
Simplifying the Development of Autonomic Enterprise
Java Bean Applications via Model Driven Development

Jules White, Douglas Schmidt, Aniruddha Gokhale

{jules, schmidt, gokhale}@dre.vanderbilt.edu
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville

Abstract
Autonomic computer systems aim to reduce the configu-
ration, operational, and maintenance costs of distributed
enterprise applications. In theory, autonomic systems
can minimize the impact of human error in system devel-
opment and management. In practice, however, it is hard
to develop the monitoring, analysis, planning, and exe-
cution aspects required for highly complex autonomic
software systems reliably within short timeframes. This
paper provides two contributions to the development of
autonomic computing systems using Enterprise Java
Beans (EJBs). First, we describe the structure and func-
tionality of a model-driven development (MDD) tool that
can formally capture the design of EJB systems, their
quality of service (QoS) requirements, and the auto-
nomic properties that will be applied to the EJBs to sup-
port the rapid development of autonomic EJB applica-
tions via code generation, automatic checking of model
correctness, and visualization of complex QoS and auto-
nomic properties. Second, the paper describes how
MDD tools can generate code to plug EJBs into a Java
component framework that provides an autonomic struc-
ture to monitor, configure, and execute EJBs and their
adaptation strategies at run-time. We present a case
study that shows how these tools and frameworks help
manage autonomic distributed applications at the EJB
level, thereby allowing developers to incorporate adap-
tive properties at a finer granularity than simply restart-
ing or cloning entire EJB applications.

Keywords: Autonomic Computing, Component Middle-
ware, Quality of Service (QoS), Model Driven Devel-
opment (MDD), and Enterprise Java Beans (EJBs).

1. Introduction

1.1 Autonomic Computing Challenges

Developing and maintaining distributed enterprise sys-
tems is hard, in part due to their complexity and the im-
pact of human operator error, which studies have shown
to be a significant contributor to distributed system re-
pair and down time [2]. The goal of autonomic comput-
ing is to create distributed systems that have the ability
to self-manage, self-heal, self-optimize, self-configure,
and self-protect [1], thereby reducing human interaction
with the system to minimize down-time from operator
error. Although the benefits of autonomic computing are

significant [1], the pressures of limited development
timeframes and inherent/accidental complexities of
large-scale software development have discouraged the
integration of sophisticated autonomic computing func-
tionality into distributed applications. Some enterprise
application platforms, such as Enterprise Java Bean
(EJB) [3] application servers, offer limited autonomic
features, such as clustering, though they tend to have
large development teams and long development cycles.

A key challenge limiting the incorporation of auto-
nomic features into enterprise applications is the lack of
design tools and frameworks for autonomic distributed
systems that can alleviate complexity and generate code
that is correct by construction. Some infrastructure does
exist, such as IBM’s Autonomic Computing Toolkit [4]
that focuses on system-level logging and management.
System-level autonomic toolkits are inadequate, how-
ever, for creating fine-grained autonomic capabilities.

To address the limitations with system-level auto-
nomic toolkits, component-level autonomic frameworks
are needed to help alleviate the development effort of
creating autonomic applications. Component-level auto-
nomic properties support more fine-grained healing, op-
timization, configuration, monitoring, and protection
than system-level toolkits. For example, a mission-criti-
cal command and control system for emergency re-
sponders should be able to shutdown application compo-
nent logic selectively as it fails, rather than shutdown the
entire application. With component technologies, valu-
able functionality could still be maintained in this sce-
nario. With existing autonomic infrastructure based on
the system-level, the failure of a key component would
trigger a restart of the entire application [5]. In contrast,
a component-level autonomic framework could provide
a mechanism to restart only the point of failure.

Creating applications with either system or compo-
nent-level autonomic frameworks requires moving large
amounts of state data, analysis data, actions plans, and
execution commands between components. These types
of applications also require careful weaving of monitor-
ing, analysis, planning, and execution logic into the
functional components of the system. Analysis of the
autonomic aspects of the application, such as checking
that the right state is being monitored by the right com-
ponents, is a tedious and error-prone process. Model
driven development (MDD) [25] is a promising means of
reducing the cost associated with these activities. Models
of autonomic systems can be constructed and checked

for correctness to ensure that system designs meet auto-
nomic requirements. Tools can then be used to generate
the various capabilities to move data, coordinate actions,
and perform other autonomic functions.

1.2 Simplifying Autonomic System Design
and Implementation via Model Driven De-
velopment

To address the need for a component-level autonomic
computing framework, and to reduce the difficulty of ad
hoc techniques that manually imbue autonomic qualities
into distributed applications, we have created the J3
Process, which is a tool suite for the rapid design and
implementation of autonomic applications. J3 consists of
the following open-source1 MDD tools and autonomic
computing frameworks:
• J2EEML, which is a domain-specific modeling lan-

guage (DSML) [13] that formally captures the design
of EJB systems, their quality of service (QoS) [6] re-
quirements, and the autonomic adaptation strategies of
their EJBs. J2EEML constraint checkers help ensure
that autonomic applications are constructed correctly
and its models capture autonomic properties and re-
duce the design and implementation complexity of
autonomic systems.

• Jadapt, which is a J2EEML model interpreter that
generates code to plug EJBs into JFense, a component-
level autonomic computing framework for EJB sys-
tems. The QoS and autonomic properties modeled via
J2EEML can be analyzed by Jadapt. Jadapt in turn
generates the EJBs and the glue code required to inte-
grate them into JFense, which is a framework for
monitoring, configuring, and resetting individual EJBs
from an autonomic manager [8].
This paper provides several contributions to the devel-

opment of autonomic computing systems using EJBs.
First, we describe the structure and functionality of
J2EEML and show how it simplifies the design of auto-
nomic systems and facilitates the resolution of common
autonomic system design challenges by providing nota-
tions and abstractions that are aligned with autonomic,
QoS, and EJB terminology, rather than low-level fea-
tures of operating systems, middleware platforms, and
third-generation programming languages. Second, we
describe how Jadapt generates EJB and Java code from
J2EEML models to ensure that an autonomic application
meets its specifications and to reduce implementation
time. Third, we show how JFense provides a set of reus-
able autonomic components that allow developers to
plug-in EJB applications and focus on autonomic logic,
rather than the glue for constructing the autonomic sys-
tem. Finally, we illustrate how the J3 Process signifi-
cantly reduces the complexity of designing and imple-
menting an autonomic EJB application.

1 The J3 Process languages, tools, and frameworks are
available from www. sourceforge.net/projects/j2eeml.

1.3 Paper Organization
The remainder of this paper is organized as follows:

Section 2 describes the design challenges of building
component-level autonomic EJB applications; Section 3
gives an overview of J2EEML, Jadapt, and JFense in the
context of a representative distributed EJB application
we developed as a case study; Section 4 compares our
work with related research; and Section 5 presents con-
cluding remarks.

2 Key Challenges of Developing Autonomic
EJB Component Frameworks

Autonomic applications require four elements to
achieve their goals: monitoring, analysis, planning, and
execution [1]. These elements form a controller that at-
tempts to monitor and adapt the application to maintain
its goals. This section describes how each of these auto-
nomic system elements should be designed to function
properly and how applying MDD tools and frameworks
helps simplify this process in the context of an EJB-
based constraint-optimization system that schedules
highway freight shipments using a multi-layered auto-
nomic architecture, as shown in Figure 1.

Figure 1: A Multi-Layered Autonomic

Architecture.

Figure 1 shows the container and autonomic layers
monitoring our example EJB application. Each auto-
nomic layer contains monitoring, analysis, planning, and
execution components. The highway freight scheduling
system, used for our case study, is designed to assign
drivers and trucks to freight shipments. The system has a
list of freight shipments, which it must schedule. The
system uses a constraints optimization engine to find a
cost effective assignment of drivers and trucks to ship-
ments. A central component to this system is the module
for determining the route time from a truck’s current
location to a shipment start or end point. The Route Time
Module (RTM) uses a geo-database and the GPS coordi-
nates from the truck to perform the calculation. This

module will be the central part of our case study since it
is crucial to the proper operation of the optimization en-
gine. A heavy load is placed on the RTM and thus it is
crucial that it maintains its QoS goals. The remainder of
this section uses the RTM to illustrate key design chal-
lenges associated with autonomic systems. Section 3
then describes the J3 Process, MDD tools, and auto-
nomic component frameworks we developed to imple-
ment the RTM and resolve these challenges.

2.1 Monitoring
In autonomic systems, monitoring is the means by

which applications observe their own state. This state
information becomes vital data that autonomic appli-
cations use to reason about how to manage themselves. It
is therefore crucial that the right information be collected
at the right times and in a manner that does not adversely
impact the functionality and QoS of the system. The
following are key design challenges faced when devel-
oping the monitoring aspects of an autonomic system:
1. Deciding what state information should be monitored
2. Deciding where the monitoring logic should reside in

the autonomic application and
3. Deciding how and when to monitor.
We describe each of these challenges below and explain
how they arise in the context of our highway freight
scheduling system.

Challenge 2.1.1: Deciding what state information to
monitor. The first design challenge developers of auto-
nomic systems must address is what state information
applications should self-monitor. For some systems, this
information could include CPU and memory utilization.
For other systems, exceptions thrown by the application
or error messages in a log might be more relevant.

 For example, one bottleneck in our highway freight
scheduling system is the Route Time Module (RTM),
which calculates the time required for a truck to reach a
pickup location from its current position. This informa-
tion is crucial to determine fuel costs and arrival esti-
mates. If the RTM cannot keep up with demand, delivery
quality will degrade since schedules will lag behind the
actual positions of the trucks. If an empty truck is en
route to a pickup and a new delivery request arrives, it
might be more cost effective to divert the empty truck to
service the new request and assign a different truck to
handle its current request. This diversion is only feasible,
however, if the current truck positions and route times
are accurate. If the truck has already arrived at the origi-
nal pickup location, but the scheduler is using earlier
data where the truck has yet to arrive, it might redirect
the truck to the new pickup, even though it is not cost-
effective to redirect a truck that is picking up a shipment.
The data provided by the RTM must not lag too far be-
hind real-time, therefore, so the system needs to monitor
the time needed to fulfill each route time request and
adjust its routing calculation policies if it falls behind.

Challenge 2.1.2: Deciding where the monitoring
logic should reside. The decision of what to monitor

directly affects where the monitoring logic will reside.
To monitor a log for errors, the logic could be at any
level of the application, such as a central control level.
For observing exceptions or the load on a specific sub-
component of the application, the monitoring logic must
be embedded more deeply. In particular, developers
must position the monitoring precisely so that it is close
enough to capture the needed information, but not so
deeply entangled in the application logic that it adversely
affects application design that is tuned for performance
and separation of concerns.

In our freight scheduling system, we must ensure
separation of concerns in the application design and find
an efficient means of monitoring. The monitoring logic
for the RTM, however, should not be entangled with the
route time calculation logic. Moreover, the time to moni-
tor each request should be insignificant compared to the
time to fulfill each route request.

Challenge 2.1.3: Deciding how and when to moni-
tor. Another key design challenge that must be ad-
dressed is how to monitor, i.e., whether to use an active
polling approach vs. a more passive event-based ap-
proach. Polling works well in some situations, but can
waste resources by “busy waiting” when nothing is hap-
pening. Determining when to poll can also be challeng-
ing, i.e., polling too often can degrade performance,
whereas polling too little can miss important state infor-
mation. Within an EJB application, polling is even
harder since the beans should not start or manipulate
threads. The inability to create a timing mechanism to
drive the polling period, makes polling hard to imple-
ment in EJB applications.

An alternate approach for monitoring is to listen for
events, where components notify certain registered ob-
servers when their state changes. Event-based monitor-
ing in EJBs can be implemented by observing a system
log, e.g., using IBM’s Generic Log Adapter [11] and
Common Base Event format [12]. Another event-based
approach is to broadcast events from specific compo-
nents within the application, which performs all moni-
toring via method calls rather than string analysis of a
log. This method forces developers to think carefully
about the granularity of events to broadcast.

Event monitoring captures state information when in-
teresting things occur, which can simplify the analysis
logic since less superfluous data is examined and the
problems associated with polling intervals are avoided. It
is straightforward to implement event monitoring in an
EJB application since EJBs do not impose any restric-
tions that make this strategy hard. The downside to event
monitoring, however, is that the components must have
the logic to determine when to broadcast events. For
checking the status of a database connection, therefore,
polling might be a better solution. With an event-based
approach a component would only discover a broken
connection when it attempted to use it, whereas a poll-
ing-based solution could discover the problem earlier.

In the context of our freight scheduling system, event-
based monitoring makes more sense since the system is
only concerned about the time for requests. An event-
based system could easily notify the monitor of each
request servicing time. A polling approach would require
queueing servicing times so that information was not lost
during polling periods. Queueing can introduce un-
needed complexity, however, and might also create a
significant lag time before a QoS failure was detected.

2.2 Analysis
In autonomic systems, analysis is the process of taking

state information acquired by monitoring and reasoning
about whether certain conditions have been met. For
example, analysis often tries to determine if an applica-
tion is maintaining its QoS requirements. The analysis
aspects of an autonomic system can be centralized and
executed on the totality of the system state or can be
distributed and concerned with small discrete sets of the
state. The following are key design challenges faced
when developing an autonomic analysis engine:
1. Deciding what type of analysis engine (i.e., distributed

vs. monolithic) best suits the application
2. Deciding how the engine should be decomposed

and/or distributed
3. Designing the mechanism to move the data from the

monitoring logic to the analysis engine.
We describe each of these challenges below and explain
how they arise in the context of our highway freight
scheduling system.

Challenge 2.2.1: Deciding what type of analysis en-
gine suits the application. To choose a distributed vs.
monolithic analysis engine the tradeoffs of each must be
well understood. The concentration of the analysis logic
into a single monolithic engine enables more complex
calculations. However, for simple calculations, such as
the average response time of the RTM component, a
monolithic engine requires more overhead to store and
retrieve state information for individual components than
an analysis engine dedicated to a single component. A
single analysis engine also provides a central point of
failure. A key design question is therefore where analy-
sis should be done and at what granularity.

The distinction between analysis and monitoring is not
clearly defined. To understand the complex relationships
between analysis and monitoring, consider the monitor-
ing logic for our RTM. One way to build this logic
would be to have a single monolithic analysis engine and
monitor. The monitor would report the time to service
each request back to the analysis engine, which would
track the average request time and ensure it was below a
certain threshold. A second option would be to only re-
port request times above a threshold to the analysis en-
gine and let it determine if too many requests were ex-
ceeding the threshold. In the first case, there is a clear
separation between analysis and monitoring. In the sec-
ond case, part of the analysis is done by the monitor to
determine if the request time exceeds the threshold.

Challenge 2.2.2: Deciding how the engine should be
decomposed and/or distributed. To create an effective
analysis engine for our example application, developers
must determine the appropriate number of layers. A key
issue to consider is whether an application should have a
single-layered vs. multi-layered analysis engine. At each
layer, the original monitoring design questions are appli-
cable, i.e., what should be monitored and how should it
be monitored?

In the context of the RTM, a key question is whether
its autonomic layer analyzes the RTM’s response time or
should a layer above the RTM do it. At each layer, the
analysis design considerations are important too, e.g.,
what information the system is looking for in the data,
how it finds this information, and how this can be better
accomplished by splitting the layer. For example, a de-
veloper must consider whether every request to the RTM
should be monitored to determine if the RTM is meeting
its minimum response time QoS. Conversely, perhaps
only certain types of requests that are known to be more
time consuming should be monitored. Another question
facing developers is how the RTM’s monitoring logic
sends data to its analysis engine.

Challenge 2.2.3: Designing the mechanism to move
the data from the monitoring logic to the analysis
engine. Analysis only works if the data can be moved
from the monitoring logic to the analysis logic. The
mechanism to perform this function must be crafted to
handle both the type and volume of the information. It is
also preferable for the mechanism’s interface to be stan-
dardized and reused throughout the autonomic layers in
the application. Creating a mechanism that meets all of
these requirements is hard.

2.3 Planning
Planning is the phase in autonomic systems where ap-

plications examine the results of their analysis and de-
cide what actions to take to reach their goals. For our
highway freight scheduling example, this could involve
changing the RTM to use a less precise but faster algo-
rithm that maintains the minimum response time as de-
mand grows. A typical autonomic application may have
hundreds of goals and planning the correct actions in the
face of QoS failures is critical to an autonomic applica-
tion. The planning aspect of autonomic systems present
the following key design challenges:
1. Deciding whether to use a single layer of planning or a

multi-layer solution
2. Determining the responsibilities of each layer and
3. Deciding how each layer interacts with its surrounding

layers.
We describe each of these challenges below and explain
how they arise in the context of our highway freight
scheduling system.

Challenge 2.3.1: Deciding whether to use a single
layer of planning or a multi-layer solution. As with
monitoring and analysis, planning can be implemented
with a layered architecture. A simple, one-layer archi-

tecture would monitor, reason, and react to all system
events at one level, which works well for macro-level
events and actions. This simple approach is less feasible
for applications that need more flexible and fine-grained
the control of their behavior. To increase flexibility and
fine-grained control, therefore, more layers can be inte-
grated into the system. Layers distribute intelligence
throughout the system and support a divide and conquer
approach to planning.

Challenge 2.3.2: Determining the responsibilities of
each layer. After the planning is provisioned into layers,
each layer must be assigned a responsibility to react to
and recover from QoS failures. In our highway freight
scheduling example, one layer might ensure that the
RTM is always available and the next layer down might
ensure that a minimum response time is maintained. In-
telligent separation of responsibilities can produce hier-
archical chains of command that reduce the complexity
of accomplishing the overall goal. Finding these well-
proportioned divisions of labor is hard.

Challenge 2.3.3: Deciding how each layer interacts
with its surrounding layers. Coordinating and inte-
grating multiple layers into an application can be hard
since each layer must interact with its neighboring lay-
ers. For example, restarting a subsystem might involve
one layer issuing commands to restart each layer beneath
it. Another issue is making the layers above aware of the
plans that are about to execute. For example, if the layer
that maintains minimum response time plans an adjust-
ment to the RTM that will make it temporarily unavail-
able, the layer responsible for ensuring that the RTM is
always available must be notified. The availability layer
might also require veto power of the plans of the mini-
mum response time layer to ensure that in-process trans-
actions are completed before the changes proposed by
the response time layer go into effect.

2.4 Execution

After an autonomic system has planned its course of
action, it must execute its plans. Plans can range from
restarting an entire application to applying configuration
changes in a single component. Developers of autonomic
systems need to address the following key challenges
when designing their plan execution infrastructure:
1. How to send execution orders to the logic responsible

for carrying them out.
2. How to carry out the actual execution and
3. How to coordinate actions that require multiple com-

ponents.
To illustrate these challenges in the context of our

highway freight scheduling example, we describe an
autonomic layer that progressively restarts larger and
larger portions of the RTM to recover from errors. This
layer must first identify, analyze and plan which portion
of the system the restart will initiate from. From that
point, the autonomic layer must signal the faulty compo-
nent to restart. After the restart is complete, the compo-
nent must be further monitored and analyzed to deter-

mine if the error condition has been eliminated. If it has,
the autonomic layer is done; otherwise the layer must
attempt to restart a larger portion of the application.

For example, assume that the RTM depends on a sin-
gle component to supply it with the current position of
each truck and the current list of shipments that need
servicing. We will refer to this component as the geo-
locator component. If errors prevent this component
from obtaining location information for the requests, it
might try to restart a sub-component responsible for que-
rying the truck location geo-database. If the restart of the
truck location component fixes the problem, the system
would cease restarting components. If the problem was
not fixed, however, the component might try to restart
both its truck location and shipment location components
to alleviate the problem. At some point, if the problem
could not be fixed, the geo-locator component might
need to restart the entire system.

Challenge 2.4.1: How to send execution orders to
the logic responsible for carrying them out. This de-
sign challenge involves determining how the autonomic
system communicates with the original point of failure
and coordinates the restarts. In a single layered system,
this coordination would require the monolithic controller
to directly access the geo-locator and its children. This
access creates tight coupling of the controller to the im-
plementation details of the geo-locator. An alternate ap-
proach is a distributed mechanism by which a central
controller can delegate the restart to a component that
has access to the component that needs to be restarted.
Implementing the restart through delegation would be a
layered approach to execution. Each layer would know
how to restart larger and larger pieces of the system. The
RTM could restart the coordinates system, the coordi-
nates system could restart its children, and each child
could restart its internal pieces.

A single monolithic execution controller, however, is
not the most elegant approach to execution. By combin-
ing a layered approach to monitoring and analysis with
layered execution, a system can be created in which lev-
els higher in the hierarchy are only notified of error con-
ditions if the current level cannot recover on its own.
Each level monitors, analyzes, plans, and executes to
achieve its own goals. If it cannot reach its goals, it noti-
fies the layer above. This design places the recovery
logic as close to the original point of failure as possible
and also allows quicker detection and correction of er-
rors. Another benefit is that it provides layers of abstrac-
tion that help to simplify the logic for each successive
block of monitoring, analysis, planning, and execution.

Challenge 2.4.2: How to carry out execution orders.
After a command has reached the autonomic layer re-
sponsible for performing it, the layer must be able to
execute the order. Developers must therefore create an
infrastructure to execute orders at runtime and allow
those orders to change functional components.

Changing functional components requires that either
the components themselves know how to execute the

orders or that they provide interfaces by which external
agents can modify their operation. To provide reusable
actions, the interfaces provided by the components must
be generic enough that they can apply across the func-
tional boundaries of the components. For example, the
RTM and the pickup location system might both support
a “restartable” interface that would allow the con-
struction of a generic restart() operation, which
could be applied to both components. To provide a flexi-
ble and reusable set of adaptive actions, developers must
carefully understand the adaptation requirements of the
system and how they can be factored into concerns that
crosscut component boundaries. Obtaining a clear pic-
ture of the overall adaptive properties of the system and
finding these concerns is hard.

Challenge 2.4.3: How to coordinate actions that re-
quire or affect multiple components. In a multi-lay-
ered system, executing an adaptation order may affect
the components at more than one layer of the system.
These multi-component effects can take two forms: (1)
the action requires multiple components to adapt or (2)
the adaptation of one component triggers changes in
other components. In cases that require multiple compo-
nents to adapt, developers must create a system to both
synchronize and signal groups of components working
together, which presents identical problems to those of
distributed systems that require coordinated actions. For
actions in one component that trigger changes in another,
developers must clearly understand what these changes
are and how the ripple effects will change the system as
a whole. Careful attention must therefore be paid to en-
sure that seemingly innocuous adaptations do not pro-
duce unexpected and unwanted results elsewhere.

3 Using the J3 Process to Simplify Auto-
nomic System Development

The J3 Process addresses the challenges of developing
autonomic EJB applications discussed in Section 2. This
process consists of the following steps:
1. The first component used in the J3 Process provides

J2EEML, which is a DSML and MDD tool specifi-
cally tailored for autonomic applications. The key as-
pect of J2EEML that addresses many of the design
challenges in Section 2 is the formal mapping from
QoS requirements to application components.

2. The second component used in the J3 Process is a tool
that produces many artifacts required to implement
autonomic EJB applications modeled in J2EEML.
This tool generates code that meets the J2EEML speci-
fications and also reduces the amount of code that de-
velopers must write.

3. The third component used in the J3 Process is the
JFense autonomic framework. JFense provides a stan-
dard set of components for monitoring, analysis, plan-
ning, and execution. These components can be used by
developers to avoid writing custom autonomic frame-
works. JFense is flexible and can be configured to

meet the autonomic requirements of a wide range of
EJB applications. It addresses the implementation re-
lated challenges, such as providing mechanisms to co-
ordinate actions between layers and execute orders,
challenges 2.4.2 and 2.4.3.

This section describes each component of the J3 Process
and shows how they address key challenges of develop-
ing autonomic systems described in Section 2.

3.1 Resolving the Challenges of Autonomic
Systems with J2EEML

To address the design challenges discussed in Section
2 we have developed J2EEML, which is a DSML for
designing autonomic EJB systems that uses visual repre-
sentations to model domain-specific abstractions,
thereby enabling developers to construct models that
incorporate autonomic and QoS concepts as first-class
entities. The aim of J2EEML is to formally capture the
relationship between QoS goals and application compo-
nents. Capturing this relationship allows developers to
address many of the design challenges from Section 2.

For example, developers can clearly understand which
components to monitor in the application since they can
visualize the relationships between components and QoS
goals. This understanding facilitates intelligent decisions
about what to monitor (challenge 2.1.1), and where
monitoring logic should reside (challenge 2.1.2).

Developers can also design hierarchical QoS goals to
divide and conquer complex QoS analyses. Modeling
QoS goals hierarchically provides the following:
1. The ability to understand what type of analysis engine

to choose (challenge 2.2.1). A small number of com-
plex QoS goals that cannot be broken into smaller
pieces imply the need for a monolithic analysis engine.
A large number of goals – especially hierarchical QoS
goals – imply the need for a multi-layered analysis en-
gine.

2. The ability to understand how to decompose the analy-
sis engine into layers (challenge 2.2.2). The hierarchi-
cal model of the QoS goals directly corresponds to the
decomposition of the analysis engine in layers. A de-
veloper first adds a complex QoS goal to the model.
The developer then determines if the complex goal can
be accomplished by combining the results of several
smaller analyses. If so, the developer adds these
smaller QoS goals as children of the original QoS goal
to represent the smaller analyses and then applies this
iterative process to the new children.
Developers can also associate adaptation plans with

each QoS goal to design the planning aspects of the
autonomic application and aid in the following two
tasks:
1. Choosing a single-layer or multi-layered planning ar-

chitecture (challenge 2.3.1). If a complex QoS goal
does not have adaptation plans associated with its chil-
dren, it implies that the correct course of action to take
when one of the child QoS goals fails cannot be de-

termined by the data available to the child. If only top-
level QoS goals have associated adaptation plans, this
implies the need for a single planning layer. If, how-
ever, the QoS children have adaptation plans associ-
ated with them, this implies that they can determine
the corrective course of action and require a multi-lay-
ered planning solution.

2. The adaptation plans associated with a QoS goal indi-
cate the responsibilities of that autonomic layer (chal-
lenge 2.3.2), i.e., the adaptation plan specifies the ac-
tions that the autonomic layer is responsible for choos-
ing from in the event of a QoS failure.
The mapping between QoS goals and components fa-

cilitates the generation of code artifacts to reduce appli-
cation development time. For example, understanding
which components need to be monitored and analyzed
allows external tools to generate proxies and interceptors
for the monitored components. These interceptors can
relay state information to the monitoring and analysis
logic. Code can then be generated that moves the moni-
toring and analysis results to the appropriate planning
layers. Other code generation abilities are facilitated and
will be discussed in detail in Section 4.1.

J2EEML captures the design of an autonomic system
and the mapping of components to QoS goals in the fol-
lowing four phases:
1. Developers create a structural model of the EJBs com-

posing the system
2. Developers create models of the goals that the system

is attempting to attain
3. The goals are mapped to the specific beans within the

system that are responsible for them and
4. Developers create adaptation plans and associate them

with QoS goals.
This modeling process captures the structure of the sys-
tem, how the QoS properties are related to the structure,
and what adaptation should take place if a QoS goal is
not met. It is also well-suited for creating both the single
and multi-layered models described in Section 2.3.

J2EEML was developed using the Generic Modeling
Environment (GME) [14] created by the Institute for
Software Integrated Systems (ISIS) at Vanderbilt Uni-
versity (see Sidebar 1 for an overview of GME). A
GME-based metamodel describing the problem domain
was constructed and interpreted to create the J2EEML
DSML for autonomic EJB systems. J2EEML models
constructed in the domain are interpreted by Jadapt,
which is a tool for generating Java code, EJB skeletons,
and necessary EJB deployment descriptors for JFense,
which is a component-level autonomic framework for
facilitating monitoring, analysis, planning, and execution
in a Java application.

3.1.1 EJB Structural Model
The first component of a J2EEML model is its EJB

structural model, which describes the components of the
system that will be autonomically managed. This model

defines the beans that compose the system and captures
the EJB specifics of each bean, including JNDI names,
transactional requirements, security requirements, pack-
age names, descriptions, remote and local interface com-
position, and bean-to-bean interactions.

l
1

2

3

4

Sidebar 1: Overview of GME

GME is an MDD environment that provides the following
capabilities:
• A visual interface that allows building domain-specific

modeling languages i.e., GME contains a metamodel-
ing environment that supports the definition of para-
digms, which are type systems that describe the roles
and relationships in particular domains.

• Allows creation of models that are instances of these
modeling language paradigms within the same environ-
ment.

• Customize such environments so that the elements of
the modeling language represent the elements of the
domain in a much more intuitive manner than is possi-
ble via third-generation programming languages.

• Allows building libraries of such environments, thereby
supporting composition of modeling languages.

• Has a flexible type system that allows inheritance and
instantiation of elements of the modeling languages.

• Provides an integrated constraint definition and en-
forcement module based on OMG’s Object Constraint
Language (OCL), which enables defining rules that
must be adhered to by elements of the models built us-
ing a particular modeling language.

• Facilities to plug-in analysis and synthesis tools that
operate on the models.

GME is available in binary and open-source form from
www.isis.vanderbilt.edu/Projects/gme/.
The EJB structural model is constructed via the fol-
owing steps:
. Each session bean in the system is added to the model
by dragging and dropping session bean atoms into the
model. Designers then provide the Java Naming and
Directory Interface (JNDI) name of the bean, its de-
scription, and its state type (stateful or stateless).

. For each session bean, a model is constructed of the
business methods and creators supported by the bean
by dragging and dropping method and creator atoms.
Each method and creator atom has properties for set-
ting the visibility, whether it is part of the local inter-
face, remote interface, or both, the transactional re-
quirements, the security role requirements, and the in-
put/output.

. Entity beans are dragged and dropped into the model
to construct the data access layer. These beans are
provided a JNDI name/description and properties indi-
cating if they use container managed persistence
(CMP) or bean managed persistence (BMP).

. Persistent fields, methods, and finders are dragged and
dropped into the entity beans. Each persistent field has
properties for setting visibility, type, whether it is part

http://www.isis.vanderbilt.edu/Projects/gme/

of the primary key, and its access type (read-only or
read-write).

5. Relationship roles are dragged and dropped into the
entity beans and connected to persistent fields. These
relationship roles can be connected to other relation-
ship roles to indicate entity bean relationships.

6. Connections are made between beans to indicate bean-
to-bean interactions. Capturing these interactions al-
lows Jadapt to later generate the required JNDI lookup
code for a bean to obtain a reference to another bean.
After these six steps have been completed, the

J2EEML model has enough information to represent all
the structural parts of the EJBs. The only structural as-
pect not modeled is the implementation of the logic for
the business methods. Figure 3 shows a J2EEML struc-
tural model of the highway freight scheduling system
described in in Section 2.

Figure 3: J2EEML Structural Model.2

To support decomposition of complex architectures

into smaller pieces, J2EEML allows EJB structural mod-
els to contain child EJB models (solutions). Beans within
the sub-solutions show up as ports that can receive con-
nections from the parent solution. This design allows
developers to decompose models into manageable pieces
and enables different developers to isolate their designs.

For our highway freight scheduling example, we con-
structed a structural model of each bean required for the
RTM, constraint-optimization engine, truck status sys-
tem, and incoming pickup request system. This structural
model can be seen in Figure 3. The model also included
information on the entity beans used to access the truck
location database and the pickup request database.

Using the J2EEML model based approach provided
following advantages in the design phase:
1. Clear visualization of the beans and their interactions
2. Visualization of component security requirements
3. Visualization of system transactional requirements
4. Visualization of interactions between beans
5. Enforcement of certain EJB best practices, such as the

Session Façade pattern [10], which hides Entity beans
from clients through Session beans.

6. Model correctness checking, including checks for
proper JNDI naming.

2 All J2EEML screenshots have been cropped to focus
on the models presented within them.

The visualization benefits significantly decreased the
difficulty of understanding the system structure and in-
teraction. The correctness checking and enforcement of
best design practices facilitated rapid creation of both a
correct by construction and well-designed solution.

3.1.2 Goal Modeling
The next component of a J2EEML model is the QoS

goals model, which contains the properties that the auto-
nomic aspects of the system are concerned about. The
QoS goals determine what gets monitored and analyzed
(Challenge 2.1.1). Goals are modeled in J2EEML as
QoS properties that the system needs to maintain. De-
velopers drag and drop goals into J2EEML models. Each
goal provides properties for setting its name and de-
scription. Complex goals can be constructed hierarchi-
cally by dragging and dropping sub-goals into a parent
goal. These sub-goals represent the QoS properties that
must be maintained for the parent to succeed.

The QoS goals model is critical for understanding an
autonomic system’s QoS properties and choosing the
appropriate monitoring, analysis, planning, and execu-
tion architecture. It is also crucial to designing the struc-
tural architecture of the EJB application and under-
standing how it meets those goals. Capturing and map-
ping QoS requirements to the appropriate structural ar-
chitecture have traditionally used textual descriptions,
such as “the service must support X users with an aver-
age access time of Y.” Due to the lack of an unambigu-
ous formal description, such descriptions are prone to
different interpretations, which result in architectures
that do not meet the QoS requirements. Choosing an EJB
architecture that best fits the QoS requirements can be
complex and error-prone since specification ambiguity
and hidden trade-offs in architectures make it hard to
choose the appropriate design.

For example, with a J2EE implementation of a service,
deciding whether to use remote interfaces or not can
have a substantial impact on end-to-end system QoS.
Remote interfaces allow for distribution of beans across
servers, which can increase scalability. Distribution can
also increase latency, however, since requests must
travel across a network or virtual machine boundaries.

Understanding the hierarchical relationships between
QoS properties can be used not only to design the ap-
propriate structural architecture, but also to determine
the layering scheme used to monitor, analyze, plan, and
execute (challenges 2.1.2, 2.2.1, 2.2.2, 2.3, 2.3.1, 2.3.2).
If only a few large-scale QoS goals are required, a
monolithic approach is appropriate. As the complexity of
the relationships between QoS goals increases, multi-
layered solutions become more appropriate. By visual-
izing the QoS properties and hierarchical relationships
via J2EEML models, developers can better understand
what approach(es) to apply.

3.1.3 Goal-to-EJB Mapping
After the structural and goal models are completed,

developers can use J2EEML to create a mapping from
the QoS goals to the EJBs in the structural model. This
mapping documents what portions of the system are re-
sponsible for which QoS goals. It also indicates where
monitoring, analysis, and adaptation need to occur for an
autonomic system to maintain those goals (challenges
2.1.2 and 2.2.2).

Each QoS goal in J2EEML can be associated with
multiple EJBs, which supports aspect [15] type modeling
of QoS goals when they crosscut component boundaries.
For example, maintaining a certain minimum response
time might be crucial for several different components.
Connecting multiple components to a QoS goal rather
than creating a copy for each component produces
clearer models. It also clearly shows the connections
between components that share common QoS goals.
Figure 4 shows a mapping from QoS goals to EJBs.

Figure 4: J2EEML Mapping of QoS Goals to EJBs.

Components can have multiple QoS goal associations,
which are accomplished in J2EEML by either creating a
single goal for the component that contains sub-goals or
by connecting multiple QoS goals to the component. If
the combination of goals produces a meaningful abstrac-
tion, hierarchical composition is preferred. For example,
a QoS goal called “Always Produces Correct Result”
could be constructed from the sub-goals “No Exceptions
Thrown” and “Never Returns Null.” Combining “Mini-
mum Response Time” and “No Exceptions Thrown,”
however, is unlikely to produce a meaningful higher-
level abstraction, so the multiple connection method is
preferred in this case.

Once goals are created, each goal can have an associ-
ated adaptation plan to execute if the goal is not being
met. Associating adaptation plans with strategies pro-
vides a way to formally capture the proper course of
action in the event of a QoS failure. It also allows devel-
opers to create hierarchical adaptation plans.

3.2 Reducing the Complexity of Implement-
ing an Autonomic System with Jadapt and
JFense

JFense is a component-level autonomic framework
that addresses many challenges described in Section 2

involved with developing autonomic systems. It provides
a standard set of components and interfaces for moni-
toring the QoS of EJBs, analyzing system state, commu-
nicating between autonomic layers, determining how to
adapt to QoS failures, and executing complex adaptation
plans. Jadapt serves as the bridge between the J2EEML
model (Section 3.1) and the JFense framework (Section
3.2.2). Jadapt generates Java code for the structural
model represented in J2EEML and also generates glue
code to plug the generated EJBs into the JFense frame-
work. The goals of JFense and Jadapt are to:
• Provide a standard framework for performing

autonomic functions in an application. JFense can
be configured to mirror the autonomic architecture de-
scribed by the J2EEML model. JFense is responsible
for gluing the monitoring, analysis, planning, and exe-
cution logic of the application. JFense alleviates de-
velopers from reinventing an autonomic framework
for their application. It also handles the communica-
tion between layers (challenge 2.2.3) since application
developers do not have to write code to move the data
from the monitoring logic to the analysis logic. JFense
drives the communication between layers (challenges
2.3.3 and 2.4.1) since developers do not write the code
to relay/coordinate planning information and adapta-
tion orders. JFense provides a configurable event-
based monitoring framework (challenge 2.1.3). Fi-
nally, JFense contains an adaptation system that can
coordinate adaptation actions between layers and exe-
cute the actions (challenges 2.4.2 and 2.4.3).

• Rapid development and verification of autonomic
code through model interpretation. Jadapt generates
configurations for JFense to mirror the J2EEML
model, stubs for the EJBs, EJB deployment descrip-
tors, and monitoring, analysis, planning, and execution
class stubs, which relieves the developer of a consid-
erable set of coding tasks. Moreover, Jadapt ensures
that the code mirrors the system architecture in
J2EEML implementation, which reduces problems
from misinterpretation of the specification and incon-
sistencies between implementations and interfaces.
The remainder of this section describes how J2EEML,

Jadapt, and JFense collaborate to simplify the develop-
ment of autonomic EJB applications.

3.2.1 Simplifying the Creation of Autonomic
Applications that Meet Specifications with
Jadapt

Jadapt is a J2EEML model interpreter that generates
implementations of EJBs from a structural model de-
fined using J2EEML. Figure 6 illustrates the Jadapt gen-
erated code. These classes include stubs for the methods
and creators declared, as well as classes for plugging
EJBs into JFense, which is our autonomic computing
framework described in Section 3.2.2. Using the inter-
bean interactions from the structural model, Jadapt gen-
erates code to get references to the homes of the EJBs

referred to by each bean, which frees developers from
writing boilerplate code to obtain these references each
time they need them. The design of the generated JNDI
mechanism centralizes the lookups in one class, which
makes it possible to implement caching solutions if
needed. Generation of the JNDI lookup code also en-
sures that the correct JNDI names are used. Developers
call get methods that return an instance of the home in-
terface they need. Usually, discovering JNDI lookup
errors cannot be done until run-time, which is far more
costly and hard to debug.

Jadapt assumes that developers will modify the gener-
ated beans outside of the J2EEML development envi-
ronment. Bean classes are therefore marked up with
XDoclet attributes to automate the synchronization of
the bean class, interfaces, and descriptors. XDoclet reads
these attributes and generates the required interfaces and
deployment descriptor XML. Developers only need to
maintain the central bean class and synchronize the inter-
faces to it with XDoclet.

Figure 6: Jadapt Code Generation

The bean descriptor XML generated by Jadapt in-
cludes all of the transactional, security, visibility, rela-
tionship, and container type properties declared in the
model. For example, if method getCoordinates()
on class RTM is given a limited set of security roles that
can access it, this security declaration will be included in
the generated bean descriptor, which ensures that the
design, deployment, and configuration are in sync. Gen-
erating the bean descriptor eliminates typographical er-
rors from hand editing of descriptor XML.

For our highway freight scheduler, Jadapt reduced the
development time of the application by generating:
1. All skeleton classes and interfaces required for EJBs
2. XDoclet attributes to maintain class, interface, and

deployment descriptor synchronization during the de-
velopment cycle

3. XML deployment descriptors for the EJBs
4. An Ant build infrastructure
5. Project documentation from descriptions captured in

the model

6. Glue code to plug the generated EJBs into JFense
Since developers can easily adjust the application design
and regenerate the application skeleton, their efforts are
focused on designing the application and implementing
the logic required for the business methods.

3.2.2 Simplifying Autonomic Application De-
velopment with the JFense Framework

To simplify the development of autonomic EJB appli-
cations, we created the JFense framework for construct-
ing autonomic EJB systems. JFense provides a multi-
layered architecture for monitoring, analyzing, planning,
and executing in an autonomic system.

Figure 7: The JFense Multi-Layered Architecture.

The basic structure of JFense is shown in Figure 7 and is
defined as follows:
1. Each bean has a guardian class responsible for moni-

toring its state and running QoS analysis. The beans
push state data out to the guardians using an event-
based system. The guardians act as observers on the
beans [17], i.e., they are the key elements for moni-
toring beans and routing state information to the
proper QoS analysis objects.

2. An analysis class for each QoS goal is created. These
QoS goals are used by the guardians to analyze the
bean’s current state and determine if it is meeting its
QoS requirements. Hierarchical QoS goals are created
through aggregation.

3. Each guardian class has an associated action plan for
determining the course of action if a QoS goal fails.
The guardian also notifies any guardians at the level
above when it cannot maintain its QoS goals.

4. A central Java Management Extension (JMX)-enabled
bean resides at the top of the hierarchy and serves as a
super guardian. This bean can be remotely managed
and configured through JMX.

When a bean’s state changes, it notifies its guardian that
a state change event has occurred. The guardian then
uses its QoS analysis objects to analyze the bean’s state
and ensure that its objectives are still being met.

Bean requests are the default state information moni-
tored by guardians. Jadapt generates proxies that monitor

the input, output, time, and exceptions thrown for each
method accessible through the beans local or remote
interface and pass it to the Guardians. This coordination
of proxies and guardians applies the Proxy [19, 20] and
Interceptor [20] patterns, which intercept requests to an
object before delegating the request to the actual object.
This functionality can be adapted for unit testing before
planning logic has been developed. In fact, logic for unit
tests can be later recycled to form real-time QoS tests.

For example, a unit test may be constructed to ensure
that a method of the RTM never throws an exception. It
may not be feasible, however, to cover every possible
input combination to a method during unit testing. As-
sume a method passes the unit test, but developers iden-
tify certain incorrect configurations under which the
method could throw an exception. A QoS test can be
constructed from the original unit test that monitors
whether or not the method ever throws that exception. If
that particular exception is thrown it indicates a miscon-
figuration, the guardian can then take steps to fix the
bean’s configuration.

Beans monitor requests on their accessible methods
through generated proxies. When a request is issued to
the bean, the generated proxy first receives the request
and notes the start time. The proxy then notifies the
guardian that a request is starting so that any pre-condi-
tions on the request can be analyzed. These pre-condi-
tions can be used to identify QoS failures in other por-
tions of the system. The proxy then passes the request to
the actual method that contains the logic to fulfill it (we
refer to this method as the implementing method). When
the implementing method has returned, the bean again
notifies its guardian, which enables the guardian to
check post-conditions, such as output correctness or ser-
vicing time. Finally, the result is passed back to the
caller. This system of intercepting requests and passing
the state events to the analysis objects relieves applica-
tion developers from manually implementing state event
and monitoring capabilities (challenge 2.2.3).

As described above, each request incurs monitoring
overhead. This monitoring, however, need not happen on
a per-request basis, i.e., the guardian can be tuned to
only listen at certain event intervals or not to begin lis-
tening until activated by another portion of the system.
The guardian can also begin monitoring when an excep-
tion is raised during a request. The guardians use the
Strategy pattern [17] to allow the appropriate monitoring
scheme to be configured (challenge 2.1.4).

After the state is routed to the analysis object, it deter-
mines if its QoS property is being met. JFense has sev-
eral predefined analysis objects for common functions,
such as monitoring request time. Other autonomic analy-
ses can be added by extending the JFense analysis inter-
faces or implementing the class skeletons generated by
Jadapt from the J2EEML model. If the QoS is not being
maintained, the analysis object notifies the guardian,
which will either directly execute an action plan or
propagate the QoS failure event up the chain of guardi-

ans. This chain of communication between guardians
provides a solution to the problem of coordinating multi-
ple layers (challenge 2.3.3).

Guardians also use the Strategy pattern to determine
how to react to a QoS failure. Different planning strate-
gies can be configured into a guardian at design- or run-
time to find the appropriate course of action for each
QoS failure. The default strategy uses a hashing scheme
to associate QoS analysis objects with Command pattern
actions, which encapsulates an action as an object, to
allow requests to be queued, logged, or undone. In the
event of a QoS failure, the appropriate action is looked
up from the table and executed.

To provide a flexible means of controlling compo-
nents, the guardians implement the Extension Interface
pattern [24], which is to provide a mechanism to query a
component for the interfaces it supports and obtain an
interface. When an action is executed, it is passed a ref-
erence to the guardian that observed the QoS failure. The
action can use the guardian to locate objects that support
the interfaces it needs to accomplish its goals. In the case
of the RTM, this might involve looking up a Re-
starter interface to allow the action to restart the
RTM after an error occurred.

JFense alleviates developers of the need to build an
autonomic framework from scratch for the highway
freight scheduling system. JFense handles inter-layer
communication so that developers can focus on the logic
needed to analyze the state data, determine the correct
course of action, and adapt the system. JFense also pro-
vides the communication, monitoring, and bus
infrastructure to glue the provided logic together, which
significantly reduces the time and effort required to build
autonomic applications that monitor their own state and
adapt to achieve their goals.

4 Related Work

This section reviews work on aspect-oriented pro-
gramming, J2EE instrumentation, J2EE management,
and middleware for adaptive QoS provisioning. We look
at a group of technologies that are combined to form
autonomic applications. These technologies are not
combined by any research effort, however, into a single
solution for autonomic computing.

Aspect-oriented programming. Separating concerns
that crosscut multiple layers of an application is hard.
Aspect-oriented programming (AOP) offers meta-pro-
gramming mechanisms that enable developers to specify
aspects or crosscutting concerns and inject them across
multiple levels of an application. This injection can be
done at compile-and/or run-time. Two such facilities for
Java are AspectJ [21], which imbues objects with the
meta-defined behaviors at compile-time, and Aspect-
Werkz [22], which uses Java reflection to attach the be-
havior at run-time.

AspectJ and AspectWerkz have been used to monitor
the performance of pre-existing J2EE applications.

These aspect-oriented languages help imbue autonomic
capabilities into existing systems. They take the ap-
proach of modifying the application itself rather than the
common approach of retrofitting the application’s log-
ging mechanism to fit Common Base Event (CBE) or
other easily analyzed format.

When designing an autonomic application, the use of
patterns, such as the Interceptor pattern [24] and the
Smart Proxy pattern [19, 20], can minimize the need for
an aspect-oriented approach. JFense uses the
Proxy/Interceptor approach since it is not currently in-
tended to retrofit existing applications.

AspectJ and AspectWerkz can be used to weave auto-
nomic concerns into an application. They do not how-
ever provide any means of addressing the challenges
discussed in sections 2.1–2.4. J3 provides a development
solution that directly addresses the challenges in 2.1–2.4.
AspectJ and AspectWerkz are a means to help integrate
autonomic functions. The J3 process provides an auto-
nomic development solution that covers application de-
sign to code generation to runtime monitoring, analysis,
planning and execution.

J2EE instrumentation and management. Work on
J2EE instrumentation is closely related to monitoring
and out-of-band adaptation [18]. Java Management eX-
tensions (JMX) provide a standardized mechanism for
remotely instrumenting and managing Java applications.
It can be used to remotely coordinate the autonomic
nervous systems of several applications. Although re-
motely accessible EJBs could perform the same function,
JMX is designed specifically for management and in-
strumentation. Custom EJB solutions would inevitably
reinvent much of JMX’s functionality. A custom solu-
tion would also be incompatible with existing remote
management consoles.

JMX aids in the development of autonomic systems,
but as with aspect-oriented programming, does not by
itself provide an autonomic framework. JFense uses
JMX to offer inter-application coordination of autonomic
capabilities. Again, J2EEML, Jadapt, and JFense provide
end-to-end autonomic application development and not
merely generic glue to attach autonomic capabilities.

Adaptive and reflective middleware. Adaptive and
Reflective middleware analyzes its own state and adapts
its QoS provisioning to maintain pre-defined levels of
service. The dynamic provisioning of QoS properties in
middleware mirrors the challenges faced in autonomic
systems. Care must be taken to separate the concerns of
monitoring and adaptation from application logic [18].
The Proxy [17] and Interceptor [24] patterns are familiar
to CORBA applications. Qoskets [21] and Quality Ob-
jects (QuO) [23] are similar in intent to JFense, in that
they focus on separating the monitoring of QoS from the
application logic and provide introspection mechanisms
by which applications can observe and react to changes
in their own state. The entire J3 Process not only in-
cludes an autonomic framework but an end-to-end mod-
eling and code-generation solution. J3 aids not only by

providing a framework but by facilitating system design
and specification. Jadapt is J3’s mechanism for ensuring
that the autonomic application meets the specification.
Using a modeling to run-time autonomic solution, en-
sures that the application is properly designed, meets its
goals, and is a proper implementation of the autonomic
specification. Qoskets and QuO do not provide model
verification or a mechanism to ensure that the applica-
tion meets its specifications.

5 Concluding Remarks
Significant challenges arise when developing EJB ap-

plications with autonomic capabilities. In particular, de-
velopers must reason about complex sets of QoS goals
and ensure that applications meet them. Autonomic ca-
pabilities provide a means for EJB applications to self-
manage and attempt to maintain the QoS goals. To fa-
cilitate self-management, both the structure of EJB ap-
plications and their QoS goals must be captured formally
so that applications can reason about themselves.

The bridge between the QoS goals of autonomic sys-
tems and their structural designs involves mapping these
goals to specific system components. Without this map-
ping, applications cannot use introspection to determine
whether their QoS goals are being met. The J2EEML
MDD tool described in this paper helps link goals and
structure by allowing developers to specify this mapping
formally via a domain-specific modeling language.
J2EEML also includes mechanisms for describing com-
plex EJB structures, interactions, and architectures.

After the structural properties, QoS goals, and goal to
structure mapping have been captured by J2EEML, de-
velopers still must integrate autonomic features into their
distributed EJB applications. This integration is often
overly complex due to the lack of component-level
frameworks for application autonomicity. To address
these concerns, we have developed the Jadapt code gen-
eration tool and the JFense autonomic framework. Jadapt
allows developers to generate the required code to plug
their application’s EJBs into JFense. JFense provides a
comprehensive and flexible framework for multi-layered
autonomic monitoring, analysis, planning, and execution
architectures, which allows developers to focus on the
system’s business logic and QoS analysis logic. The J3
Process provides a component-level toolkit that sim-
plifies the development of autonomic EJB applications.

From the development of the J3 process, we have
learned that creating reusable components to monitor a
system and execute adaptation plans is a challenging
endeavor. Not all applications will want to monitor the
same types of data sets. The monitoring framework must
therefore be flexible to incorporate unanticipated data
sets, yet it also needs to handle the most common cases
well. Striking this balance between flexibility and gen-
eral case utility takes patience and iteration.

We have also learned that developing adaptations for
an application is a tricky process. Most developers do

not think about designing components that can be
adapted, swapped, restarted, or reconfigured to handle
errors. Trying to build a component and separate the
adaptive concerns is hard.

In future work, we are developing a series of increas-
ingly sophisticated autonomic distributed applications
using our MDD tools. These applications will serve as a
testbed for investigating various autonomic architectures,
monitoring strategies, and planning strategies. We are
also enhancing our tools to increase their expressive and
code generation capabilities. We plan to integrate our
MDD tools with CIAO [25], which is a QoS-enabled
component middleware framework that implements the
CORBA Component Model (CCM).

References
[1] J. O. Kephart and D. M. Chess. The Vision of Autonomic

Computing. Computer, 2003.
[2] D. Oppenheimer, A. Ganapathi, D. Patterson, “USENIX

Symposium on Internet Technologies and Systems,” 2003.
[3] V. Matena, M. Hapner, “Enterprise Java Beans Specifica-

tion, Version 1.1,” Sun Microsystems, Dec. 1999.
[4] Autonomic Computing Toolkit, IBM, www106.ibm.

com/developerworks/autonomic/overview.html.
[5] G. Candea, A. Fox, “Designing for High Availability and

Measurability,” Proceedings of the 1st Workshop on
Evaluating and Architecting System Dependability
(EASY), July 2001.

[6] R. Schantz, J. Loyall, D. Schmidt, C. Rodrigues, Y. Krish-
namurthy, I. Pyarali, “Flexible and Adaptive QoS Control
for Distributed Real-time and Embedded Middleware,” in
Proceedings of Middleware 2003, 4th International Con-
ference on Distributed Systems.

[7] J. Sztipanovits, G. Karsai, "Model-Integrated Computing,"
IEEE Computer, April 1997.

[8] T. Eymann, M. Reinicke, et al., “Self-Organizing Resource
Allocation for Autonomic Networks,” DEXA Workshops,
2003.

[9] R. Johnson, “J2EE Design and Development,” Wiley, 2003.
[10] D. Alur, J. Crupi, D. Malks, “J2EE Core Patterns,” Sun

Microsystems Press, 2003.
[11] E. Giguere, “Create GLA components using Release 2 of

the Autonomic Computing Toolkit,” IBM Developer-
works, (www106.ibm.com/ developerworks/edu/ac-dw-
ac-glacomp2i.html?
S_TACT=104AHW20&S_CMP=HP).

[12] “ Specification: Common Base Event ,” IBMDeveloper-
works, (www106.ibm.com/developerworks/ webser-
vices/library/ws-cbe/).

[13] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nord-
strom, J. Sprinkle, and G. Karsai, “Composing Domain-
Specific Design Environments,” IEEE Computer, Nov.
2001.

[14] The Generic Modeling Environment, Institute for Soft-
ware Integrated Systems, Vanderbilt University,
(www.isis. vanderbilt.edu/Projects/gme/GME reference).

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming,” ECOOP Object-Oriented Programming,
11th European Conference, 1997

[16] XDoclet, (xdoclet.sourceforge.net/xdoclet/).

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware,”Addison-Wesley, 1995.

[18] N. Wang, C. Gill, D. Schmidt, A. Gokhale, et. al, “Mid-
dleware for Communications,” John Wiley & Sons, Ltd,
2001

[19] R. Koster, T. Kramp, “Loadable Smart Proxies and Na-
tive-Code Shipping for CORBA,” in Proceedings of the
Third IFIP/GI International Conference on Trends to-
wards a Universal Service Market (USM), Munich, pp.
202–213, September 2000.

[20]. N. Wang, K. Parameswaran, and D. Schmidt, “The De-
sign and Performance of MetaProgramming Mechanism
for Object Request Broker Middleware,” in Proceedings
of the 6th USENIX Conference on Object- Oriented Tech-
nologies and Systems (COOTS’01), January 2001.

[21] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R.
Vanegas, “QoS Aspect Languages and Their Runtime In-
tegration.,” in Proceedings of the Fourth Workshop on
Languages, Compilers and Runtime Systems for Scalable
Components, 1998

[22] AspectWerkz, (aspectwerkz.codehaus.org/index-aw.html)
[23] J. Zinky, D. Bakken, R. Schantz, “Architectural Support

for Quality of Service for CORBA Objects,” Theory and
Practice of Object Systems, 1997

[24] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, “Pattern-
Oriented Software Architecture,” John Wiley and Sons,
Ltd., 2000.

[25] N. Wang, D. Schmidt, A. Gokhale, C. Rodrigues, B. Nata-
rajan, J. Loyall, R. Schantz, and C. Gill, “QoS-enabled
Middleware,” in Middleware for Communications, edited
by Q. Mahmoud, Wiley and Sons, New York, 2003.

[26] Greenfield et al., “Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools,”
Wiley and Sons, 2004.

http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf
http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf

	Simplifying the Development of Autonomic Enterprise
	Java Bean Applications via Model Driven Development
	Jules White, Douglas Schmidt, Aniruddha Gokhale
	Abstract

	1.2 Simplifying Autonomic System Design and Implementation v
	1.3 Paper Organization
	2 Key Challenges of Developing Autonomic EJB Component Frame
	2.1 Monitoring
	2.2 Analysis
	2.3 Planning
	2.4 Execution
	3 Using the J3 Process to Simplify Autonomic System Developm
	3.1 Resolving the Challenges of Autonomic Systems with J2EEM
	3.1.1 EJB Structural Model
	3.1.2 Goal Modeling
	3.1.3 Goal-to-EJB Mapping
	3.2 Reducing the Complexity of Implementing an Autonomic Sys
	3.2.1 Simplifying the Creation of Autonomic Applications tha
	3.2.2 Simplifying Autonomic Application Development with the
	5 Concluding Remarks
	References

