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Abstract 
Autonomic computer systems aim to reduce the configu-
ration, operational, and maintenance costs of distributed 
applications by enabling them to self-manage, self-heal, 
self-optimize, self-configure, and self-protect. This paper 
provides two contributions to the model-driven develop-
ment (MDD) of autonomic computing systems using En-
terprise Java Beans (EJBs). First, we describe the struc-
ture and functionality of an MDD tool that formally cap-
tures the design of EJB applications, their quality of 
service (QoS) requirements, and the autonomic proper-
ties applied to the EJBs to support the rapid develop-
ment of autonomic EJB applications via code genera-
tion, automatic checking of model correctness, and visu-
alization of complex QoS and autonomic properties. 
Second, the paper describes how MDD tools can gener-
ate code to plug EJBs into a Java component framework 
that provides an autonomic structure to monitor, config-
ure, and execute EJBs and their adaptation strategies at 
run-time. We present a case study that evaluates how 
these tools and frameworks work to reduce the complex-
ity of developing autonomic applications. 

Keywords: Autonomic Computing, Component Middle-
ware, Model-driven Development. 
 
1 Introduction 

Autonomic computing challenges. Developing and 
maintaining enterprise applications is hard, due in part to 
their complexity and the impact of human operator error, 
which have shown to be a significant contributor to dis-
tributed system repair and down time [2]. The aim of 
autonomic computing is to create distributed applications 
that have the ability to self-manage, self-heal, self-opti-
mize, self-configure, and self-protect [1], thereby re-
ducing human interaction with the system to minimize 
down-time from operator error. Although the benefits of 
autonomic computing are significant [1], the pressures of 
limited development timeframes and inherent/accidental 
complexities of large-scale software development have 
discouraged the integration of sophisticated autonomic 
computing functionality into distributed applications. 
Some enterprise application platforms offer limited auto-
nomic features, such as such as Enterprise Java Bean 
(EJB) [3] application servers clustering capabilities, 
though they tend to have large development teams and 
long development cycles.  

A key challenge limiting the use of autonomic features 
in enterprise applications is the lack of design tools and 
frameworks that can (1) alleviate the complexities stem-
ming from the use of ad hoc methods and (2) generate 
code that is correct-by-construction. Some infrastructure 
does exist, such as IBM’s Autonomic Computing Toolkit 
[4], which focuses on system-level logging and man-
agement. System-level autonomic toolkits are 
inadequate, however, for fine-grained autonomic ca-
pabilities, which are essential to fix problems early 
before an entire application must be restarted.  

To address the limitations with system-level auto-
nomic toolkits, component-level autonomic frameworks 
are needed to reduce the effort of developing autonomic 
applications. Component-level autonomic properties 
support fine-grained healing, optimization, configura-
tion, monitoring, and protection than system-level tool-
kits. For example, a mission-critical command and con-
trol system for emergency responders should be able to 
shutdown/restart application component logic selectively 
as it fails, rather than shutdown/restart the entire applica-
tion. With existing autonomic infrastructure based on the 
system-level , the failure of a key component triggers a 
restart of the entire application [5]. In contrast, a comp-
onent-level autonomic framework could provide mecha-
nisms to restart only the point of failure. 

Creating applications with either system or compo-
nent-level autonomic frameworks requires moving large 
amounts of state data, analysis data, actions plans, and 
execution commands between components. These types 
of applications also require careful weaving of monitor-
ing, analysis, planning, and execution logic into the 
functional components of the system. Analysis of the 
autonomic aspects of the application, such as checking 
whether the right state is being monitored by the right 
components, is a tedious and error-prone process.  

Simplifying autonomic system development via 
MDD techniques. Model-driven development (MDD) 
[6] tools are a promising means of reducing the cost as-
sociated with these activities. Models of autonomic sys-
tems developed with MDD tools can be constructed and 
checked for correctness (semi-)automatically to ensure 
that application designs meet autonomic requirements. 
Tools can also be used to generate the various capabili-
ties to move data, coordinate actions, and perform other 
autonomic functions. 

To address the need for component-level autonomic 
computing – and to avoid ad hoc techniques that manu-



ally imbue autonomic qualities into distributed applica-
tions – we have created the J3 Process, which is an 
open-source MDD environment that supports the rapid 
design and implementation of autonomic applications. 
J3 consists of several MDD tools and autonomic com-
puting frameworks, including (1) J2EEML, which cap-
tures the design of EJB applications, their quality of ser-
vice (QoS) [6] requirements, and the autonomic adapta-
tion strategies of their EJBs via a domain-specific mod-
eling language (DSML) [7], (2) Jadapt, which is a 
J2EEML model interpreter that analyzes the QoS and 
autonomic properties of J2EEML models, and (3) 
JFense, which is an autonomic framework for monitor-
ing, configuring, and resetting individual EJBs [8].    

This paper describes the structure and functionality of 
J2EEML and shows how it simplifies the development 
of autonomic systems by providing notations and ab-
stractions that are aligned with autonomic computing, 
QoS, and EJB terminology, rather than low-level fea-
tures of operating systems, middleware platforms, and 
third-generation programming languages. We also de-
scribe how (1) Jadapt generates EJB and Java code from 
J2EEML models to ensure that autonomic applications 
meet their specifications and to reduce implementation 
time and (2) JFense provides a set of reusable autonomic 
components that allow developers to plug-in EJB appli-
cations and focus on autonomic logic, rather than the 
glue for constructing the autonomic system. Finally, we 
evaluate how the J3 Process reduces the complexity of 
developing an autonomic EJB application used as a case 
study to evaluate our MDD tools and processes. 
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Figure 1: A Multi-Layered Autonomic Architec-

ture for Scheduling Highway Freight Shipments 

Our case study centers on an EJB-based system that 
schedules highway freight shipments using the multi-lay-
ered autonomic architecture shown in Figure 1. The sys-
tem has a list of freight shipments that it must schedule. 

It uses a constraint-optimization engine to find a cost 
effective assignment of drivers and trucks to shipments.  

A central component in Figure 1 is the Route Time 
Module (RTM), which determines the route time from a 
truck’s current location to a shipment start or end point. 
The RTM uses a geo-database and the GPS coordinates 
from the truck to perform the calculation. This module is 
critical to the proper operation of the optimization en-
gine. A heavy load is placed on the RTM, so it is crucial 
that it maintains its QoS assertions, such as maintaining 
a maximum response time for the RTM of 100 millisec-
onds. QoS assertions are properties that the system can 
introspectively measure about itself to determine 
whether the measured value for the property is beneficial 
to the system. These measured QoS goals allow the sys-
tem to decide whether it is in a good state and predict 
whether it will continue to remain in a good state. 

Paper organization. The remainder of this paper is 
organized as follows: Section 2 describes the MDD J3 
Process for developing autonomic EJB applications; 
Section 3 gives an overview of J2EEML and describes 
key challenges we faced when developing it; Section 4 
quantifies the reduction in manual effort achieved by 
applying the J3 Process on our highway freight shipment 
case study; Section 5 compares our work with related re-
search; and Section 6 presents concluding remarks. 

2 The J3 Process for Autonomic System De-
velopment 

The J3 Process contains the following MDD tools and 
component middleware frameworks that address the 
challenges of developing autonomic EJB applications: 
• J2EEML, which is a DSML-based MDD tool tai-

lored for designing autonomic EJB applications that 
uses visual representations to model domain-specific 
abstractions. J2EEML provides a formal mapping 
from QoS requirements to application components.  

• Jadapt, which is an MDD tool that produces many 
artifacts required to implement autonomic EJB appli-
cations modeled in J2EEML. Jadapt generates code 
that meets the J2EEML specifications and also re-
duces the amount of code that application developers 
must write manually.  

• JFense, which is an autonomic framework that pro-
vides components for monitoring, analysis, planning, 
and execution. Developers can use these components 
to avoid writing custom autonomic frameworks. 
JFense can be configured to meet the autonomic re-
quirements of a variety of EJB applications.  

This section focuses on the design and function of 
J2EEML and illustrates how it can be used to create 
structural models of EJB applications. 

 
2.1 Overview of J2EEML 

J2EEML is a DSML that enables EJB developers to 
construct models that incorporate autonomic and QoS 



concepts as first-class entities. J2EEML itself is devel-
oped using the Generic Modeling Environment (GME) 
[9], which is a general-purpose MDD environment that 
we use to simplify the creation of metamodels that char-
acterize the roles and relationships in the autonomic 
computing domain, and model interpreters that generate 
many artifacts required to implement autonomic EJB 
applications. J2EEML captures the relationship between 
QoS assertions and application components to address 
key design challenges of developing autonomic applica-
tions. For example, J2EEML helps developers under-
stand which components to monitor in their EJB appli-
cations by enabling them to visualize and analyze the 
relationships between components and QoS assertions.  

Developers use J2EEML to capture the design of auto-
nomic systems and the mapping of components to QoS 
assertions in four phases: (1) they create a structural 
model of the EJBs composing an autonomic system, (2) 
they create models of the QoS properties that the system 
is attempting to maintain, (3) they map these QoS prop-
erties to the specific beans within the system that the 
properties are measured from, and (4) they design 
courses of action to take when the desired QoS proper-
ties are not maintained. This modeling process captures 
the structure of the system, how the QoS properties are 
related to the structure, and what adaptation should occur 
if a QoS property is not within an acceptable range. 

2.2 Modeling EJB Structures with J2EEML 
The first piece of a J2EEML model is its EJB struc-

tural model, which describes the components of the sys-
tem that will be managed autonomically. This model 
defines the beans that compose the system and captures 
the EJB specifics of each bean, including JNDI names, 
transactional requirements, security requirements, pack-
age names, descriptions, remote and local interface com-
position, and bean-to-bean interactions. An EJB struc-
tural model is constructed via the following steps: 
1. Each session bean is added to the model by dragging 

and dropping session bean atoms into the J2EEML 
model. Developers then provide the Java Naming and 
Directory Interface (JNDI) name of the bean, its de-
scription, and its state type (i.e., stateful or stateless). 

2. For each session bean, a model is constructed of the 
business methods and creators supported by the bean 
by dragging and dropping method and creator atoms. 
Each method and creator atom has properties for set-
ting the visibility, whether it is part of the local inter-
face, remote interface or both, and the transactional re-
quirements, the security role requirements, and the in-
put/output. Figure 2 shows a model of the remote in-
terface composition of the TruckStatusModule from 
the case study described in Section 1. The model con-
tains methods for modifying the truck’s schedule and 
their transactional/security requirements. 

 

 

Figure 2: J2EEML Remote Interface Composition 
Model for the TruckStatusModule 

 
3. Entity beans are dragged and dropped into the model 

to construct the data access layer. These beans are 
provided a JNDI name/description and properties indi-
cating if they use container managed persistence 
(CMP) or bean managed persistence (BMP).  

4. Persistent fields, methods, and finders are dragged and 
dropped into the entity beans. Each persistent field has 
properties for setting visibility, type, whether it is part 
f the primary key, and its access type (i.e., read-only or 
read-write). 

5. Relationship roles are dragged and dropped into the 
entity beans and connected to persistent fields. These 
relationship roles can be connected to other relation-
ship roles to indicate entity bean relationships. 

6. Connections are made between beans to indicate bean-
to-bean interactions. Capturing these interactions al-
lows Jadapt to later generate the required JNDI lookup 
code for a bean to obtain a reference to another bean. 

After these six steps have been completed, the J2EEML 
model contains enough information to represent the 
composition of the EJBs.  

Figure 3 shows a J2EEML structural model of the 
highway freight scheduling system.  In this figure, each 
bean within the freight scheduling system has been mod-



eled via J2EEML. Interactions between the beans are 
also modeled, thereby allowing developers to understand 
which beans interact with one another. Figure 3 also il-
lustrates snippets of the XML deployment descriptor and 
Java class generated for the Scheduler. 

To support decomposition of complex architectures 
into smaller pieces, J2EEML allows EJB structural mod-
els to contain child EJB models. Beans within the these 
children show up as ports that can receive connections 
from the parent solution. This design allows developers 
to decompose models into manageable pieces and en-
ables different developers to encapsulate their designs. 

 

 
Figure 3: J2EEML Structural Model Showing 

Bean-to-Bean Interactions 
 

For our highway freight scheduling example, we con-
structed a structural model of each bean required for the 
Route Time Module, constraint-optimization engine, 

truck status system, and incoming pickup request sys-
tem, as shown in Figure 3. The model also includes in-
formation on the entity beans used to access the truck 
location and pickup request databases.  

Using J2EEML provides several advantages in the de-
sign phase, including (1) visualization of beans and their 
interactions, component security requirements, system 
transactional requirements, and interactions between 
beans, (2) enforcement of EJB best practices, such as the 
Session Façade pattern [10], which hides Entity beans 
from clients through Session beans , and (3) model cor-
rectness checking, including checks for proper JNDI 
naming. J2EEML’s visualization benefits significantly 
decreased the difficulty of understanding system struc-
ture and interactions. The correctness checking and en-
forcement of best design practices facilitated rapid crea-
tion of both a correct-by-construction and well-designed 
solution. 

3 Designing J2EEML to Address Key Con-
cerns of Autonomic Computing 

Autonomic applications require four elements to 
achieve their assertions: monitoring, analysis, planning, 
and execution [1]. These elements form a controller that 
observes and adapts the application to maintain its asser-
tions. This section describes how the monitoring, analy-
sis, and planning aspects of autonomic systems present 
unique challenges when designing and building the 
J2EEML and shows how we addressed each challenge. 
To focus the discussion, we use the Route Time Module 
(RTM) shown in Figure 1 as a case study to illustrate key 
design challenges associated with autonomic systems.  

3.1 Monitoring 
Monitoring is the phase in autonomic systems where 

applications observe their own state. Since this state in-
formation is used in later phases to control system be-
haviors it is crucial that the right information be col-
lected at the right times without adversely impact system 
functionality and QoS. The following are key design 
challenges faced when developing the monitoring as-
pects of autonomic systems:  

Challenge 3.1.1: Providing the ability to specify the 
large range of data that can be monitored by the sys-
tem. Developers of autonomic systems must address 
how to self-monitor key data, e.g., by capturing CPU and 
memory utilization, exceptions thrown by the applaca-
tion, or error messages in a log. The model for specify-
ing what information to capture from the system must be 
flexible and support a range of data types. The model 
must also be extensible and support unforeseen future 
data types that might be needed later. 

A core concept behind J2EEML is that an autonomic 
EJB application can measure properties of its current 
state introspectively and determine if the property values 
indicate the application is in a beneficial state. J2EEML 
models the properties it measures via QoS assertions, 



which determine which properties an autonomic system 
can measure about itself introspectively and analyze to 
determine if the properties are in an acceptable assertion 
range. Each assertion provides properties for setting its 
name and description. Developers can drag and drop 
these assertions into J2EEML models. 

The J2EEML QoS assertions model is critical for un-
derstanding an autonomic system’s QoS properties, how 
they can be measured, what their values should be, and 
how degradations in them can be corrected. Under-
standing QoS assertions is also crucial to designing the 
structural architecture of EJB applications and under-
standing how they meet those assertions. Capturing and 
mapping QoS requirements to the appropriate structural 
architecture have traditionally used natural language 
descriptions, such as “the service must support 1,000 
simultaneous users with a good response time.” Due to 
the lack of an unambiguous formal notation, such de-
scriptions are prone to different interpretations, which 
result in architectures that do not meet the QoS require-
ments. Choosing an EJB architecture that best fits the 
QoS requirements can be complex and error-prone since 
specification ambiguity and hidden architectural trade-
offs make it hard to choose the appropriate design.  

For example, deciding whether to use remote inter-
faces for a J2EE implementation of a service can have a 
substantial impact on end-to-end system QoS. Remote 
interfaces allow distribution of beans across servers, 
which can increase scalability. Distribution can also in-
crease latency, however, since requests must travel 
across a network or virtual machine boundaries. 

With the RTM in our case study, one QoS assertion is 
the average response time. This QoS assertion states that 
the system will measure all requests to the RTM and 
track the average time required to service each request. If 
the calculated average response time exceeds 50 milli-
seconds, the assertion is false, indicating that the RTM is 
taking too long to respond, otherwise the assertion is 
true, indicating that the RTM is responding properly.  

Figure 4 illustrates a J2EEML model of the scheduling 
system and the association of the RTM to the Respon-
seTime QoS property. This model shows J2EEML’s abil-
ity to model QoS properties as aspects [17] that are ap-
plied to a component. When the model is interpreted and 
the Java implementation generated, the association be-
tween the RTM and ResponseTime assertion will lead to 
the appropriate monitoring code being generated in the 
RTM’s implementing class. 

 
Figure 4: J2EEML Model Associating the Respon-
seTime QoS Assertion with the RouteTimeModule 
 
Challenge 3.1.2: Building a system to specify where 

monitoring logic should reside in the system. The de-
cision of what to monitor directly affects where the 
monitoring logic will reside. To monitor a log for errors, 
the logic could be at any level of the application, such as 
a central control level. For observing exceptions or the 
load on a specific subcomponent of the application, the 
monitoring logic must be embedded more deeply. In 
particular, developers must position the monitoring ca-
pability precisely so that it is close enough to capture the 
needed information, but not so deeply entangled in the 
application logic that it adversely affects performance 
and separation of concerns. 

In our freight scheduling case study, we must ensure 
separation of concerns in the application design and find 
an efficient means of monitoring. The monitoring logic 
for the RTM, however, should not be entangled with the 
route time calculation logic. Moreover, the time to moni-
tor each request should be insignificant compared to the 
time to fulfill each route request.  

After the structural and assertion models are com-
pleted, developers can use J2EEML to map QoS asser-
tions to EJBs in the structural model. This mapping 
documents which QoS assertions should be applied to 
each component. It also indicates where monitoring, 
analysis, and adaptation should occur for an autonomic 
system to maintain those assertions. For example, to de-
termine the average response time of the RTM, calls to 
the RTMs route time calculation method must be inter-
cepted to calculate their servicing time. The relationship 
between the RTM bean and average response time asser-
tion in the model indicates that the RTM bean must be 
able to monitor its route time calculation requests. 



 
Figure 5: J2EEML Mapping of QoS Assertions to 

EJBs 

J2EEML supports aspect-oriented modeling [11] of 
QoS assertions, i.e., each QoS assertion in J2EEML that 
crosscuts component boundaries can be associated with 
multiple EJBs. For example, maintaining a maximum re-
sponse time of 100 milliseconds is crucial for both the 
RTM and the Scheduler bean. Connecting multiple com-
ponents to a QoS assertion, rather than creating a copy 
for each component, produces clearer models. It also 
clearly shows the connections between components that 
share common QoS assertions. Figure 5 shows a map-
ping from QoS assertions to EJBs. Both the RTM and the 
Scheduler in this figure are associated with the QoS as-
sertions ResponseTime and AlwaysAvailable. The Re-
sourceTracker and ShipmentSchedule components also 
share the AlwaysAvailable QoS assertion in the model. 

Components can have multiple QoS assertion associa-
tions, which J2EEML supports by either creating a sin-
gle assertion for the component that contains sub-asser-
tions or by connecting multiple QoS assertions to the 
component. If the combination of assertions produces a 
meaningful abstraction, hierarchical composition is pre-
ferred. For example, the RTM is associated with a QoS 
assertion called “AlwaysAvailable” constructed from the 
sub-assertions “No Exceptions Thrown” and “Never 
Returns Null.” Combining “Minimum Response Time” 
and “No Exceptions Thrown,” however, would not pro-
duce a meaningful higher-level abstraction, so the multi-
ple connection method is preferred in this case. 

3.2 Analysis 
Analysis is the phase in autonomic systems that takes 

state information acquired by monitoring and reasons 
about whether certain conditions have been met. For 
example, analysis can determine if an application is 
maintaining its QoS requirements. The analysis aspects 
of an autonomic system can be (1) centralized and exe-
cuted on the entire system state or (2) distributed and 
concerned with small discrete sets of the state. The fol-
lowing are key challenges faced when developing an 
autonomic analysis engine: 

Challenges 3.2.1: Building a model to facilitate 
choosing the type of analysis engine and Challenge 
3.2.2: Building a model to  facilitate choosing how the 
engine should be decomposed and/or distributed. To 
choose a distributed vs. monolithic analysis engine, the 
tradeoffs of each must be understood. Concentration of 
analysis logic into a single monolithic engine enables 
more complex calculations. However, for simple calcu-
lations, such as the average response time of the RTM 
component, a monolithic engine requires more overhead 
to store/retrieve state information for individual compo-
nents than an analysis engine dedicated to a single com-
ponent. A monolithic analysis engine also provides a 
central point of failure. A key design question is thus 
where analysis should be done and at what granularity. 

A model to facilitate choosing the appropriate type of 
analysis engine must enable developers to identify what 
data types are being analyzed, what beneficial informa-
tion about the system state can be gleaned from this in-
formation, and how that beneficial information can most 
easily be extracted. It is important that the model enable 
a standard process for examining the required analyses 
and determining the appropriate engine type. 

To create an effective analysis engine, developers 
must determine the appropriate number of layers. A key 
issue to consider is whether an application should have a 
single-layer vs. multi-layered analysis engine. At each 
layer, the original monitoring design questions are appli-
cable, i.e., what should be monitored and how should it 
be monitored? A model to enable these decisions must 
clearly convey the layers composing the system. It also 
must capture what analysis takes place at each layer and 
how each layer of analysis relates with other layers.  

In the context of our highway freight scheduling sys-
tem, a key question is whether its autonomic layer ana-
lyzes the RTM’s response time or whether a layer above 
the RTM should do it. At each layer, the analysis design 
considerations are important too, e.g., what information 
the system is looking for in the data, how it finds this 
information, and how this can be better accomplished by 
splitting the layer. For example, a developer must con-
sider whether every request to the RTM should be moni-
tored to determine if the RTM is meeting its minimum 
response time QoS. Conversely, perhaps only certain 
types of requests known to be time consuming should be 
monitored. Another question facing developers is how 
the RTM’s monitoring logic sends data to its analysis en-
gine. 

Developers can use J2EEML to design hierarchical 
QoS assertions to divide-and-conquer complex QoS 
analyses. A hierarchical QoS assertion is a assertion that 
is only met if all its child assertions are met. In terms of 
QoS assertions, this means that all the child QoS asser-
tions must hold for the parent QoS assertion to hold. 
With respect to the RTM, the QoS assertion GoodRe-
sponseTime only holds if both the child QoS assertions 
AverageResponseTime and MaximumResponseTime also 
hold. This hierarchical composition is illustrated in Fig-



ure 6, where GoodResponseTime is an aggregation of 
several properties of the response time.  

 

 
Figure 6: J2EEML Hierarchical Composition of 

ResponseTime QoS Assertion  
 

Modeling QoS assertions hierarchically enhances de-
veloper understanding of what type of analysis engine to 
choose. A small number of complex QoS assertions that 
cannot be broken into smaller pieces imply the need for a 
monolithic analysis engine. A large number of assertions 
– especially hierarchical QoS assertions – imply the need 
for a multi-layered analysis engine. 

Modeling QoS assertions hierarchically also enhances 
developer understanding of how to decompose the analy-
sis engine into layers. The hierarchical model of the QoS 
assertions corresponds directly to the decomposition of 
the analysis engine into layers. Developers can use 
J2EEML to first add complex QoS assertions to their 
models and then determine if the complex assertion can 
be accomplished by combining the results of several 
smaller analyses. If so, developers can add these smaller 
QoS assertions as children of the original QoS assertion 
to represent the smaller analyses and then apply this it-
erative process to the new children.  
3.3 Planning 

Planning is the phase in autonomic systems where ap-
plications examine the results of their analysis and de-
cide what actions to take to reach their assertions. For 
our highway freight scheduling example, this could in-
volve changing the RTM to use a less precise but faster 
algorithm that maintains the minimum response time as 
demand grows.  A typical autonomic application may 
have hundreds of assertions and planning the correct 
actions in the face of QoS failures is critical to an auto-

nomic application. The following are key challenges 
faced when developing an autonomic analysis engine: 

Challenge 3.3.1 Designing a means to specify lay-
ered adaptation plans. As with monitoring and analy-
sis, planning can be implemented with a layered archi-
tecture. A simple, one-layer architecture would monitor, 
reason, and react to all system events at one level, which 
works well for macro-level events and actions. This sim-
ple approach is less suitable for applications that need 
more flexible and fine-grained control of their behavior. 
To increase flexibility and fine-grained control, there-
fore, more layers can be integrated into the system. Lay-
ers distribute intelligence throughout the system and 
support a divide-and-conquer approach to planning. 

After the planning is provisioned into layers, each 
layer must be assigned a responsibility to react to and 
recover from QoS failures. In our highway freight 
scheduling example, one layer might ensure that the 
RTM is always available and the next layer down might 
ensure that a minimum response time is maintained. In-
telligent separation of responsibilities can produce hier-
archical chains of command that reduce the complexity 
of accomplishing the overall assertion. Finding these 
well-proportioned divisions of labor is hard. 

J2EEML models adaptation by specifying the actions 
the system should take when a QoS assertion fails. Each 
application component may have a group of assertions 
associated with it. If one assertion does not hold for the 
component, it indicates a QoS failure that must be fixed. 
Developers can use J2EEML to specify groups of ac-
tions that must be taken to correct these failures. 

Once an assertion has failed to hold for a specific 
component, the application must determine how to fix 
the problem. To model the appropriate course of action, 
J2EEML uses the concept of adaptation plans, which 
are groups of actions that can be performed to fix a spe-
cific type of QoS assertion failure. For example, if the 
average response time assertion fails, the RTM must 
change its calculation algorithms to be less precise but 
run faster. Changing algorithms allows the RTM to im-
prove its response time and fix the QoS assertion failure. 
The steps required to change the calculation algorithms 
for the RTM are modeled as an adaptation plan. The 
RTM implements the Strategy pattern [12] to allow its 
algorithms to change. The first action from the adapta-
tion plan is to suspend any incoming requests, the sec-
ond action is to change the algorithm, and the final ac-
tion is to resume the suspended requests. These actions 
form the adaptation plan for handling failures in the av-
erage response time for the RTM.  

Adaptation plans indicate the responsibilities of an 
autonomic layer, i.e., the adaptation plan specifies the 
actions that the autonomic layer can choose from in the 
event of a QoS failure. This association also aids in 
choosing a single-layer or multi-layered planning archi-
tecture. If a complex QoS assertion does not have ad-
aptation plans associated with its children, the proper 
course of action to take when one of the child QoS as-



sertions fails cannot be determined by the data available 
to the child. If only top-level QoS assertions have asso-
ciated adaptation plans, this implies the need for a single 
planning layer. If, however, the QoS children have adap-
tation plans associated with them, this implies that they 
can determine the corrective course of action and require 
a multi-layered planning solution. 

Figure 7 shows a J2EEML model that associates the 
ResponseTime QoS assertion with the ChangeAlgo-
rithms single-layered adaptation plan.  This association 
indicates that when the ResponseTime QoS assertion 
fails for a component, the ChangeAlgorithm adaptation 
plan should be executed. 

 
Figure 7: J2EEML Model Associating the Respon-

seTime QoS Assertion with the ChangeAlgorithms 
Adaptation Plan  

3.4 Reducing the Complexity of Developing 
Autonomic Systems with JFense and Jadapt 

JFense is a component-level framework that performs 
autonomic functions, such as monitoring the QoS of 
EJBs, analyzing system state, communicating between 
autonomic layers, determining how to adapt to QoS fail-
ures, and executing adaptation plans. It addresses many 
of the challenges related to developing autonomic EJB 
applications. For example, it is responsible for integrat-
ing the monitoring, analysis, planning, and execution 
logic of applications, which alleviates developers from 
reinventing an autonomic framework for their applica-
tion. It also handles the communication between layers 
so that application developers need not write code to 
move data from the monitoring logic to the analysis 
logic. JFense provides a configurable event-based moni-
toring framework that allows developers to focus on 
writing autonomic logic, which saves developers from 
re-inventing and debugging a complex autonomic 
framework. Finally, JFense can coordinate adaptation 
actions between layers and execute the actions. 

Jadapt is a J2EEML model interpreter that supports 
rapid development and verification of autonomic code 
by generating implementations of EJBs from a structural 
model. It serves as a bridge between a J2EEML model 

and the JFense framework, i.e., it generates Java code for 
(1) a J2EEML structural model and (2) plugging the 
generated EJBs into the JFense framework. Jadapt gen-
erates configurations for JFense to mirror the J2EEML 
model, stubs for the EJBs, EJB deployment descriptors, 
and monitoring, analysis, planning, and execution class 
stubs, which relieves developers from tedious and error-
prone coding tasks. Moreover, Jadapt ensures that the 
code mirrors the system architecture in J2EEML imple-
mentation, which reduces problems stemming from mis-
interpretation of the specification and inconsistencies 
between interfaces and their implementations.  

 
Figure 8: Jadapt Code Generation  

 
Figure 8 illustrates the Jadapt generated code for the 

highway freight system. The generated code included the 
Session EJBs for the RTM, Scheduler, ResourceTracker, 
and ShipmentSchedule components. Entity beans were 
generated for the ShipmentSchedule, Truck, and Driver 
components. Each Session and Entity beans also had 
their remote and local interfaces generated, along with 
the appropriate methods exposed in the model. The gen-
erated beans with their associated QoS assertions had the 
appropriate JFense glue code generated into the imple-
mentations. This glue code constructs the appropriate 
guardian for the beans, captures and relays requests on 
the exposed methods to JFense, and provides hooks for 
adapting the component at runtime. Each bean also con-
tained JNDI lookup code for the other beans that it had 
an interaction with in the model. A remote client test 
skeleton was generated to obtain a reference to each 
bean’s home, create an instance of the bean, and allow 
the developer to run tests on the instance. 



Jadapt assumes that developers will modify the gener-
ated beans outside of the J2EEML development envi-
ronment. Bean classes are therefore annotated with XDo-
clet [15] attributes to automate the synchronization of the 
bean class, interfaces, and descriptors. XDoclet reads 
these attributes and generates the required interfaces and 
deployment descriptor XML. Developers only need to 
maintain the central bean class and synchronize the inter-
faces to it with XDoclet. 

The bean descriptor XML generated by Jadapt in-
cludes the transactional, security, visibility, relationship, 
and container type properties declared in the model. For 
example, to ensure that the design, deployment, and con-
figuration are in sync, if method getCoordinates() 
on class RTM can be accessed by a limited set of security 
roles, its security declaration will be included in the gen-
erated bean descriptor. Generating the bean descriptor 
eliminates errors from hand-crafting descriptor XML. 

For our highway freight scheduler, Jadapt reduced the 
application development time by generating (1) all skele-
ton classes and interfaces required for EJBs, (2) XDoclet 
attributes to maintain class, interface, and deployment 
descriptor synchronization during the development cy-
cle, (3) XML deployment descriptors for the EJBs, (4) 
an Ant build infrastructure, (5) project documentation 
from descriptions captured in the model, and (6) glue 
code to plug the generated EJBs into JFense. The gener-
ated code accounted for approximately one-third of the 
Java code required to implement the application. The 
generated XML artifacts, Ant build infrastructure, and 
documentation required no additional hand-crafting by 
developers. The generated EJBs required developers to 
supply the business logic for the exposed methods. The 
generated JFense analysis and adaptation classes re-
quired the appropriate analysis and adaptation logic to be 
filled in. Since developers can easily adjust the applica-
tion design and regenerate the application skeleton, their 
efforts focus on designing the application and imple-
menting the logic required for the business methods. 

4 Evaluating Development Effort Savings of 
the J3 Process 

We developed the highway freight scheduling system 
case study to illustrate the advantages of using the J3 
Process to develop autonomic EJB applications. The 
initial implementation of this case study required several 
thousand lines of Java code. The generated EJB imple-
mentations accounted for nearly 75% of the complete 
code base, the test framework accounted for 20%, and 
the JFense glue code accounted for 5%. Using a tradi-
tional development approach, much of this code would 
have been developed manually. With the J3 Process, in 
contrast, all code except for the business logic and test-
ing logic was generated initially by Jadapt from our 
J2EEML specification, which accounted for approxi-
mately one-third of the code required to implement the 
Java classes for the application. This section describes 

how we refactored our design and analyzed the resulting 
development effort required for changes using both the 
J3 Process and traditional development processes. 

Using our highway freight scheduling case study, we 
evaluated the impact of adding new sources of informa-
tion that required monitoring and where the logic would 
reside. In our initial design, only response times of the 
Scheduling component were monitored. We then refac-
tored the design to monitor response times of the RTM 
component, as well. Adjusting the design using 
J2EEML and re-generating the implementation took ap-
proximately five mouse clicks and resulted in the gen-
eration of ~20 new lines of source code that correctly 
mirrored the specification and was correct-by-construc-
tion. Without an MDD tool, in contrast, each change that 
required the addition of one new connection in the 
model would have required a manual change to the im-
plementation and more testing to attain the same level of 
confidence. In a large-scale development effort with 
many changes, the J3 Process would therefore reduce 
refactoring costs significantly. 

To evaluate the impact of design refactoring on the 
analysis and planning layers of the highway freight sys-
tem, we modified its initial design by changing its re-
sponse time analysis and adaptation into a hierarchy of 
average and maximum response times. The response 
time assertion was intended to maintain both properties 
on the average and maximum response times. Both the 
average and maximum response times had new adapta-
tion plans designed to counteract degradations in either 
QoS level. For both adaptation plans, the first action is to 
suspend the processing of incoming requests. The second 
action taken is to change the algorithm used by the RTM 
to one that is less precise but faster. The final action 
taken by the adaptation plans is to resume processing 
requests. The refactoring in J2EEML was straightfor-
ward and took ~12 mouse clicks. The change generated 
~75 new lines of code, which minimized the complexity 
of the design change and implementation update. Again, 
for large development projects without MDD tool sup-
port, many such changes would occur and hence the 
manual redevelopment effort would be much higher. 

To evaluate the development effort associated with 
sharing adaptation plans between QoS assertions, we 
refactored our highway freight system to share the im-
proved response time adaptation plan between both the 
average response time QoS assertion and the maximum 
response time QoS assertion. The existing plan was then 
augmented with three new adaptations that were shared 
between all assertions. After this change was made to the 
model and Jadapt regenerated the model artifacts, 36 
new lines of code were present that updated the existing 
adaptation plan to include the new adaptations and 
changed the adaptation plan of the maximum response 
time to use its modified adaptation plan. As with other 
refactorings we analyzed, adjusting the J2EEML model 
and regenerating the code required ~12 mouse clicks, 
while developing the equivalent functionality manually 



required significantly more effort. Knowing what to 
adapt to meet the new specification is also more straight-
forward using J2EEML, whereas with a handcrafted ap-
proach developers would need to modify multiple source 
files to accomplish the same task. 

As with the autonomic modeling and generation capa-
bilities of the J3 Process, significant reductions in devel-
opment complexity were yielded by applying MDD to 
the implementation of the structural model. For example, 
when a single SessionBean with one method was 
added to the J2EEML model, the resulting bean, inter-
faces, deployment descriptor, and helper classes gener-
ated 116 lines of Java code and 80 lines of XML. The 
model change in J2EEML required two drag and drop 
operations. As with the autonomic code generated by 
Jadapt, the code was correct-by-construction and the 
JNDI name of the bean was also correct. Adding two 
interactions from existing beans to the new bean gener-
ated another ~12 lines of error-prone JNDI 
lookup/narrowing code that was automatically generated 
by Jadapt, thereby simplifying developer effort and en-
hancing confidence in the results.   

As illustrated in these experiments, the mapping be-
tween QoS assertions and components facilitates the 
generation of code artifacts to reduce application devel-
opment time. For example, understanding which compo-
nents need to be monitored and analyzed allows Jadapt 
to generate proxies and interceptors [16] for the moni-
tored components, which can relay state information to 
the monitoring and analysis logic. Code can then be 
generated that moves the monitoring and analysis results 
to the appropriate planning layers. 

5 Related Work 
An increasing number of MDD tools exist for model-

ing component-based systems. Cadena [18] is an MDD 
tool for building and modeling component-based DRE 
systems, with the goal of applying static analysis, model-
checking, and lightweight formal methods to enhance 
these systems. Other tools, such as Rational Rose, pro-
vide UML modeling capabilities for component-based 
systems. In contrast to J2EEML, these tools are not tai-
lored to the domain of modeling autonomic functionality 
in component-based systems. For example, they lack the 
ability to establish the critical mapping between QoS 
properties, components, and adaptations, which forces 
developers to (1) resort to traditional textual descriptions 
for specifying QoS properties and (2) maintain separate 
models for understanding how the QoS, adaptation, and 
components in the system interrelate. As a result, it is 
hard to understand how an application will monitor itself 
and how it will react to QoS failures.  

IBM’s Autonomic Toolkit [4] addresses the issues of 
monitoring, analysis, planning, and executing autonomic 
applications. It includes the Autonomic Management 
Engine, which monitors events, analyzes them, then 
plans and executes corrective action on a computing re-

source; the Generic Log Adapter [13] for Autonomic 
Computing, which converts existing log files to the 
Common Base Event format [14]; and the Log and Trace 
Analyzer for Autonomic Computing, which reads logs in 
the Common Base Event format, correlates the logs 
based on different criteria, and displays the correlated 
log records. These tools do not, however, address the 
complexity of integrating autonomic functionality into 
applications, i.e., they do not help developers design 
their autonomic applications or implementing the logic 
required by them. In contrast, the J3 Process is specifi-
cally tailored to reducing design and implementation 
complexity, as well as providing a runtime framework. 

6 Concluding Remarks 
In theory, autonomic systems can minimize the impact 

of human error in development and management. In 
practice, however, it is hard to develop the monitoring, 
analysis, planning, and execution aspects required for 
autonomic systems reliably and productively. In particu-
lar, developers must reason about complex sets of QoS 
assertions and ensure that applications meet them. Auto-
nomic capabilities provide a means for EJB applications 
to self-manage and attempt to maintain the QoS asser-
tions. To facilitate self-management, the structure of EJB 
applications and their QoS assertions must be captured 
formally so applications can reason about themselves.  

The bridge between the QoS assertions of autonomic 
systems and their structural designs involves mapping 
these assertions to specific system components. Without 
this mapping, applications cannot use introspection to 
determine whether their QoS assertions are being met. 
The J3 Process described in this paper provides MDD 
tools and an autonomic computing framework to support 
these capabilities to simplify the development of auto-
nomic EJB applications. 

The J2EEML MDD tool helps link assertions and 
structure by allowing developers to specify this mapping 
via a DSML. J2EEML also includes mechanisms for 
modeling complex EJB structures, interactions, and ar-
chitectures and using these models to generate code that 
is correct-by-construction, which frees developer from 
reinventing complex autonomic frameworks.  

After capturing structural properties, QoS assertions, 
and assertion to structure mapping in J2EEML, develop-
ers still must integrate autonomic features into their -
distributed EJB applications. This integration is often 
complicated due to the lack of component-level frame-
works for autonomic systems. To address these con-
cerns, we have developed the Jadapt code generation 
tool and the JFense autonomic framework. Jadapt allows 
developers to generate the code needed to plug their ap-
plication’s EJBs into JFense. JFense provides a com-
prehensive and flexible framework for multi-layered 
autonomic monitoring, analysis, planning, and execution 
architectures, which allows developers to focus on the 
system’s business logic and QoS analysis logic.  



The following are our lessons learned thus far by de-
veloping and applying the J3 Process: 
• Creating a flexible system to aid the development of 

autonomic EJB applications is hard, e.g., not all ap-
plications want to monitor the same types of data 
sets. A DSML must therefore be flexible to incorpo-
rate unanticipated data sets, yet also handle the most 
common cases intuitively. Striking this balance be-
tween flexibility and general case utility took pa-
tience and iteration.  

• Developing adaptations for an application is hard. 
Most developers do not think about designing com-
ponents that can be adapted, swapped, restarted, or 
reconfigured to handle errors. Providing a DSML to 
aid developers in seeing the crosscutting adaptive 
concerns was hard. 

• Creating a model of the mapping from components to 
QoS properties and adaptive behavior greatly en-
hances the ability of developers to understand the 
complex behavior of autonomic systems that would 
ordinarily be buried in hundreds of source files. 

• Constraint checking and code generation can greatly 
reduce and/or eliminate hard-to-debug JNDI naming 
errors. Constraint checking of JNDI allows these er-
rors to be detected at design time rather than runtime. 

In future work, we are developing increasingly so-
phisticated autonomic distributed applications using our 
J3 Process MDD tools to serve as a testbed for investi-
gating various autonomic architectures, monitoring 
strategies, and planning strategies. We are also enhanc-
ing these tools to increase their expressive and code gen-
eration capabilities.  We plan to integrate our MDD tools 
with CIAO [6], which is an open-source, QoS-enabled 
CORBA Component Model (CCM) implementation.  

The J3 Process DSMLs, tools, and frameworks are 
available at www. sourceforge.net/projects/j2eeml. 
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