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1 Introduction: Why We Need
Middleware for Real-time
Embedded Systems

Due to constraints on footprint, performance, and
weight/power consumption, real-time, embedded system soft-
ware development has historically lagged mainstream soft-
ware development methodologies. As a result, real-time, em-
bedded software systems are costly to evolve and maintain.
Moreover, they are often so specialized that they cannot adapt
readily to meet new market opportunities or technology inno-
vations.

To further exacerbate matters, a growing class of real-
time, embedded systems require end-to-end support for vari-
ous quality of service (QoS) aspects, such as bandwidth, la-
tency, jitter, and dependability. These applications include
telecommunication systems (e.g.,call processing and switch-
ing), avionics control systems (e.g., operational flight pro-
grams for fighter aircraft), and multimedia (e.g., Internet
streaming video and wireless PDAs). In addition to requiring
support for stringent QoS requirements, these systems are of-
ten targeted at highly competitive markets, where deregulation
and global competition are motivating the need for increased
software productivity and quality.

Requirements for increased software productivity and qual-
ity motivate the use of Distributed Object Computing (DOC)
middleware[1]. Middleware resides between client and server
applications and services in complex software systems. The
goal of middleware is to integrate reusable software compo-
nents to decrease the cycle-time and effort required to de-
velop high-quality real-time and embedded applications and
services.

Middleware simplifies application development by provid-
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Figure 1: Layers of Middleware

ing a uniform view of heterogeneous networks, protocols, and
OS features. Figure 1 illustrates the various layers of middle-
ware that can reside between (1) the underlying OS and pro-
tocol stacks and (2) the applications. These layers include the
following capabilities:Low-level middleware: which encapsulates core OS com-
munication and concurrency services to eliminate many te-
dious, error-prone, and non-portable aspects of developing and
maintaining distributed applications using low-level network
programming mechanisms, such as sockets. Common exam-
ples of low-level middleware include the Java Virtual Machine
(JVM) [2] and the ADAPTIVE Communication Environment
(ACE) [3].

Higher-level middleware: which builds upon the lower-
level middleware to automate common network programming
tasks, such as parameter marshaling/demarshaling, socket
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and request demultiplexing, and fault detection/recovery. At
the heart of higher-level middleware are Object Request
Brokers (ORBs), such as OMG’s Common Object Request
Broker Architecture (CORBA) [4], Microsoft’s Distributed
COM (DCOM) [5], JavaSoft’s Remote Method Invocation
(RMI) [6].

Common services: which are distributable components that
provide domain-independent capabilities that can be reused by
many applications. Common examples of services [7] include
naming services, transaction services, event services, and se-
curity services.

In theory, these middleware layers can significantly simplify
the creation, composition, and configuration of communica-
tion systems,without incurring significant performance over-
head. In practice, however, technical challenges have impeded
the development and deployment of efficient middleware for
real-time, embedded systems, as described next.

2 Historical Limitations of
Middleware for Real-time,
Embedded Systems

Following in the tradition of Remote Procedure Call
(RPC) [8] toolkits, such as Sun RPC [9] and OSF DCE [10],
DOC ORBs are well-suited for conventional request/response-
style applications running on low-speed networks [11]. Until
recently, however, the QoS specification and enforcement fea-
tures of conventional DOC middleware and ORBs, as well as
their efficiency, predictability, and scalability, have not been
suitable for applications with hard real-time requirements,e.g.,
avionics mission computing, and stringent statistical real-time
requirements,e.g., teleconferencing. In particular, conven-
tional DOC ORB specifications and implementations have
been characterized by the following deficiencies:
Lack of QoS specification and enforcement: Conventional
DOC ORBs have not defined APIs that allow applications to
specify their end-to-end QoS requirements. Likewise, stan-
dard DOC ORB implementations have not provided support
for end-to-end QoS enforcement between applications across
a network. For instance, CORBA provides no standard way
for clients to dynamically schedule requests with various dead-
lines. Likewise, there are no means for DCOM or RMI clients
to inform a server the priority of various operations.

Lack of real-time features: Conventional DOC ORBs have
not provided certain key features necessary to support time-
constrained real-time programming. For instance, CORBA,
DCOM, and RMI do not require an ORB to notify clients
when transport layer flow control occurs. Therefore, it is hard
to write portable and efficient real-time applications that will

not to block when ORB endsystem and network resources are
temporarily unavailable. Likewise, conventional DOC ORBs
do not propagate exceptions stemming from missed deadlines
from servers to clients, which makes it hard to write applica-
tions that behave predictably when congestion in the commu-
nication infrastructure or end-systems causes deadlines to be
missed.

Lack of performance optimizations: Conventional ORBs
often incur significant throughput and latency overhead [11].
This overhead stems from excessive data copying, non-
optimized presentation layer conversions, internal message
buffering strategies that produce non-uniform behavior for dif-
ferent message sizes, inefficient demultiplexing algorithms,
long chains of intra-ORB virtual method calls, and lack of
integration with underlying real-time OS and network QoS
mechanisms [12].

Lack of memory footprint optimizations: Conventional
ORBs have historically been developed for desktop applica-
tions and general-purpose client/server systems. In such sys-
tems, memory is often abundant. Thus, DOC middleware can
range in size from 2 to 10 megabytes without undue affect on
system performance or cost. In contrast, many real-time and
embedded systems have tight constraints on memory footprint
due to cost, power consumption, or weight restrictions.

Although some operating systems, networks, and proto-
cols now support real-time scheduling, they do not provide
integrated end-to-end solutions for real-time, embedded sys-
tems that possess stringent QoS requirements. In particu-
lar, QoS research at the IPC and OS layers has not neces-
sarily addressed key requirements and usage characteristics
of DOC middleware, such as CORBA, DCOM, or RMI. For
instance, research on QoS for communication systems has fo-
cused largely on policies for allocating network bandwidth on
a per-connection basis. Likewise, research on real-time oper-
ating systems has focused largely on avoiding priority inver-
sions and non-determinism in synchronization and scheduling
mechanisms for multi-threaded applications. In contrast, the
programming model for developers of DOC applications fo-
cuses largely on invoking remote operations on distributed ob-
jects.

3 Tutorial Topics: Optimizing
Middleware for Real-time,
Embedded Systems

Determining how to map the results from QoS work at the
IPC and OS layers to DOC middleware is currently the fo-
cus of many active research projects, such as the DARPA
Quorum project [13], the QuO project at BBN [14], and the
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TAO [15] and TMO [16] projects at Washington University
and UC Irvine. One topic of this tutorial, therefore, is to sum-
marize the design techniques and optimization patterns nec-
essary to overcome the historical limitations with middleware
described above in order to meet end-to-end QoS requirements
for real-time, embedded systems. Figure 2 illustrates the key
optimization points for real-time, embedded system middle-
ware.
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Figure 2: Optimization Points for Real-time, Embedded Sys-
tem Middleware

A decade of intensive research illustrates that meeting the
QoS needs applications requires much more than single-point
solutions, such as creating new programming languages or
building real-time scheduling into ORBs. Instead, it requires
a vertically (i.e., network interface$ application layer) and
horizontally(i.e., end-to-end) integrated architecture that pro-
vides end-to-end QoS support at multiple levels of an entire
distributed system. To adequately capture the rich interactions
among the various levels, therefore, this tutorial also focuses
on the following topics:

� The enchancements required to existing DOC specifica-
tions (such as OMG CORBA) that can enable applica-
tions to define their Quality of Service (QoS) require-
ments to ORB endsystems.

� Key architectural patterns required to build real-time
ORB endsystems that can enforce deterministic and sta-
tistical end-to-end QoS support to applications and ser-
vices.

� Strategies for integrating I/O subsystem architectures and
optimizations with DOC middleware to provide high

bandwidth and low latency support to distributed real-
time, embedded applications.

� Overview of relevant OMG CORBA standards, such as
Real-time CORBA, Minimum CORBA, the Messaging
specification, and the Audio/Video Streaming service,
that address QoS requirements.

The design techniques and optimization patterns covered in
the tutorial are based on TAO [17], which is an open-source,
real-time ORB that provides end-to-end QoS support over a
wide-range of networks and embedded system interconnects.
The architecture of TAO is illustrated in Figure 3.
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Figure 3: Overview of the TAO Real-time CORBA Architec-
ture

TAO is currently deployed on many projects at many
organizations and companies, including Quorum, Boeing,
Lockheed, Lucent, Motorola, Nortel, Raytheon, SAIC,
and Siemens, where it is used for real-time and em-
bedded avionics, telecommunications, medical, and sim-
ulation systems. Complete source code, documenta-
tion, and technical papers on TAO are available at
www.cs.wustl.edu/ �schmidt/TAO.html .

4 Overview of Real-time CORBA

A central focus of the tutorial is on the Real-time CORBA
standard [18]. Figure 4 illustrates the key features in Real-time
CORBA that will be covered in this tutorial. These features
include the following:

End-to-end priority propagation: Conventional CORBA
ORBs provide no standard way for clients to indicate the rel-
ative priorities of their requests to an ORB. Conversely, in
Real-time CORBA, the priority at which a client invokes an
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Figure 4: Components and Features in Real-time CORBA

operation can propagate with the request from sender to re-
ceiver. This feature helps minimize end-to-end priority inver-
sion, which is important to bound latency for embedded sys-
tems with hard real-time requirements.

Protocol properties: DOC middleware has traditionally
treated the underlying network and bus protocols as a “black
box.” While this may be sufficient for applications with “best-
effort” QoS requirements, it’s inadequate for applications with
deterministic and/or statistical QoS requirements. Therefore,
the Real-time CORBA specification defines a standard set of
interfaces that allow applications to select and configure prop-
erties of the underlying communication protocols.

Thread pools: Prior to the Real-time CORBA specification,
there was no standard way to write multi-threaded CORBA
servers. However, many embedded systems, particularly real-
time systems that are rate monotonically scheduled, use multi-
threading to (1) distinguish various classes of service and (2)
support thread preemption to prevent unbounded priority in-
version. Therefore, the Real-time CORBA specification de-
fines a standard thread pool model that allows server to pre-
allocate threads and set thread attributes, such as stacksize and
default priority levels.

Explicit binding: The original CORBA specification only
supportedimplicit binding, where the resources and “path” be-
tween a client and its server object were established implicitly
after the first invocation on the server. This binding model is
inadequate for many real-time applications, however, because
it defers object/server activation and resource allocation until
run-time, thereby increasing latency and jitter. Likewise, im-
plicit bindings oftenmultiplexmultiple client threads in a pro-
cess through a shared network connection to the correspond-
ing server process, which can yield substantial priority inver-

sion [19]. To avoid these problems, the Real-time CORBA
specification defines an explicit binding mechanism that en-
ables clients topre-establishnon-multiplexed connections to
client, as well as to map the priority of a client request to the
appropriate non-multiplexed connection.

Mutex IDL: Since earlier versions of CORBA did not de-
fine a threading model, there was also no standard, portable
way to ensure consistency between the internal synchroniza-
tion mechanisms used by an ORB and an application. For real-
time applications, however, it’s necessary to ensure consis-
tency between synchronization mechanisms to enforce prior-
ity inheritance and priority ceiling protocols [20]. Therefore,
the Real-time CORBA specification defines a set of locality
constrained mutex operations that ensure consistency between
synchronizers used by the ORB and its applications.

5 Concluding Remarks

DOC middleware is a promising paradigm for decreasing the
cost and improving the quality of real-time embedded soft-
ware systems by increasing the flexibility and modularity of
reusable components and services. Meeting the QoS require-
ments of real-time, embedded systems requires more than
object-oriented design and programming techniques, however.
It requires an integrated architecture that delivers end-to-end
QoS support at multiple levels in real-time and embedded sys-
tems. The design techniques and optimization patterns de-
scribed in this tutorial address this need with policies and
mechanisms that span network adapters, operating systems,
communication protocols, ORB middleware, and common ap-
plication services.

The future of middleware for real-time and embedded sys-
tems is very promising. Based on current trends in many
domains, real-time system development strategies will con-
tinue to migrate towards those used for “mainstream” systems,
thereby achieving lower development cost and faster time-to-
market. In particular, the flexibility and adaptability offered by
Real-time CORBA makes it very attractive for use in real-time
systems. An increasing number of highly optimized, interop-
erable, and standards-compliant implementations of Real-time
CORBA are now available. Over the next several years, fierce
competition between ORB suppliers will drive real-time, em-
bedded middleware to become a commodity, much in the same
way that CPUs, operating systems, and protocols have become
a commodity.
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