Middleware Techniques and Optimizations for Real-time, Embedded Systems

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis

St. Louis, MO, 63130

This extended tutorial abstract appeared in the Proceedings A
of the 12t" International Symposium On System Synthesis, %
IEEE, San Jose, CA, USA November, 11, 1999. :X:
\APPLICATIONS)
e R
1 Introduction: Why We Need COMMON
. . SERVICES
Middleware for Real-time L —— /)
Embedded Systems — p—

HIGHER-LEVEL

Due to constraints on footprint, performance, and MIDDLEWARE
weight/power consumption, real-time, embedded system soft-
ware development has historically lagged mainstream soft-
ware development methodologies. As a result, real-time, em-
bedded software systems are costly to evolve and maintain.
Moreover, they are often so specialized that they cannot adapt

readily to meet new market opportunities or technology inno-

vations. OPERATING
To further exacerbate matters, a growing class of real- [ERGLEAICES . . .
time, embedded systems require end-to-end support for vari- {Lgil0ILe180) F)

ous quality of service (QoS) aspects, such as bandwidth, la-
tency, jitter, and dependability. These applications include
telecommunication systems.§.,call processing and switch-

ing), avionics control systemse.g., operational flight pro- ing a uniform view of heterogeneous networks, protocols, and
grams for fighter aircraft), and multimedi®.g., Intemet g features. Figure 1 illustrates the various layers of middle-
streaming wdgo and wireless EDAS). In addition to requiriRghre that can reside between (1) the underlying OS and pro-
support for stringent QoS requirements, these systems arq@fp| stacks and (2) the applications. These layers include the

ten targeted at highly competitive markets, where deregulat@gﬁmlcﬁm@m.e, which encanpsulates core OS com-
and global competition are motivating the need for increased . ' P

munication and concurrency services to eliminate many te-

Requi tsfor d soft ductivity and djous, error-prone, and non-portable aspects of developing and
equirements for increased software productivity and qu aintaining distributed applications using low-level network

it){ motivate the use of Distribu'ted Object CO".‘F’U“”Q (DO rogramming mechanisms, such as sockets. Common exam-
middleware[1]. Middleware resides between client and serv les of low-level middleware include the Java Virtual Machine

applications and services in complex software systems. M) [2] and the ADAPTIVE Communication Environment
goal of middleware is to integrate reusable software com CE) [3]

nents to decrease the cycle-time and effort required to de

velop high-quality real-time and embedded applications aHitjher-level middleware: which builds upon the lower-

services. level middleware to automate common network programming
Middleware simplifies application development by providasks, such as parameter marshaling/demarshaling, socket

Figure 1: Layers of Middleware

software productivity and quality.

and request demultiplexing, and fault detection/recovery. Bt to block when ORB endsystem and network resources are
the heart of higher-level middleware are Object Requésmporarily unavailable. Likewise, conventional DOC ORBs
Brokers (ORBs), such as OMG’s Common Object Requekt not propagate exceptions stemming from missed deadlines
Broker Architecture (CORBA) [4], Microsoft's Distributedfrom servers to clients, which makes it hard to write applica-
COM (DCOM) [5], JavaSoft's Remote Method Invocatiotions that behave predictably when congestion in the commu-
(RMI) [6]. nication infrastructure or end-systems causes deadlines to be

Common services: which are distributable components the{{"ssed'

provide domain-independent capabilities that can be reused.agk of performance optimizations: Conventional ORBs
many applications. Common examples of services [7] includien incur significant throughput and latency overhead [11].
naming services, transaction services, event services, andieés overhead stems from excessive data copying, non-
curity services. optimized presentation layer conversions, internal message

uffering strategies that produce non-uniform behavior for dif-

In theory, these middleware layers can significantly simpIiBé . P . . X
: o)) . trerent message sizes, inefficient demultiplexing algorithms,
the creation, composition, and configuration of communicd

. : : ! L ong chains of intra-ORB virtual method calls, and lack of
tion systemswithoutincurring significant performance over- : X . .
. : . |nt%grat|on with underlying real-time OS and network QoS
head. In practice, however, technical challenges have 'mpedeechanisms [12]
the development and deployment of efficient middleware fOr '
real-time, embedded systems, as described next. Lack of memory footprint optimizations: Conventional
ORBs have historically been developed for desktop applica-

tions and general-purpose client/server systems. In such sys-

2 Historical Limitations of tems, memory is often abundant. Thus, DOC middleware can
Middleware for Real-time range in size from 2 to 10 megabytes without undue affect on

! system performance or cost. In contrast, many real-time and

Embedded Systems embedded systems have tight constraints on memory footprint

o N due to cost, power consumption, or weight restrictions.
Following in the tradition of Remote Procedure Call

(RPC) [8] toolkits, such as Sun RPC [9] and OSF DCE [10], Although some operating systems, networks, and proto-
DOC ORBs are well-suited for conventional request/respon$@lS Now support real-time scheduling, they do not provide
style applications running on low-speed networks [11]. unifitegrated end-to-end _solut|ons for real-_tlme, embedded sys-
recently, however, the QoS specification and enforcement fi4DS that possess stringent QoS requirements. In particu-
tures of conventional DOC middleware and ORBs, as well '8 Q0S research at the IPC and OS layers has not neces-
their efficiency, predictability, and scalability, have not be&ig'ily addressed key requirements and usage characteristics
suitable for applications with hard real-time requiremeag, ©f DOC middleware, such as CORBA, DCOM, or RMI. For

avionics mission computing, and stringent statistical real-tiff$tance, research on QoS for communication systems has fo-
requirementsg.g, teleconferencing. In particular, conven¢used largely on policies for allocating network bandwidth on
tional DOC ORB specifications and implementations hafid?€r-connection basis. Likewise, research on real-time oper-
been characterized by the following deficiencies: ating systems has focused largely on avoiding priority inver-
Lack of QoS specification and enforcement: Conventional SIONs an.d non-determlnlsm in synchr_om;aﬂon and scheduling
DOC ORBs have not defined APIs that allow applications I'[Bechanlsms for multi-threaded applications. In cj‘ont.rast, the
specify their end-to-end QoS requirements. Likewise, stdtfogramming model for developers of DOC applications fo-
dard DOC ORB implementations have not provided suppGHS€S largely on invoking remote operations on distributed ob-
for end-to-end QoS enforcement between applications act§sts:

a network. For instance, CORBA provides no standard way

for clients to dynamically schedule requests with various deagl- ; PR PRI

lines. Likewise, there are no means for DCOM or RMI cIien§1 Tutorial TOpICS' Optlmlzmg
to inform a server the priority of various operations. Middleware for Real-time,

Lack of real-time features: Conventional DOC ORBs have Embedded Systems

not provided certain key features necessary to support time-

constrained real-time programming. For instance, CORBA,Determining how to map the results from QoS work at the
DCOM, and RMI do not require an ORB to notify clientdPC and OS layers to DOC middleware is currently the fo-
when transport layer flow control occurs. Therefore, it is hacds of many active research projects, such as the DARPA
to write portable and efficient real-time applications that wiQuorum project [13], the QuO project at BBN [14], and the

TAO [15] and TMO [16] projects at Washington University bandwidth and low latency support to distributed real-

and UC Irvine. One topic of this tutorial, therefore, is to sum- time, embedded applications.

marize the design techniques and optimization patterns nec; oyerview of relevant OMG CORBA standards, such as

essary to overcome the historical limitations with middleware Real-time CORBA, Minimum CORBA, the Messaging

described above in order to meet end-to-end QoS requirements specification, and the Audio/Video Streaming service,

for real-time, embedded systems. Figure 2 illustrates the key pat address QoS requirements.

optimization points for real-time, embedded system middle-

ware. The design techniques and optimization patterns covered in
) the tutorial are based on TAO [17], which is an open-source,

oﬁ;mo OBJECT real-time ORB that provides end-to-end QoS support over a

(SERVANT) wide-range of networks and embedded system interconnects.

The architecture of TAO is illustrated in Figure 3.

out args + return value
<+«—O

in args
operation()

out args + return value

OBJECT
(SERVANT)

IDL \
ETCAIRe REAL-TIME

OBJECT
ADAPTER

ORB RUN-TIME|
SCHEDULER

PLUGGABLE PLUGGABLE —
IDL
OS KERNEL OS KERNEL STUBS

3 NETWORK

1) CLIENT MARSHALING 5) THREAD DISPATCHING 0S KERNEL

2) CLIENT PROTOCOL 6) REQUEST DEMUXING REAL-TIME 1/0 REAL-TIME 1/0
3) NETWORK LATENCY 7) OPERATION DEMUXING SUBSYSTEM SUBSYSTEM
4) SERVER PROTOCOL 8) SERVANT DEMARSHALING

HIGH-SPEED HIGH-SPEED
NETWORK INTERFACE NETWORK INTERFACE

Figure 3: Overview of the TAO Real-time CORBA Architec-

A decade of intensive research illustrates that meeting thee
QoS needs applications requires much more than single-point
solutions, such as creating new programming languages ofAQ is currently deployed on many projects at many
building real-time scheduling into ORBs. Instead, it requir@sganizations and companies, including Quorum, Boeing,
a vertically (i.e., network interface~ application layer) and Lockheed, Lucent, Motorola, Nortel, Raytheon, SAIC,
horizontally(i.e., end-to-end) integrated architecture that prend Siemens, where it is used for real-time and em-
vides end-to-end QoS support at multiple levels of an entlbedded avionics, telecommunications, medical, and sim-
distributed system. To adequately capture the rich interactiodgtion systems. Complete source code, documenta-
among the various levels, therefore, this tutorial also focusie#, and technical papers on TAO are available at
on the following topics: www.cs.wustl.edu/ ~schmidt/TAO.html

Figure 2: Optimization Points for Real-time, Embedded Sys
tem Middleware

e The enchancements required to existing DOC specifica- . .
tions (such as OMG CORBA) that can enable applicg Overview of Real-time CORBA

tions to define their Quality of Service (QoS) requir

eA central focus of the tutorial is on the Real-time CORBA
ments to ORB endsystems.

standard [18]. Figure 4 illustrates the key features in Real-time
¢ Key architectural patterns required to build real-tim@ORBA that will be covered in this tutorial. These features
ORB endsystems that can enforce deterministic and gtazlude the following:
tistical end-to-end QoS support to applications and s

vices Bhd-to-end priority propagation;: Conventional CORBA

ORBs provide no standard way for clients to indicate the rel-
¢ Strategies for integrating I/O subsystem architectures aative priorities of their requests to an ORB. Conversely, in
optimizations with DOC middleware to provide highReal-time CORBA, the priority at which a client invokes an

END-TO-END sion [19]. To avoid these problems, the Real-time CORBA
PRIORITY specification defines an explicit binding mechanism that en-
ables clients tgre-establistnon-multiplexed connections to
client, as well as to map the priority of a client request to the
appropriate non-multiplexed connection.

MUTEX (SERVANT)
IDL
(—@ Mutex IDL: Since earlier versions of CORBA did not de-
ADAPTER

OBJECT

EXPLICIT fine a threading model, there was also no standard, portable
BINDING > THREAD POOLS way to ensure consistency between the internal synchroniza-
[GIOP §§] tion mechanisms used by an ORB and an application. For real-
time applications, however, it's necessary to ensure consis-
PROTOCOL tency between synchronization mechanisms to enforce prior-
PROPERTIES L . . -
0S KERNEL 0S KERNEL ity inheritance and priority ceiling protocols [20]. Therefore,
the Rea}l-tlme CORBA sp'ecn°|cat|on defines a §et of locality
e rwonse abArTER Rerwons aorren constrained mutex operations that ensure consistency between
e NETWORK \seem— synchronizers used by the ORB and its applications.

Figure 4: Components and Features in Real-time CORBA _
5 Concluding Remarks

operation can propagate with the request from sender 10 g5 migdieware is a promising paradigm for decreasing the
ceiver. Th|s fegture helps minimize end-to-end priority inveLost and improving the quality of real-time embedded soft-
sion, which is important to bound latency for embedded sy§z e systems by increasing the flexibility and modularity of
tems with hard real-time requirements. reusable components and services. Meeting the QoS require-
Protocol properties: DOC middleware has traditionallyments of real-time, embedded systems requires more than
treated the underlying network and bus protocols as a “blaatiject-oriented design and programming techniques, however.
box.” While this may be sufficient for applications with “bestkt requires an integrated architecture that delivers end-to-end
effort” QoS requirements, it's inadequate for applications withoS support at multiple levels in real-time and embedded sys-
deterministic and/or statistical QoS requirements. Therefdiems. The design techniques and optimization patterns de-
the Real-time CORBA specification defines a standard sesofibed in this tutorial address this need with policies and
interfaces that allow applications to select and configure prapechanisms that span network adapters, operating systems,
erties of the underlying communication protocols. communication protocols, ORB middleware, and common ap-

Thread pools: Prior to the Real-time CORBA speciﬁcationpl'cm'Orl SErVICes.

there was no standard way to write multi-threaded CORBAThe. future of mid.d.leware for real-time and embedc.jed Sys-
servers. However, many embedded systems, particularly r&ins IS very promising. Based on current trequ In many
Lg'ﬂ[nams, real-time system development strategies will con-

time systems that are rate monotonically scheduled, use mu] . ds th d for “mai "
threading to (1) distinguish various classes of service and ngeto migrate towards those used for ‘mainstream” systems,

support thread preemption to prevent unbounded priority FRETEPY achieving lower development cost and faster time-to-
version. Therefore, the Real-time CORBA specification d@_arke.t. In particular, the fI§X|b|I|ty and gdaptab|l|ty'offered.by
fines a standard thread pool model that allows server to al-time CORBA makes it very attractive for use in real-time

allocate threads and set thread attributes, such as stacksiz@&?‘h ms. An increasing num-ber ,Of highly opt!m|zed, mterqp-
default priority levels. erable, and standards-compliantimplementations of Real-time

. o o CORBA are now available. Over the next several years, fierce
Explicit binding: ~ The original CORBA specification only competition between ORB suppliers will drive real-time, em-
supportedmplicit binding where the resources and “path” bepedded middleware to become a commodity, much in the same

tween a client and its server ObjeCt were established |mpI|C%y that CPUS, operating Systemsy and protoco|s have become
after the first invocation on the server. This binding model iscommodity.

inadequate for many real-time applications, however, because

it defers object/server activation and resource allocation until

run-time, thereby increasing latency and jitter. Likewise, il About the Presenter

plicit bindings oftermultiplexmultiple client threads in a pro-

cess through a shared network connection to the correspddid- Schmidt is an Associate Professor and Director of the
ing server process, which can yield substantial priority inveZenter for Distributed Object Computing in the Department

of Computer Science and in the Department of Radiologyfat Distributed Object Computing are currently using ACE to
Washington University in St. Louis, Missouri, USA. His redevelop a high performance, real-time CORBA ORB endsys-
search focuses on design patterns, implementation, and expenit called TAO (The ACE ORB). TAO is the first real-time
mental analysis of object-oriented techniques that facilitate B&B endsystem to support end-to-end Quality of Service sup-
development of high-performance, real-time distributed objguirt over ATM networks.
computing systems on parallel processing platforms runningDr. Schmidt received B.S. and M.A. degrees in Sociology
over high-speed ATM networks and embedded system intieom the College of William and Mary in Williamsburg, Vir-
connects. Dr. Schmidt has published widely in top IEEBinia, and an M.S. and a Ph.D. in Computer Science from the
ACM, IFIP, and USENIX technical conferences and journaldniversity of California, Irvine (UCI) in 1984, 1986, 1990,
His publications cover a range of experimental systems temd 1994, respectively. His Ph.D. advisor was Tatsuya Suda.
ics including high-performance communication software syBt. Schmidt is a member of the IEEE, ACM, and USENIX.
tems, parallel processing for high-speed networking proto-
cols, real-time distributed object computing with CORBA, a
object-oriented design patterns for concurrent and distribute
systems. . [1] A. Gokhale and D. C. Schmidt, “Techniques for Optimizing

Dr. Schmidt has served as guest editor for feature topic’ CORBA Middleware for Distributed Embedded Systems,” in
issues on Distributed Object Computing for the IEEE Com- Proceedings of INFOCOM '9@Viar. 1999.
munications Magazine and the USENIX Computing Systeng] J. Gosling and K. ArnoldThe Java Programming Language
Journal, and served as co-guest editor for the Communications Reading, MA: Addison-Wesley, 1996.
of the ACM special issue on Design Patterns and the specia| D. C. Schmidt, “ACE: an Object-Oriented Framework for
issue on Object-Oriented Frameworks. In addition, he has co- Developing Distributed Applications,” iRroceedings of the
editored the first volume of thRattern Languages of Program 6" USENIX C++ Technical Conferenc¢Cambridge,
Designseries by Addison-Wesley and tBbject-Oriented Ap- Massachusetts), USENIX Association, April 1994.
plication Frameworks: Applications & Experiencssries by [4] Object Management Groufgthe Common Object Request
Wiley. Dr. Schmidt has also served as the editor of the C++ Broker: Architecture and Specificatip8.3 ed., June 1999.
Report magazine, as well as the Patterns++ section of C++ Rl D. Box, Essential COMAddison-Wesley, Reading, MA, 1997.
port, where he also co-authors a column on distributed objeié] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
computing. Model for the Java SystemJSENIX Computing Systems

Dr. Schmidt served as the general chair of the IFIP/ACM V0! 9 November/December 1996.
International Conference Middleware 2000, as well as thg]l Object Management Groug,ORBAServices: Common Object
program chair for the 1996 USENIX Conference on Object- fgeg\gces Specification, Revised Edifi@B-3-31 ed., Mar.
Oriented Technologies and Systgms (COOTS) and the 19? AD .BirreII and B. J. Nelson, “iImplementing Remote
Pattern Languages of Programming ponference. He has p " Procedure Calls ACM Transe{ctions on Computer Systems
sented over 150 keynote addresses, invited talks, and tutorials \q|. 2, pp. 39-59, February 1984.

on reusable design patterns, concurrent object-oriented n [Sun Microsystems, “RPC: Remote Procedure Call Protocol

work programming, and distributed object systems at many” gpecification,” Tech. Rep. RFC-1057, Sun Microsystems, Inc.,
conferences including OOPSLA, USENIX COOTS, ECOOP, June 1988.

IEEE LCN, ACM PODC, IEEE ICNP, and IEEE GLOBE-[10] w. Rosenberry, D. Kenney, and G. Fischénderstanding
COM. DCE. O'Reilly and Associates, Inc., 1992.

In addition to his academic research, Dr. Schmidt has ovei g A. Gokhale and D. C. Schmidt, “Measuring the Performance
decade of experience building object-oriented communication of Communication Middleware on High-Speed Networks,” in
systems. He is the chief architect and developer of the ADAP- Proceedings of SIGCOMM '9¢Stanford, CA), pp. 306-317,
TIVE Communication Environment (ACE), which is a widely ~ ACM, August 1996.
used, freely-available object-oriented framework that contal#g] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA 1IOP
a rich set of components that implement design patterns for Protocol Engine for Minimal Footprint Multimedia Systems,”
high-performance and real-time communication systems. Dr. Journal on Selected Areas in Communications special issue on

. . Service Enabling Platforms for Networked Multimedia
Schmidt has successfully used ACE on large-scale projects at systemsSept. 1999.
Erlcssor_L Siemens, Motorola, Kod.ak, Lgcent, Lockheed M?:[B] DARPA, “The Quorum Project”
tin, Boeing, and SAIC. These projects involve telecommuni- * htp:/mwww.ito.darpa. milfito/research/quorum/index.html,
cations systems, medical imaging systems, real-time avionic 1999.
systems, and distributed interactive simulation systems. R#] B. Technologies, “Quality Objects (QuO).”
Schmidt and the members of his research group in the Center http://www.dist-systems.bbn.com/papers.

ferences

[15]

[16]

[17]

(18]

[19]

[20]

Center for Distributed Object Computing, “TAO: A
High-performance, Real-time Object Request Broker (ORB).”
www.cs.wustl.edutschmidt/TAO.html, Washington

University.

K. Kim and E. Shokri, “Two corba services enabling tmo
network programming,” irFourth International Workshop on
Object-Oriented, Real-Time Dependable SystéBEE,
January 1999.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”
Computer Communicationsol. 21, pp. 294-324, Apr. 1998.

Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systen® appear 1999.

R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time
Synchronization Protocols for Multiprocessors,” in
Proceedings of the Real-Time Systems Sympos¢kumtsville,
Alabama), December 1988.

