
Simplifying Autonomic Enterprise Java Bean Applications
via Model-driven Development: a Case Study

Jules White, Douglas Schmidt, Aniruddha Gokhale

{jules, schmidt, gokhale}@dre.vanderbilt.edu
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, USA

Abstract
Autonomic computer systems aim to reduce the configu-
ration, operational, and maintenance costs of distributed
applications by enabling them to self-manage, self-heal,
self-optimize, self-configure, and self-protect. This paper
provides two contributions to the model-driven develop-
ment (MDD) of autonomic computing systems using En-
terprise Java Beans (EJBs). First, we describe the struc-
ture and functionality of an MDD tool that formally cap-
tures the design of EJB applications, their quality of
service (QoS) requirements, and the autonomic proper-
ties applied to the EJBs to support the rapid develop-
ment of autonomic EJB applications via code genera-
tion, automatic checking of model correctness, and visu-
alization of complex QoS and autonomic properties.
Second, the paper describes how MDD tools can gener-
ate code to plug EJBs into a Java component framework
that provides an autonomic structure to monitor, config-
ure, and execute EJBs and their adaptation strategies at
run-time. We present a case study that evaluates how
these tools and frameworks work to reduce the complex-
ity of developing autonomic applications.

Keywords: Autonomic Computing, Component Middle-
ware, Model-driven Development.

1 Introduction

Autonomic computing challenges. Developing and
maintaining enterprise applications is hard, due in part to
their complexity and the impact of human operator error,
which have shown to be a significant contributor to dis-
tributed system repair and down time [2]. The aim of
autonomic computing is to create distributed applications
that have the ability to self-manage, self-heal, self-opti-
mize, self-configure, and self-protect [1], thereby re-
ducing human interaction with the system to minimize
down-time from operator error. Although the benefits of
autonomic computing are significant [1], the pressures of
limited development timeframes and inherent/accidental
complexities of large-scale software development have
discouraged the integration of sophisticated autonomic
computing functionality into distributed applications.
Some enterprise application platforms offer limited auto-
nomic features, such as such as Enterprise Java Bean
(EJB) [3] application servers clustering capabilities,
though they tend to have large development teams and
long development cycles.

A key challenge limiting the use of autonomic features
in enterprise applications is the lack of design tools and
frameworks that can (1) alleviate the complexities stem-
ming from the use of ad hoc methods and (2) generate
code that is correct-by-construction. Some infrastructure
does exist, such as IBM’s Autonomic Computing Toolkit
[4], which focuses on system-level logging and man-
agement. System-level autonomic toolkits are
inadequate, however, for fine-grained autonomic ca-
pabilities, which are essential to fix problems early
before an entire application must be restarted.

To address the limitations with system-level auto-
nomic toolkits, component-level autonomic frameworks
are needed to reduce the effort of developing autonomic
applications. Component-level autonomic properties
support fine-grained healing, optimization, configura-
tion, monitoring, and protection than system-level tool-
kits. For example, a mission-critical command and con-
trol system for emergency responders should be able to
shutdown/restart application component logic selectively
as it fails, rather than shutdown/restart the entire applica-
tion. With existing autonomic infrastructure based on the
system-level , the failure of a key component triggers a
restart of the entire application [5]. In contrast, a comp-
onent-level autonomic framework could provide mecha-
nisms to restart only the point of failure.

Creating applications with either system or compo-
nent-level autonomic frameworks requires moving large
amounts of state data, analysis data, actions plans, and
execution commands between components. These types
of applications also require careful weaving of monitor-
ing, analysis, planning, and execution logic into the
functional components of the system. Analysis of the
autonomic aspects of the application, such as checking
whether the right state is being monitored by the right
components, is a tedious and error-prone process.

Simplifying autonomic system development via
MDD techniques. Model-driven development (MDD)
[6] tools are a promising means of reducing the cost as-
sociated with these activities. Models of autonomic sys-
tems developed with MDD tools can be constructed and
checked for correctness (semi-)automatically to ensure
that application designs meet autonomic requirements.
Tools can also be used to generate the various capabili-
ties to move data, coordinate actions, and perform other
autonomic functions.

To address the need for component-level autonomic
computing – and to avoid ad hoc techniques that manu-

ally imbue autonomic qualities into distributed applica-
tions – we have created the J3 Process, which is an
open-source MDD environment that supports the rapid
design and implementation of autonomic applications.
J3 consists of several MDD tools and autonomic com-
puting frameworks, including (1) J2EEML, which cap-
tures the design of EJB applications, their quality of ser-
vice (QoS) [6] requirements, and the autonomic adapta-
tion strategies of their EJBs via a domain-specific mod-
eling language (DSML) [7], (2) Jadapt, which is a
J2EEML model interpreter that analyzes the QoS and
autonomic properties of J2EEML models, and (3)
JFense, which is an autonomic framework for monitor-
ing, configuring, and resetting individual EJBs [8].

This paper describes the structure and functionality of
J2EEML and shows how it simplifies the development
of autonomic systems by providing notations and ab-
stractions that are aligned with autonomic computing,
QoS, and EJB terminology, rather than low-level fea-
tures of operating systems, middleware platforms, and
third-generation programming languages. We also de-
scribe how (1) Jadapt generates EJB and Java code from
J2EEML models to ensure that autonomic applications
meet their specifications and to reduce implementation
time and (2) JFense provides a set of reusable autonomic
components that allow developers to plug-in EJB appli-
cations and focus on autonomic logic, rather than the
glue for constructing the autonomic system. Finally, we
evaluate how the J3 Process reduces the complexity of
developing an autonomic EJB application used as a case
study to evaluate our MDD tools and processes.

Freight Scheduling
System

Pickup
Requests

Truck
Locations

Scheduler JFense

Next Pickup Location

Route Time
Module

JFense
Autonomic
Guardian

Route Time
Calculation
Algorithm

Monitors

R
ou

te
 T

i m
e

C
al

cu
la

t io
ns

Response
Time QoS
Assertion

Route
Time

Module

Figure 1: A Multi-Layered Autonomic Architec-

ture for Scheduling Highway Freight Shipments

Our case study centers on an EJB-based system that
schedules highway freight shipments using the multi-lay-
ered autonomic architecture shown in Figure 1. The sys-
tem has a list of freight shipments that it must schedule.

It uses a constraint-optimization engine to find a cost
effective assignment of drivers and trucks to shipments.

A central component in Figure 1 is the Route Time
Module (RTM), which determines the route time from a
truck’s current location to a shipment start or end point.
The RTM uses a geo-database and the GPS coordinates
from the truck to perform the calculation. This module is
critical to the proper operation of the optimization en-
gine. A heavy load is placed on the RTM, so it is crucial
that it maintains its QoS assertions, such as maintaining
a maximum response time for the RTM of 100 millisec-
onds. QoS assertions are properties that the system can
introspectively measure about itself to determine
whether the measured value for the property is beneficial
to the system. These measured QoS goals allow the sys-
tem to decide whether it is in a good state and predict
whether it will continue to remain in a good state.

Paper organization. The remainder of this paper is
organized as follows: Section 2 describes the MDD J3
Process for developing autonomic EJB applications;
Section 3 gives an overview of J2EEML and describes
key challenges we faced when developing it; Section 4
quantifies the reduction in manual effort achieved by
applying the J3 Process on our highway freight shipment
case study; Section 5 compares our work with related re-
search; and Section 6 presents concluding remarks.

2 The J3 Process for Autonomic System De-
velopment

The J3 Process contains the following MDD tools and
component middleware frameworks that address the
challenges of developing autonomic EJB applications:
• J2EEML, which is a DSML-based MDD tool tai-

lored for designing autonomic EJB applications that
uses visual representations to model domain-specific
abstractions. J2EEML provides a formal mapping
from QoS requirements to application components.

• Jadapt, which is an MDD tool that produces many
artifacts required to implement autonomic EJB appli-
cations modeled in J2EEML. Jadapt generates code
that meets the J2EEML specifications and also re-
duces the amount of code that application developers
must write manually.

• JFense, which is an autonomic framework that pro-
vides components for monitoring, analysis, planning,
and execution. Developers can use these components
to avoid writing custom autonomic frameworks.
JFense can be configured to meet the autonomic re-
quirements of a variety of EJB applications.

This section focuses on the design and function of
J2EEML and illustrates how it can be used to create
structural models of EJB applications.

2.1 Overview of J2EEML

J2EEML is a DSML that enables EJB developers to
construct models that incorporate autonomic and QoS

concepts as first-class entities. J2EEML itself is devel-
oped using the Generic Modeling Environment (GME)
[9], which is a general-purpose MDD environment that
we use to simplify the creation of metamodels that char-
acterize the roles and relationships in the autonomic
computing domain, and model interpreters that generate
many artifacts required to implement autonomic EJB
applications. J2EEML captures the relationship between
QoS assertions and application components to address
key design challenges of developing autonomic applica-
tions. For example, J2EEML helps developers under-
stand which components to monitor in their EJB appli-
cations by enabling them to visualize and analyze the
relationships between components and QoS assertions.

Developers use J2EEML to capture the design of auto-
nomic systems and the mapping of components to QoS
assertions in four phases: (1) they create a structural
model of the EJBs composing an autonomic system, (2)
they create models of the QoS properties that the system
is attempting to maintain, (3) they map these QoS prop-
erties to the specific beans within the system that the
properties are measured from, and (4) they design
courses of action to take when the desired QoS proper-
ties are not maintained. This modeling process captures
the structure of the system, how the QoS properties are
related to the structure, and what adaptation should occur
if a QoS property is not within an acceptable range.

2.2 Modeling EJB Structures with J2EEML
The first piece of a J2EEML model is its EJB struc-

tural model, which describes the components of the sys-
tem that will be managed autonomically. This model
defines the beans that compose the system and captures
the EJB specifics of each bean, including JNDI names,
transactional requirements, security requirements, pack-
age names, descriptions, remote and local interface com-
position, and bean-to-bean interactions. An EJB struc-
tural model is constructed via the following steps:
1. Each session bean is added to the model by dragging

and dropping session bean atoms into the J2EEML
model. Developers then provide the Java Naming and
Directory Interface (JNDI) name of the bean, its de-
scription, and its state type (i.e., stateful or stateless).

2. For each session bean, a model is constructed of the
business methods and creators supported by the bean
by dragging and dropping method and creator atoms.
Each method and creator atom has properties for set-
ting the visibility, whether it is part of the local inter-
face, remote interface or both, and the transactional re-
quirements, the security role requirements, and the in-
put/output. Figure 2 shows a model of the remote in-
terface composition of the TruckStatusModule from
the case study described in Section 1. The model con-
tains methods for modifying the truck’s schedule and
their transactional/security requirements.

Figure 2: J2EEML Remote Interface Composition
Model for the TruckStatusModule

3. Entity beans are dragged and dropped into the model

to construct the data access layer. These beans are
provided a JNDI name/description and properties indi-
cating if they use container managed persistence
(CMP) or bean managed persistence (BMP).

4. Persistent fields, methods, and finders are dragged and
dropped into the entity beans. Each persistent field has
properties for setting visibility, type, whether it is part
f the primary key, and its access type (i.e., read-only or
read-write).

5. Relationship roles are dragged and dropped into the
entity beans and connected to persistent fields. These
relationship roles can be connected to other relation-
ship roles to indicate entity bean relationships.

6. Connections are made between beans to indicate bean-
to-bean interactions. Capturing these interactions al-
lows Jadapt to later generate the required JNDI lookup
code for a bean to obtain a reference to another bean.

After these six steps have been completed, the J2EEML
model contains enough information to represent the
composition of the EJBs.

Figure 3 shows a J2EEML structural model of the
highway freight scheduling system. In this figure, each
bean within the freight scheduling system has been mod-

eled via J2EEML. Interactions between the beans are
also modeled, thereby allowing developers to understand
which beans interact with one another. Figure 3 also il-
lustrates snippets of the XML deployment descriptor and
Java class generated for the Scheduler.

To support decomposition of complex architectures
into smaller pieces, J2EEML allows EJB structural mod-
els to contain child EJB models. Beans within the these
children show up as ports that can receive connections
from the parent solution. This design allows developers
to decompose models into manageable pieces and en-
ables different developers to encapsulate their designs.

Figure 3: J2EEML Structural Model Showing

Bean-to-Bean Interactions

For our highway freight scheduling example, we con-
structed a structural model of each bean required for the
Route Time Module, constraint-optimization engine,

truck status system, and incoming pickup request sys-
tem, as shown in Figure 3. The model also includes in-
formation on the entity beans used to access the truck
location and pickup request databases.

Using J2EEML provides several advantages in the de-
sign phase, including (1) visualization of beans and their
interactions, component security requirements, system
transactional requirements, and interactions between
beans, (2) enforcement of EJB best practices, such as the
Session Façade pattern [10], which hides Entity beans
from clients through Session beans , and (3) model cor-
rectness checking, including checks for proper JNDI
naming. J2EEML’s visualization benefits significantly
decreased the difficulty of understanding system struc-
ture and interactions. The correctness checking and en-
forcement of best design practices facilitated rapid crea-
tion of both a correct-by-construction and well-designed
solution.

3 Designing J2EEML to Address Key Con-
cerns of Autonomic Computing

Autonomic applications require four elements to
achieve their assertions: monitoring, analysis, planning,
and execution [1]. These elements form a controller that
observes and adapts the application to maintain its asser-
tions. This section describes how the monitoring, analy-
sis, and planning aspects of autonomic systems present
unique challenges when designing and building the
J2EEML and shows how we addressed each challenge.
To focus the discussion, we use the Route Time Module
(RTM) shown in Figure 1 as a case study to illustrate key
design challenges associated with autonomic systems.

3.1 Monitoring
Monitoring is the phase in autonomic systems where

applications observe their own state. Since this state in-
formation is used in later phases to control system be-
haviors it is crucial that the right information be col-
lected at the right times without adversely impact system
functionality and QoS. The following are key design
challenges faced when developing the monitoring as-
pects of autonomic systems:

Challenge 3.1.1: Providing the ability to specify the
large range of data that can be monitored by the sys-
tem. Developers of autonomic systems must address
how to self-monitor key data, e.g., by capturing CPU and
memory utilization, exceptions thrown by the applaca-
tion, or error messages in a log. The model for specify-
ing what information to capture from the system must be
flexible and support a range of data types. The model
must also be extensible and support unforeseen future
data types that might be needed later.

A core concept behind J2EEML is that an autonomic
EJB application can measure properties of its current
state introspectively and determine if the property values
indicate the application is in a beneficial state. J2EEML
models the properties it measures via QoS assertions,

which determine which properties an autonomic system
can measure about itself introspectively and analyze to
determine if the properties are in an acceptable assertion
range. Each assertion provides properties for setting its
name and description. Developers can drag and drop
these assertions into J2EEML models.

The J2EEML QoS assertions model is critical for un-
derstanding an autonomic system’s QoS properties, how
they can be measured, what their values should be, and
how degradations in them can be corrected. Under-
standing QoS assertions is also crucial to designing the
structural architecture of EJB applications and under-
standing how they meet those assertions. Capturing and
mapping QoS requirements to the appropriate structural
architecture have traditionally used natural language
descriptions, such as “the service must support 1,000
simultaneous users with a good response time.” Due to
the lack of an unambiguous formal notation, such de-
scriptions are prone to different interpretations, which
result in architectures that do not meet the QoS require-
ments. Choosing an EJB architecture that best fits the
QoS requirements can be complex and error-prone since
specification ambiguity and hidden architectural trade-
offs make it hard to choose the appropriate design.

For example, deciding whether to use remote inter-
faces for a J2EE implementation of a service can have a
substantial impact on end-to-end system QoS. Remote
interfaces allow distribution of beans across servers,
which can increase scalability. Distribution can also in-
crease latency, however, since requests must travel
across a network or virtual machine boundaries.

With the RTM in our case study, one QoS assertion is
the average response time. This QoS assertion states that
the system will measure all requests to the RTM and
track the average time required to service each request. If
the calculated average response time exceeds 50 milli-
seconds, the assertion is false, indicating that the RTM is
taking too long to respond, otherwise the assertion is
true, indicating that the RTM is responding properly.

Figure 4 illustrates a J2EEML model of the scheduling
system and the association of the RTM to the Respon-
seTime QoS property. This model shows J2EEML’s abil-
ity to model QoS properties as aspects [17] that are ap-
plied to a component. When the model is interpreted and
the Java implementation generated, the association be-
tween the RTM and ResponseTime assertion will lead to
the appropriate monitoring code being generated in the
RTM’s implementing class.

Figure 4: J2EEML Model Associating the Respon-
seTime QoS Assertion with the RouteTimeModule

Challenge 3.1.2: Building a system to specify where

monitoring logic should reside in the system. The de-
cision of what to monitor directly affects where the
monitoring logic will reside. To monitor a log for errors,
the logic could be at any level of the application, such as
a central control level. For observing exceptions or the
load on a specific subcomponent of the application, the
monitoring logic must be embedded more deeply. In
particular, developers must position the monitoring ca-
pability precisely so that it is close enough to capture the
needed information, but not so deeply entangled in the
application logic that it adversely affects performance
and separation of concerns.

In our freight scheduling case study, we must ensure
separation of concerns in the application design and find
an efficient means of monitoring. The monitoring logic
for the RTM, however, should not be entangled with the
route time calculation logic. Moreover, the time to moni-
tor each request should be insignificant compared to the
time to fulfill each route request.

After the structural and assertion models are com-
pleted, developers can use J2EEML to map QoS asser-
tions to EJBs in the structural model. This mapping
documents which QoS assertions should be applied to
each component. It also indicates where monitoring,
analysis, and adaptation should occur for an autonomic
system to maintain those assertions. For example, to de-
termine the average response time of the RTM, calls to
the RTMs route time calculation method must be inter-
cepted to calculate their servicing time. The relationship
between the RTM bean and average response time asser-
tion in the model indicates that the RTM bean must be
able to monitor its route time calculation requests.

Figure 5: J2EEML Mapping of QoS Assertions to

EJBs

J2EEML supports aspect-oriented modeling [11] of
QoS assertions, i.e., each QoS assertion in J2EEML that
crosscuts component boundaries can be associated with
multiple EJBs. For example, maintaining a maximum re-
sponse time of 100 milliseconds is crucial for both the
RTM and the Scheduler bean. Connecting multiple com-
ponents to a QoS assertion, rather than creating a copy
for each component, produces clearer models. It also
clearly shows the connections between components that
share common QoS assertions. Figure 5 shows a map-
ping from QoS assertions to EJBs. Both the RTM and the
Scheduler in this figure are associated with the QoS as-
sertions ResponseTime and AlwaysAvailable. The Re-
sourceTracker and ShipmentSchedule components also
share the AlwaysAvailable QoS assertion in the model.

Components can have multiple QoS assertion associa-
tions, which J2EEML supports by either creating a sin-
gle assertion for the component that contains sub-asser-
tions or by connecting multiple QoS assertions to the
component. If the combination of assertions produces a
meaningful abstraction, hierarchical composition is pre-
ferred. For example, the RTM is associated with a QoS
assertion called “AlwaysAvailable” constructed from the
sub-assertions “No Exceptions Thrown” and “Never
Returns Null.” Combining “Minimum Response Time”
and “No Exceptions Thrown,” however, would not pro-
duce a meaningful higher-level abstraction, so the multi-
ple connection method is preferred in this case.

3.2 Analysis
Analysis is the phase in autonomic systems that takes

state information acquired by monitoring and reasons
about whether certain conditions have been met. For
example, analysis can determine if an application is
maintaining its QoS requirements. The analysis aspects
of an autonomic system can be (1) centralized and exe-
cuted on the entire system state or (2) distributed and
concerned with small discrete sets of the state. The fol-
lowing are key challenges faced when developing an
autonomic analysis engine:

Challenges 3.2.1: Building a model to facilitate
choosing the type of analysis engine and Challenge
3.2.2: Building a model to facilitate choosing how the
engine should be decomposed and/or distributed. To
choose a distributed vs. monolithic analysis engine, the
tradeoffs of each must be understood. Concentration of
analysis logic into a single monolithic engine enables
more complex calculations. However, for simple calcu-
lations, such as the average response time of the RTM
component, a monolithic engine requires more overhead
to store/retrieve state information for individual compo-
nents than an analysis engine dedicated to a single com-
ponent. A monolithic analysis engine also provides a
central point of failure. A key design question is thus
where analysis should be done and at what granularity.

A model to facilitate choosing the appropriate type of
analysis engine must enable developers to identify what
data types are being analyzed, what beneficial informa-
tion about the system state can be gleaned from this in-
formation, and how that beneficial information can most
easily be extracted. It is important that the model enable
a standard process for examining the required analyses
and determining the appropriate engine type.

To create an effective analysis engine, developers
must determine the appropriate number of layers. A key
issue to consider is whether an application should have a
single-layer vs. multi-layered analysis engine. At each
layer, the original monitoring design questions are appli-
cable, i.e., what should be monitored and how should it
be monitored? A model to enable these decisions must
clearly convey the layers composing the system. It also
must capture what analysis takes place at each layer and
how each layer of analysis relates with other layers.

In the context of our highway freight scheduling sys-
tem, a key question is whether its autonomic layer ana-
lyzes the RTM’s response time or whether a layer above
the RTM should do it. At each layer, the analysis design
considerations are important too, e.g., what information
the system is looking for in the data, how it finds this
information, and how this can be better accomplished by
splitting the layer. For example, a developer must con-
sider whether every request to the RTM should be moni-
tored to determine if the RTM is meeting its minimum
response time QoS. Conversely, perhaps only certain
types of requests known to be time consuming should be
monitored. Another question facing developers is how
the RTM’s monitoring logic sends data to its analysis en-
gine.

Developers can use J2EEML to design hierarchical
QoS assertions to divide-and-conquer complex QoS
analyses. A hierarchical QoS assertion is a assertion that
is only met if all its child assertions are met. In terms of
QoS assertions, this means that all the child QoS asser-
tions must hold for the parent QoS assertion to hold.
With respect to the RTM, the QoS assertion GoodRe-
sponseTime only holds if both the child QoS assertions
AverageResponseTime and MaximumResponseTime also
hold. This hierarchical composition is illustrated in Fig-

ure 6, where GoodResponseTime is an aggregation of
several properties of the response time.

Figure 6: J2EEML Hierarchical Composition of

ResponseTime QoS Assertion

Modeling QoS assertions hierarchically enhances de-
veloper understanding of what type of analysis engine to
choose. A small number of complex QoS assertions that
cannot be broken into smaller pieces imply the need for a
monolithic analysis engine. A large number of assertions
– especially hierarchical QoS assertions – imply the need
for a multi-layered analysis engine.

Modeling QoS assertions hierarchically also enhances
developer understanding of how to decompose the analy-
sis engine into layers. The hierarchical model of the QoS
assertions corresponds directly to the decomposition of
the analysis engine into layers. Developers can use
J2EEML to first add complex QoS assertions to their
models and then determine if the complex assertion can
be accomplished by combining the results of several
smaller analyses. If so, developers can add these smaller
QoS assertions as children of the original QoS assertion
to represent the smaller analyses and then apply this it-
erative process to the new children.
3.3 Planning

Planning is the phase in autonomic systems where ap-
plications examine the results of their analysis and de-
cide what actions to take to reach their assertions. For
our highway freight scheduling example, this could in-
volve changing the RTM to use a less precise but faster
algorithm that maintains the minimum response time as
demand grows. A typical autonomic application may
have hundreds of assertions and planning the correct
actions in the face of QoS failures is critical to an auto-

nomic application. The following are key challenges
faced when developing an autonomic analysis engine:

Challenge 3.3.1 Designing a means to specify lay-
ered adaptation plans. As with monitoring and analy-
sis, planning can be implemented with a layered archi-
tecture. A simple, one-layer architecture would monitor,
reason, and react to all system events at one level, which
works well for macro-level events and actions. This sim-
ple approach is less suitable for applications that need
more flexible and fine-grained control of their behavior.
To increase flexibility and fine-grained control, there-
fore, more layers can be integrated into the system. Lay-
ers distribute intelligence throughout the system and
support a divide-and-conquer approach to planning.

After the planning is provisioned into layers, each
layer must be assigned a responsibility to react to and
recover from QoS failures. In our highway freight
scheduling example, one layer might ensure that the
RTM is always available and the next layer down might
ensure that a minimum response time is maintained. In-
telligent separation of responsibilities can produce hier-
archical chains of command that reduce the complexity
of accomplishing the overall assertion. Finding these
well-proportioned divisions of labor is hard.

J2EEML models adaptation by specifying the actions
the system should take when a QoS assertion fails. Each
application component may have a group of assertions
associated with it. If one assertion does not hold for the
component, it indicates a QoS failure that must be fixed.
Developers can use J2EEML to specify groups of ac-
tions that must be taken to correct these failures.

Once an assertion has failed to hold for a specific
component, the application must determine how to fix
the problem. To model the appropriate course of action,
J2EEML uses the concept of adaptation plans, which
are groups of actions that can be performed to fix a spe-
cific type of QoS assertion failure. For example, if the
average response time assertion fails, the RTM must
change its calculation algorithms to be less precise but
run faster. Changing algorithms allows the RTM to im-
prove its response time and fix the QoS assertion failure.
The steps required to change the calculation algorithms
for the RTM are modeled as an adaptation plan. The
RTM implements the Strategy pattern [12] to allow its
algorithms to change. The first action from the adapta-
tion plan is to suspend any incoming requests, the sec-
ond action is to change the algorithm, and the final ac-
tion is to resume the suspended requests. These actions
form the adaptation plan for handling failures in the av-
erage response time for the RTM.

Adaptation plans indicate the responsibilities of an
autonomic layer, i.e., the adaptation plan specifies the
actions that the autonomic layer can choose from in the
event of a QoS failure. This association also aids in
choosing a single-layer or multi-layered planning archi-
tecture. If a complex QoS assertion does not have ad-
aptation plans associated with its children, the proper
course of action to take when one of the child QoS as-

sertions fails cannot be determined by the data available
to the child. If only top-level QoS assertions have asso-
ciated adaptation plans, this implies the need for a single
planning layer. If, however, the QoS children have adap-
tation plans associated with them, this implies that they
can determine the corrective course of action and require
a multi-layered planning solution.

Figure 7 shows a J2EEML model that associates the
ResponseTime QoS assertion with the ChangeAlgo-
rithms single-layered adaptation plan. This association
indicates that when the ResponseTime QoS assertion
fails for a component, the ChangeAlgorithm adaptation
plan should be executed.

Figure 7: J2EEML Model Associating the Respon-

seTime QoS Assertion with the ChangeAlgorithms
Adaptation Plan

3.4 Reducing the Complexity of Developing
Autonomic Systems with JFense and Jadapt

JFense is a component-level framework that performs
autonomic functions, such as monitoring the QoS of
EJBs, analyzing system state, communicating between
autonomic layers, determining how to adapt to QoS fail-
ures, and executing adaptation plans. It addresses many
of the challenges related to developing autonomic EJB
applications. For example, it is responsible for integrat-
ing the monitoring, analysis, planning, and execution
logic of applications, which alleviates developers from
reinventing an autonomic framework for their applica-
tion. It also handles the communication between layers
so that application developers need not write code to
move data from the monitoring logic to the analysis
logic. JFense provides a configurable event-based moni-
toring framework that allows developers to focus on
writing autonomic logic, which saves developers from
re-inventing and debugging a complex autonomic
framework. Finally, JFense can coordinate adaptation
actions between layers and execute the actions.

Jadapt is a J2EEML model interpreter that supports
rapid development and verification of autonomic code
by generating implementations of EJBs from a structural
model. It serves as a bridge between a J2EEML model

and the JFense framework, i.e., it generates Java code for
(1) a J2EEML structural model and (2) plugging the
generated EJBs into the JFense framework. Jadapt gen-
erates configurations for JFense to mirror the J2EEML
model, stubs for the EJBs, EJB deployment descriptors,
and monitoring, analysis, planning, and execution class
stubs, which relieves developers from tedious and error-
prone coding tasks. Moreover, Jadapt ensures that the
code mirrors the system architecture in J2EEML imple-
mentation, which reduces problems stemming from mis-
interpretation of the specification and inconsistencies
between interfaces and their implementations.

Figure 8: Jadapt Code Generation

Figure 8 illustrates the Jadapt generated code for the

highway freight system. The generated code included the
Session EJBs for the RTM, Scheduler, ResourceTracker,
and ShipmentSchedule components. Entity beans were
generated for the ShipmentSchedule, Truck, and Driver
components. Each Session and Entity beans also had
their remote and local interfaces generated, along with
the appropriate methods exposed in the model. The gen-
erated beans with their associated QoS assertions had the
appropriate JFense glue code generated into the imple-
mentations. This glue code constructs the appropriate
guardian for the beans, captures and relays requests on
the exposed methods to JFense, and provides hooks for
adapting the component at runtime. Each bean also con-
tained JNDI lookup code for the other beans that it had
an interaction with in the model. A remote client test
skeleton was generated to obtain a reference to each
bean’s home, create an instance of the bean, and allow
the developer to run tests on the instance.

Jadapt assumes that developers will modify the gener-
ated beans outside of the J2EEML development envi-
ronment. Bean classes are therefore annotated with XDo-
clet [15] attributes to automate the synchronization of the
bean class, interfaces, and descriptors. XDoclet reads
these attributes and generates the required interfaces and
deployment descriptor XML. Developers only need to
maintain the central bean class and synchronize the inter-
faces to it with XDoclet.

The bean descriptor XML generated by Jadapt in-
cludes the transactional, security, visibility, relationship,
and container type properties declared in the model. For
example, to ensure that the design, deployment, and con-
figuration are in sync, if method getCoordinates()
on class RTM can be accessed by a limited set of security
roles, its security declaration will be included in the gen-
erated bean descriptor. Generating the bean descriptor
eliminates errors from hand-crafting descriptor XML.

For our highway freight scheduler, Jadapt reduced the
application development time by generating (1) all skele-
ton classes and interfaces required for EJBs, (2) XDoclet
attributes to maintain class, interface, and deployment
descriptor synchronization during the development cy-
cle, (3) XML deployment descriptors for the EJBs, (4)
an Ant build infrastructure, (5) project documentation
from descriptions captured in the model, and (6) glue
code to plug the generated EJBs into JFense. The gener-
ated code accounted for approximately one-third of the
Java code required to implement the application. The
generated XML artifacts, Ant build infrastructure, and
documentation required no additional hand-crafting by
developers. The generated EJBs required developers to
supply the business logic for the exposed methods. The
generated JFense analysis and adaptation classes re-
quired the appropriate analysis and adaptation logic to be
filled in. Since developers can easily adjust the applica-
tion design and regenerate the application skeleton, their
efforts focus on designing the application and imple-
menting the logic required for the business methods.

4 Evaluating Development Effort Savings of
the J3 Process

We developed the highway freight scheduling system
case study to illustrate the advantages of using the J3
Process to develop autonomic EJB applications. The
initial implementation of this case study required several
thousand lines of Java code. The generated EJB imple-
mentations accounted for nearly 75% of the complete
code base, the test framework accounted for 20%, and
the JFense glue code accounted for 5%. Using a tradi-
tional development approach, much of this code would
have been developed manually. With the J3 Process, in
contrast, all code except for the business logic and test-
ing logic was generated initially by Jadapt from our
J2EEML specification, which accounted for approxi-
mately one-third of the code required to implement the
Java classes for the application. This section describes

how we refactored our design and analyzed the resulting
development effort required for changes using both the
J3 Process and traditional development processes.

Using our highway freight scheduling case study, we
evaluated the impact of adding new sources of informa-
tion that required monitoring and where the logic would
reside. In our initial design, only response times of the
Scheduling component were monitored. We then refac-
tored the design to monitor response times of the RTM
component, as well. Adjusting the design using
J2EEML and re-generating the implementation took ap-
proximately five mouse clicks and resulted in the gen-
eration of ~20 new lines of source code that correctly
mirrored the specification and was correct-by-construc-
tion. Without an MDD tool, in contrast, each change that
required the addition of one new connection in the
model would have required a manual change to the im-
plementation and more testing to attain the same level of
confidence. In a large-scale development effort with
many changes, the J3 Process would therefore reduce
refactoring costs significantly.

To evaluate the impact of design refactoring on the
analysis and planning layers of the highway freight sys-
tem, we modified its initial design by changing its re-
sponse time analysis and adaptation into a hierarchy of
average and maximum response times. The response
time assertion was intended to maintain both properties
on the average and maximum response times. Both the
average and maximum response times had new adapta-
tion plans designed to counteract degradations in either
QoS level. For both adaptation plans, the first action is to
suspend the processing of incoming requests. The second
action taken is to change the algorithm used by the RTM
to one that is less precise but faster. The final action
taken by the adaptation plans is to resume processing
requests. The refactoring in J2EEML was straightfor-
ward and took ~12 mouse clicks. The change generated
~75 new lines of code, which minimized the complexity
of the design change and implementation update. Again,
for large development projects without MDD tool sup-
port, many such changes would occur and hence the
manual redevelopment effort would be much higher.

To evaluate the development effort associated with
sharing adaptation plans between QoS assertions, we
refactored our highway freight system to share the im-
proved response time adaptation plan between both the
average response time QoS assertion and the maximum
response time QoS assertion. The existing plan was then
augmented with three new adaptations that were shared
between all assertions. After this change was made to the
model and Jadapt regenerated the model artifacts, 36
new lines of code were present that updated the existing
adaptation plan to include the new adaptations and
changed the adaptation plan of the maximum response
time to use its modified adaptation plan. As with other
refactorings we analyzed, adjusting the J2EEML model
and regenerating the code required ~12 mouse clicks,
while developing the equivalent functionality manually

required significantly more effort. Knowing what to
adapt to meet the new specification is also more straight-
forward using J2EEML, whereas with a handcrafted ap-
proach developers would need to modify multiple source
files to accomplish the same task.

As with the autonomic modeling and generation capa-
bilities of the J3 Process, significant reductions in devel-
opment complexity were yielded by applying MDD to
the implementation of the structural model. For example,
when a single SessionBean with one method was
added to the J2EEML model, the resulting bean, inter-
faces, deployment descriptor, and helper classes gener-
ated 116 lines of Java code and 80 lines of XML. The
model change in J2EEML required two drag and drop
operations. As with the autonomic code generated by
Jadapt, the code was correct-by-construction and the
JNDI name of the bean was also correct. Adding two
interactions from existing beans to the new bean gener-
ated another ~12 lines of error-prone JNDI
lookup/narrowing code that was automatically generated
by Jadapt, thereby simplifying developer effort and en-
hancing confidence in the results.

As illustrated in these experiments, the mapping be-
tween QoS assertions and components facilitates the
generation of code artifacts to reduce application devel-
opment time. For example, understanding which compo-
nents need to be monitored and analyzed allows Jadapt
to generate proxies and interceptors [16] for the moni-
tored components, which can relay state information to
the monitoring and analysis logic. Code can then be
generated that moves the monitoring and analysis results
to the appropriate planning layers.

5 Related Work
An increasing number of MDD tools exist for model-

ing component-based systems. Cadena [18] is an MDD
tool for building and modeling component-based DRE
systems, with the goal of applying static analysis, model-
checking, and lightweight formal methods to enhance
these systems. Other tools, such as Rational Rose, pro-
vide UML modeling capabilities for component-based
systems. In contrast to J2EEML, these tools are not tai-
lored to the domain of modeling autonomic functionality
in component-based systems. For example, they lack the
ability to establish the critical mapping between QoS
properties, components, and adaptations, which forces
developers to (1) resort to traditional textual descriptions
for specifying QoS properties and (2) maintain separate
models for understanding how the QoS, adaptation, and
components in the system interrelate. As a result, it is
hard to understand how an application will monitor itself
and how it will react to QoS failures.

IBM’s Autonomic Toolkit [4] addresses the issues of
monitoring, analysis, planning, and executing autonomic
applications. It includes the Autonomic Management
Engine, which monitors events, analyzes them, then
plans and executes corrective action on a computing re-

source; the Generic Log Adapter [13] for Autonomic
Computing, which converts existing log files to the
Common Base Event format [14]; and the Log and Trace
Analyzer for Autonomic Computing, which reads logs in
the Common Base Event format, correlates the logs
based on different criteria, and displays the correlated
log records. These tools do not, however, address the
complexity of integrating autonomic functionality into
applications, i.e., they do not help developers design
their autonomic applications or implementing the logic
required by them. In contrast, the J3 Process is specifi-
cally tailored to reducing design and implementation
complexity, as well as providing a runtime framework.

6 Concluding Remarks
In theory, autonomic systems can minimize the impact

of human error in development and management. In
practice, however, it is hard to develop the monitoring,
analysis, planning, and execution aspects required for
autonomic systems reliably and productively. In particu-
lar, developers must reason about complex sets of QoS
assertions and ensure that applications meet them. Auto-
nomic capabilities provide a means for EJB applications
to self-manage and attempt to maintain the QoS asser-
tions. To facilitate self-management, the structure of EJB
applications and their QoS assertions must be captured
formally so applications can reason about themselves.

The bridge between the QoS assertions of autonomic
systems and their structural designs involves mapping
these assertions to specific system components. Without
this mapping, applications cannot use introspection to
determine whether their QoS assertions are being met.
The J3 Process described in this paper provides MDD
tools and an autonomic computing framework to support
these capabilities to simplify the development of auto-
nomic EJB applications.

The J2EEML MDD tool helps link assertions and
structure by allowing developers to specify this mapping
via a DSML. J2EEML also includes mechanisms for
modeling complex EJB structures, interactions, and ar-
chitectures and using these models to generate code that
is correct-by-construction, which frees developer from
reinventing complex autonomic frameworks.

After capturing structural properties, QoS assertions,
and assertion to structure mapping in J2EEML, develop-
ers still must integrate autonomic features into their -
distributed EJB applications. This integration is often
complicated due to the lack of component-level frame-
works for autonomic systems. To address these con-
cerns, we have developed the Jadapt code generation
tool and the JFense autonomic framework. Jadapt allows
developers to generate the code needed to plug their ap-
plication’s EJBs into JFense. JFense provides a com-
prehensive and flexible framework for multi-layered
autonomic monitoring, analysis, planning, and execution
architectures, which allows developers to focus on the
system’s business logic and QoS analysis logic.

The following are our lessons learned thus far by de-
veloping and applying the J3 Process:
• Creating a flexible system to aid the development of

autonomic EJB applications is hard, e.g., not all ap-
plications want to monitor the same types of data
sets. A DSML must therefore be flexible to incorpo-
rate unanticipated data sets, yet also handle the most
common cases intuitively. Striking this balance be-
tween flexibility and general case utility took pa-
tience and iteration.

• Developing adaptations for an application is hard.
Most developers do not think about designing com-
ponents that can be adapted, swapped, restarted, or
reconfigured to handle errors. Providing a DSML to
aid developers in seeing the crosscutting adaptive
concerns was hard.

• Creating a model of the mapping from components to
QoS properties and adaptive behavior greatly en-
hances the ability of developers to understand the
complex behavior of autonomic systems that would
ordinarily be buried in hundreds of source files.

• Constraint checking and code generation can greatly
reduce and/or eliminate hard-to-debug JNDI naming
errors. Constraint checking of JNDI allows these er-
rors to be detected at design time rather than runtime.

In future work, we are developing increasingly so-
phisticated autonomic distributed applications using our
J3 Process MDD tools to serve as a testbed for investi-
gating various autonomic architectures, monitoring
strategies, and planning strategies. We are also enhanc-
ing these tools to increase their expressive and code gen-
eration capabilities. We plan to integrate our MDD tools
with CIAO [6], which is an open-source, QoS-enabled
CORBA Component Model (CCM) implementation.

The J3 Process DSMLs, tools, and frameworks are
available at www. sourceforge.net/projects/j2eeml.

References
[1] J. O. Kephart and D. M. Chess. The Vision of Autonomic

Computing. IEEE Computer, January 2003.
[2] D. Oppenheimer, A. Ganapathi, D. Patterson, Why do

Internet services fail, and what can be done about
it?, “USENIX Symposium on Internet Technologies and
Systems,” March 2003.

[3] V. Matena, M. Hapner, “Enterprise Java Beans Specifica-
tion, Version 1.1,” Sun Microsystems, Dec. 1999.

[4] Autonomic Computing Toolkit, IBM, www106.ibm.
com/developerworks/autonomic/overview.html.

[5] G. Candea, A. Fox, “Designing for High Availability and
Measurability,” Proceedings of the 1st Workshop on
Evaluating and Architecting System Dependability
(EASY), July 2001.

[6] N. Wang, D. Schmidt, A. Gokhale, C. Rodrigues, B. Nata-
rajan, J. Loyall, R. Schantz, and C. Gill, “QoS-enabled
Middleware,” in Middleware for Communications, edited
by Q. Mahmoud, Wiley and Sons, New York, 2003.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nord-
strom, J. Sprinkle, and G. Karsai, “Composing Domain-

Specific Design Environments,” IEEE Computer, Nov.
2001.

[8] T. Eymann, M. Reinicke, et al., “Self-Organizing Resource
Allocation for Autonomic Networks,” DEXA Workshops,
2003.

[9] A. Ledeczi “The Generic Modeling Environment”, Work-
shop on Intelligent Signal Processing, Budapest, Hungary,
May 17, 2001.

[10] D. Alur, J. Crupi, D. Malks, “J2EE Core Patterns,” Sun
Microsystems Press, 2003.

[11] J. Gray and S. Roychoudhury, “A Technique for Con-
structing Aspect Weavers Using a Program Transforma-
tion Engine”, Proceedings of AOSD '04,, Lancaster, UK,
March 22-26, 2004.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “De-
sign Patterns: Elements of Reus

[13] E. Giguere, “Create GLA components using Release 2 of
the Autonomic Computing Toolkit,” IBM Developer-
works, (www106.ibm.com/ developerworks/edu/ac-dw-
ac-glacomp2i.html? TACT=104AHW20&S_CMP=HP).

[14] “ Specification: Common Base Event ,” IBMDeveloper-
works, (www106.ibm.com/developerworks/ webser-
vices/library/ws-cbe/).

[15] XDoclet, (xdoclet.sourceforge.net/xdoclet/).
able Object-Oriented Software,”Addison-Wesley, 1995.
[16] R. Koster, T. Kramp, “Loadable Smart Proxies and Na-

tive-Code Shipping for CORBA,” in Proceedings of the
Third IFIP/GI International Conference on Trends to-
wards a Universal Service Market (USM), Munich, Sep-
tember 2000.

[17] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R.
Vanegas, “QoS Aspect Languages and Their Runtime In-
tegration.,” in Proceedings of the Fourth Workshop on
Languages, Compilers and Runtime Systems for Scalable
Components, May 1998.

[18] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad,
“Cadena: An Integrated Development, Analysis, and Veri-
fication Environment for Component-based Systems,”
Proceedings of the 25th International Conference on
Software Engineering, Portland, OR, May, 2003.

http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf
http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf

	Simplifying Autonomic Enterprise Java Bean Applications
	via Model-driven Development: a Case Study
	Jules White, Douglas Schmidt, Aniruddha Gokhale
	Abstract

	2 The J3 Process for Autonomic System Development
	2.2 Modeling EJB Structures with J2EEML
	3 Designing J2EEML to Address Key Concerns of Autonomic Comp
	3.1 Monitoring
	3.2 Analysis
	3.3 Planning
	3.4 Reducing the Complexity of Developing Autonomic Systems
	4 Evaluating Development Effort Savings of the J3 Process
	5 Related Work
	6 Concluding Remarks
	References

