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Abstract

Devel oping extensible, robust, and efficient network daemons
isachallengingtask. Thispaper describesan object-oriented
framework consisting of automated tools and reusable com-
ponents that simplifies the task of developing, configuring,
and reconfiguring concurrent, multi-service network dae-
mons. These daemons may contain multi plecommuni cation-
related services that execute in one or more processes or
threads. This framework uses object-oriented design tech-
niques and C++ language features to enhance operating
system mechanisms that provide interprocess communica-
tion, communication port demultiplexing, explicit dynamic
linking, and parallel processing. In addition to describing
the object-oriented architecture of the daemon control frame-
work, thispaper presents an examplethat illustrateshow the
framework supports the development of network software
whose services may be updated and extended without modi-
fying, recompiling, relinking, or restarting active daemons.

1 Introduction

This paper describes the structure and functionality of the
Servi ce Confi gurator framework. Thisframework
contains automated tool s and reusable components that help
to simplify the development, configuration, and reconfig-
uration of concurrent, multi-service network daemons. A
daemon is an operating system (OS) process that executes
application services on a host machine in the “background”
(i.e., disassociated from any controllingterminal) [1]. A ser-
vice is a portion of a daemon that offers a single processing
capability to communicating entities. Particular emphasis
is given in this paper to concurrent, multi-service network
daemons. These daemons contain multi ple communi cation-
related services that execute in one or more processes or
threads.

An increasingly wide range of network daemons have be-
come available throughout the Internet. These daemons pro-

vide communication-rel ated services that resolve distributed
name binding requests (named and r pchi nd), access net-
work file systems (nf sd), manage routing tables (gat ed
and r out ed), report host and user activities (r whod and
fi nger d), and consolidate multiple network services such
as termina access (r1 ogi n and t el net) and file trans-
fer (f t p) together into a single “superserver” framework
(inetdandlisten). The Servi ce Confi gurator
framework we have developed provides an integrated set of
toolsthat automate many activities commonly performed to
configure these types of network daemons.

The Servi ce Configurator framework performs
the following configuration-rel ated activities:

o Determining the service(s) that will be advertised by the
daemon. Thismay be accomplished by statically coding
this information into an application or by dynamically
consulting a configuration file or service database.

¢ Requesting the distributed operating environment to
bind the communication ports and network addresses
that identify each advertised service. This process may
requireinteractions with distributed name servers.

¢ Registering a handler for each service with an event
dispatcher. Thishandler isresponsible for statically or
dynamicaly linking the service's implementation into
the daemon’s address space when the service is activi-
ated.

After the initia set of services have been configured, an
application typically enters an event loop that waits for
events (such as connection requests or data messages) to
arrive from clients. When these events occur, the Ser vi ce
Confi gur at or framework executes the appropriate ser-
vice handler using one or more processes or threads. If the
service associated with the handler has not yet activated, the
Servi ce Confi gurat or framework will automaticaly
activate it (dynamically linking it into the daemon’s address
space if necessary).

To simplify these configuration and run-time activities,
the Servi ce Confi gurat or framework leverages off
an integrated collection of reusable C++ components. These
components enhance the modularity, extensibility, and porta-
bility of advanced OS mechanisms that provide interpro-



cesscommunication (IPC), event demultiplexing, explicit dy-
namic linking, and concurrency. In addition, the Ser vi ce
Conf i gur at or framework’s components may be used to
enhance the performance of network daemons by deferring
until installation-timethe choi ce of execution agent (e.g., one
or more processes or threads) used to run network services.
This enables more effective use of the multi-processing ce-
pabilitiesavailable on the target OS platform [2].

TheSer vi ce Confi gur at or framework aso coordi-
nates OS mechani sms to automate the reconfiguration of dae-
mon servicesat run-time. I|n many circumstances, thisallows
daemons executing withinthe Ser vi ce Confi gur at or
framework to dynamically update their functionality with-
out being completely shutdown and restarted. Support for
dynamic reconfiguration isessential for highly available dis-
tributed applications such as mission-critical systems that
perform on-line transaction processing, real-time remote
process control, or global personal communication systems
based on low earth orbit satellites. For these types of ap-
plications, it is often necessary to phase new versions of a
service into adaemon without disrupting currently executing
services[3].

Thispaper isorganized in thefoll owing manner: Section 2
reviews related background materia; Section 3 outlines the
primary featuresinthe Ser vi ce Confi gur at or frame-
work; Section 4 describes the object-oriented architecture of
the Ser vi ce Confi gur at or framework; Section 5 il-
lustrates how the Ser vi ce Conf i gur at or framework
components are applied to configure a distributed logging
facility used in a commercia on-line transaction processing
system; and Section 6 presents concluding remarks.

2 Background Material

Various strategies and tactics for developing configurable
distributed application frameworks have emerged in severa
domains. The Servi ce Confi gurator framework is
influenced by research that addresses policiesfor (1) reliably
guiding the reconfiguration of executing applications[4] and
(2) representing application state attributes as abstract data
types to facilitate service (re)configuration [5], communica
tion [3], and migration in heterogeneous and homogeneous
[6] environments.

Another influential branch of research involves daemon
control frameworks. Dagmon management frameworks pro-
videmechani sms that automate many tediousand error-prone
activities associated with configuring and reconfiguring net-
work daemons. These activities include (1) performing
daemonization! operations; (2) binding transport endpoints
to communication ports; (3) demultiplexing events received
on these ports; and (4) dispatching the appropriate handlers

1Daemonizationtypically involves (1) dynamically spawning anew pro-
cess, (2) closing all unnecessary file descriptors, (3) changing the current
working directory to the root directory, (4) resetting the file access cre-
ation mask, (5) disassociating from the controlling process group and the
controlling terminal, and (6) ignoring terminal I/O-related signals[1].

to process the events.

Two widely available daemon management frameworks
arei netd [1] and | i st en [7], which are both distributed
with System V Release 4 UNIX. I netd and | i st en are
multi-service daemon management frameworksthat utilizea
master dispatcher process to monitor a set of communication
ports. Each port isassociated with a communication-related
service (such asthestandard Internet servicesf t p,t el net,
dayti me, and echo). When a service request arrives on
a monitored port, the dispatcher process demultiplexes the
request to the appropriate pre-registered servicehandler. This
handler performs the service and returns any results to the
client requestor. Long-duration externa services® (such as
ftp and tel net) are executed concurrently in separate
dave processes. In addition, i net d may be configured to
execute short-duration internal services (such as dayti ne
and echo) iteratively within its master dispatcher process
address space (notethat | i st en does not providethis type
of functionality).

Bothi net dandl i st en haveproventobequiteuseful in
practice. However, these daemon management frameworks
were developed without adequate consideration of object-
oriented techniques (such as class-based encapsulation, in-
heritance, dynamic binding, and parameterized types) and
advanced OS mechanisms (such as explicit dynamic linking
and multi-threading). Thisfact complicatescomponent reuse
and limits functionality. For example, the standard version
of i net d iswritten in C and its implementation is charac-
terized by a proliferation of global variables, alack of infor-
mation hiding, and an agorithmic decomposition that deters
fine-grained reuse of its internal components. Furthermore,
neither i net d nor | i st en provide automated support for
(1) dynamically linking services into the address space of
their master dispatcher processes at run-timeor (2) executing
these services concurrently via one or more threads. There-
fore, developerswho want their servicesto benefit from these
advanced OS mechanisms must manually program theminto
their network daemons.

3 Overview of the Service Configurator
Framework

Figure 1 illustrates the primary architectura components
ini netd, |isten, andthe Servi ce Confi gurat or
framework. Each of these daemon management frameworks
support the automated configuration and reconfiguration of
multi-service daemons that execute their externa services
concurrently in separate process address spaces. In ad-
dition, the Ser vi ce Confi gur at or framework offers
added support for concurrent, multi-service network dae-
mons by increasing configuration flexibility, enhancing dae-
mon run-timeextensi bility, and improving performance. The

2An external service is executed in a different process address space
than the master dispatcher process that received the request. An internal
service, on the other hand, is executed within the same address space as the
dispatcher process.
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Figure1: Alternative Daemon Management Frameworks

remainder of this section examines the features provided by
the Ser vi ce Confi gur at or framework and illustrates
how these features overcome thelimitationswithi net d and
[ i st en discussed earlier.

The Servi ce Confi gurator framework increases
the flexibility of configuring network daemons by decou-
pling service-specific processing policiesfrom the following
development activities and mechanisms:

¢ The type and number of services associated with each dae-
mon process:. The Service Configurator frame
work permits daemons to consolidate a number of services
into one administrative unit. This multi-service approach to
configuring network daemons helpsto (1) simplify devel op-
ment and reuse code by performing common service initia-
ization activities automatically, (2) reduce the consumption
of OS resources (such as process table dots) by spawning
service handlers*on-demand,” (3) alow daemon servicesto
be updated without modifying existing source code or termi-
nating an executing dispatcher process, and (4) consolidate
the administration of network services via a uniform set of
configuration management operations.

e The point of time at which a service is configured into a
daemon: Bothi netd and! i st en support the activities
listed in the previous bullet. However, they are less flexi-
ble with respect to the point of time a which certain types
of services may be configured into a network daemon. For
example, i net d only allows externa services to be recon-
figured at run-time. Internal services, on the other hand,
must be configured into the master i net d daemon statically
(i.e, a compile-time or static link-time). In order to add
a new interna service, the master i net d dispatcher pro-
cess must be modified, recompiled, relinked, and restarted
(the i st en daemon control framework does not support

internal services).

In contrast, the Ser vi ce Confi gur at or framework
provides an extensible high-level object-oriented interface
(described in Section 4.2) that automatesthe use of OS mech-
anisms for explicit dynamic linking.2 Dynamic linking en-
hances the extensibility of network daemons by permitting
internal servicesto be configured into a daemon dynamically
(i.e,, when adaemon first begins executing or whileitisrun-
ning). Thisfeature enables a network daemon’s services to
be dynamic reconfigured without requiring the modification,
recompilation, relinking, or restarting of active services.

In the Service Configurator framework, the
choi ce between static or dynamic configuration may selected
on a per-service basis. Furthermore, this choice may be de-
ferred until a daemon begins execution. Neither i net d nor
[ i st en provide built-in support for explicit dynamic link-
ing, which limitstherange of daemon design alternativesthat
they are capable of configuring automatically.

e The type of execution agents. In the Service
Confi gur at or framework, services may be performed
at run-time via severa different types of process and thread
execution agents (discussed in Section 4.3.1). By decoupling
servicefunctionality from the execution agent used to invoke
theservice, theSer vi ce Confi gur at or framework in-
creases therange of daemon configuration alternativesavail-
ableto developers.

An efficient daemon configurati on often depends upon cer-
tain service requirements and platform characteristics. For

SExplicit dynamic linking allows a daemon to obtain, utilize, and/or
remove the run-time address bindings of services defined in shared ob-
ject files [8]. Widely available explicit dynamic linking facilities in-
clude the dl open/ dl sym dl cl ose routines in SYR4 UNIX and the
LoadLi brary/ Get ProcAddr ess routinesin the WIN32 subsystem of
Windows NT.



example, a process-based configuration may be appropri-
ate for daemons that implement long-duration services (such
as the Internet ft p and t el net) that base their security
mechanisms on process ownership. In this case, each ser-
vice (or each active instance of a service) may be mapped
onto a separate process and executed in paralel on a multi-
processor platform. Different configurations may be more
suitable in other circumstances, however. For instance, it
is often simpler and more efficient to implement cooper-
ating services (such as those found in an end-system of a
distributed database engine) in separate threads since they
frequently reference common data structures. In this ap-
proach, each service may be executed on a separate thread
withinthe same processto reduce the overhead of scheduling
and context switching [2].

As before, the range of daemon design alternatives sup-
ported by i net d and| i st en are limited since they do not
provide built-in support for thread-based service execution.
Instead, these daemon management frameworks utilizealess
flexible and often less efficient invocation mechanism that
spawns a separate process to execute a service dynamically.
The overhead of f or k and exec makes dynamic service
invocation prohibitively expensive for certain types of ser-
vices, particularly short-duration services (such as resolving
the Ethernet number of an IP address or retrieving a disk
block from anetwork file server).

o Theorder inwhich hierarchically-related services are com-
bined into an application: Each service is represented as
an interconnected series of independent service objects that
communicate by passing messages. These objects may be
joined together in essentially arbitrary configurationsto sat-
isfy applicationsrequirements and enhance component reuse.

¢ The |/O descriptor-based and timer-based event demulti-
plexing mechanisms:  These mechanisms are used to dis-
patch incoming connection requests and data onto a pre-
registered service-specific handler. Within the Ser vi ce
Confi gur at or framework, a class category caled the
React or [9] portably encapsulates both the sel ect and
pol I 1/O demultiplexing system calls. Sel ect and pol |
are UNIX system calls that detect the occurrence of differ-
ent types of input and output events on one or more |/O
descriptors simultaneously. Asdiscussed in Section 4.1, the
React or classcategory integratesthedemultiplexingof 1/0
descriptor-based eventstogether with timer-based and signal -
based events via an extensible and type-safe object-oriented
interface.

In contrast, i netd and | i st en do not provide timer-
based event demultiplexing functionaity. Moreover, i net d
is tightly coupled to the sel ect interface and | i st en
is tightly coupled to the pol | interface, which limits their
portability.

e Theunderlying IPC mechanisms.  ServicesuselPC mech-
anisms to exchange data with participating communication
entities on loca or remote end-systems. The Ser vi ce
Conf i gur at or framework provides a collection of C++

wrappers [10] that encapsulate standard OS mechanisms for
network IPC (such as sockets and the Transport Layer In-
terface (TLI)). Unlike the weakly-typed, “descriptor-based”
socket and TLI interfaces, however, these C++ wrappers
enable services to access the underlying OS IPC mecha
nisms via a type-safe, portable interface. Conversely, nei-
ther i netd nor | i st en provide any standard support for
type-safe, platform-independent I PC interfaces.

e Theclient and server partitioning: Conventional daemon
management frameworks are not involved with client-side
issues. In contrast, the Ser vi ce Confi gur at or frame-
work provides mechanisms for partitioning and composing
the services of an application into the client-side or server-
side of adistributed system.

The increased flexibility provided by the Servi ce
Conf i gur at or framework facilitatesthe devel opment and
use of reusable components. In general, component reuseis
improved in the framework by separating the higher-level
service-specific policies from the lower-level mechanisms
(such as network communication, event demultiplexing and
service dispatching, and execution agents). Conversely, both
inetdandlisten dlow only coarse-grain reuse of their
genera service dispatching facilities, without encouraging
more fine-grain reuse of their internal components.

4 The Object-Oriented Architecture of
the Service Configurator Framework

The Servi ce Configurator framework was devel-
oped using severa key object-oriented design techniquesand
C++ language features. This section outlines the object-
oriented architecture of the Servi ce Confi gurat or
framework. The architectural components discussed be-
low include the React or class category (Figure 2), the
Servi ce bj ect inheritancehierarchy (Figure3 (1)), the
standard subclasses of the Servi ce Obj ect class (Fig-
ure3(2)),theSer vi ce Reposit ory class(Figure3(3)),
andthe Ser vi ce Confi g class (Figure 3 (4)).

Booch notation [11] is used to illustrate relationships be-
tween these Ser vi ce Confi gur at or framework com-
ponents. Solid clouds indicate objects; nesting indicates
composition relationships between objects; and undirected
edges indicate some type of link exists between two objects.
Dashed clouds indicate classes; directed edges indicate in-
heritance relationships between classes; and an undirected
edge with a solid bullet at one end indicates a composition
relation between two classes. Solid rectangles indicate class
categories, which combine a number of related classesinto a
common name space.

4.1 TheReactor Class Category

The componentsin theReact or class category are respon-
siblefor demultiplexing temporal eventsgenerated by atimer-
driven calout queue, I/0 events received on communication
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Figure2: The React or Class Category

ports, and signal-based events and dispatching the appropri-
ate pre-registered handler(s) to process these events. Within
the Ser vi ce Confi gur at or framework, multi-service
network daemons are structured internally via an event loop
that monitors a set of communication ports. Each com-
munication port is associated with a service-specific han-
dier that implements a particular type of functionality on
behalf of clients. When a client request arrives on a port
monitored by the React or , the associated service handler
is dispatched to perform the request. To consolidate and
automate these common request processing activities, the
Servi ce Confi gurat or framework uses the event de-
multiplexing and service dispatching mechanisms provided
by the React or .

The React or class category contains a set of methods
illustrated in Figure 2. These methods provide auniformin-
terface for managing objectsthat implement varioustypes of
service handlers. Certain methods register, dispatch, and re-
movel/O descriptor-based objectsfromtheReact or . Other
methods schedule, cancel, and dispatch timer-based and/or
signal-based objects. As shown in Figure 2, these handler
objects all derive fromthe Event Handl er abstract base
class* This class specifies an interface for event demulti-
plexing and service handler dispatching.

TheReact or classcategory usesthepurevirtua methods
intheEvent Handl er interface to integrate the demulti-
plexing of 1/O descriptor-based events together with timer-
based and signa-based events. 1/0 descriptor-based events
are dispatched viathehandl e_i nput , handl e_out put

4An abstract class in C++ provides an interface that contains at least
one pure virtual method. A pure virtual method providesonly an interface
declaration, without any accompanying definition. Subclasses of an abstract
class must provide definitions for al its pure virtual methods before any
objects of the class may be instantiated.

and handl e_excepti ons methods of a handler ob-
ject. Likewise, timer-based events are dispatched via the
handl e_t i meout method and signal-based eventsare dis-
patched via the handl e_si gnal method. Subclasses of
Event Handl er may augment this interface by defining
additional methods and data members. In addition, virtua
methodsin theinterface may be selectively overriddentoim-
plement application-specific functionality. When all the pure
virtual methods have been defined, a daemon may create an
instance of the resulting composite service handler object.

When a daemon instantiates and registersa composite ser-
vice handler object, the React or class category extracts
the underlying 1/0O descriptor from the object. This descrip-
tor is stored in a table aong with descriptors from other
registered objects. When the daemon subsequently invokes
its main event loop, these descriptors are passed as argu-
mentsto the underlying OS event demultiplexing system call
(eg., sel ect orpol |). Asevents associated with a reg-
istered composite object occur at run-time, the React or
automatically detects these events and dispatches the appro-
priate method(s) of the service handler object associated with
the event. This handler object then becomes responsible for
performing its service-specific functionality.

4.2 The Service Configurator Class Category

The primary unit of configuration in the Service
Conf i gur at or framework istheservice. Servicesmay be
simple (such as returning the current time-of-day) or highly
complex (such asadistributed, real-timerouter for PBX event
traffic [12]). To provide a consistent environment for defin-
ing, configuring, and using network daemons, al network
daemon services are derived from the Ser vi ce Obj ect

inheritance hierarchy (illustrated in Figure 3 (1)).

TheSer vi ce bj ect classisthefocal pointof amulti-
level hierarchy of typesrelated by inheritance. The standard
interfaces provided by the abstract classes in this type hi-
erarchy may be selectively overridden by service-specific
subclassesin order to collaboratewith festures offered by the
Servi ce Confi gurat or framework. Theseframework
festures provide transparent dynamic linking, service han-
dler registration, event demultiplexing, and service dispatch-
ing. By decoupling the service-specific portionsof ahandler
object from the underlying Servi ce Confi gur at or
framework mechanisms, the effort necessary to insert and
remove services from a running network daemon is signifi-
cantly reduced.

TheSer vi ce Obj ect inheritancehierarchy consistsof
theEvent Handl er and Shar ed Obj ect abstract base
classes, aswell asthe Ser vi ce Obj ect abstract derived
class. The Event Handl er class was described above in
theReact or Section 4.1. The behavior of the other classes
isoutlined below.
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421 TheShared Object Abstract Base Class

The Shar ed bj ect class specifies an interface for dy-
namically linking service handler objects into a daemon’s
address space.  This abstract base class exports three pure
virtual methods: i nit, fini,andi nfo. These functions
impose acontract between the reusable components provided
bytheSer vi ce Confi gur at or framework and service-
specific objects that utilize these components. By using pure
virtual methods, the Servi ce Confi gurator frame
work ensuresthat aservice handler implementation honorsits
obligation to provide certain configuration-related informa-
tion. Thisinformationissubsequently used by theSer vi ce
Conf i gur at or framework to automaticaly link, initia-
ize, identify, and unlink a service at run-time.

The Shar ed Obj ect base class is defined indepen-
dently from the Event Handl er classto clearly separate
their two orthogonal sets of concerns. For example, certain
applications (such as acompiler or text editor) might benefit
from dynamiclinking, thoughthey might not requirecommu-
nication port event demultiplexing. Conversely, other appli-
cations(suchasanf t p server) requireevent demultiplexing,
but might not require dynamic linking. By separating these
interfaces into two base classes, applications are able to se-
lect a subset of Servi ce Confi gurat or mechanisms
without incurring unnecessary performance or storage costs.

422 The Service Object Abstract Derived Class

In general, support for dynamic linking, event demultiplex-
ing, and service dispatching is necessary to automate the
dynamic configuration and reconfiguration of network dae-
mon services. Therefore, the Ser vi ce Confi gur at or
framework definesthe Ser vi ce Obj ect class, whichin-
herits the interfaces from both the Event Handl er and
the Shar ed Obj ect abstract base classes. The resulting
abstract derived class supplies a composite interface that de-
velopers use as the basis for implementing and configuring
aserviceinto the Ser vi ce Confi gur at or framework.
The Servi ce Obj ect class acts as an envoy between its
two abstract base class components. These two abstract base
classes have no knowledge of each other at all.

During development, service-specific subclasses must im-
plement the following four pure virtual methods inherited
(but not defined) by the Ser vi ce Obj ect subclass:

e int init (int argv, char **argv); The
i ni t method serves as the entry-point to a service handler
during run-timeinitialization. Thismethod isresponsiblefor
performing service-specific initialization when an instance
of a composite Ser vi ce Obj ect isdynamicaly linked.
Wheninvoked, i ni t ispassed apair of “ar gc/ar gv”-style
parameters. Withini ni t , these parameters may be treated
like arguments passed to the mai n function of a stand-alone
executable C++ program and are used to control object ini-



tiaization.

eint fini (void); Thefini methodiscaled au-
tomatically by the Ser vi ce Conf i gur at or framework
whenaSer vi ce Obj ect isunlinkedand removed froma
daemon at run-time. Thismethod typically performstermina
tion operations that release dynamically allocated resources
(such as memory, synchronization locks, or 1/0O descriptors).

e int info (char **string, int |ength);
The i nf 0 method returns a humanly-readable string that
concisaly reports service addressing information and docu-
ments service functionality. Clients may query a daemon
to retrieve thisinformation and use it to contact a particular
service running in the daemon.

° i nt get_handle (void);
The get _handl e method is used by the React or class
category to extract the underlying I/O descriptor fromacom-
posite service object. This I/O descriptor typically identifies
atransport endpoint that may be used to accept connections
or recelve data from clients.

4.2.3 Service-Specific Concrete Derived Subclasses

Servi ce Obj ect isan abstract class since its interface
contains the pure virtual methods inherited from the Event
Handl er and Shared Obj ect abstract base classes.
Therefore, developers must supply concrete subclasses that
(2) define the four pure virtual methods described above and
(2) implement service-specific functionality. To accomplish
the latter task, subclasses typically override the virtual meth-
ods exported by the Ser vi ce Obj ect interface. For ex-
ample, the handl e_i nput method is often overridden to
accept connections or data that are received from clients.
The Accept or class depicted in Figure 3 (1) is an ex-
ample of a service-specific subclass that accepts connection
requests as part of adistributed loggingfacility. Thisclassis
described further in the example presented in Section 5.

4.3 Standard Subclasses of Service Object

The Servi ce Confi gurat or framework containsali-
brary of standard componentsthat inherit fromtheSer vi ce
hj ect class. These standard components perform the ser-
vice invocation and service directory mechanisms described
below. Services that want to use these mechanisms may in-
herit from the Eager Spawn, Lazy Spawn, Process
Spawn, Thread Spawn, or Servi ce Manager sub-
classesillustrated in Figure 3 (2).

43.1 Servicelnvocation Mechanisms

Several standard subclasses of Servi ce Cbj ect imple-
ment invocation mechanisms that are useful for fine-tuning
network daemon performance. The alternatives discussed
below enable developers to adaptively tune daemon con-
currency levels to match client demands and available OS
processing resources. In genera, the different approaches

tradeoff decreased startup overhead for increased consump-
tion of OS resources (such as process table slots and virtual
memory).

e Eager Spawn —Thissubclass pre-spawnsoneor more
processes or threads at daemon creation time. These “warm-
started” execution agents form a pool that helps improve
response time by reducing service startup overhead when
requests arrive from clients. Depending on factors such
as number of available CPUs, current machine load, or the
length of a client request queue, this pool may be expanded
or contracted dynamically.

e Lazy Spawn — This subclass does not immediately
spawn a process when aclient request isreceived. Instead, a
timer is set and the request is handled iteratively by the dae-
mon. However, if the timer expires a new dave process is
spawned automatically to continueprocessing theservicein-
dependently from the master dispatcher process (which itself
continuesto wait for subsequent requests) [13].

e Process Spawn — This subclass implements the ex-
ternal service process invocation functionality provided by
i netdandlisten. It operates by spavning anew dave
process “on-demand” in response to the arrival of client re-
guests. The dave process then performs the client request
inits own separate address space — terminating when the re-
quest is complete. Spawning a process on-demand helps to
reduce the consumption of OS resources, at the expense of
higher costsfor initially starting a service.

e Thread Spawn — This subclass implements service
spawning techniques that are often more efficient than the
process invocation method used by i netd and | i st en.
Rather than using f or k and exec to create a separate pro-
Cess on a per-regquest basis, the Thr ead Spawn class cre-
ates a separate thread. This thread executes its associated
service to completion and then exits.

e Link Spawn — TheLi nk Spawn subclass dynami-
caly links and executes a new service without spawning a
new process or thread. Thisallows services to be loaded and
unloaded on demand, rather than being pre-loaded during
daemon initiaization. TheLi nk Spawn subclassisimple-
mented by (1) dynamically linking an object file, (2) obtain-
ing the entry-point of the approriate Ser vi ce Cbj ect
in this file, and (3) invoking the service to perform the
client request.> Upon completion, the service installed by
Li nk Spawn may be automatically removed by closing
the Servi ce Obj ect and unlinking the object file from
the daemon’s address space.

In general, threads are more efficient than processes since
they maintain minimal state information, require less over-
head to spawn and synchronize, and may communicate via
shared memory rather than inter-process message passing
[15]. However, since all threadsin a process share its global

5This approach is similar to the way that programs were invoked in
Multics[14].



resources (such as virtual memory, descriptor tables, and
signal handlers), one faulty service may corrupt global data
accessed by services running in other threads within the pro-
cess. Therefore, the Servi ce Confi gurat or frame
work provides the flexible set of service invocation mecha-
nisms described above in order to allow devel opersto select
the most appropriate techniques for managing concurrency
that satisfy their application requirements.

4.3.2 ServiceManager Mechanisms

The Servi ce Manager subclass provides local and re-
mote clients with access to daemon administration com-
mands that publish and manage the services currently offered
by a network daemon. These commands “externalize” cer-
tain interna service attributesin an active network daemon.
During daemon configuration, a Ser vi ce Manager ob-
ject is typicaly registered at a well-known communication
port (e.g., port 911) accessible by clients. If a client re-
guestsalist of active daemon services, thehandl e_i nput
method in the Ser vi ce Manager invokesthe Ser vi ce
Reposi t ory iterator (described in Section 4.4 below).
This iterator is used to generate a listing of developer-
supplied information that describes each active service. This
listing is transferred back to the client to indicate both the
address format and the transport protocol required to con-
tact daemon services. The Ser vi ce Manager isaso be
used to handle reconfiguration requests that are triggered by
remote sites.

4.4 The Service Repository Class

The Servi ce Confi gurator framework supports the
configuration of both single-service and multi-service net-
work daemons. Therefore, to simplify run-time administra-
tion, it may be necessary to individually and/or collectively
control and coordinatetheSer vi ce Cbj ect sand Streams
that comprise a daemon’s currently active services. The
Servi ce Reposi tory isan object manager that coordi-
natesloca and remote queries and updatesinvolvingthe ser-
vices offered by aSer vi ce Confi gur at or -based dae-
mon. A search structure within the object manager binds
service names (represented as ASCI| strings) with instances
of composite Ser vi ce Qbj ect s(represented as C++ ob-
ject code). A service name uniquely identifies an instance of
aServi ce bj ect stored intherepository.

Each entry in the Servi ce Repository contains a
pointer to the Servi ce Obj ect portion of an service-
specific C++ derived class (shown in Figure 3 (3)). Thisen-
ables the Ser vi ce Confi gurat or framework to load,
enable, suspend, resume, or unload Servi ce Obj ects
from a daemon statically or dynamicaly. For dynamically
linked Ser vi ce Obj ect s, the repository aso maintains
a handleto the underlying shared object file where the object
code is stored. This handle is used to unlink and unload a
Servi ce Qbj ect from arunning daemon when the ser-
viceit offersisno longer required.

<svc-config-entries> ::=
svc-config-entries svc-config-entry
NULL
<svc-config-entry> ::= <dynanic> | <static>
| <suspend> | <resunme> | <renove>
<streanr | <renote>
<dynam c¢> ::= DYNAM C <svc-| ocati on>
[ <paraneters-opt> ]

<static> ::= STATIC <svc-nanme>

[ <paraneters-opt> ]
<suspend> ::= SUSPEND <svc- nane>
<resune> ::= RESUME <svc- nane>
<renove> ::= REMOVE <svc- nane>
<streanmp ::= STREAM <stream ops>

"{’ <nodule-list> "}’
<streamops> ::= <dynamc> | <static>
<renmote> ::= STRING '{’ <svc-config-entry> '}’
<nmodul e-list> ::= <nodul e-list> <nodul e>
| NuULL

<nmodul e> ::= <dynami c> | <static>
| <suspend> | <resunme> | <renove>
<svc-location> ::= <svc-name> <type>
<svc-initializer> <status>
<type> ::= SERVI CE_OBJECT '*’ | MODULE ’'*’
STREAM ' *’ | NULL
<svc-initializer> ::= <object-nane>
| <function-nane>

<obj ect-nane> ::= PATHNAME ':’ | DENT
<function-name> ::= PATHNAME ':’ [DENT ' (' ')’
<status> ::= ACTIVE | INACTIVE | NULL
<paraneters-opt> ::= STRING | NULL

Figure 4: EBNF Format for a Service Config Entry

Aniterator classisalso supplied dong withthe Ser vi ce
Reposi tory. Thisclassisused to visit every Ser vi ce
hj ect intherepository without unduly compromising data
encapsulation. As described in Section 4.3.2, the standard
Servi ce Manager implementation employs thisiterator
featureto obtainacompletelistingof all daemon servicesthat
are currently active. It generates this listing by repeatedly
caling the i nf o method associated with each entry in the
Servi ce Repository.

45 The Service Config Class

The Servi ce Confi g class is the unifying component
in the Servi ce Configurator framework. As il-
lustrated in Figure 3 (4), this class integrates the other
Servi ce Confi gurat or framework components (such
astheServi ce Repository andthe React or) to au-
tomate the static and/or dynamic configurati on of concurrent,
multi-service network daemons.

The Servi ce Confi g class uses a configuration file
(knownassvc. conf ) to guideits configuration and recon-
figuration activities. Each daemon may be associated with a
distinctsvc. conf configurationfile. Likewise, aset of dae-
monsmay bedescribed by asinglesvc. conf file. Figure4
describes the primary syntactica elementsinasvc. conf
file using extended-Backus/Naur Format (EBNF). Each ser-
vice config entry in the file begins with a service config di-
rective that specifies the configuration activity to perform.
Table 1 summarizes the valid service config directives.



|| Symbol | Description |

dynamic | Dynamically link and enable a service
static Enable a statically linked service
remove | Completely removeaservice

suspend | Suspend service without removing it
resume Resume a previously suspended service
stream Configure a Stream into a daemon

Table 1: Service Config Directives

CONFIGURE/
Service_Config::process directives()

INITIALIZED
START EVENT LOOP/

Service _Config::run_event_loop()

AWAITING
EVENTS

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/

Service_Config::closg() Reactor::dispatch()

PERFORM
CALLBACK

CALL HANDLER/
Event_Handler::handle_input()

.

NETWORK EVENT/

SERVER
LOGGING : ge erice
DAEMON ontig

: Service
Repository

: Logging
Acceptor
: Logging
Handler
: Logging
Handler

: Service
Manager

CONTROL
OPERATIONS

.

Figure 5. State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

Each service config entry contains certain attributes that
indicate the location of the shared object file for each dy-
namically linked service, as well as the parameters required
toinitialize a service a run-time. By consolidating service
attributes and initialization parameters into a single configu-
retion file, theinstallation and administration of the services
inan applicationissignificantly smplified. Thesvc. conf
file helps to decouple the structure of an application from
the behavior of its services. This decoupling also separates
the “lazy” configuration and reconfiguration of mechanisms
provided by the framework from the application-specific at-
tributes and parameters specified inthesvc. conf file.

Figure5 depictsthe statetransitiondiagramillustratingthe
Servi ce Confi g methods that are invoked in response
to events occurring during service configuration, execution,
and reconfiguration. For example, when the CONFIGURE or
the RECONFIGURE events occur a run-time, the Ser vi ce
Confi g class célls its process_di rect i ves method.
This method consultsthe svc. conf file. Thisfileis first
consulted when a new instance of a daemon isinitially con-
figured. The file is consulted again whenever a daemon
reconfiguration is triggered upon receipt of a pre-designated
external event (such asthe UNIX SIGHUP signal).

Figure 6: Run-time Configuration of the Server Logging
Daemon

5 Distributed Logging Example

Debugging distributed applications is frequently challeng-
ing since diagnostic output appears in different windows
and/or on different remotehost systems. Toillustratehow the
Servi ce Confi gurat or framework isused in practice
to simplify distributed application devel opment and adminis-
tration, thefoll owing section examines thearchitecture of the
distributedloggingfacility shownin Figure6. Thisfacilityis
currently used in a commercial on-line transaction process-
ing system [12] to providelogging services for workstations
and database engines in a high-speed network environment.
As shown in Figure 6, the distributed logging facility al-
lows applications running on multiple client hosts to send
logging records to a server logging daemon running on a
designated server host. The remainder of this section focuses
on the object-oriented Ser vi ce Confi gur at or -based
architecture and configuration of the server daemon portion
of the logging facility. The complete design and implemen-
tation of the distributed logging facility is described in [9].

51 Server Logging Daemon

Theserver logging daemonisaconcurrent, multi-servicedae-
mon that processes |ogging records received simultaneously
from one or more client hosts. The object-oriented design of
theserver logging daemon is decomposed into several modu-
lar components (shown in Figure7) that perform well-defined
tasks. The application-specific components (Loggi ng
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Figure 7: Class Componentsin the Server Logging Daemon

Accept or andLoggi ng | O) areresponsiblefor process-
ing logging records received from clients. The connection-
oriented application components (Accept or and d i ent
I O are responsible for accepting connection regquests and
data from clients. Finaly, the application-independent
Servi ce Confi gurator framework components (such
as the React or, Servi ce Configurator, and | PC
SAP class categories) are responsible for performing IPC,
explicit dynamic linking, event demultiplexing, service dis-
patching, and concurrency control.

TheLoggi ng | Osubclassisaparameterized typethat is
responsible for processing logging records sent to the server
logging daemon from participating client hosts. Its com-
muni cation mechanisms may be instantiated with either the
SOCK SAPor TLI SAP C++ wrappers, as follows:

class Logging_1O : public Cient

10 <
#if defined (MI_SAFE_SOCKETS) B

SOCK_St ream
#el se

TLI _Stream
#endi f /* MI_SAFE_SOCKETS */

| NET_Addr >
{

[* ... 0%

}

The Loggi ng | Oclass inherits from Event Handl er
(indirectly via Client 10O rather than Service
hj ect sinceitisnot dynamiclinkedintotheserver logging
daemon.

Whenlogging recordsarrivefromtheclient host associated
with aparticular Loggi ng | Oobject, the React or auto-
meatically dispatches the object’shandl e i nput method.
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Thismethod formatsand displaysthe records on one or more
output devices (such asthe printer, persistent storage, and/or
console devicesillustrated in Figure 6).

TheLoggi ng Accept or subclassis also a parameter-
ized type that is responsible for accepting connections from
client hosts participating in the logging service:

cl ass Loggi ng_Acceptor :
public dient_Acceptor<Logging | Q
#if defined (MI_SAFE_SOCKETS)
SOCK_Accept or,

#el se
TLI _Acceptor,
#endi f /* MI_SAFE_SOCKETS */
| NET_Addr >
{
[* ... %]
}s

Since the Loggi ng Acceptor class inherits from
Service Object (indirectly via its Accept or base
class), it may be dynamically linked into the server logging
daemon and manipulated at run-time via the server logging
daemon’s svc. conf configuration file. Likewise, since
Loggi ng Accept or indirectly inherits from the Event
Handl er interface, itshandl e_i nput method will bein-
voked automatically by the React or when connection re-
guestsarrivefromclients. When aconnectionrequest arrives,
the Loggi ng Accept or subclass alocates a Loggi ng
| Oobject and registers this object with the React or .

The object-oriented decomposition illustrated in Figure 7
significantly enhances the modularity, reusability, and con-
figurability of the distributed logging facility by decoupling
the functionality of connection establishment and logging
record reception into two separate classes. This decoupling
allowsthe Accept or class to be reused for different types
of connection-oriented services (e.g., file transfer, remote
login, video-on-demand, etc.). In particular, to provide com-
pletely different processing functionality, only the behavior
of the Loggi ng | Oportion of the server logging daemon
would need to be reimplemented. Furthermore, by using
other object-oriented language features (such as templates
and/or inheritance and dynamic binding) or design patterns
(such as Factory Method or Abstract Factory [16]), it is pos-
sible to completely parameterize the type of service offered
by an application [17]. Furthermore, the use of parameter-
ized types decouples the reliance on a particular type IPC
mechanism.

5.2 Configuringthe Server Logging Daemon

The Servi ce Confi gurat or framework supports two
types of configuration: static and dynamic. As discussed
below, both types are used to configure the server logging
daemon.

5.2.1 Dynamic Configuration

A dynamically configured daemon allowstheinsertion, mod-
ification, or remova of Servi ce Qbj ect s at run-time.



Thefollowingentry inthesvc. conf fileisused to dynam-
ically configure the logging service into the server logging
daemon:
dynam ¢ Logger Service_Object *

./ Logger.so: _alloc() "-p 7001"

The <svc- nane> token (Logger) specifies a service
name that isused by the Ser vi ce Reposi t ory toiden-
tify a Servi ce bject. The _al l oc() function is
located in the shared object file indicated by the path-
name . / Logger. so. The Servi ce Confi gurator
framework locates and dynamicaly links this shared ob-
ject file into the daemon’s address space and then invokes
the _al | oc() function. The _al | oc() function returns
a Servi ce Obj ect pointer, which is inserted into the
Servi ce Repository. The service location also spec-
ifies the name of the service-specific subclass derived from
Service bj ect. Inthiscase the _al | oc functionis
used to dynamically allocate anew Loggi ng Accept or
object. The remaining contents on the line (*-p 7001")
represent a service-specific set of configuration parameters.
These parameters are passed tothei ni t function of the ser-
vice as ar gc/ ar gv-style command-line arguments. The
i ni t methodfortheLoggi ng Accept or classinterprets
"-p 7001" as the port number where the server logging
daemon listensfor client connection reguests.

5.2.2 Static Configuration

A statically configured service is one that is dways avail-
able to a daemon when it first begins execution. For ex-
ample, the Servi ce Manager is a standard Ser vi ce
Conf i gur at or framework component that clients use to
obtain a listing of active daemon services. The following
entryinthesvc. conf fileisused to statically configurethe
Servi ce Manager service into the server logging dae
mon during initialization:

static Service_Manager "-p 911"

Inorder forthest at i ¢ directivetowork, the object code
that implements the Ser vi ce Manager service must be
statically linked together with the main daemon driver ex-
ecutable program. In addition, the Ser vi ce Manager
object must be inserted into the Ser vi ce Repository
before dynamic configuration takes place (this is done au-
tomatically by the Ser vi ce Confi g constructor). Due
to these constraints, a statically configured service may not
be reconfigured at run-time without being removed from the
Servi ce Repository first.

5.3 Server Logging Daemon Run-Time Activ-
ities

The main driver program for the server logger daemon is

implemented by the following code:

int

main (int argc, char *argv[])
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Servi ce_Confi g | oggerd;

/* Configure server |ogging daenon */
if (loggerd.open (argc, argv) == -1)
return -1;

/* Perform | ogging service */
for (31)
if (loggerd.run_event_loop ()
&& errno == EINTR)
br eak;

return O;

}

Figure 8 depicts the run-time interaction between the vari-
ous framework and service-specific objects that collaborate
to providethelogging service. Daemon configuration is per-
formed in the Servi ce Confi g:: open method. This
method consultsthe following svc. conf file, which spec-
ifies the services to configure into the daemon:

static Service_Manager "-p 911"
dynam ¢ Logger Service_Cbject *
./ Logger.so: _alloc() "-p 7001"

Each of the service config entries in the svc. conf file
isprocessed by loading the designated Ser vi ce hj ect
intotheSer vi ce Reposit ory, dynamicaly linkingit if
necessary, and registering the Event Handl er portion of
the service object handler with the React or .

When al the configuration activities have been com-
pleted, the main driver program shown above invokes the
Servi ce Config::runevent | oop method. This
method enters an event loop that continuoudly calls the
React or: : handl e.event s service dispatch function.
Asshown in Figure5, thisdispatch function blocks awaiting
the occurrence of events (such as connection requests or data
from clients). Asthese eventsoccur, theReact or automat-
ically dispatches previously-registered service-specific event
handlers to perform the designated services.

The Service Configurator framework aso re-
spondsto external eventsthat trigger daemon reconfiguration
at run-time. The dynamic configuration stepsoutlinedin Sec-
tion 5.2.1 are performed whenever an executing Ser vi ce
Conf i gur at or daemon receivesapre-designated externa
signal (such as the UNIX SIGHUP signa). Depending on
the updated contents of thesvc. conf file, services may be
inserted, suspended, resumed, or removed from the daemon.

The Ser vi ce Confi gurat or framework’s dynamic
reconfiguration mechanisms enable developers to modify
server logging daemon functionality or fine-tune perfor-
mance without extensive redevelopment and reinstallation
effort. For example, debugging a faulty implementation of
thelogging servicesimply requiresthedynamicreinstal lation
of afunctionally equivalent service that contains additional
instrumentationto hel pisolatethe source of erroneous behav-
ior. Note that this reinstallation process may be performed
without modifying, recompiling, relinking, or restarting the
currently executing server logging daemon.
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Figure 8: Interaction Diagram for the Server Logging Daemon

6 Concluding Remarks

The Servi ce Confi gurator framework is an inte-
grated collection of automated tools and reusable compo-
nents that extend the functionality of conventional daemon
management frameworkssuchasi net d andl i st en. The
componentsintheSer vi ce Confi gur at or framework
implement basic mechanisms commonly used by network
daemons. These componentsinclude C++ wrappersfor loca
and remote | PC mechanisms [10]; frameworks for event de-
multiplexing and service dispatching [9]; tools for automat-
ing service configuration and reconfiguration; and C++ sub-
classesthat encapsul ate and enhance various dynamiclinking
and concurrency mechanisms. By alowing the Ser vi ce
Conf i gur at or framework to performthelower-level IPC,
event demultiplexing, and service dispatching mechanisms,
devel opers are freed to concentrate on higher-level network
daemon design and service functionality issues. In addi-
tion, the advanced OS mechanisms (such as explicit dynamic
linking and multi-threading) employed by the Servi ce
Confi gur at or framework allow developers to experi-
ment with daemon design alternativesin aflexible manner to
determine efficient daemon service configurations.

The general design principles underlying the Ser vi ce
Confi gurator framework may be characterized suc-
cinctly as (1) separating policies from mechanisms to en-
hance the reuse of common network daemon components,
(2) decoupling the binding of processes and threads from
the daemon services to improve flexibility and performance,
and (3) utilizing inheritance, dynamic binding, and dynamic
linking to improve extensibility. Together, these principles
facilitate the development of network services that may be
updated and extended without modifying, recompiling, re-
linking, or restarting existing daemons.

The techniques and tools described in this paper are cur-
rently being applied in several commercia and research en-
vironments. For example, the Ser vi ce Conf i gur at or
framework is being used by Ericsson Communications
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to configure and administer concurrent network services
that implement a family of PBX management products on
UNIX and Windows NT platforms [12]. The Servi ce
Confi gurator framework is aso being used in the
ADAPTIVE Communication Environment (ACE) [18].
ACE facilitates the development and experimentation with
various aspects of communication subsystems (such as flex-
ible process architectures for multi-processor-based com-
munication protocol stacks [2] and adaptive protocol re-
configuration techniques [19]) and distributed applications
(such as extensible frameworks for concurrent event de-
multiplexing [9]). The public domain ACE implemen-
tation of the Servi ce Confi gurator framework is
available via anonymous ftp from i ¢cs. uci . edu in the
gnu/ C++_.wr appers. tar. Zfile
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