Asynchronous IO

Figure 7: Structure of the Proactor Pattern in JAWS

Dispatcherfor events (i.e., receipt and delivery of files through
connections established by HTTP requests).

The primary difference between the Reactor and Proactor
patterns is that theProactive IO Handlerdefinescompletion
hooks, whereas theReactive IO Handlerdefinesinitiation
hooks. Therefore, when asynchronously invoked operations
like recv file or send file complete, theCompletion
Dispatcherinvokes the appropriate completion hook method
of theseProactive IO Handlerobjects. The Proactor pattern is
used by the asynchronous variant of the Thread Pool in Sec-
tion 3.3.2.

The Active Object pattern: This pattern decouples method
invocation from method execution, allowing methods to run
concurrently [15]. JAWS uses the Active Object pattern to exe-
cute client requests concurrently in separate threads of control.
Figure 8 illustrates the structure of the Active Object pattern
in the context of JAWS.

snmp_request()
dispatch()

Resource Representation

Protocol Pipeline

ftp_request()

for (;;) {

}

m = aq->remove();
dispatch(m);

http_request()

Scheduler

aq->insert(http)

Protocol Handler
http_request()

snmp_request()
ftp_request()

Activation Queue
insert()
remove()

Method Object

delegates

Figure 8: Structure of the Active Object Pattern in JAWS

The Protocol Handler issues requests to theScheduler,
which transforms the request method (such as an HTTP re-
quest) intoMethod Objectsthat are stored on anActivation
Queue. TheScheduler, which runs in a separate thread from

7



the client, dequeues theseMethod Objectsand transforms
them back into method calls to perform the specified protocol.
The Active Object pattern is used in the Thread-per-Request,
Thread Pool, and Thread-per-Session concurrency models de-
scribed in Section 3.3.2.

The Service Configurator pattern: This pattern decouples
the implementation of individual components in a system from
thetimewhen they are configured into the system. JAWS uses
the Service Configurator pattern to dynamically optimize, con-
trol, and reconfigure the behavior of Web server strategies at
installation-time or during run-time [25]. Figure 9 illustrates
the structure of the Service Configurator pattern in the context
of theProtocol Pipeline FiltersandCaching Strategies.

Service Repository
services

LRU Strategy LFU Strategy

Protocol Pipeline

Filter Repository

Cache Strategy Repository

Service
init()
fini()
suspend()
resume()
info()

Filecache

Protocol Handler

...

FilterRead Request

Parse Request Log Request

DLL Cache Strategy...

Figure 9: Structure of the Service Configurator Pattern in
JAWS

The figure depicts how theService Configuratorcan dy-
namically manageDLLs, which are dynamically linked li-
braries. This allows the framework to dynamically configure
different implementations of server strategies at run-time. The
Filter RepositoryandCache Strategy Repositoryinherit func-
tionality from theService Repository. Likewise, the strategy
implementations (such asParse Requestand LRU Strategy)
borrow interfaces from theServicecomponent of the pattern
so that they can be managed dynamically by the repository.

3.2.2 Tactical Patterns

Web servers also utilize manytactical patterns, which are
more ubiquitous and domain-independent than the strategic
patterns described above. The following tactical patterns are
used in JAWS:

The Strategy pattern: This pattern defines a family of algo-
rithms, encapsulates each one, and make them interchangeable

[5]. JAWS uses this pattern extensively to selectively config-
ure different cache replacement strategies without affecting the
core software architecture of the Web server.

The Adapter pattern: This pattern transforms a non-
conforming interface into one that can be used by a client
[5]. JAWS uses this pattern in its I/O Strategy Framework to
uniformly encapsulate the operations of synchronous, asyn-
chronous and reactive I/O operations.

The State pattern: This pattern defines a composite ob-
ject whose behavior depends upon its state [5]. TheEvent
Dispatcher component in JAWS uses the State pattern to
seamlessly support different concurrency strategies and both
synchronous and asynchronous I/O.

The Singleton pattern: This pattern ensures a class only
has one instance and provides a global point of access to it
[5]. JAWS uses a Singleton to ensure that only one copy of its
Cached Virtual Filesystem exists in a Web server process.

In contrast to the strategic patterns described earlier, tactical
pattern have a relatively localized impact on a software de-
sign. For instance, Singleton is a tactical pattern that is often
used to consolidate certain globally accessible resources in a
Web server. Although this pattern is domain-independent and
thus widely applicable, the problem it addresses does not im-
pact Web server software architecture as pervasively as strate-
gic patterns like the Active Object and Reactor. A thorough
understanding of tactical patterns is essential, however, to im-
plement highly flexible software that is resilient to changes in
application requirements and platform characteristics.

The remainder of this section discusses the structure of
JAWS’ frameworks for concurrency, I/O, protocol pipelining,
and file caching. For each framework, we describe the key de-
sign challenges and outline the range of alternatives solution
strategies. Then, we explain how each JAWS framework is
structured to support the configuration of alternative strategy
profiles.

3.3 Concurrency Strategies

3.3.1 Design Challenges

Concurrency strategies impact the design and performance of
a Web system significantly. Empirical studies [3] of exist-
ing Web servers, including Roxen, Apache, PHTTPD, Zeus,
Netscape and the Java Web server, indicate that a large por-
tion of non-I/O related Web server overhead is due to the Web
server’s concurrency strategy. Key overheads include syn-
chronization, thread/process creation, and context switching.
Therefore, choosing an efficient concurrency strategy is cru-
cial to achieve high-performance.

8



3.3.2 Alternative Solution Strategies

Selecting the right concurrency strategy is nontrivial. The
factors influencing the decision are both static and dynamic.
Staticfactors can be determineda priori. These factors include
hardware configuration (e.g., number of processors, amount of
memory, and speed of network connection), OS platform (e.g.,
availability of threads and asynchronous I/O), and Web server
use case (e.g., database interfacing, image server, or HTML
server). Dynamic factors are those detectable and measur-
able conditions that occur during the execution of the system.
These factors include machine load, number of simultaneous
requests, dynamic memory use, and server workload.

Existing Web servers use a wide range of concurrency
strategies, reflecting the numerous factors involved. These
strategies include single-threaded concurrency (e.g., Roxen),
process-based concurrency (e.g., Apache and Zeus), and
multi-threaded concurrency (e.g., PHTTPD, and JAWS). Each
strategy offers positive and negative benefits, which must be
analyzed and evaluated in the context of both static and dy-
namic factors. These tradeoffs are summarized below.

Thread-per-Request: This model handles each request
from a client in a separate thread of control. Thus, as each
request arrives, a new thread is created to process the request.
This design allows each thread to use well understood syn-
chronous I/O mechanisms to read and write the requested file.
Figure 10 illustrates this model in the context of the JAWS
framework. Here, there is anAcceptorthread that iterates
on waiting for a connection, creating aProtocol Handler, and
spawning a new thread so that the handler can continue pro-
cessing the connection.

The advantage of Thread-per-Request is its simplicity and
its ability to exploit parallelism on multi-processor platforms.
Its chief drawback is lack of scalability,i.e., the number of run-
ning threads may grow without bound, exhausting available
memory and CPU resources. Therefore, Thread-per-Request
is adequate for lightly loaded servers with low latency. How-
ever, it may be unsuitable for servers that are accessed fre-
quently to perform time consuming tasks.

Task

Thread-per-Request

Acceptor

Event Dispatcher

Protocol Handler
+ spawns

create

notifies

Protocol
Handler

Protocol
Handler

Protocol
Handler

Figure 10: Thread-per-Request Strategy in JAWS

Thread-per-Session: A sessionis a series of requests that
one client makes to a server. In Thread-per-Session, all of
these requests are submitted through a connection between
each client and a separate thread in the Web server process.
Therefore, this model amortizes both thread creation and con-
nection establishment costs across multiple requests.

Thread-per-Session is less resource intensive than Thread-
per-Request since it does not spawn a separate thread for each
request. However, it is still vulnerable to unbounded resource
consumption as the number of clients grows. Also, the use
of Thread-per-Session requires both the client and server to
support the concept of re-using an established connection with
multiple requests. For example, if both the Web client and
Web server are HTTP/1.1 compliant, Thread-per-Session can
be used between them. However, if either the client or server
only supports HTTP/1.0, then Thread-per-Session degrades to
Thread-per-Request [26, 27].

Thread Pool: In this model, a group of threads are pre-
spawned during Web server initialization. Each thread from
the pool retrieves a task from a job queue. While the thread is
processing the job, it is removed from the pool. Upon finish-
ing the task, the thread is returned to the pool. As illustrated in
Figure 11, the job being retrieved is completion of theAccep-
tor. When it completes, the thread creates aProtocol Handler
and lends its thread of control so that the handler can process
the connection.

Thread Pool has lower overhead than Thread-per-Request
since the cost of thread creation is amortized through pre-
spawning. Moreover, the number of resources the pool can
consume is bounded since the pool size is fixed. However,
if the pool is too small, it can be depleted. This causes new
incoming requests to be dropped or wait indefinitely. Further-
more, if the pool is too large, resource consumption may be no
better than using Thread-per-Request.

Protocol
Handler

Protocol
Handler

Protocol
Handler

+ complete
create

Protocol Handler

Event Dispatcher Thread Pool notifies

Acceptor Task

Figure 11: Thread Pool Strategy in JAWS

Single-Threaded: In this model, all connections and re-
quests are handled by the same thread of control. Simple im-
plementations of Single-Threaded servers process requests it-
eratively. This is usually inadequate for high volume produc-

9



tion servers since subsequent requests are blocked until they
are reached, creating unacceptable delays.

More sophisticated Single-Threaded implementations at-
tempt to process multiple requests concurrently using asyn-
chronous or reactive I/O (which are described in Section 3.4).
Single-threaded concurrency strategies can perform better
than multi-threaded solutions on uni-processor machines that
support asynchronous I/O [1]. Since JAWS’ I/O framework
is orthogonal to its concurrency framework, we consider the
Single-Threaded concurrency strategy as a special case of the
Thread Pool where the pool size is 1.

Experiments in [1] and [3] demonstrate that the choice of
concurrency and event dispatching strategies significantly af-
fect the performance of Web servers that experience varying
load conditions. In particular, no single server strategy pro-
vides optimal performance for all cases. Thus, a server frame-
work should provide at least two degrees of freedom:

1. Static adaptivity– The framework should allow the Web
server developers to select the concurrency strategy that
best meets the static requirements of the system. For ex-
ample, a multi-processor machine may be more suited
to multi-threaded concurrency than a uni-processor ma-
chine.

2. Dynamic adaptivity– The framework should allow its
concurrency strategy to adapt dynamically to current
server conditions to achieve optimal performance in the
presence of dynamic server load conditions. For instance,
in order to accommodate unanticipated load usage, it may
be necessary to increase the number of available threads
in the thread pool.

3.3.3 JAWS Concurrency Strategy Framework

As discussed above, no single concurrency strategy performs
optimally under for all conditions. However, not all platforms
can make effective use of all available concurrency strate-
gies. To address these issues, the JAWS Concurrency Strategy
Framework supports both static and dynamic adaptivity with
respect to its concurrency and event dispatching strategies.

Figure 12 illustrates the OO design of JAWS’ Concur-
rency Strategy framework. TheEvent DispatcherandCon-
currency objects interact according to theState pattern.
As illustrated, server can be changed to eitherThread-
per-Connectionor Thread Poolbetween successive calls to
server->dispatch() , allowing different concurrency
mechanisms to take effect. TheThread-per-Connectionstrat-
egy is an abstraction over both the Thread-per-Request and
Thread-per-Session strategies discussed above. Each concur-
rency mechanism makes use of aTask. Depending on the
choice of concurrency, aTaskmay represent a singleActive

acceptor->accept()

Event Dispatcher
dispatch()

server

server->dispatch()

Concurrency
dispatch()

task

Thread Pool
dispatch()dispatch()

Thread-per-Connection

task->activate()
task->accept()

task->enque()

handleracceptor

accept()

Acceptor
open()

Protocol Handler

Task
accept()

activate()
enque()
deque()
svc()

Figure 12: Structure of the Concurrency Strategy Framework

Object, or a collection ofActive Objects. The behavior of
theConcurrencyobject follows theAcceptorpattern. This ar-
chitecture enables the server developer to integrate alternate
concurrency strategies. With the aid of a strategy profile, the
server can dynamically choose different strategies at run-time
to achieve optimal performance.

3.4 I/O Strategies

3.4.1 Design Challenges

Another key challenge for Web server developers is to devise
efficient data retrieval and delivery strategies, collectively re-
ferred to asI/O. The issues surrounding efficient I/O can be
quite challenging. Often, a system developer must resolve
how to arrange multiple I/O operations to utilize concurrency
available from the hardware/software platform. For instance,
a high-performance Web server should simultaneously trans-
fer files to and from the network, while concurrently parsing
newly obtained incoming requests from other clients.

Certain types of I/O operations have different requirements
than others. For example, a Web transaction involving mon-
etary fund transfer may need to runsynchronously, i.e., to
conclude before the user can continue. Conversely, Web ac-
cesses to static information, such as CGI-based search engine
queries, may runasynchronouslysince they can be cancelled
at any time. Resolving these various requirements have led to
different strategies for performing I/O.

3.4.2 Alternative Solution Strategies

As indicated above, various factors influence which I/O strat-
egy to choose. Web servers can be designed to use several
different I/O strategies, includingsynchronous, reactive, and

10



asynchronousI/O. The relative benefits of using these strate-
gies are discussed below.

The synchronous I/O strategy: Synchronous I/O describes
the model of I/O interaction between a Web server process
and the kernel. In this model, the kernel does not return the
thread of control to the server until the requested I/O operation
either completes, completes partially, or fails. [1] shows that
synchronous I/O usually performs well for small file transfers
on Windows NT over high-speed ATM networks.

Synchronous I/O is well known to UNIX server program-
mers and is arguably the easiest to use. However, there are
disadvantages to this model. First, if combined with a Single-
Threaded concurrency strategy, it is not possible to perform
multiple synchronous I/O operations simultaneously. Second,
when using multiple threads (or processes), it is still possible
for an I/O request to block indefinitely. Thus, finite resources
(such as socket handles or file descriptors) may become ex-
hausted, making the server unresponsive.

The reactive I/O strategy: Early versions of UNIX pro-
vided synchronous I/O exclusively. System V UNIX intro-
duced non-blocking I/O to avoid the blocking problem. How-
ever, non-blocking I/O requires the Web server to poll the ker-
nel to discover if any input is available [11]. Reactive I/O
alleviates the blocking problems of synchronous I/O without
resorting to polling. In this model, a Web server uses an
OS event demultiplexing system call (e.g. select in UNIX
or WaitForMultipleObjects in Win32) to determine
which socket handles can perform I/O. When the call returns,
the server can perform I/O on the returned handles,i.e., the
serverreactsto multiple events occurring on separate handles.

Reactive I/O is widely used by event-driven applications
(such as X windows) and has been codified as theReactor
design pattern [14]. Unless reactive I/O is carefully encap-
sulated, however, the technique is error-prone due to the com-
plexity of managing multiple I/O handles. Moreover, reactive
I/O may not make effective use of multiple CPUs.

The asynchronous I/O strategy: Asynchronous I/O sim-
plifies the de-multiplexing of multiple events in one or more
threads of control without blocking the Web server. When a
Web server initiates an I/O operation, the kernel runs the oper-
ation asynchronously to completion while the server processes
other requests. For instance, theTransmitFile operation
in Windows NT can transfer an entire file from the server to
the client asynchronously.

The advantage of asynchronous I/O is that the Web server
need not block on I/O requests since they complete asyn-
chronously. This allows the server to scale efficiently for op-
erations with high I/O latency, such as large file transfers. The
disadvantage of asynchronous I/O is that it is not available on
many OS platforms (particularly UNIX). In addition, writing

asynchronous programs can be more complicated than writing
synchronous programs [21, 22, 28].

3.4.3 JAWS I/O Strategy Framework

Empirical studies in [1] systematically subjected different
server strategies to various load conditions. The results re-
veal that each I/O strategy behaves differently under differ-
ent load conditions. Furthermore, no single I/O strategy per-
formed optimally under all load conditions. The JAWS I/O
Strategy Framework addresses this issue by allowing the I/O
strategy to adapt dynamically to run-time server conditions.
Furthermore, if a new OS provides a custom I/O mechanism
(such as, asynchronous scatter/gather I/O) that can potentially
provide better performance, the JAWS I/O Strategy framework
can easily be adapted to use it.

send_file(fh)
Proactor->

io->send_file("index.html")

send_file(fh)
Reactor->

write(fh)

Synchronous IO
receive_file()
receive_data()

send_data()
send_file()

Asynchronous IO

send_data()

receive_file()
receive_data()
send_file()

Proactor

Reactive IO
receive_file()

send_data()

receive_data()
send_file()

Reactor

InputOutput Handler
io

error()
complete()

receive_file()

send_data()
send_file()
receive_data()

ioh
InputOutput

fh

receive_file()

send_data()

receive_data()
send_file()

io
Perform Request
svc()

Filecache Handle

Figure 13: Structure of the I/O Strategy Framework

Figure 13 illustrates the structure of the I/O Strategy Frame-
work provided by JAWS.Perform Requestis a Filter that
derives fromProtocol Pipeline, which is explained in Sec-
tion 3.5. In this example,Perform Requestissues an I/O re-
quest to itsInputOutput Handler. The InputOutput Handler
delegates I/O requests made to it to theInputOutputobject.

The JAWS framework providesSynchronous, Asynchronous
andReactive IOcomponent implementations derived fromIn-
putOutput. Each I/O strategy issues requests using the appro-
priate mechanism. For instance, theSynchronous IOcompo-
nent utilizes the traditional blockingread andwrite system
calls; theAsynchronous IOperforms requests according to the
Proactor pattern [21]; andReactive IOutilizes theReactor
pattern [14].

11



An InputOutputcomponent is created with respect to the
stream associated by theAcceptorfrom theTaskcomponent
described in Section 3.3. File operations are performed with
respect to aFilecache Handlecomponent, described in Sec-
tion 3.6. For example, asend file operation sends the file
represented by aFilecache Handleto the stream returned by
theAcceptor.

3.5 Protocol Pipeline Strategies

3.5.1 Design Challenges

Early Web servers, like NCSA’s originalhttpd , performed
very little file processing. They simply retrieved the requested
file and transfered its contents to the requester. However, mod-
ern Web servers perform data processing other than file re-
trieval. For instance, the HTTP/1.0 protocol can be used to de-
termine various file characteristics, such as the file type (e.g.,
text, image, audio or video), the file encoding and compres-
sion types, the file size and its date of last modification. This
information is returned to requesters via an HTTP header.

With the introduction of CGI, Web servers have been able to
perform an even wider variety of tasks. These include search
engines, map generation, interfacing with database systems,
and secure commercial and financial transactions. However,
a limitation of CGI is that the server must spawn a newpro-
cessto extend server functionality. It is typical for each re-
quest requiring CGI to spawn its own process to handle it,
causing the server to behave as aProcess-per-Requestserver,
which is a performance inhibitor [3]. The challenge for a high-
performance Web server framework is to allow developers to
extend server functionality without resorting to CGI processes.

3.5.2 Alternative Solution Strategies

Most Web servers conceptually process or transform a stream
of data in several stages. For example, the stages of process-
ing an HTTP/1.0 request can be organized as a sequence of
tasks. These tasks involve (1) reading in the request, (2) pars-
ing the request, (3) parsing the request header information, (4)
performing the request, and (5) logging the request. This se-
quence forms apipelineof tasks that manipulate an incoming
request, as shown in Figure 14.

The tasks performed to process HTTP/1.0 requests have a
fixed structure. Thus, Figure 14 illustrates astatic pipeline
configuration. Static configurations are useful for server ex-
tensions that are requested to perform a limited number of pro-
cessing operations. If these operations are relatively few and
knowna priori, they can be pre-fabricated and used directly
during the execution of the server. Examples of static process-
ing operations include: marshalling and demarshaling data,
data demultiplexing through custom Web protocol layers, and

Parse
Request

Parse
Headers

Perform
Request

Log
Request

CONNECTION

USER_AGENT

HOST

ACCEPT

ACCEPT

ACCEPT

Keep-Alive

Mothra/0.1

any.net

image/gif

image/jpeg

*/*

Date: Thu, 09 Oct 1997 01:26:00 GMT

Server: JAWS/1.0

Content-Length: 12345

Content-Type: text/html

<HTML>

<TITLE>Homepage</TITLE>

<H1>Welcome</H1>

...

</HTML>

HTTP/1.0 200 OK

Last-Modified: Wed, 08 Oct 1997 ...

GET /~jxh/home.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mothra/0.1
Host: any.net
Accept: image/gif, image/jpeg, */*

any.net - -
[09/Oct/1997:01:26:00 -0500]
"GET /~jxh/home.html HTTP/1.0"

GET

HTTP/1.0

/users/jxh/public_html/home.html

Read
Request

Figure 14: The Pipeline of Tasks to Perform for HTTP Re-
quests

compiling applet code. Incorporating static pipelines into the
server makes it possible to extend server functionality without
resorting to spawning external processes. The Apache Web
server provides this type of extensibility by allowingmodules,
which encapsulate static processing, to be dynamically linked
to the Web server.

However, situations may arise that require a pipeline of op-
erations to be configureddynamically. These occur when Web
server extensions involve arbitrary processing pipeline config-
urations, so the number is essentially unlimited. This can hap-
pen if there is a large number of intermediary pipeline com-
ponents that can be arranged into arbitrary sequences. If the
operations on the data are known only during the execution of
the program, dynamic construction of the pipeline from com-
ponents provides an economical solution. There are many ex-
amples of when dynamic pipelines may be useful, including
the following:

Advanced search engines: Search engines may construct
data filters dynamically depending on the provided query
string. For instance, a query such as “(performance AND
(NOT symphonic)) ”, requesting for Web pages contain-
ing the word “performance” but not the word “symphonic”,
could be implemented as a pipeline of a positive match com-
ponent coupled with a negative match component.

Image servers: Image servers may construct filters dynami-
cally depending on the operations requested by the user. As an
example, a user may request that the image be cropped, scaled,
rotated, and dithered.

12



Adaptive Web content: Web content can be dynamically
delivered dependent on characteristics of the end-user. For
example, a Personal Digital Assistant (PDA) should receive
Web content overviews and smaller images, whereas a work-
station could receive full multimedia enriched pages. Like-
wise, a home computer user may choose to block certain types
of content.

Existing solutions that allow server developers to enhance
Web server functionality dynamically are either too applica-
tion specific, or too generic. For example, Netscape’s NetDy-
namics focuses entirely on integrating Web servers with exist-
ing database applications. Conversely, Java-based Web servers
(such as Sun’s Java Server and W3C’s Jigsaw) allow for arbi-
trary server extensibility, since Java applications are capable of
dynamically executing arbitrary Java code. However, the prob-
lem of how to provide a dynamically configurable pipeline of
operations is still left to be resolved by the server developers.
Thus, developers are left to custom engineer their own solu-
tions without the benefits of an application framework based
on design patterns.

Structuring a server to process data in logical stages is
known as thePipes and Filterspattern [23]. While the pattern
helps developers recognize how to organize the components
of a processing pipeline, it does not provide a framework for
doing so. Without one, the task of adapting a custom server
to efficiently adopt new protocol features may be too costly,
difficult, or result in high-maintenance code.

3.5.3 JAWS Protocol Pipeline Strategy Framework

The preceding discussion motivated the need for developers to
extend server functionality without resorting to external pro-
cesses. We also described how thePipes and Filterspattern
can be applied to create static and and dynamic information
processing pipelines. JAWS’Protocol Pipeline Framework
is designed to simplify the effort required to program these
pipelines. This is accomplished by providingtask skeletons
of pipeline components. When the developer completes the
pipeline component logic, the component can then be com-
posed with other components to create a pipeline. The com-
pleted components are stored into a repository so that they are
accessible while the server is running. This enables the server
framework to dynamically create pipelines as necessary while
the Web server executes.

Figure 15 provides an illustration of the structure of the
framework. The figure depicts aProtocol Handlerthat uti-
lizes theProtocol Pipelineto process incoming requests. A
Filter component derives fromProtocol Pipeline, and serves
as a task skeleton for the pipeline component.

Pipeline implementors derive fromFilter to create pipeline
components. Thesvc method of each pipeline component

log()
Filter::svc()

perform()
Filter::svc()

Parse Request
svc()
parse()

Filter::svc()
parse()

Log Request
svc()
log()

Perform Request
svc()
perform()

Parse Headers
svc()
parse()

io->receive_data()

Filter
svc() component->svc()

Read Request
svc()

pipe

component

io
Protocol Pipeline
svc()

InputOutput HandlerProtocol Handler

Figure 15: Structure of the Protocol Pipeline Framework

first calls into the parentsvc , which retrieves the data to
be processed, and then performs its component specific logic
upon the data. The parent invokes thesvc method of the pre-
ceding component. Thus, the composition of the components
causes a chain of calls pulling data through the pipeline. The
chain ends at the component responsible for retrieving the raw
input, which derives directly fromProtocol Pipelineabstrac-
tion.

3.6 File Caching Strategies

3.6.1 Design Challenges

The results in [3] show that accessing the filesystem is a sig-
nificant source of overhead for Web servers. Most distributed
applications can benefit from caching, and Web servers are no
exception. Therefore, it is not surprising that research on Web
server performance focuses on file caching to achieve better
performance [29, 30].

A cache is a storage medium that provides more efficient
retrieval than the medium on which the desired information
is normally located. In the case of a Web server, the cache
resides in the server’s main memory. Since memory is a lim-
ited resource, files only reside in the cache temporarily. Thus,
the issues surrounding optimal cache performance are driven
by quantity (how much information should be stored in the
cache) andduration(how long information should stay in the
cache).

13



3.6.2 Alternative Solution Strategies

Quantity and duration are strongly influenced by the size allo-
cated to the cache. If memory is scarce, it may by undesirable
to cache a few large files since caching many smaller files will
give better average performance. If more memory is available,
caching larger files may be feasible.

Least Recently Used (LRU) caching: This cache replace-
ment strategy assumes most requests for cached files have
temporallocality, i.e., a requested file will soon be requested
again. Thus, when the act of inserting a new file into the
cached requires the removal of another file, the file that was
least recently usedis removed. This strategy is relevant to
Web systems that serve content with temporal properties (such
as daily news reports and stock quotes).

Least Frequently Used (LFU) caching: This cache re-
placement strategy assumes files that have been requested fre-
quently are more likely to be requested again, another form of
temporal locality. Thus, cache files that have beenleast fre-
quently usedare the first to be replaced in the cache. This
strategy is relevant to Web systems with relatively static con-
tent, such as Lexis-Nexis and other databases of historical fact.

Hinted caching: This form of caching is proposed in [29].
This strategy stems from analysis of Web page retrieval pat-
terns that seem to indicate that Web pages havespatial local-
ity. That is, a user browsing a Web page is likely to browse the
links within the page. Hinted caching is related topre-fetching,
though [29] suggests that the HTTP protocol be altered to al-
low statistical information about the links (orhints) to be sent
back to the requester. This modification allows the client to
decide which pages to pre-fetch. The same statistical informa-
tion can be used to allow the server to determine which pages
to pre-cache.

Structured caching: This refers to caches that have knowl-
edge of the data being cached. For HTML pages, structured
caching refers to storing the cached files to support hierarchi-
cal browsing of a single Web page. Thus, the cache takes
advantage of the structure that is present in a Web page to
determine the most relevant portions to be transmitted to the
client (e.g., a top level view of the page). This can potentially
speed up Web access for clients with limited bandwidth and
main memory, such as PDAs. Structured caching is related to
the use of B-tree structures in databases, which minimize the
number of disk accesses required to retrieve data for a query.

3.6.3 JAWS Cached Virtual Filesystem Framework

The solutions described above present several strategies for
implementing a file cache. However, employing a fixed
caching strategy does not always provide optimal performance

[31]. The JAWS Cached Virtual Filesystem Framework ad-
dresses this issue in two ways. For one, it allows the cache
replacement algorithms and cache strategy to be easily inte-
grated into the framework. Furthermore, by utilizing strat-
egy profiles, these algorithms and strategies can be dynami-
cally selected in order to optimize performance under chang-
ing server load conditions.

Figure 16 illustrates to components in JAWS that
collaborate to make the Cached Virtual Filesystem Frame-

cvf->open(file,fo)fh->open(file)

LRU Strategy
insert()

LFU Strategy
insert()

replace least
recently used

replace least
frequently used

ht
Filecache
find()
fetch()
remove()
create()
finish()

rw_lock[]

Cache Strategy
insert()

InputOutput
receive_file()
send_file()

filename

fh
Filecache Handle
handle()
mapaddr()
name()
size()

open()

fo

cvf

cache

handle()
mapaddr()
name()
size()

Filecache Object

Hashtable

Figure 16: Structure of the Cached Virtual Filesystem

work. TheInputOutputobject instantiates aFilecache Handle,
through which file interactions, such as reading and writing,
are conducted. TheFilecache Handlereferences aFilecache
Object, which is managed by theFilecachecomponent. The
Filecache Objectmaintains information that is shared across
all handles that reference it, such as the base address of the
memory mapped file. TheFilecachecomponent is the heart of
the Cached Virtual Filesystem Framework. It managesFile-
cache Objectsthrough hashing, and follows theStatepattern
as it is choosing aCache Strategyto fulfill the file request. The
Cache Strategycomponent utilizes theStrategypattern to al-
low different cache replacement algorithms, such as LRU and
LFU, to be interchangeable.

3.7 The JAWS Framework Revisited

Section 2 motivated the need for frameworks and patterns to
build high-performance Web servers. We used JAWS as an
example of how frameworks and patterns can enable program-
mers to avoid common pitfalls of developing Web server soft-
ware. Together, patterns and frameworks support the reuse of
integrated components and design abstractions [4].

14



Section 3 has described how the JAWS framework is archi-
tected and the strategies it provides. To articulate the organi-
zation of JAWS’ design, we outlined the strategic and tactical
design patterns that had the largest impact on the JAWS frame-
work. TheAcceptor, Reactor, Proactor, Active Object, and
Service Configuratorpatterns are among the most significant
strategic patterns. TheStrategy, Adapter, State, andSingleton
patterns are influential tactical patterns used in JAWS.

These patterns were chosen to provide the scaffolding of
the JAWS architecture. The patterns described the necessary
collaborating entities, which took the form of smaller com-
ponents. From this, the major components of the framework,
(i.e., theConcurrency Strategy, IO Strategy, Protocol Pipeline,
and theCached Virtual Filesystemframeworks), were con-
structed and integrated into a skeleton application. Developers
can use this skeleton to construct specialized Web server soft-
ware systems by customizing certain sub-components of the
framework (e.g., Filters andCache Strategies).

Figure 17 shows how all the patterns and components of
the JAWS framework are integrated. The JAWS framework
promotes the construction of high-performance Web servers
in the following ways. First, it provides several pre-configured
concurrency and I/O dispatching models, a file cache offering
standard cache replacement strategies, and a framework for
implementing protocol pipelines. Second, the patterns used in
the JAWS framework help to decouple Web server strategies
from (1) implementation details and (2) configuration time.
This decoupling enables new strategies to be integrated eas-
ily into JAWS. Finally, JAWS is designed to allow the server
to alter its behavior statically and dynamically. For instance,
with an appropriate strategy profile, JAWS can accommodate
different conditions that may occur during the run-time exe-
cution of a Web server. By applying these extensible strate-
gies and components with dynamic adaptation, JAWS simpli-
fies the development and configuration of high-performance
Web servers.

4 Web Server Benchmarking Testbed
and Empirical Results

Section 3 described the patterns and framework components
that enable JAWS to adapt statically and dynamically to its en-
vironment. Although this flexibility is beneficial, the success
of a Web server ultimately depends on how well it meets the
performance demands of the Internet, as well as corporate In-
tranets. Satisfying these demands requires a thorough under-
standing of the key factors that affect Web server performance.

This section describes performance results obtained while
systematically applying different load conditions on different
configurations of JAWS. The results illustrate how no sin-

gle configuration performs optimally for all load conditions.
This demonstrates the need for flexible frameworks like JAWS
that can be reconfigured to achieve optimal performance under
changing load conditions.

4.1 Hardware Testbed

Our hardware testbed is shown in Figure 18. The testbed con-

������ ������
��
��
��
��

Start

���� ������

Start

Request
Lifecycle

��
��
��
��ATM Switch

Millennia PRO2 plus Millennia PRO2 plus

Requests

Web Client Web Server

Figure 18: Benchmarking Testbed Overview

sists of two Micron Millennia PRO2 plus workstations. Each
PRO2 has 128 MB of RAM and is equipped with 2 Pen-
tiumPro processors. The client machine has a clock speed of
200 MHz, while the server machine runs 180 MHz. In ad-
dition, each PRO2 has an ENI-155P-MF-S ATM card made
by Efficient Networks, Inc. and is driven by Orca 3.01 driver
software. The two workstations were connected via an ATM
network running through a FORE Systems ASX-200BX, with
a maximum bandwidth of 622 Mbps. However, due to lim-
itations of LAN emulation mode, the peak bandwidth of our
testbed is approximately 120 Mbps.

4.2 Software Request Generator

We used the WebSTONE [32] v2.0 benchmarking software to
collect client- and server-side metrics. These metrics included
average server throughput, andaverage client latency. Web-
STONE is a standard benchmarking utility, capable of gener-
ating load requests that simulate typical Web server file access
patterns. Our experiments used WebSTONE to generate loads
and gather statistics for particular file sizes in order to deter-
mine the impacts of different concurrency and event dispatch-
ing strategies.

The file access pattern used in the tests is shown in Table 1.
This table represents actual load conditions on popular servers,
based on a study of file access patterns conducted by

15



Protocol Handler

Acceptor

Filter

Event Dispatcher

Parse Headers

Concurrency Task

Protocol Pipeline

Service Configurator

Log Request

State

Adapter

Adapter

Perform Request

InputOutputInputOutput Handler

Parse Request

State

Filecache Handle

Pipes and FiltersService ConfiguratorActive ObjectAcceptor Service Configurator

StrategySingleton

Reactor

Service ConfiguratorMemento
Proactor

I/O Strategy Framework

Concurrency Strategy Framework Protocol Pipeline Strategy Framework

Cached Virtual Filesystem Framework

Thread-per-Connection Thread Pool

Read Request

Filecache Object

LRU Strategy LFU Strategy

HashtableFilecacheCache Strategy

Synchronous IO Asynchronous IO Reactive IO

Figure 17: The JAWS Web Server Framework

Document Size Frequency
500 bytes 35%
5 Kbytes 50%
50 Kbytes 14%
5 Mbytes 1%

Table 1: File Access Patterns

SPEC [33].

4.3 Experimental Results

The results presented below compare the performance of sev-
eral different adaptations of the JAWS Web server. We dis-
cuss the effect of different event dispatching and I/O models
on throughput and latency. For this experiment, three adapta-
tions of JAWS were used.

1. Synchronous Thread-per-Request:In this adaptation,
JAWS was configured to spawn a new thread to handle
each incoming request, and to utilize synchronous I/O.

2. Synchronous Thread Pool: JAWS was configured to
pre-spawn a thread pool to handle the incoming requests,
while utilizing synchronous I/O.

3. Asynchronous Thread Pool: For this configuration,
JAWS was configured to pre-spawn a thread pool to han-
dle incoming requests, while utilizingTransmitFile
for asynchronous I/O.TransmitFile is a custom

Win32 function that sends file data over a network con-
nection, either synchronously or asynchronously.

Throughput is defined as the average number of bits re-
ceived per second by the client. A high-resolution timer for
throughput measurement was started before the client bench-
marking software sent the HTTP request. The high-resolution
timer stops just after the connection is closed at the client end.
The number of bits received includes the HTML headers sent
by the server.

Latency is defined as the average amount of delay in mil-
liseconds seen by the client from the time it sends the request
to the time it completely receives the file. It measures how
long an end user must wait after sending an HTTPGETrequest
to a Web server, and before the content begins to arrive at the
client. The timer for latency measurement is started just before
the client benchmarking software sends the HTTP request and
stops just after the client finishes receiving the requested file
from the server.

The five graphs shown for each of throughput and la-
tency represent different file sizes used in each experiment,
500 bytes through 5 Mbytes by factors of 10. These files sizes
represent the spectrum of files sizes benchmarked in our ex-
periments, in order to discover what impact file size has on
performance.

4.3.1 Throughput Comparisons

Figures 19-23 demonstrate the variance of throughput as the
size of the requested file and the server hit rate are systemat-

16



ically increased. As expected, the throughput for each con-
nection generally degrades as the connections per second in-
creases. This stems from the growing number of simultaneous
connections being maintained, which decreases the throughput
per connection.

As shown in Figure 21, the throughput of Thread-per-
Request can degrade rapidly for smaller files as the connection
load increases. In contrast, the throughput of the synchronous
Thread Pool implementation degrade more gracefully. The
reason for this difference is that Thread-per-Request incurs
higher thread creation overhead since a new thread is spawned
for eachGETrequest. In contrast, thread creation overhead in
the Thread Pool strategy is amortized by pre-spawning threads
when the server begins execution.

The results in figures 19-23 illustrate thatTransmitFile
performs extremely poorly for small files (i.e., < 50
Kbytes). Our experiments indicate that the performance of
TransmitFile depends directly upon the number of simul-
taneous requests. We believe that during heavy server loads
(i.e., high hit rates),TransmitFile is forced to wait while
the kernel services incoming requests. This creates a high
number of simultaneous connections, degrading server perfor-
mance.

As the size of the file grows, however,TransmitFile
rapidly outperforms the synchronous dispatching models. For
instance, at heavy loads with the 5 Mbyte file (shown in
Figure 23), it outperforms the next closest model by nearly
40%. TransmitFile is optimized to take advantage of
Windows NT kernel features, thereby reducing the number of
data copies and context switches.

4.3.2 Latency Comparisons

Figures 19-23 demonstrate the variance of latency perfor-
mance as the size of the requested file and the server hit rate in-
crease. As expected, as the connections per second increases,
the latency generally increases, as well. This reflects the ad-
ditional load placed on the server, which reduces its ability to
service new client requests.

As before, TransmitFile performs extremely poorly
for small files. However, as the file size grows, its latency
rapidly improves relative to synchronous dispatching during
light loads.

4.3.3 Summary of Benchmark Results

As illustrated in the results in this section, there is signif-
icant variance in throughput and latency depending on the
concurrency and event dispatching mechanisms. For small
files, the synchronous Thread Pool strategy provides bet-
ter overall performance. Under moderate loads, the syn-
chronous event dispatching model provides slightly better la-

tency than the asynchronous model. Under heavy loads and
with large file transfers, however, the asynchronous model us-
ing TransmitFile provides better quality of service. Thus,
under Windows NT, an optimal Web server should adapt itself
to either event dispatching and file I/O model, depending on
the server’s workload and distribution of file requests.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Thread/Request
Thread Pool
TransmitFile

0

50

100

150

200

250

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

Thread/Request
Thread Pool
TransmitFile

Figure 19: Experiment Results from 500 Byte File

0

2

4

6

8

10

12

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Thread/Request
Thread Pool
TransmitFile

0

50

100

150

200

250

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

Thread/Request
Thread Pool
TransmitFile

Figure 20: Experiment Results from 5K File

0

10

20

30

40

50

60

70

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Thread/Request
Thread Pool
TransmitFile

0

50

100

150

200

250

300

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

Thread/Request
Thread Pool
TransmitFile

Figure 21: Experiment Results from 50K File

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Thread/Request
Thread Pool
TransmitFile

0

100

200

300

400

500

600

700

800

900

1000

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

Thread/Request
Thread Pool
TransmitFile

Figure 22: Experiment Results from 500K File

0

20

40

60

80

100

120

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Thread/Request
Thread Pool
TransmitFile

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

Thread/Request
Thread Pool
TransmitFile

Figure 23: Experiment Results from 5M File

17



4.4 A Summary of Techniques for Optimizing
Web Servers

From our research, we have found that it is possible to improve
server performance with a superior server design (a similar ob-
servation was made in [34]). Thus, while it is undeniable that a
“hard-coded” server (i.e., one that uses fixed concurrency, I/O,
and caching strategies) can provide excellent performance, a
flexible server framework, such as JAWS, does not necessarily
correlate with poor performance.

This section summarizes the most significant determinants
of Web server performance. These observations are based on
our studies [1, 3] of existing Web server designs and imple-
mentation strategies, as well as our experience tuning JAWS.
These studies reveal the primary targets for optimizations to
develop high performance Web servers.

Lightweight concurrency: Process-based concurrency
mechanisms can yield poor performance, as seen in [3].
In multi-processor systems, a process-based concurrency
mechanism might perform well, especially when thenumber
of processes are equal to the number of processors. In this
case, each processor can run a Web server process and context
switching overhead is minimized.

In general, processes should bepre-forkedto avoid the over-
head of dynamic process creation. However, it is preferable to
use lightweight concurrency mechanisms (e.g., using POSIX
threads) to minimize context switching overhead. As with pro-
cesses, dynamic thread creation overhead can be avoided by
pre-spawningthreads into a pool at server start-up.

Specialized OS features: Often times, OS vendors will
provide specialized programming interfaces which may give
better performance. For example, Windows NT 4.0 pro-
vides theTransmitFile function, which uses the Windows
NT virtual memory cache manager to retrieve the file data.
TransmitFile allows data to be prepended and appended
before and after the file data, respectively. This is particularly
well-suited for Web servers since they typically send HTTP
header data with the requested file. Hence, all the data to the
client can be sent in a single system call, which minimizes
mode switching overhead.

Usually, these interfaces must be benchmarked carefully
against standard APIs to understand the conditions for which
the special interface will give better performance. In the case
of TransmitFile , our empirical data indicate that the asyn-
chronous form ofTransmitFile is the most efficient mech-
anism for transferring large files over sockets on Windows NT,
as shown in Section 4.

Request lifecycle system call overhead: The request life-
cycle in a Web server is defined as the sequence of instruc-
tions that must be executed by the server after it receives an

HTTP request from the client and before it sends out the re-
quested file. The time taken to execute the request lifecycle
directly impacts the latency observed by clients. Therefore, it
is important to minimize system call overhead and other pro-
cessing in this path. The following describes various places in
Web servers where such overhead can be reduced.
� Reducing synchronization: When dealing with concur-
rency, synchronization is often needed to serialize access
to shared resources (such as the Cached Virtual Filesys-
tem). However, the use synchronization penalizes perfor-
mance. Thus, it is important to minimize the number of locks
acquired (or released) during the request lifecycle. In [3], it is
shown that servers that average a lower number of lock oper-
ations per request perform much better than servers that per-
form a high number of lock operations.

In some cases, acquiring and releasing locks can also result
in preemption. Thus, if a thread reads in an HTTP request
and then attempts to acquire a lock, it might be preempted,
and may wait for a relatively long time before it is dispatched
again. This increases the latency incurred by a Web client.
� Caching files: If the Web server does not perform file
caching, at least two sources of overhead are incurred. First,
there is overhead from theopen system call. Second, there
is accumulated overhead from iterative use of theread and
write system calls to access the filesystem, unless the file
is small enough to be retrieved or saved in a single call.
Caching can be effectively performed using memory-mapped
files, available in most forms of UNIX and on Windows NT.
� Using “gather-write”: On UNIX systems, thewritev
system call allows multiple buffers to be written to a device in
a single system call. This is useful for Web servers since the
typical server response contains a number of header lines in
addition to the requested file. By using “gather-write”, header
lines need not be concatenated into a single buffer before being
sent, avoiding unnecessary data-copying.
� Pre-computing HTTP responses:Typical HTTP requests
result in the server sending back the HTTP header, which con-
tains the HTTP success code and the MIME type of the file re-
quested, (e.g., text/plain ). Since such responses are part
of the expected case they can bepre-computed. When a file
enters the cache, the corresponding HTTP response can also
be stored along with the file. When an HTTP request arrives,
the header is thus directly available in the cache.

Logging overhead: Most Web servers support features that
allow administrators to log the number of hits on various pages
they serve. Logging is often done to estimate the load on the
server at various times during the day. It is also commonly
performed for commercial reasons,e.g., Web sites might base
their advertising rates on page hit frequencies. However, log-
ging HTTP requests produces significant overhead for the fol-
lowing reasons:

18



� Filesystem access:A heavily loaded Web server makes a
significant number of I/O calls, which stresses the filesystem
and underlying hardware. Writing data to log files increases
this stress and thus contributes to lower performance. Keeping
log files and the HTTP files on separate filesystems and, if
possible, on separate physical devices can limit this overhead.
� Synchronization overhead:A typical Web server has mul-
tiple active threads or processes serving requests. If these
threads/processes are required to log requests to a common
shared log file, access to this log file needs to be synchronized,
i.e., at most one thread/process can write to the shared log file
at any time. This synchronization introduces additional over-
head and is thus detrimental to performance. This overhead
can be reduced by keeping multiple independent log files. If
memory buffers are used, these should be stored inthread-
specific storageto eliminate locking contention.
� Reverse hostname lookups:The IP address of the client
is available to a Web server locally. However, the hostname
is typically more useful information in the log file. Thus, the
IP address of the client needs to be converted into the corre-
sponding host name. This is typically done usingreverse DNS
lookups. Since these lookups often involve network I/O, they
are very costly. Therefore, they should be avoided or com-
pleted asynchronously (using threads or asynchronous I/O).
� Ident lookups: The Ident protocol [35] allows a Web server
to obtain the user name for a given HTTP connection. This
typically involves setting up a new TCP/IP connection to the
user’s machine and thus involves a round-trip delay. Also, the
ident lookup must be performed while the HTTP connection
is active and therefore cannot be performed lazily. To achieve
high performance, such lookups must thus be avoided when-
ever possible.

Transport layer optimizations: The following transport
layer options should be configured to improve Web server per-
formance over high-speed networks:
� The listen backlog: Most TCP implementations buffer in-
coming HTTP connections on a kernel-resident “listen queue”
so that servers can dequeue them for servicing usingaccept .
If the TCP listen queue exceeds the “backlog” parameter to
the listen call, new connections are refused by TCP. Thus,
if the volume of incoming connections is expected to be high,
the capacity of the kernel queue should be increased by giving
a higher backlog parameter (which may require modifications
to the OS kernel).
� Socket send buffers:Associated with every socket is a send
buffer, which holds data sent by the server, while it is be-
ing transmitted across the network. For high performance,
it should be set to the highest permissible limit (i.e., large
buffers). On Solaris, this limit is 64k.
� Nagle’s algorithm (RFC 896): Some TCP/IP implementa-
tions implement Nagle’s Algorithm to avoidcongestion. This

can often result in data getting delayed by the network layer
before it is actually sent over the network. Several latency-
critical applications (such as X-Windows) disable this algo-
rithm, (e.g., Solaris supports theTCP NODELAYsocket op-
tion). Disabling this algorithm can improve latency by forcing
the network layer to send packets out as soon as possible.

5 Concluding Remarks

As computing power and network bandwidth have increased
dramatically over the past decade, so has the complexity in-
volved in developing communication software. In particu-
lar, the design and implementation of high-performance Web
server software is expensive and error-prone. Much of the cost
and effort stems from the continual rediscovery and reinven-
tion of fundamental design patterns and framework compo-
nents. Moreover, the growing heterogeneity of hardware ar-
chitectures and diversity of OS and network platforms make it
hard to build correct, portable, and efficient Web servers from
scratch.

Building a high-performance Web server requires an un-
derstanding of the performance impact of each subsystem in
the server,e.g., concurrency and event dispatching, server re-
quest processing, filesystem access, and data transfer. Ef-
ficiently implementing and integrating these subsystems re-
quires developers to meet various design challenges and nav-
igate through alternative solutions. Understanding the trade-
offs among these alternatives is essential to providing optimal
performance. However, the effort required to developad hoc
designs is often not cost effective as requirements (inevitably)
change. As examples, the performance may prove to be inad-
equate, additional functionality may be required, or the soft-
ware may need to be ported to a different architecture.

Object-oriented application frameworks and design patterns
help to reduce the cost and improve the quality of software
by leveraging proven software designs and implementations
to produce reusable components that can be customized to
meet new application requirements. The JAWS framework
described in this paper demonstrates how the development
of high-performance Web servers can be simplified and uni-
fied. The key to the success of JAWS is its ability to capture
common communication software design patterns and consol-
idate these patterns into flexible framework components that
efficiently encapsulate and enhance low-level OS mechanisms
for concurrency, event demultiplexing, dynamic configuration,
and file caching. The benchmarking results presented here
serve to illustrate the effectiveness of using frameworks to de-
velop high-performance applications. It brings to light that
flexible software is not antithetical to performance.

The source code and documentation for JAWS are available
atwww.cs.wustl.edu/ �schmidt/ACE.html .

19



References
[1] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact

of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,” inProceedings of the
2
nd Global Internet Conference, IEEE, November 1997.

[2] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[3] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develop-
ing and Measuring High-performance Web Servers over ATM,”
in Proceeedings of INFOCOM ’98, March/April 1998.

[4] R. Johnson, “Frameworks = Patterns + Components,”Commu-
nications of the ACM, vol. 40, Oct. 1997.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[6] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[7] D. C. Schmidt, “Applying Design Patterns and Frameworks to
Develop Object-Oriented Communication Software,” inHand-
book of Programming Languages(P. Salus, ed.), MacMillan
Computer Publishing, 1997.

[8] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2, no. 1,
1996.

[9] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[10] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible and Maintainable ORB Middleware,”Communica-
tions of the ACM, to appear, 1998.

[11] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operating
System. Addison Wesley, 1996.

[12] “Information Technology – Portable Operating System Inter-
face (POSIX) – Part 1: System Application: Program Interface
(API) [C Language],” 1995.

[13] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[14] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addison-
Wesley, 1995.

[15] R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[16] D. C. Schmidt, “Experience Using Design Patterns to Develop
Reuseable Object-Oriented Communication Software,”Com-
munications of the ACM (Special Issue on Object-Oriented Ex-
periences), vol. 38, October 1995.

[17] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[18] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[19] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[20] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of the
3
rd Conference on Object-Oriented Technologies and Systems,

USENIX, June 1997.

[21] T. Harrison, I. Pyarali, D. C. Schmidt, and T. Jordan, “Proac-
tor – An Object Behavioral Pattern for Dispatching Asyn-
chronous Event Handlers,” inThe 4

th Pattern Languages of
Programming Conference (Washington University technical re-
port #WUCS-97-34), September 1997.

[22] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” inPattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

[23] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[24] D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the2nd C++ Conference, (San Francisco,
California), pp. 87–102, USENIX, April 1990.

[25] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration and Reconfiguration of Communi-
cation Services,” inThe3rd Pattern Languages of Programming
Conference (Washington University technical report #WUCS-
97-07), February 1997.

[26] T. Berners-Lee, R. T. Fielding, and H. Frystyk, “Hyper-
text Transfer Protocol – HTTP/1.0,” Informational RFC
1945, Network Working Group, May 1996. Available from
http://www.w3.org/.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” Standards Track
RFC 2068, Network Working Group, January 1997. Available
from http://www.w3.org/.

[28] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Pattern Languages of Program Design(J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

[29] J. C. Mogul, “Hinted caching in the Web,” inProceedings of
the Seventh SIGOPS European Workshop: Systems Support for
Worldwide Applications, 1996.

20



[30] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and
E. A. Fox, “Removal Policies in Network Caches for World
Wide Web Documents,” inProceedings of SIGCOMM ’96,
(Stanford, CA), pp. 293–305, ACM, August 1996.

[31] E. P. Markatos, “Main memory caching of web documents,” in
Proceedings of the Fifth International World Wide Web Confer-
ence, May 1996.

[32] Gene Trent and Mark Sake, “WebSTONE: The First Gen-
eration in HTTP Server Benchmarking.” Silicon Graph-
ics, Inc. whitepaper, February 1995. Available from
http://www.sgi.com/.

[33] A. Carlton, “An Explanation of the SPECweb96 Bench-
mark.” Standard Performance Evaluation Corporation whitepa-
per, 1996. Available from http://www.specbench.org/.

[34] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux,
H. W. Lie, and C. Lilley, “Network Performance Effects of
HTTP/1.1, CSS1, and PNG,” inTo appear in Proceedings of
ACM SIGCOMM ’97, 1997.

[35] M. S. Johns, “Identification Protocol,”Network Information
Center RFC 1413, Feb. 1993.

21


