
Model Driven Development of Inventory Tracking System*

Gan Deng, Tao Lu, Emre Turkay

Aniruddha Gokhale, Douglas Schmidt
ISIS, Vanderbilt University

Nashville, TN 37221

Andrey Nechypurenko

Siemens
Germany

Contact Author: Aniruddha Gokhale (a.gokhale@vanderbilt.edu)

*Work supported by grant from Siemens AG, Germany

Keywords: Inventory Tracking System, Domain Specific Modeling, Model
Driven Architecture, Model Integrated Computing, CoSMIC

An Inventory Tracking System (ITS) is a control and monitoring system that tracks the flow
of goods and manages assets of warehouses. ITS is commonly used in warehouse
management systems. The primary goal of an ITS is to provide convenient and reliable
mechanisms to manage the movement and flow of inventory in a timely manner. An ITS
should enable operators to configure warehouse storage organization criteria, maintain the set
of goods known to the system, and track the inventory using GUI-based operator monitoring
consoles.

The primary goal of the joint Siemens/ISIS ITS project is to apply the Object Management
Group (OMG)’s Model Driven Architecture (MDA) [1, 2] together with component
middleware [3] to configure various aspects of a warehouse management system.

The remainder of this document is organized as follows: Section 1 introduces the architecture
of the ITS system, including the high level design of major components in the system; Section
2 discusses the advantages of choosing Microsoft Visio as our modeling tool, which is used to
develop our warehouse modeling paradigm; Section 3 discusses our ongoing work on using
OMG MDA in conjunction with middleware to facilitate the component synthesis; and finally
Section 4 provides concluding remarks .

1. Architecture

The ITS architecture, illustrated in Figure 1, is designed in accordance with the CORBA
Component Model (CCM) [3]. Each CORBA component representing different entities of
the warehouse, such as cranes, forklifts and shelves, provides one or more ports that can be
connected together with ports exported by other components. These ports include event
sources and sinks, facets, receptacles, and attributes. The ITS implementation uses the
Component Integrated ACE ORB (CIAO) [4, 6], which is a quality of service (QoS)-enabled
CCM [5, 10] middleware implementation developed at Washington University, St. Louis and
the Institute for Software Integrated Systems (ISIS) at Vanderbilt University, Nashville.

Figure 1 illustrates the key CCM components in the ITS architecture:

Figure 1: ITS Architecture

2. Model Driven ITS Development

The ITS project is developing and applying a set of modeling tools to automate the following
three different aspects of ITS development:
1. Warehouse modeling that simplifies the warehouse configuration aspect of the ITS

system according to the custom equipment available in certain warehouses, including
roller conveyor and various types of cranes

2. Modeling of CCM container and ORB configuration aspects that are responsible for
delivering the desired quality of service (QoS) properties to the ITS system

3. Modeling and synthesizing the assembly and deployment aspects of the components that
implement the ITS functionality.

This paper focuses on the first aspect, which deals with the warehouse configuration.

Our ongoing work is addressing the remaining aspects of ITS development outlined
above.

2.1 Warehouse Modeling

There are two main generic aspects in a warehouse model:

1. Transportation facility network, which includes information, such as the physical

location and reachable areas, and properties, such as the toxicity of an item.
2. Appropriate available storage places , including their locations and properties.

The two aspects are blended together to give the model developer a convenient overview of
the warehouse setup, which is similar to the architectural blue print of the warehouse.
Mapping from the architectural blue print to the warehouse model should be intuitive to the
domain expert, as well as to the model developer, so he/she can reuse the warehouse
knowledge efficiently and conveniently

2.2 Choosing the Modeling Tool

After evaluating customer requirements, we have selected Microsoft® Visio® as our
domain-specific modeling tool. Visio is a commercially supported graphic drawing tool with
meta modeling capability, as well as the following desirable features:

2.2.1 Full Range of Technical Diagramming Capabilities.
In the drawing panel of Visio, numerous drawing related features are provided. For example,
features, such as grid, docking point and object manipulation ability (resize, rotation,
connection routing) are valuable for warehouse modeling. These intuitive features are
important for domain experts who work on large-scale commercial ITS deployments.

2.2.2 Integrated Model Interpreter with Embedded Debugging Environment.
Unlike traditional tools that focus on a discrete segment of information, Microsoft Visio offers
an integrated toolset for applications, development, and data modeling. Visio is shipped with
an embedded Visual Basic® editor and debugging environment, which simplifies interpreter
writing. C++/COM objects could be plugged in as well if desired.

2.2.3 Extensibility
Microsoft Visio provides support for database modeling, which includes complete database
design, database schema, and Data Definition Language (DDL) script generation from
conceptual and physical models . For example, in the warehouse configuration domain, we
could connect the physical model with the associated database.

Moreover, Visio is shipped with many domain-specific paradigms (referred to as drawing
types in Visio). Besides the major building blocks needed by the warehouse system, Visio also
provides many other modeling paradigms, such as UML diagrams. The meta modeling ability

also makes Visio capable of extending the existing modeling paradigm to better suit the
domain.

Figure 2 represents the Microsoft Visio screenshot where domain -specific model elements are
available from the master panel (left side) and the right side contains the drawing representing
the warehouse fragment comprising a moving belt, two cranes, storage rack and a forklift.

 Figure 2: Microsoft Visio example

2.3 Model Interpreter
After creating the complete model for a desired warehouse configuration, the corresponding
configuration artifacts are generated using the domain-specific model interpreter. The model
interpreter we are developing for the ITS project is a Visual Basic based macro that be
executed within Visio. In particular, the interpreter focuses on the following issues:

1. Certain location-related constraints can be checked inside the interpreter to validate
the model, such as ensuring that the physical layout and configuration of the
warehouse is legal and meaningful. For example, when a crane is on top of a storage
place, we must make sure that the crane is capable of reaching all the storage cells of
the place. Upon discovering potential conflicts, error or warning messages will be
issued to the domain expert.

2. The underlying semantics of the graphic model can be abstracted from the model to

populate the databases of the warehouse system. The generated artifacts include the
classes used to populate the databases and some the initialization process of the
databases.

After running the model interpreter, the system is ready to start the component-based
assembly and deployment process.

3. Ongoing work
One aspect of our ongoing work is the focus on building the run-time interactive model. For
the current stage of the ITS development, we regard Visio as a static design tool. Thus, a
model in Visio is transformed into a data model which will be used by the application. The
Visio model itself will not be used after the static design phase. However, for the warehouse
system, a dynamic provisioning tool is always desired. For example, with the dynamic
provisioning tool, the operator of the system could observe the status of the transportation
process being reflected on the GUI model, such as a blinking light indicating the failure of a
transportation unit. This capability will allow the operator to dynamically reprovision the
system.

To provide the features discussed above, we plan to make the domain specific building blocks
executable. COM APIs will be used as the technology to implement this capability.

In addition to the Warehouse System Domain Specific Modeling Paradigm, we are also
working on a domain-specific modeling tool suite, called Component Synthesis using Model
Integrated Computing (CoSMIC) [7, 8], to model and synthesize the deployment and
configuration of middleware components and the application’s QoS requirements. In this
regard the CoSMIC project is developing domain-specific tools for composing and deploying
middleware-based applications. The CoSMIC tool suite is designed to model and analyze
application functionality and QoS requirements and synthesize appropriate CCM-specific
deployment metadata required to provision and enforce end-to-end QoS both statically and
dynamically.

With respect to the ITS project, our goal is to integrate the Warehouse DSML and CoSMIC’s
DSMLS to address the full range of function ality comprising Warehouse Modeling,
component-based distributed middleware configuration and the application assembly and
deployment. By applying CoSMIC technology, we can take advantage of visual languages to
compose components into component servers, which involves generating the directives to
assemble semantically compatible application components from reuse repositories and
determining the interconnections between these selected components. We can also use visual
modeling languages to configure application component containers, which comprise
generating QoS policies, such as threading policies or levels of security and fault tolerance,
for the containers hosting the components. [9, 10].

4. Concluding Remarks

An Inventory Tracking System (ITS) is an example of a large-scale commercial system with
multiple aspects of QoS requirements. This document describes how domain-specific modeling
languages and model interpreters can simplify managing different aspec ts of ITS development.
Our modeling tools are currently able to synthesize the database configuration and population
aspects of ITS. Our ongoing work comprises using the OMG MDA technology in conjunction
with the CORBA Component Model (CCM) for developing and deploying the components of
the ITS. Modeling languages like UML and use case realization approaches manifested in our
CoSMIC tool suite are used extensively for component development while other modeling
paradigms are developed to handle the assembly and deployment aspects of ITS..

References

[1] Object Management Group, Model Driven Architecture (MDA), OMG Document

ormsc/2001-07-01 edition, July 2001.
[2] Paul Allen, “Model Driven Architecture,” Component Development Strategies, vol. 12, no.

1, Jan. 2002.
[3] Object Management Group, CORBA Components, OMG Document formal/2001-11-03

Edition (Jun. 2002).
[4] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Christopher D. Gill,

Balachandran Natarajan, Craig Rodrigues, Joseph P. Loyall, and Richard E. Schantz,
“Total Quality of Service Provisioning in Middleware and Applications,” vol. 26, No.
9-10, Jan 2003.

[5] BEA Systems, et al., CORBA Component Model Joint Revised Submission, Object
Management Group, OMG Document orbos/99-07-01 edition, July 1999.

[6] Nanbor Wang, Krishnakumar Balasubramanian, and Chris Gill, “Towards a real-time
corba component model,” in OMG Workshop On Embedded & Real-Time Distributed
Object Systems, Washington, D.C., July 2002, Object Management Group.

[7] Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,” IEEE Computer,
vol. 30, no. 4, pp. 110–112, Apr. 1997.

[8] Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, Andrey Nechypurenko,
Nanbor Wang, Jeff Gray, Sandeep Neema, Ted Bapty, and Jeff Parsons , CoSMIC: An
MDA Generative Tool for Distributed Real-time and Embedded Component Middleware
and Applications, Proceedings of the OOPSLA 2002 Workshop on Generative Techniques
in the Context of Model Driven Architecture, Seattle, WA, November 2002.

[9] Douglas C. Schmidt and Fred Kuhns, “An Overview of the Real-time CORBA
Specification,” IEEE Computer Magazine, Special Issue on Object-oriented Real-time
Computing, vol. 33, No. 6, June 2000.

[10] Nanbor Wang, Krishnakumar Balasubramanian, and Chris Gill,“Towards a real-time
CORBA component model,” in OMG Workshop On Embedded & Real-Time Distributed
Object Systems, Washington, D.C., July 2002, Object Management Group.

