
The Service Configurator Framework

An Extensible Architecture for Dynamically Configuring
Concurrent, Multi-Service Network Daemons

Douglas C. Schmidt and Tatsuya Suda
schmidt@ics.uci.edu and suda@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine, CA 92717, (714) 856-4105

An earlier version of this paper appeared in the proceedings
of the IEEE Second International Workshop on Configurable
Distributed Systems, Pittsburgh, PA, March 1994.

Abstract

Developing extensible, robust, and efficient network daemons
is a challenging task. This paper describes an object-oriented
framework consisting of automated tools and reusable com-
ponents that simplifies the task of developing, configuring,
and reconfiguring concurrent, multi-service network dae-
mons. These daemons may contain multiple communication-
related services that execute in one or more processes or
threads. This framework uses object-oriented design tech-
niques and C++ language features to enhance operating
system mechanisms that provide interprocess communica-
tion, communication port demultiplexing, explicit dynamic
linking, and parallel processing. In addition to describing
the object-oriented architecture of the daemon control frame-
work, this paper presents an example that illustrates how the
framework supports the development of network software
whose services may be updated and extended without modi-
fying, recompiling, relinking, or restarting active daemons.

1 Introduction

This paper describes the structure and functionality of the
Service Configurator framework. This framework
contains automated tools and reusable components that help
to simplify the development, configuration, and reconfig-
uration of concurrent, multi-service network daemons. A
daemon is an operating system (OS) process that executes
application services on a host machine in the “background”
(i.e., disassociated from any controlling terminal) [1]. A ser-
vice is a portion of a daemon that offers a single processing
capability to communicating entities. Particular emphasis
is given in this paper to concurrent, multi-service network
daemons. These daemons contain multiple communication-
related services that execute in one or more processes or
threads.

An increasingly wide range of network daemons have be-
come available throughout the Internet. These daemons pro-

vide communication-related services that resolve distributed
name binding requests (named and rpcbind), access net-
work file systems (nfsd), manage routing tables (gated
and routed), report host and user activities (rwhod and
fingerd), and consolidate multiple network services such
as terminal access (rlogin and telnet) and file trans-
fer (ftp) together into a single “superserver” framework
(inetd and listen). The Service Configurator
framework we have developed provides an integrated set of
tools that automate many activities commonly performed to
configure these types of network daemons.

The Service Configurator framework performs
the following configuration-related activities:

� Determining the service(s) that will be advertised by the
daemon. This may be accomplished by statically coding
this information into an application or by dynamically
consulting a configuration file or service database.

� Requesting the distributed operating environment to
bind the communication ports and network addresses
that identify each advertised service. This process may
require interactions with distributed name servers.

� Registering a handler for each service with an event
dispatcher. This handler is responsible for statically or
dynamically linking the service’s implementation into
the daemon’s address space when the service is activi-
ated.

After the initial set of services have been configured, an
application typically enters an event loop that waits for
events (such as connection requests or data messages) to
arrive from clients. When these events occur, the Service
Configurator framework executes the appropriate ser-
vice handler using one or more processes or threads. If the
service associated with the handler has not yet activated, the
Service Configurator framework will automatically
activate it (dynamically linking it into the daemon’s address
space if necessary).

To simplify these configuration and run-time activities,
the Service Configurator framework leverages off
an integrated collection of reusable C++ components. These
components enhance the modularity, extensibility, and porta-
bility of advanced OS mechanisms that provide interpro-

1

cess communication (IPC), event demultiplexing, explicit dy-
namic linking, and concurrency. In addition, the Service
Configurator framework’s components may be used to
enhance the performance of network daemons by deferring
until installation-time the choice of execution agent (e.g., one
or more processes or threads) used to run network services.
This enables more effective use of the multi-processing ca-
pabilities available on the target OS platform [2].

TheService Configurator framework also coordi-
nates OS mechanisms to automate the reconfiguration of dae-
mon services at run-time. In many circumstances, this allows
daemons executing within the Service Configurator
framework to dynamically update their functionality with-
out being completely shutdown and restarted. Support for
dynamic reconfiguration is essential for highly available dis-
tributed applications such as mission-critical systems that
perform on-line transaction processing, real-time remote
process control, or global personal communication systems
based on low earth orbit satellites. For these types of ap-
plications, it is often necessary to phase new versions of a
service into a daemon without disrupting currently executing
services [3].

This paper is organized in the following manner: Section 2
reviews related background material; Section 3 outlines the
primary features in the Service Configurator frame-
work; Section 4 describes the object-oriented architecture of
the Service Configurator framework; Section 5 il-
lustrates how the Service Configurator framework
components are applied to configure a distributed logging
facility used in a commercial on-line transaction processing
system; and Section 6 presents concluding remarks.

2 Background Material

Various strategies and tactics for developing configurable
distributed application frameworks have emerged in several
domains. The Service Configurator framework is
influenced by research that addresses policies for (1) reliably
guiding the reconfiguration of executing applications [4] and
(2) representing application state attributes as abstract data
types to facilitate service (re)configuration [5], communica-
tion [3], and migration in heterogeneous and homogeneous
[6] environments.

Another influential branch of research involves daemon
control frameworks. Daemon management frameworks pro-
vide mechanisms that automate many tedious and error-prone
activities associated with configuring and reconfiguring net-
work daemons. These activities include (1) performing
daemonization1 operations; (2) binding transport endpoints
to communication ports; (3) demultiplexing events received
on these ports; and (4) dispatching the appropriate handlers

1Daemonization typically involves (1) dynamically spawning a new pro-
cess, (2) closing all unnecessary file descriptors, (3) changing the current
working directory to the root directory, (4) resetting the file access cre-
ation mask, (5) disassociating from the controlling process group and the
controlling terminal, and (6) ignoring terminal I/O-related signals [1].

to process the events.
Two widely available daemon management frameworks

are inetd [1] and listen [7], which are both distributed
with System V Release 4 UNIX. Inetd and listen are
multi-service daemon management frameworks that utilize a
master dispatcher process to monitor a set of communication
ports. Each port is associated with a communication-related
service (such as the standard Internet services ftp, telnet,
daytime, and echo). When a service request arrives on
a monitored port, the dispatcher process demultiplexes the
request to the appropriate pre-registered service handler. This
handler performs the service and returns any results to the
client requestor. Long-duration external services2 (such as
ftp and telnet) are executed concurrently in separate
slave processes. In addition, inetd may be configured to
execute short-duration internal services (such as daytime
and echo) iteratively within its master dispatcher process
address space (note that listen does not provide this type
of functionality).

Bothinetd andlistenhave proven to be quite useful in
practice. However, these daemon management frameworks
were developed without adequate consideration of object-
oriented techniques (such as class-based encapsulation, in-
heritance, dynamic binding, and parameterized types) and
advanced OS mechanisms (such as explicit dynamic linking
and multi-threading). This fact complicates component reuse
and limits functionality. For example, the standard version
of inetd is written in C and its implementation is charac-
terized by a proliferation of global variables, a lack of infor-
mation hiding, and an algorithmic decomposition that deters
fine-grained reuse of its internal components. Furthermore,
neither inetd nor listen provide automated support for
(1) dynamically linking services into the address space of
their master dispatcher processes at run-time or (2) executing
these services concurrently via one or more threads. There-
fore, developers who want their services to benefit from these
advanced OS mechanisms must manually program them into
their network daemons.

3 Overview of the Service Configurator
Framework

Figure 1 illustrates the primary architectural components
in inetd, listen, and the Service Configurator
framework. Each of these daemon management frameworks
support the automated configuration and reconfiguration of
multi-service daemons that execute their external services
concurrently in separate process address spaces. In ad-
dition, the Service Configurator framework offers
added support for concurrent, multi-service network dae-
mons by increasing configuration flexibility, enhancing dae-
mon run-time extensibility, and improvingperformance. The

2An external service is executed in a different process address space
than the master dispatcher process that received the request. An internal
service, on the other hand, is executed within the same address space as the
dispatcher process.

2

SERVICE
CONFIG

SERVICE
REPOSITORY

Reactor

INTERNAL
SERVICES

(3) SERVICE CONFIGURATOR

EXTERNAL
SERVICES

STATICALLY
LINKED SERVICE

DYNAMICALLY
LINKED SERVICE

THREADPROCESS IS-PARENT-OF
COMM. PORTS

(1) INETD

EXTERNAL
SERVICES

select()

INTERNAL
SERVICES

(2) LISTEN

poll()

EXTERNAL
SERVICES

Figure 1: Alternative Daemon Management Frameworks

remainder of this section examines the features provided by
the Service Configurator framework and illustrates
how these features overcome the limitations withinetd and
listen discussed earlier.

The Service Configurator framework increases
the flexibility of configuring network daemons by decou-
pling service-specific processing policies from the following
development activities and mechanisms:

� The type and number of services associated with each dae-
mon process: The Service Configurator frame-
work permits daemons to consolidate a number of services
into one administrative unit. This multi-service approach to
configuring network daemons helps to (1) simplify develop-
ment and reuse code by performing common service initial-
ization activities automatically, (2) reduce the consumption
of OS resources (such as process table slots) by spawning
service handlers “on-demand,” (3) allow daemon services to
be updated without modifying existing source code or termi-
nating an executing dispatcher process, and (4) consolidate
the administration of network services via a uniform set of
configuration management operations.

� The point of time at which a service is configured into a
daemon: Both inetd and listen support the activities
listed in the previous bullet. However, they are less flexi-
ble with respect to the point of time at which certain types
of services may be configured into a network daemon. For
example, inetd only allows external services to be recon-
figured at run-time. Internal services, on the other hand,
must be configured into the master inetd daemon statically
(i.e., at compile-time or static link-time). In order to add
a new internal service, the master inetd dispatcher pro-
cess must be modified, recompiled, relinked, and restarted
(the listen daemon control framework does not support

internal services).
In contrast, the Service Configurator framework

provides an extensible high-level object-oriented interface
(described in Section 4.2) that automates the use of OS mech-
anisms for explicit dynamic linking.3 Dynamic linking en-
hances the extensibility of network daemons by permitting
internal services to be configured into a daemon dynamically
(i.e., when a daemon first begins executing or while it is run-
ning). This feature enables a network daemon’s services to
be dynamic reconfigured without requiring the modification,
recompilation, relinking, or restarting of active services.

In the Service Configurator framework, the
choice between static or dynamic configuration may selected
on a per-service basis. Furthermore, this choice may be de-
ferred until a daemon begins execution. Neither inetd nor
listen provide built-in support for explicit dynamic link-
ing, which limits the range of daemon design alternatives that
they are capable of configuring automatically.

� The type of execution agents: In the Service
Configurator framework, services may be performed
at run-time via several different types of process and thread
execution agents (discussed in Section 4.3.1). By decoupling
service functionality from the execution agent used to invoke
the service, the Service Configurator framework in-
creases the range of daemon configuration alternatives avail-
able to developers.

An efficient daemon configuration often depends upon cer-
tain service requirements and platform characteristics. For

3Explicit dynamic linking allows a daemon to obtain, utilize, and/or
remove the run-time address bindings of services defined in shared ob-
ject files [8]. Widely available explicit dynamic linking facilities in-
clude the dlopen/dlsym/dlclose routines in SVR4 UNIX and the
LoadLibrary/GetProcAddress routines in the WIN32 subsystem of
Windows NT.

3

example, a process-based configuration may be appropri-
ate for daemons that implement long-duration services (such
as the Internet ftp and telnet) that base their security
mechanisms on process ownership. In this case, each ser-
vice (or each active instance of a service) may be mapped
onto a separate process and executed in parallel on a multi-
processor platform. Different configurations may be more
suitable in other circumstances, however. For instance, it
is often simpler and more efficient to implement cooper-
ating services (such as those found in an end-system of a
distributed database engine) in separate threads since they
frequently reference common data structures. In this ap-
proach, each service may be executed on a separate thread
within the same process to reduce the overhead of scheduling
and context switching [2].

As before, the range of daemon design alternatives sup-
ported by inetd and listen are limited since they do not
provide built-in support for thread-based service execution.
Instead, these daemon management frameworks utilize a less
flexible and often less efficient invocation mechanism that
spawns a separate process to execute a service dynamically.
The overhead of fork and exec makes dynamic service
invocation prohibitively expensive for certain types of ser-
vices, particularly short-duration services (such as resolving
the Ethernet number of an IP address or retrieving a disk
block from a network file server).

� The order in which hierarchically-related services are com-
bined into an application: Each service is represented as
an interconnected series of independent service objects that
communicate by passing messages. These objects may be
joined together in essentially arbitrary configurations to sat-
isfy applications requirements and enhance component reuse.

� The I/O descriptor-based and timer-based event demulti-
plexing mechanisms: These mechanisms are used to dis-
patch incoming connection requests and data onto a pre-
registered service-specific handler. Within the Service
Configurator framework, a class category called the
Reactor [9] portably encapsulates both the select and
poll I/O demultiplexing system calls. Select and poll
are UNIX system calls that detect the occurrence of differ-
ent types of input and output events on one or more I/O
descriptors simultaneously. As discussed in Section 4.1, the
Reactor class category integrates the demultiplexingof I/O
descriptor-based events together with timer-based and signal-
based events via an extensible and type-safe object-oriented
interface.

In contrast, inetd and listen do not provide timer-
based event demultiplexing functionality. Moreover, inetd
is tightly coupled to the select interface and listen
is tightly coupled to the poll interface, which limits their
portability.

� The underlying IPC mechanisms: Services use IPC mech-
anisms to exchange data with participating communication
entities on local or remote end-systems. The Service
Configurator framework provides a collection of C++

wrappers [10] that encapsulate standard OS mechanisms for
network IPC (such as sockets and the Transport Layer In-
terface (TLI)). Unlike the weakly-typed, “descriptor-based”
socket and TLI interfaces, however, these C++ wrappers
enable services to access the underlying OS IPC mecha-
nisms via a type-safe, portable interface. Conversely, nei-
ther inetd nor listen provide any standard support for
type-safe, platform-independent IPC interfaces.

� The client and server partitioning: Conventional daemon
management frameworks are not involved with client-side
issues. In contrast, the Service Configurator frame-
work provides mechanisms for partitioning and composing
the services of an application into the client-side or server-
side of a distributed system.

The increased flexibility provided by the Service
Configurator framework facilitates the development and
use of reusable components. In general, component reuse is
improved in the framework by separating the higher-level
service-specific policies from the lower-level mechanisms
(such as network communication, event demultiplexing and
service dispatching, and execution agents). Conversely, both
inetd and listen allow only coarse-grain reuse of their
general service dispatching facilities, without encouraging
more fine-grain reuse of their internal components.

4 The Object-Oriented Architecture of
the Service Configurator Framework

The Service Configurator framework was devel-
oped using several key object-oriented design techniques and
C++ language features. This section outlines the object-
oriented architecture of the Service Configurator
framework. The architectural components discussed be-
low include the Reactor class category (Figure 2), the
Service Object inheritance hierarchy (Figure 3 (1)), the
standard subclasses of the Service Object class (Fig-
ure 3 (2)), theService Repository class (Figure 3 (3)),
and the Service Config class (Figure 3 (4)).

Booch notation [11] is used to illustrate relationships be-
tween these Service Configurator framework com-
ponents. Solid clouds indicate objects; nesting indicates
composition relationships between objects; and undirected
edges indicate some type of link exists between two objects.
Dashed clouds indicate classes; directed edges indicate in-
heritance relationships between classes; and an undirected
edge with a solid bullet at one end indicates a composition
relation between two classes. Solid rectangles indicate class
categories, which combine a number of related classes into a
common name space.

4.1 The Reactor Class Category

The components in the Reactor class category are respon-
sible for demultiplexing temporal events generated by a timer-
driven callout queue, I/O events received on communication

4

: Reactor

: Event
Handler

REGISTERED
OBJECTS

F
R

A
M

E
W

O
R

K
L

E
V

E
L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N
L

E
V

E
L

SELECT() OR POLL () INTERFACE

: Event
Handler

:Timer
Queue

 open()
 register_handler()
 remove_handler()
 schedule_timer()
 cancel_timer()
 handle_events()

Reactor

Event
Handler

Ahandle_input()
handle_output()
handle_exception()
handle_signal()
handle_timeout()
handle_close()
get_handle()

Derived
Class

handle_input()
handle_output()
get_handle()

EVENT HANDLER
HIERARCHY

: Event
Handler : Event

Handler

: Signal
Handlers

: Descriptor
Table

Figure 2: The Reactor Class Category

ports, and signal-based events and dispatching the appropri-
ate pre-registered handler(s) to process these events. Within
the Service Configurator framework, multi-service
network daemons are structured internally via an event loop
that monitors a set of communication ports. Each com-
munication port is associated with a service-specific han-
dler that implements a particular type of functionality on
behalf of clients. When a client request arrives on a port
monitored by the Reactor, the associated service handler
is dispatched to perform the request. To consolidate and
automate these common request processing activities, the
Service Configurator framework uses the event de-
multiplexing and service dispatching mechanisms provided
by the Reactor.

The Reactor class category contains a set of methods
illustrated in Figure 2. These methods provide a uniform in-
terface for managing objects that implement various types of
service handlers. Certain methods register, dispatch, and re-
move I/O descriptor-based objects from theReactor. Other
methods schedule, cancel, and dispatch timer-based and/or
signal-based objects. As shown in Figure 2, these handler
objects all derive from the Event Handler abstract base
class.4 This class specifies an interface for event demulti-
plexing and service handler dispatching.

TheReactor class category uses the pure virtual methods
in the Event Handler interface to integrate the demulti-
plexing of I/O descriptor-based events together with timer-
based and signal-based events. I/O descriptor-based events
are dispatched via the handle input, handle output,

4An abstract class in C++ provides an interface that contains at least
one pure virtual method. A pure virtual method provides only an interface
declaration, without any accompanying definition. Subclasses of an abstract
class must provide definitions for all its pure virtual methods before any
objects of the class may be instantiated.

and handle exceptions methods of a handler ob-
ject. Likewise, timer-based events are dispatched via the
handle timeoutmethod and signal-based events are dis-
patched via the handle signal method. Subclasses of
Event Handler may augment this interface by defining
additional methods and data members. In addition, virtual
methods in the interface may be selectively overridden to im-
plement application-specific functionality. When all the pure
virtual methods have been defined, a daemon may create an
instance of the resulting composite service handler object.

When a daemon instantiates and registers a composite ser-
vice handler object, the Reactor class category extracts
the underlying I/O descriptor from the object. This descrip-
tor is stored in a table along with descriptors from other
registered objects. When the daemon subsequently invokes
its main event loop, these descriptors are passed as argu-
ments to the underlying OS event demultiplexing system call
(e.g., select or poll). As events associated with a reg-
istered composite object occur at run-time, the Reactor
automatically detects these events and dispatches the appro-
priate method(s) of the service handler object associated with
the event. This handler object then becomes responsible for
performing its service-specific functionality.

4.2 The Service Configurator Class Category

The primary unit of configuration in the Service
Configurator framework is the service. Services may be
simple (such as returning the current time-of-day) or highly
complex (such as a distributed, real-time router for PBX event
traffic [12]). To provide a consistent environment for defin-
ing, configuring, and using network daemons, all network
daemon services are derived from the Service Object
inheritance hierarchy (illustrated in Figure 3 (1)).

TheService Object class is the focal point of a multi-
level hierarchy of types related by inheritance. The standard
interfaces provided by the abstract classes in this type hi-
erarchy may be selectively overridden by service-specific
subclasses in order to collaborate with features offered by the
Service Configurator framework. These framework
features provide transparent dynamic linking, service han-
dler registration, event demultiplexing, and service dispatch-
ing. By decoupling the service-specific portions of a handler
object from the underlying Service Configurator
framework mechanisms, the effort necessary to insert and
remove services from a running network daemon is signifi-
cantly reduced.

TheService Object inheritance hierarchy consists of
theEvent Handler and Shared Object abstract base
classes, as well as the Service Object abstract derived
class. The Event Handler class was described above in
the Reactor Section 4.1. The behavior of the other classes
is outlined below.

5

 svc_conf_file

 open()

 process_directives()

 load_service()

 resume_service()

 suspend_service()

 unload_service()

 run_event_loop()

 daemonize()

1

1

1

1

Service

Config

REACTOR

n

Event

Handler

Service

Repository

1

n

Service

Object

(2) The Service_Repository

Class

(3) The Service_Config

Class

open()

insert()

find()

remove()

resume()

suspend()

Service

Repository

open()

reset()

getnext()

advance()

Service

Repository

Iterator

F

1

n

1

1

 open()

 register_handler()

 remove_handler()

 schedule_timer()

 cancel_timer()

 handle_events()
1

(1) Service_Object

Inheritance Hierarchy

INHERITS
FROM

HAS-A

(BY REFERENCE)

F FRIEND A ABSTRACT
CLASS

Service

Object

APP

SPECIFIC

APP

SPECIFIC

Event

Handler
handle_input()

handle_output()

handle_exception()

handle_signal()

handle_timeout ()

handle_close()

get_fd()

A

Shared

Object
init()

fini()

info()

A

APPLICATION

SPECIFIC

Acceptor

open()
acceptor
reactor

Service

Object

A

suspend()
resume()

Figure 3: Component Relationships in the Service Configurator Framework

4.2.1 The Shared Object Abstract Base Class

The Shared Object class specifies an interface for dy-
namically linking service handler objects into a daemon’s
address space. This abstract base class exports three pure
virtual methods: init, fini, and info. These functions
impose a contract between the reusable components provided
by theService Configurator framework and service-
specific objects that utilize these components. By using pure
virtual methods, the Service Configurator frame-
work ensures that a service handler implementation honors its
obligation to provide certain configuration-related informa-
tion. This information is subsequently used by theService
Configurator framework to automatically link, initial-
ize, identify, and unlink a service at run-time.

The Shared Object base class is defined indepen-
dently from the Event Handler class to clearly separate
their two orthogonal sets of concerns. For example, certain
applications (such as a compiler or text editor) might benefit
from dynamic linking, though they might not require commu-
nication port event demultiplexing. Conversely, other appli-
cations (such as anftp server) require event demultiplexing,
but might not require dynamic linking. By separating these
interfaces into two base classes, applications are able to se-
lect a subset of Service Configurator mechanisms
without incurring unnecessary performance or storage costs.

4.2.2 The Service Object Abstract Derived Class

In general, support for dynamic linking, event demultiplex-
ing, and service dispatching is necessary to automate the
dynamic configuration and reconfiguration of network dae-
mon services. Therefore, the Service Configurator
framework defines the Service Object class, which in-
herits the interfaces from both the Event Handler and
the Shared Object abstract base classes. The resulting
abstract derived class supplies a composite interface that de-
velopers use as the basis for implementing and configuring
a service into the Service Configurator framework.
The Service Object class acts as an envoy between its
two abstract base class components. These two abstract base
classes have no knowledge of each other at all.

During development, service-specific subclasses must im-
plement the following four pure virtual methods inherited
(but not defined) by the Service Object subclass:

� int init (int argv, char **argv); The
init method serves as the entry-point to a service handler
during run-time initialization. This method is responsible for
performing service-specific initialization when an instance
of a composite Service Object is dynamically linked.
When invoked, init is passed a pair of “argc/argv”-style
parameters. Within init, these parameters may be treated
like arguments passed to the main function of a stand-alone
executable C++ program and are used to control object ini-

6

tialization.

� int fini (void); The fini method is called au-
tomatically by the Service Configurator framework
when a Service Object is unlinked and removed from a
daemon at run-time. This method typically performs termina-
tion operations that release dynamically allocated resources
(such as memory, synchronization locks, or I/O descriptors).

� int info (char **string, int length);
The info method returns a humanly-readable string that
concisely reports service addressing information and docu-
ments service functionality. Clients may query a daemon
to retrieve this information and use it to contact a particular
service running in the daemon.

� int get handle (void);
The get handle method is used by the Reactor class
category to extract the underlying I/O descriptor from a com-
posite service object. This I/O descriptor typically identifies
a transport endpoint that may be used to accept connections
or receive data from clients.

4.2.3 Service-Specific Concrete Derived Subclasses

Service Object is an abstract class since its interface
contains the pure virtual methods inherited from the Event
Handler and Shared Object abstract base classes.
Therefore, developers must supply concrete subclasses that
(1) define the four pure virtual methods described above and
(2) implement service-specific functionality. To accomplish
the latter task, subclasses typically override the virtual meth-
ods exported by the Service Object interface. For ex-
ample, the handle input method is often overridden to
accept connections or data that are received from clients.

The Acceptor class depicted in Figure 3 (1) is an ex-
ample of a service-specific subclass that accepts connection
requests as part of a distributed logging facility. This class is
described further in the example presented in Section 5.

4.3 Standard Subclasses of Service Object

The Service Configurator framework contains a li-
brary of standard components that inherit from theService
Object class. These standard components perform the ser-
vice invocation and service directory mechanisms described
below. Services that want to use these mechanisms may in-
herit from the Eager Spawn, Lazy Spawn, Process
Spawn, Thread Spawn, or Service Manager sub-
classes illustrated in Figure 3 (2).

4.3.1 Service Invocation Mechanisms

Several standard subclasses of Service Object imple-
ment invocation mechanisms that are useful for fine-tuning
network daemon performance. The alternatives discussed
below enable developers to adaptively tune daemon con-
currency levels to match client demands and available OS
processing resources. In general, the different approaches

tradeoff decreased startup overhead for increased consump-
tion of OS resources (such as process table slots and virtual
memory).

� Eager Spawn – This subclass pre-spawns one or more
processes or threads at daemon creation time. These “warm-
started” execution agents form a pool that helps improve
response time by reducing service startup overhead when
requests arrive from clients. Depending on factors such
as number of available CPUs, current machine load, or the
length of a client request queue, this pool may be expanded
or contracted dynamically.

� Lazy Spawn – This subclass does not immediately
spawn a process when a client request is received. Instead, a
timer is set and the request is handled iteratively by the dae-
mon. However, if the timer expires a new slave process is
spawned automatically to continue processing the service in-
dependently from the master dispatcher process (which itself
continues to wait for subsequent requests) [13].

� Process Spawn – This subclass implements the ex-
ternal service process invocation functionality provided by
inetd and listen. It operates by spawning a new slave
process “on-demand” in response to the arrival of client re-
quests. The slave process then performs the client request
in its own separate address space – terminating when the re-
quest is complete. Spawning a process on-demand helps to
reduce the consumption of OS resources, at the expense of
higher costs for initially starting a service.

� Thread Spawn – This subclass implements service
spawning techniques that are often more efficient than the
process invocation method used by inetd and listen.
Rather than using fork and exec to create a separate pro-
cess on a per-request basis, the Thread Spawn class cre-
ates a separate thread. This thread executes its associated
service to completion and then exits.

� Link Spawn – The Link Spawn subclass dynami-
cally links and executes a new service without spawning a
new process or thread. This allows services to be loaded and
unloaded on demand, rather than being pre-loaded during
daemon initialization. The Link Spawn subclass is imple-
mented by (1) dynamically linking an object file, (2) obtain-
ing the entry-point of the approriate Service Object
in this file, and (3) invoking the service to perform the
client request.5 Upon completion, the service installed by
Link Spawn may be automatically removed by closing
the Service Object and unlinking the object file from
the daemon’s address space.

In general, threads are more efficient than processes since
they maintain minimal state information, require less over-
head to spawn and synchronize, and may communicate via
shared memory rather than inter-process message passing
[15]. However, since all threads in a process share its global

5This approach is similar to the way that programs were invoked in
Multics [14].

7

resources (such as virtual memory, descriptor tables, and
signal handlers), one faulty service may corrupt global data
accessed by services running in other threads within the pro-
cess. Therefore, the Service Configurator frame-
work provides the flexible set of service invocation mecha-
nisms described above in order to allow developers to select
the most appropriate techniques for managing concurrency
that satisfy their application requirements.

4.3.2 Service Manager Mechanisms

The Service Manager subclass provides local and re-
mote clients with access to daemon administration com-
mands that publish and manage the services currently offered
by a network daemon. These commands “externalize” cer-
tain internal service attributes in an active network daemon.
During daemon configuration, a Service Manager ob-
ject is typically registered at a well-known communication
port (e.g., port 911) accessible by clients. If a client re-
quests a list of active daemon services, the handle input
method in the Service Manager invokes the Service
Repository iterator (described in Section 4.4 below).
This iterator is used to generate a listing of developer-
supplied information that describes each active service. This
listing is transferred back to the client to indicate both the
address format and the transport protocol required to con-
tact daemon services. The Service Manager is also be
used to handle reconfiguration requests that are triggered by
remote sites.

4.4 The Service Repository Class

The Service Configurator framework supports the
configuration of both single-service and multi-service net-
work daemons. Therefore, to simplify run-time administra-
tion, it may be necessary to individually and/or collectively
control and coordinate theService Objects and Streams
that comprise a daemon’s currently active services. The
Service Repository is an object manager that coordi-
nates local and remote queries and updates involving the ser-
vices offered by a Service Configurator-based dae-
mon. A search structure within the object manager binds
service names (represented as ASCII strings) with instances
of composite Service Objects (represented as C++ ob-
ject code). A service name uniquely identifies an instance of
a Service Object stored in the repository.

Each entry in the Service Repository contains a
pointer to the Service Object portion of an service-
specific C++ derived class (shown in Figure 3 (3)). This en-
ables the Service Configurator framework to load,
enable, suspend, resume, or unload Service Objects
from a daemon statically or dynamically. For dynamically
linked Service Objects, the repository also maintains
a handle to the underlying shared object file where the object
code is stored. This handle is used to unlink and unload a
Service Object from a running daemon when the ser-
vice it offers is no longer required.

<svc-config-entries> ::=
svc-config-entries svc-config-entry
| NULL

<svc-config-entry> ::= <dynamic> | <static>
| <suspend> | <resume> | <remove>
| <stream> | <remote>

<dynamic> ::= DYNAMIC <svc-location>
[<parameters-opt>]

<static> ::= STATIC <svc-name>
[<parameters-opt>]

<suspend> ::= SUSPEND <svc-name>
<resume> ::= RESUME <svc-name>
<remove> ::= REMOVE <svc-name>
<stream> ::= STREAM <stream_ops>

’{’ <module-list> ’}’
<stream_ops> ::= <dynamic> | <static>
<remote> ::= STRING ’{’ <svc-config-entry> ’}’
<module-list> ::= <module-list> <module>

| NULL
<module> ::= <dynamic> | <static>

| <suspend> | <resume> | <remove>
<svc-location> ::= <svc-name> <type>

<svc-initializer> <status>
<type> ::= SERVICE_OBJECT ’*’ | MODULE ’*’

STREAM ’*’ | NULL
<svc-initializer> ::= <object-name>

| <function-name>
<object-name> ::= PATHNAME ’:’ IDENT
<function-name> ::= PATHNAME ’:’ IDENT ’(’ ’)’
<status> ::= ACTIVE | INACTIVE | NULL
<parameters-opt> ::= STRING | NULL

Figure 4: EBNF Format for a Service Config Entry

An iterator class is also supplied along with the Service
Repository. This class is used to visit every Service
Object in the repositorywithout undulycompromising data
encapsulation. As described in Section 4.3.2, the standard
Service Manager implementation employs this iterator
feature to obtain a complete listingof all daemon services that
are currently active. It generates this listing by repeatedly
calling the info method associated with each entry in the
Service Repository.

4.5 The Service Config Class

The Service Config class is the unifying component
in the Service Configurator framework. As il-
lustrated in Figure 3 (4), this class integrates the other
Service Configurator framework components (such
as the Service Repository and the Reactor) to au-
tomate the static and/or dynamic configuration of concurrent,
multi-service network daemons.

The Service Config class uses a configuration file
(known as svc.conf) to guide its configuration and recon-
figuration activities. Each daemon may be associated with a
distinctsvc.conf configuration file. Likewise, a set of dae-
mons may be described by a singlesvc.conf file. Figure 4
describes the primary syntactical elements in a svc.conf
file using extended-Backus/Naur Format (EBNF). Each ser-
vice config entry in the file begins with a service config di-
rective that specifies the configuration activity to perform.
Table 1 summarizes the valid service config directives.

8

Symbol Description

dynamic Dynamically link and enable a service
static Enable a statically linked service
remove Completely remove a service
suspend Suspend service without removing it
resume Resume a previously suspended service
stream Configure a Stream into a daemon

Table 1: Service Config Directives

INITIALIZED

CONFIGURE/
Service_Config::process_directives()

NETWORK EVENT/
Reactor::dispatch()

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/
Service_Config::close() AWAITING

EVENTS

START EVENT LOOP/
Service_Config::run_event_loop()

CALL HANDLER/
Event_Handler::handle_input()

IDLE

PERFORM
CALLBACK

Figure 5: State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

Each service config entry contains certain attributes that
indicate the location of the shared object file for each dy-
namically linked service, as well as the parameters required
to initialize a service at run-time. By consolidating service
attributes and initialization parameters into a single configu-
ration file, the installation and administration of the services
in an application is significantly simplified. The svc.conf
file helps to decouple the structure of an application from
the behavior of its services. This decoupling also separates
the “lazy” configuration and reconfiguration of mechanisms
provided by the framework from the application-specific at-
tributes and parameters specified in the svc.conf file.

Figure 5 depicts the state transitiondiagram illustrating the
Service Config methods that are invoked in response
to events occurring during service configuration, execution,
and reconfiguration. For example, when the CONFIGURE or
the RECONFIGURE events occur at run-time, the Service
Config class calls its process directives method.
This method consults the svc.conf file. This file is first
consulted when a new instance of a daemon is initially con-
figured. The file is consulted again whenever a daemon
reconfiguration is triggered upon receipt of a pre-designated
external event (such as the UNIX SIGHUP signal).

: Logging

Handler

: Service
Repository

: Service
Config

: Reactor

SERVER

SERVER

LOGGING

DAEMON

: Service
Manager

: Logging

Handler

: Logging
Acceptor

CONNECTION

REQUEST

REMOTE

CONTROL

OPERATIONS

CLIENT

LOGGING

RECORDS

CLIENT CLIENT
CLIENT

Figure 6: Run-time Configuration of the Server Logging
Daemon

5 Distributed Logging Example

Debugging distributed applications is frequently challeng-
ing since diagnostic output appears in different windows
and/or on different remote host systems. To illustratehow the
Service Configurator framework is used in practice
to simplify distributed application development and adminis-
tration, the followingsection examines the architecture of the
distributed logging facility shown in Figure 6. This facility is
currently used in a commercial on-line transaction process-
ing system [12] to provide logging services for workstations
and database engines in a high-speed network environment.

As shown in Figure 6, the distributed logging facility al-
lows applications running on multiple client hosts to send
logging records to a server logging daemon running on a
designated server host. The remainder of this section focuses
on the object-oriented Service Configurator-based
architecture and configuration of the server daemon portion
of the logging facility. The complete design and implemen-
tation of the distributed logging facility is described in [9].

5.1 Server Logging Daemon

The server logging daemon is a concurrent, multi-service dae-
mon that processes logging records received simultaneously
from one or more client hosts. The object-oriented design of
the server logging daemon is decomposed into several modu-
lar components (shown in Figure 7) that perform well-defined
tasks. The application-specific components (Logging

9

Logging

Acceptor

Logging_Handler

SOCK_Acceptor

INET_Addr

Logging

Handler

SOCK_Stream

INET_Addr

Svc

HandlerAcceptor

SVC_HANDLER

PEER_ACCEPTOR

ADDR

PEER_STREAM

ADDR

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
S

X

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

PEER

acceptor PEER

STREAM

Stream

Service
Configurator

Concurrency
global

IPC_SAP

Connection

Reactor

Figure 7: Class Components in the Server Logging Daemon

Acceptor and Logging IO) are responsible for process-
ing logging records received from clients. The connection-
oriented application components (Acceptor and Client
IO) are responsible for accepting connection requests and
data from clients. Finally, the application-independent
Service Configurator framework components (such
as the Reactor, Service Configurator, and IPC
SAP class categories) are responsible for performing IPC,
explicit dynamic linking, event demultiplexing, service dis-
patching, and concurrency control.

TheLogging IO subclass is a parameterized type that is
responsible for processing logging records sent to the server
logging daemon from participating client hosts. Its com-
munication mechanisms may be instantiated with either the
SOCK SAP or TLI SAP C++ wrappers, as follows:

class Logging_IO : public Client_IO <
#if defined (MT_SAFE_SOCKETS)

SOCK_Stream,
#else

TLI_Stream,
#endif /* MT_SAFE_SOCKETS */

INET_Addr>
{

/* ... */
};

The Logging IO class inherits from Event Handler
(indirectly via Client IO) rather than Service
Object since it is not dynamic linked into the server logging
daemon.

When logging records arrive from the client host associated
with a particular Logging IO object, the Reactor auto-
matically dispatches the object’s handle input method.

This method formats and displays the records on one or more
output devices (such as the printer, persistent storage, and/or
console devices illustrated in Figure 6).

The Logging Acceptor subclass is also a parameter-
ized type that is responsible for accepting connections from
client hosts participating in the logging service:

class Logging_Acceptor :
public Client_Acceptor<Logging_IO,

#if defined (MT_SAFE_SOCKETS)
SOCK_Acceptor,

#else
TLI_Acceptor,

#endif /* MT_SAFE_SOCKETS */
INET_Addr>

{
/* ... */

};

Since the Logging Acceptor class inherits from
Service Object (indirectly via its Acceptor base
class), it may be dynamically linked into the server logging
daemon and manipulated at run-time via the server logging
daemon’s svc.conf configuration file. Likewise, since
Logging Acceptor indirectly inherits from the Event
Handler interface, its handle input method will be in-
voked automatically by the Reactor when connection re-
quests arrive from clients. When a connection request arrives,
the Logging Acceptor subclass allocates a Logging
IO object and registers this object with the Reactor.

The object-oriented decomposition illustrated in Figure 7
significantly enhances the modularity, reusability, and con-
figurability of the distributed logging facility by decoupling
the functionality of connection establishment and logging
record reception into two separate classes. This decoupling
allows the Acceptor class to be reused for different types
of connection-oriented services (e.g., file transfer, remote
login, video-on-demand, etc.). In particular, to provide com-
pletely different processing functionality, only the behavior
of the Logging IO portion of the server logging daemon
would need to be reimplemented. Furthermore, by using
other object-oriented language features (such as templates
and/or inheritance and dynamic binding) or design patterns
(such as Factory Method or Abstract Factory [16]), it is pos-
sible to completely parameterize the type of service offered
by an application [17]. Furthermore, the use of parameter-
ized types decouples the reliance on a particular type IPC
mechanism.

5.2 Configuring the Server Logging Daemon

The Service Configurator framework supports two
types of configuration: static and dynamic. As discussed
below, both types are used to configure the server logging
daemon.

5.2.1 Dynamic Configuration

A dynamically configured daemon allows the insertion, mod-
ification, or removal of Service Objects at run-time.

10

The following entry in the svc.conf file is used to dynam-
ically configure the logging service into the server logging
daemon:
dynamic Logger Service_Object *

./Logger.so:_alloc() "-p 7001"

The <svc-name> token (Logger) specifies a service
name that is used by the Service Repository to iden-
tify a Service Object. The alloc() function is
located in the shared object file indicated by the path-
name ./Logger.so. The Service Configurator
framework locates and dynamically links this shared ob-
ject file into the daemon’s address space and then invokes
the alloc() function. The alloc() function returns
a Service Object pointer, which is inserted into the
Service Repository. The service location also spec-
ifies the name of the service-specific subclass derived from
Service Object. In this case, the alloc function is
used to dynamically allocate a new Logging Acceptor
object. The remaining contents on the line ("-p 7001")
represent a service-specific set of configuration parameters.
These parameters are passed to the init function of the ser-
vice as argc/argv-style command-line arguments. The
initmethod for theLogging Acceptor class interprets
"-p 7001" as the port number where the server logging
daemon listens for client connection requests.

5.2.2 Static Configuration

A statically configured service is one that is always avail-
able to a daemon when it first begins execution. For ex-
ample, the Service Manager is a standard Service
Configurator framework component that clients use to
obtain a listing of active daemon services. The following
entry in the svc.conf file is used to statically configure the
Service Manager service into the server logging dae-
mon during initialization:

static Service_Manager "-p 911"

In order for thestatic directive to work, the object code
that implements the Service Manager service must be
statically linked together with the main daemon driver ex-
ecutable program. In addition, the Service Manager
object must be inserted into the Service Repository
before dynamic configuration takes place (this is done au-
tomatically by the Service Config constructor). Due
to these constraints, a statically configured service may not
be reconfigured at run-time without being removed from the
Service Repository first.

5.3 Server Logging Daemon Run-Time Activ-
ities

The main driver program for the server logger daemon is
implemented by the following code:

int
main (int argc, char *argv[])
{

Service_Config loggerd;

/* Configure server logging daemon */
if (loggerd.open (argc, argv) == -1)
return -1;

/* Perform logging service */
for (;;)
if (loggerd.run_event_loop () == -1

&& errno == EINTR)
break;

return 0;
}

Figure 8 depicts the run-time interaction between the vari-
ous framework and service-specific objects that collaborate
to provide the logging service. Daemon configuration is per-
formed in the Service Config::open method. This
method consults the following svc.conf file, which spec-
ifies the services to configure into the daemon:

static Service_Manager "-p 911"
dynamic Logger Service_Object *

./Logger.so:_alloc() "-p 7001"

Each of the service config entries in the svc.conf file
is processed by loading the designated Service Object
into the Service Repository, dynamically linking it if
necessary, and registering the Event Handler portion of
the service object handler with the Reactor.

When all the configuration activities have been com-
pleted, the main driver program shown above invokes the
Service Config::run event loop method. This
method enters an event loop that continuously calls the
Reactor::handle events service dispatch function.
As shown in Figure 5, this dispatch function blocks awaiting
the occurrence of events (such as connection requests or data
from clients). As these events occur, theReactor automat-
ically dispatches previously-registered service-specific event
handlers to perform the designated services.

The Service Configurator framework also re-
sponds to external events that trigger daemon reconfiguration
at run-time. The dynamic configuration steps outlined in Sec-
tion 5.2.1 are performed whenever an executing Service
Configuratordaemon receives a pre-designated external
signal (such as the UNIX SIGHUP signal). Depending on
the updated contents of the svc.conf file, services may be
inserted, suspended, resumed, or removed from the daemon.

The Service Configurator framework’s dynamic
reconfiguration mechanisms enable developers to modify
server logging daemon functionality or fine-tune perfor-
mance without extensive redevelopment and reinstallation
effort. For example, debugging a faulty implementation of
the logging service simply requires the dynamic reinstallation
of a functionally equivalent service that contains additional
instrumentationto help isolate the source of erroneous behav-
ior. Note that this reinstallation process may be performed
without modifying, recompiling, relinking, or restarting the
currently executing server logging daemon.

11

: Service

ConfigL : Logging_IO

Logger

Daemon

REGISTER SERVICE

A : Logging Acceptor

START EVENT LOOP

CONNECTION EVENT

DATA EVENT

REGISTER NEW HANDLER

FOR CLIENT I/O

PROCESS LOGGING

RECORD

register_handler(A)

: Reactor

run_event_loop()

handle_events()
FOREACH EVENT DO

A.handle_input()

register_handler(L)

L.handle_input()

write()

LOAD SERVICE

CONFIGURE

FOREACH SVC ENTRY DO

open()

: Service

Repository

process_directives()

load_service()

Figure 8: Interaction Diagram for the Server Logging Daemon

6 Concluding Remarks

The Service Configurator framework is an inte-
grated collection of automated tools and reusable compo-
nents that extend the functionality of conventional daemon
management frameworks such as inetd and listen. The
components in the Service Configurator framework
implement basic mechanisms commonly used by network
daemons. These components include C++ wrappers for local
and remote IPC mechanisms [10]; frameworks for event de-
multiplexing and service dispatching [9]; tools for automat-
ing service configuration and reconfiguration; and C++ sub-
classes that encapsulate and enhance various dynamic linking
and concurrency mechanisms. By allowing the Service
Configurator framework to perform the lower-level IPC,
event demultiplexing, and service dispatching mechanisms,
developers are freed to concentrate on higher-level network
daemon design and service functionality issues. In addi-
tion, the advanced OS mechanisms (such as explicit dynamic
linking and multi-threading) employed by the Service
Configurator framework allow developers to experi-
ment with daemon design alternatives in a flexible manner to
determine efficient daemon service configurations.

The general design principles underlying the Service
Configurator framework may be characterized suc-
cinctly as (1) separating policies from mechanisms to en-
hance the reuse of common network daemon components,
(2) decoupling the binding of processes and threads from
the daemon services to improve flexibility and performance,
and (3) utilizing inheritance, dynamic binding, and dynamic
linking to improve extensibility. Together, these principles
facilitate the development of network services that may be
updated and extended without modifying, recompiling, re-
linking, or restarting existing daemons.

The techniques and tools described in this paper are cur-
rently being applied in several commercial and research en-
vironments. For example, the Service Configurator
framework is being used by Ericsson Communications

to configure and administer concurrent network services
that implement a family of PBX management products on
UNIX and Windows NT platforms [12]. The Service
Configurator framework is also being used in the
ADAPTIVE Communication Environment (ACE) [18].
ACE facilitates the development and experimentation with
various aspects of communication subsystems (such as flex-
ible process architectures for multi-processor-based com-
munication protocol stacks [2] and adaptive protocol re-
configuration techniques [19]) and distributed applications
(such as extensible frameworks for concurrent event de-
multiplexing [9]). The public domain ACE implemen-
tation of the Service Configurator framework is
available via anonymous ftp from ics.uci.edu in the
gnu/C++ wrappers.tar.Z file.

References
[1] W. R. Stevens, UNIX Network Programming. Englewood

Cliffs, NJ: Prentice Hall, 1990.

[2] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), IEEE, April 1995.

[3] J. M. Purtilo, “The Polylith Software Toolbus,” ACM Trans-
actions on Programming Languages and Systems, To appear
1994.

[4] C. R. Hofmeister and J. M. Purtilo, “Dynamic Reconfiguration
of Distributed Programs,” in Proceedings of the 11th Interna-
tional Conference on Distributed Computing Systems, IEEE,
1991.

[5] J. Magee, N. Dulay, and J. Kramer, “A Constructive Devel-
opment Environment for Parallel and Distributed Programs,”
in Proceedings of the 2nd International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 1–14, IEEE,
Mar. 1994.

[6] F. Douglis and J. Ousterhout, “Process Migration in the Sprite
Operating System,” in Proceedings of the 7th International
Conference on Distributed Computing Systems, (Berlin, West
Germany), pp. 18–25, IEEE, Sept. 1987.

12

[7] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[8] R. Gingell, M. Lee, X. Dang, and M. Weeks, “Shared Libraries
in SunOS,” in Proceedingsof the Summer 1987 USENIX Tech-
nical Conference, (Phoenix, Arizona), 1987.

[9] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[10] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[11] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[12] D. C. Schmidt and T. Suda, “Experiences with an Object-
Oriented Architecture for Developing Extensible Distributed
System ManagementSoftware,” in Proceedingsof the Confer-
ence on Global Communications (GLOBECOM), (San Fran-
cisco, CA), pp. 500–506, IEEE, November/December 1994.

[13] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP
Vol III: Client – Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

[14] E. Organick, The Multics System – An Examination of Its
Structure. M.I.T. Press, 1972.

[15] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

[17] D. C. Schmidt and T. Suda, “The ADAPTIVE Service eXec-
utive: an Object-Oriented Architecture for Configuring Con-
current Distributed Applications,” in Proceedings of the 8th

International Working Conference on Upper Layer Protocols,
Architectures, and Applications, Barcelona, Spain: North-
Holland, June 1994.

[18] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journalof Concurrency: Prac-
tice and Experience, vol. 5, pp. 269–286, June 1993.

[19] H. K. Huang, T. Suda, G. Takeuchi, and Y. Ogawa, “Pro-
tocol Reconfiguration: a Study of Error Handling Mecha-
nisms,” in Proceedings of the 2nd International Conference on
Computer Communication Networks, (San Diego, California),
ISCA, June 1993.

13

