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Abstract Compared to QoS-enabled DOC middleware, QoS-

Standards-based quality of service (QoS)-enabled com-€nabled component middleware capabilities enhance the de-
ponent middleware is increasingly being used as a plat- Sign, development, evolution, and maintenance of DRE sys-
form for developing distributed real-time embedded (DRE) tems. Examples of additional capabilities offered by QoS-
systems that execute in open environments where opera€nabled componentmiddleware include (1) standardized in-
tional conditions, input workload, and resource availabil ~terfaces for application component interaction, (2) medel
ity cannot be characterized accurately a priori. Although based tools for deploying and interconnecting components,
QoS-enabled component middleware offers many desirableand (3) standards-based mechanisms for installing, linitia
features, until recently it lacked the ability to allocate-r  izing, and configuring application components, thus sepa-
sources efficiently and configure platform-specific QoS set-rating concerns of application development, configuration
tings based on utilization of system resources and applica-and deployment.
tion QoS. Moreover, it has also lacked the ability to monitor  In prior work, we developed a domain-specific modeling
and enforce application QoS requirements. language (DSML) called thielatform-Independent Compo-

This paper presents two contributions to research on nent Modeling Languag@PICML) [1] that alleviates many
adaptive resource management for component-based DREomplexities associated with developing component-based
systems. First, we describe the structure and functiopafit ~ DRE systems using th€omponent-Integrated ACE ORB
the Resource Allocation and Control Engine (RACE), which (CIAO) [24]. CIAO abstracts key Real-time CORBA QoS
is an open-source adaptive resource management frameconcerns (such as priority models, thread-to-connection
work built atop standards-based QoS-enabled componentbindings, and timing properties) into elements that can be
middleware. Second, we demonstrate the effectiveness ofonfigured declaratively via Lightweight CCM metadata
RACE in the context of NASA’s Magnetospheric Multi-scale (such as standards for specifying, implementing, packggin
Mission system, which is a representative DRE system.  assembling, and deploying components). PICML enables
DRE system developers to (1) design component interfaces
and compose applications by interconnecting components,
(2) specify QoS and resource utilization characteristics o

Emerging trends and challenges. Distributed real-  applications such as end-to-end deadlirstimatedCPU,
time and embedde(®RE) systems form the core of many  memory, and network bandwidth utilization charactersstic
mission-critical domains, such as shipboard computing en-(3) specify middleware, OS, and network configuration pa-
vironments, avionics mission computing, multi-satellite rameters, (4) specifgstimatedresource availability of the
missions, and intelligence, surveillance and reconnacsa pRE system, (5) allocate resource to components that make
missions.Quality of service (QoS)-enabled distributed ob- up the application, and (6) generate deployment metadata
ject computing (DOC) middlewaigased on standards like  ysed by component middleware to deploy applications.
Real-time CORBA (RT-CORBA) and the Real-Time Spec-  ajthough CIAO and PICML raise the level of abstraction
ification for Java (RTSJ) have been used to develop suchgaq to develop DRE systems relative to DOC middleware,
DRE systems. More recentlyQoS-enabled component nresolved challenges remain. In particular, when DRE
middleware such as the Lightweight CORBA Component gy stem developers allocate resources to, and configure QoS
Model (CCM) [16] and PRiSm [21], have been used as the settings of, applications using PICML, these operatioss ar
middleware for DRE systems. performed based oastimatedresource utilization of ap-

*This work is supported in part by AFRL/IF Pollux Project, lkbeed plications andestimatedavailability of system resources.
Martin ATL, and Lockheed Martin ATC. These estimates may be imprecise for open DRE systems

1 Introduction




Applications

that execute in environments where operational conditions
input workload, and resource availability cannot be charac
terized accuratelg priori.

In general, there are limited mechanisms in existing
QoS-enabled component middleware platforms to (1) spec-
ify end-to-end QoS requirements and (2) monitor appli-
cation behavior to ensure that these QoS requirements
are met. Moreover, when applications are composed at
runtime by intelligent mission planners [9], only end-to- -
end QoS requirements of the applications are specified.
What is needed, therefore, are middleware-centric capa-

bilities for allocating resources automatically and monrit Allocatorsdy gy Controllers
ing/(re)configuring QoS settings of applications to enéorc Configurators
their end-to-end QoS requirements. Application System
QoS Resource
Utilization

DeploymentPlan

Centralized CIAQO/DANCE Target
QoS Monitor m Manager

Solution: A component-based adaptive resource man-
agement framework. To address the needs of DRE sys-
tem developers outlined above, we have developedRthe

Deploy Components

source Allocation and Control EngingRACE), which is Application ALH Resource
an adaptive resource management framework built atop our Moniiors Monitors
CIAO QoS-enabled component middleware. As shown in System domain with time-varying

: ; . ilabili
Figure 1, RACE provides (Iksource monitocomponents R e

that track utilization of various system resources, such as
CPU, memory, and network bandwidth, (@pS monitor Figure 1: Resource Allocation and Control Engine
components that track application QoS, such as end-to-end

delay, (3)resource allocatorromponents that allocate re- 2 Motivating Application Scenario

sources to components based on their resource requirements
and current availability of system resources, ¢dhfigura-

tor components that configure QoS parameters of applica-
tion components, (5¢ontroller components that compute
end-to-end adaptation decisions to ensure that QoS require,
ments of applications are met, and éfectorcomponents
that perform controller-recommended adaptations.

We use the NASAs upcoming Magnetospheric

Multi-scale (MMS) mission ¢t p. gsf c. nasa. gov/

nm ssi ons/ ms/ nrs. ht m) as a motivating DRE system

example to evaluate the effectiveness and performance of

RACE. We first present an overview of the MMS mission

and then describe the resource and QoS management

challenges involved in developing the MMS mission using
RACE supports multiple applications running in various QoS-enabled component middleware.

DRE system environments and allows applications with di- o )

verse QoS requirements to share resources simultaneouslyg-1  MMS Mission Overview

RACE's allocator and controller entities can be configured  The goal of the MMS mission is to study the micro-

with multiple resource allocation and control algorithms. physics of three fundamental plasma processes occurring

This paper provides two contributions to research on adap-in the earth’s magnetosphere: magnetic reconnectiori; part

tive resource management for component-based DRE syscle acceleration, and turbulence. MMS mission consists of

tems: (1) it describes the component-based design of thea constellation of identical spacecraft that maintain a spe

RACE framework and (2) we evaluate the effectiveness cific formation while orbiting over region of scientific inte

of RACE in resolving key adaptive resource managementest (ROI). Since the plasma processes are inherently tran-

challenges of a representative DRE system. sient (especially magnetic reconnection), MMS missions

The remainder of the paper is organized as follows: Sec-equires reactive on-board autonomy to enable the space-
tion 2 motivates the use of RACE in the context of a repre- craft to transition between three modes of operati&low
sentative DRE system: Section 3 describes the architectur&urvey fast surveyandburst
of RACE and shows how it meets the QoS requirements of Slow survey mode is entered outside the ROl and enables
the DRE system described in Section 2; Section 4 comparedninimal data acquisition (primarily for health monitoring

our research on RACE with related work: and Section 5 The fast survey mode is entered when the spacecraft are
presents concluding remarks. within a ROI, which enables data acquisition for all payload



sensors at a moderate rate. While in fast survey mode, thenent framework like RACE must therefore support multiple
data from a subset of the payload sensors is analyzed omesource allocation strategies to handle the needs ofdieter
board to detect the likelihood of a transient plasma evént. | geneous applications, which include guidance, navigation
any plasma activity is detected, all the spacecraft enter th control, data acquisition, data handling, and data arslysi
burst mode and all payload instruments acquire data at highapplications.

rates. Challenge 2: Configuring platform-specific QoS pa-

To address the challenges associated with efficient opertrameters. The QoS of applications depend on various
ation of the different configurations/modes outlined above platform-specific real-time QoS configurations including
and the transitions between them, on board intelligent mis-(1) QoS configuration of the QoS-enabled component mid-
sion planners such aspreading activation partial order  dleware, such as priority model, threading model, and re-
planner (SA-POP) [9] have been developed. SA-POP quest processing policies, (2) OS QoS configuration, such
decomposes overall mission goal(s) into sets of applica-as real-time priorities of the process(es) and threadés) th
tions that can be executed concurrently. SA-POP employshost and execute within the components, respectively, and
decision-theoretic methods and other Al schemes (such(3) networks QoS configurations, suchdad f ser v code-
as hierarchical task decomposition) to decompose missiompoints of the component interconnections. Since these con-
goals into navigation, control, data gathering, and datafigurations are platform-specific, it is tedious and error-
processing applications. prone for system developers or SA-POP to specify them

In addition to initial generation of applications, SA-POP in isolation. An adaptive resource management frame-
incrementally generates new applications in response towork like RACE should therefore provide abstractions that
changing mission goals and/or degraded performance reshield developers and/or SA-POP from low-level platform-
ported by the mission and system monitors. These appli-specific details and define higher-level QoS specification
cations are classified into two classé@sfortantandbest- models.
effort) based on the operation performed by the applica- Challenge 3: Monitoring end-to-end QoS and en-
tion. For example, applications that are responsible for suring QoS requirements are met. To meet the end-to-
the guidance—navigation—contralf the spacecraft belong end QoS requirements of applications, an adaptive resource
to theimportantclass, where as data analysis applications management framework like RACE must provide monitors
belong to the best-effort class. that track QoS of applications at run-time. Although some

2.2 Challenges of Developing the MMS Mission QoS properties (such as accuracy, precisio_n, and fid_elity of
using QoS-enabled Component Middleware the produced output) are application-specific, certain QoS
(such asend-to-end delgycan be tracked by the frame-
As discussed in Section 1, the use of QoS-enabled com—Work without invqlving the _applica_tion. The f.ramewor_k.
ponent middleware to develop DRE systems (such as theshould also provide hooks into which application specific
NASA MMS mission) significantly improves the design, QoS monitors can be configured. 'I_'he framework should
development, evolution, and maintenance of these Iarge-ena_lbl_e the_ system_tadaptto _d_ynam_lc changes, such as
scale systems. In the absence of an adaptive resource maN—ar'at'OnS n qper_gﬂonal conditions, input workload, &nd .
agement framework like RACE, however, several key chal- resource aval!ab|]|ty, and thergby ensure that QoS require
lenges remain unresolved when using component middle—ments of applications are not violated.
ware. Below we present t_he key_resource and_Q(_)S man3  Structure and Functionality of RACE
agement challenges associated with the MMS mission DRE
system. RACE is built atop the QoS-enabled component mid-
Challenge 1: Efficient resource allocation to applica-  dleware CIAO andDeployment and Configuration Engine
tions. Applications generated by SA-POP agsource sen-  (DANCE) [5] , which are open-source implementations of
sitive, i.e, end-to-end QoS is reduced significantly if the the OMG Lightweight CCM [16], Deployment and Config-
required type and quantity of resources are not provided touration (D&C) [15], and RT-CORBA [14] specifications.
the applications at the right time. System resources should As shown in Figure 1, RACE is composed of
therefore be allocated in a timely fashion to components ofthe following components: (1) nput Adapt er, (2)
applications such that their resource requirements are metOr chest r at or, (3) Conduct or, (4) Al |l ocat or s,
In open DRE systems like MMS, however, input workload (5) Controllers, (6) Configurators, and (7)
affects utilization of system resources by, and QoS of, ap-Hi st ori an. RACE also monitors application QoS
plications. These parameters of the applications may thereand system resource usage via@sntral i zedQos-
fore vary significantly from their estimated values. More- Mbnit or andTar get Manager components. All com-
over, system resource availability, such as availableotw ponents of RACE are deployed and configured using
bandwidth, may also be time variant. A resource manage-DANCE. This section motivates and describes the design



of RACE by showing how it resolves the three challenges an application by determining the mapping of components
presented in the MMS case study from Section 2. onto nodes in the system domain. For certain applications—
3.1 Efficient Resource Allocation usually the mission-critical onesstatic mapping between
components and nodes may be specified at design-time by
'system developers. To honor these static mappings, RACE
therefore provides atatic allocatorthat ensures compo-
nents are allocated to nodes in accordance with the static
mapping specified in the application’s metadata.

If no static mapping is specified, howevegnamic al-
locatorsdetermine the component to node mapping at run-
time based on resource requirements of the components and
current resource availability on the various nodes in the
domain. Input toAl | ocat or s include theE- 2- E IDL
structure corresponding to the application and the current
utilization of system resources. Singkel ocat or s them-
selves are CCM components, RACE can be configured with
newAl | ocat or s by using PICML.

The current version of RACE supports following algo-
rithms asAl | ocators: (1) CPU allocator, (2) mem-

To allocate resources efficiently in an open DRE system
such as NASA's MMS mission system, RACE performs the
following steps: (1) it parses the metadata that descrhees t
application to obtain the resource requirement(s) of com-
ponents that make up the application, (2) obtains current
resource utilization from resource utilization monitaad
(3) selects and invokes an appropriate implementatiorfi(s) o
resource allocation algorithm depending on the properties
of the application and the overhead associated with the im-
plementation(s). Below we describe the RACE components
that work together to perform the steps outlined above and
resolve the resource allocation challenges of the MMS mis-
sion as described in Section 2.2.

e InputAdapter. End-to-end applications can be com-
posed in many ways. For example, an application can
be composed by using a DSML like PICML at system )
design-time and/or by an intelligent mission planner like ©1Y allocator, (3) network-bandwidth allocator, (4) PBFD
SA-POP at run-time. When an application is composed us-allocator [4] that allocates CPU, memory, and network-
ing PICML, metadata describing the application is captured Pandwidth, and (5) static allocator. Metadata is assatiate
in an XML file based on th®ackageConf i gur at i on with each allocator and captures its type ( static, single

schema defined by the OMG D&C specification [15]. When dimension bin-packing [11], or PBFD) and associated re-
applications are generated during runtime by SA-POP,Source overhead (such as CPU and memory utilization).

metadata is captured in an in-memory structure defined by ¢ Orchestrator and Conductor. After the metadata
the planner. describing the application is parsed by RACEsput -

RACE can be configured using a DSML (such as Adapt er, the in-memoryEe- 2_— E IDL structure is passed
PICML) along with an appropriatenput Adapt er that onto theOr chestrat or . ThIS component processes the
parses the metadata that describes the application inte an i E- 2- E structure to determine the types of resoureeg(
memory end-to-end&: 2- E) IDL structure thatis managed CPU, memory, or network bandwidth) required and whether
internally by RACE. TheE- 2- E IDL structure populated @ Static allocation is specified. If a static allocation is
by thel nput Adapt er contains information regarding the spec_ified, the statit_: allocator is selected; otherwise a dy-
application, including (1) components that make up the ap-namic allocator(s) is selected based on the type(s) of re-
plication and their resource requirement(s), (2) inteneam sources.requwed. This selection process is captured in the
tions between the components, (3) application QoS proper-COTTPOSI ti on structure.

ties (such as relative priority) and QoS requirement(tsu The Orchestrator passes th€onposi ti on and
as end-to-end delay), and (4) mapping of components ontdthe E- 2- E to the Conduct or, which then performs the
domain nodes. desired orchestration by invoking th@ | ocat or (s)

e TargetManager. As shown in Figure 1, RACE em- specified in theConposi tion, along with the re-
ploys theTar get Manager to obtain information regard- ~ source utilization information obtained from tiiar get -
ing system resource utilizationTar get Manager [18] Manager to map components onto nodes in the sys-
uses a hierarchical design and receives periodic resourcéem domain. After resources are allocated to the ap-
utilization updates fronResour ceMbni t or s within the ~ plication, theConduct or converts the application from
domain. It uses these updates to track resource usage of alRACE’s internal E- 2- E IDL structure into the standard
resources within the domain. Depl oynent Pl an IDL structure defined by the D&C

« Allocators are implementations of resource allocation Specification [15]. Théepl oyment Pl an IDL structure
algorithms that allocate various domain resources (such ads then passed to the underlying DANCE middleware to de-
CPU, memory, and network bandwidth) to components of Ploy the components on the designated target nodes.

1The mapping of components onto nodes need not be specifibe in t since the elemen-ts of RACE are _develope(_j as CCM
metadata that describes the application which is given t6IRAf an map- components, RACE itself can be conflgured using DSML
ping is specified, it is honored by RACE; if not, a mapping itedeined tools, such as PICML. Moreover, newput Adapt er s
at run-time by RACE'Al | ocat or s. and Al | ocat ors can be plugged directly into RACE




without modifying RACE’s existing architecture. RACE identified in Section 2.2.

can be used to deploy and allocate resources to application . .
that are composed at design-time and run-time. RACE’S%'3 Dynamic System Adaptation
Al | ocat or s with inputs from theTar get Manger allo- When resources are allocated to components at design-
cates resource to application components based on runtim@me by system designers using PICML, these operations
resource availability, thereby addressing the resoutioe al are performed based on estimated resource utilization of
cation challenge for DRE systems identified in Section 2.2. applications and estimated availability of system resesirc

3.2 QoS Parameter Configuration Allocation algorithms supported by RACE¥ | ocat or s
_ o map resources to components based on current system re-
RACE shields application developers and SA-POP from g 1ce utilization and component’s estimated resource re-

low-level pIatfo.rm—s_pecific details and defines a higher- quirements. In open DRE systems, however, there is often
level QoS specification model. Developers and/or SA-POP g accuraten priori knowledge of input workload or the
specify only QoS characteristics of the application, SW&h a g|ationship between the resource requirement and QoS of
QoS requirements and relative importance, and RACE au-components that make up the application. In these systems,
tomatically configures platform-specific parameters a#cor - moreover, operational conditions and resource avaitgbili
ingly. Below, we describe the RACE components that work -annot be characterized accuratlgriori.

together to provide these capabilities and resolve the Q0S 1 re5plve the above described challenges, as well as the

configuration challenges of the MMS mission described in 5neg described in 2.2, RACE's control architecture employs
Section 2.2. a feedback loop to manage system resource and applica-

. Configurators_(_jetermine values for various |C_>W- tion QoS and ensure that (1) QoS requirements of applica-
level platform-specific QoS parameters, such as middle-(i,ns are met at all times and (2) system stability by main-

ware, OS, and network settings for an application basedyining utilization of system resources below their speci-
on its QoS characteristics and requirements, such as relsjgq set-points. The feedback loop in RACE's control ar-

ative importance and end-to-end delay. For example, chitecture consists of three main componektmi t or s,
theM ddl ewar eConf i gur at or configures component  ;nt ol | ers, andEf f ect or s, as shown in Figure 2
Lightweight CCM policies, such as threading policy, pri- 514 described below.

ority model, and request processing policies, based on the

class of the applicationiriportant and best-efforf. The Target Resource System | Centralized
Oper at i ngSyst enConf i gur at or configures OS pa- Menager | Ulization - oo N

rameters, such as the Rate Monotonic Scheduling (RMS)- System Wide Adaptation Decisions

based [11] or Maximum Urgency First (MUF)-based [23] -
.. Resource . pplication

priorities of theComponent Serverthat host the compo- Ui Centralized Effector QoS

nents. Likewise, theNet wor kConf i gur at or config-
. . Per Node System Parameters
ures network parameters, suchdid f ser v code-points | |

of the component interconnections. Like other entities of m m
RACE, Confi gur at or s are implemented as CCM com- Q
ponents, so new configurators can be plugged into RACE N
by (re)configuring RACE using PICML. ZF L@ ZIQ @ ZF Y
e Orchestrator and Conductor. Based on the QoS : ' '
properties of the application captured in the 2- E ‘DN“‘* [ ettestor /A Resouree () () ion Monitor
IDL structure, theOr chestrat or selects appropriate
Confi gurat ors to configure QoS properties for the Figure 2: RACE’s Feedback Control Loop

application. As before, this orchestration is captured in
the Conposi ti on IDL structure and passed onto the e Monitors. To ensure system stability and meet QoS

Conduct or, which invokes theConf i gur at or s spec- requirements of applications, RACE’s control architeetur
ified in the Conposi ti on to configure the system QoS monitors both system QoS and resource utilization. As
parameters for the application. shown in Figure 2, RACE employs the Lightweight CCM’s

RACE’s configurators, orchestrator, and Tar get Manager to monitor system resource utilization.
conduct or coordinate with one another to configure CCM containersprovide application components with
platform-specific QoS parameters for applications appropr an execution environment and enables them to commu-
ately. These components provide higher level abstractionsnicate via the underlying middleware. Since each con-
and shield system developers and SA-POP from low-leveltainer is aware of all interactions of a component, the end-
platform-specific details, thus resolving the challenges a to-end delay of an application can therefore be measured
sociated with configuring platform-specific QoS parametersin an application-transparent way. QoS properties, such



as accuracy, precision, and fidelity of the produced out-tem parameters for each node are then propagated to
put, are application-specific, however, and thus cannot beEf f ect or s located on each node, which then modify
measured by the middleware without help from applica- system parameters of its node accordingly. The hierarchi-
tion components. We extended the container of our mid- cal design oResour ceMoni t or s (Tar get Manager),
dleware (CIAO) to embedbni t or s, calledapplication- QoSMbni t or s, and RACE'sEf f ect or s is scalable and
QoS-monitorsto measure end-to-end application delay. can handle many applications and nodes in the domain.
CIAO and DANCE currently implementinter-component  ® Historian, Orchestrator, and Conductor. TheHi s-
interactions (botHacet/receptacldnteractions ancevent ~ torian maintains the history of all deployed applica-
source/sinkinteractions) as two-way calls. End-to-end de- tions along with their QoS characteristics and mapping
lay of an application can therefore be obtained by mea-0f components to nodes. The chestrat or employs
suring the round-trip delay at the “source” of the applica- the Hi st ori an to obtain information regarding the QoS
tion. Application-QoS-monitorase high resolution timers ~ characteristics of application that have been deployed in
(ACE_Hi gh_Res_Ti mer) to measure this round-trip de- the system to select the appropriate controller to manage
lay and periodically send the collected end-to-end delays t the system. For example, if all the deployed applications
thenode-QoS-monitahat is collocated on the same node. can be operated at various rates, @iechest r at or se-
Node-QoS-monitoris turn periodically send the collected lects the EUCON controller to manage the system. The
end-to-end delay of all the applications on its node to the Conduct or invokes thecontrol | er selected by the
centralized-QoS-monitor Moreover, application-specific O chestrat or to manage the DRE system.
QoS monitors can send QoS information to the centralmon- RACE’s monitoring frameworkcontrol | ers, and
itor by invoking the same interface. The update period of €f f ect or s coordinate with one another and other entities
both application-QoS-monitorand node-QoS-monitoris of RACE to ensure (1) QoS requirements of applications are
configurable. met and (2) utilization of system resources are maintained

As shown in Figure 2, RACE’s Qo®bni tors are within the specified utilization set—poi_nt set—point(s}_]u'E,
structured in the hierarchical fashion. Application-Qos- ~ RACE resolves the challenges associated with runtime end-
monitor tracks the QoS of an application, rde-QoS- to-end QoS management identified in Section 2.2.
monitortracks the QoS of all the applications runningonits 4 Related Work
node, and theentralized-QoS-monitor trackhe QoS of
all the applications running the entire domain, which cap-
tures the system QoS. RACE®nt rol | er (s) obtain
the system QoS from theentralized-QoS-monitor

This section compares our work on RACE with re-
lated research on building large-scale DRE systems. As
shown below, we classify this research along two orthog-
onal dimensions: (1) QoS-enabled DOC middleware vs.
_® Contrpllers enable a DRE.system to adapt to c.h.ang- QoS-enabled component middleware and (2) design-time
ing operational context and variations in resource availab vs. run-time QoS configuration, optimization, analysis,

ity "?‘”d’or demand. The RACEont rol | er S implement and evaluation of constraints, such as timing, memory, and
various control algorithms that manage runtime system per-

formance, including EUCON [13], HySUCON [10], and
FMUF [3]. Based on the control algorithm they imple- 4.1 QoS-enabled DOC Middleware
ment, Cont r ol | er s modify configurable system para- Design-time. RapidSched [26] enhances QoS-enabled
meters (such as execution rates and mode of operation obOC middleware, such as RT-CORBA, by computing
the application), real-time configuration settings (sush a and enforcing distributed priorities. RapidSched uses
OS priorities ofcomponent serverthat host the compo-  PERTS [12] to specify real-time information, such as
nents), and networdi f f ser v code-points of the compo-  deadline, estimated execution times, and resource re-
nent interconnections. RACE can be configured with new quirements. Static schedulability analysis (such as rate-
Control | ers by using PICML sinceControl | ers monotonic analysis) is then performed and priorities are
are also implemented as CCM components. computed for each CORBA object in the system. After the
o Effectors modify system parameters, including re- priorities are computed, RapidSched uses RT-CORBA fea-
sources allocated to components, execution rates of apiures to enforce these computed priorities.
plications, and OS/middleware/network QoS setting for  Run-time. Early work on resource management mid-
components, to achieve the controller recommended adapédleware for shipboard DRE systems presented in [17] moti-

tation. As shown in Figure 2Effectors are de- vated the need for adaptive resource management middle-
signed hierarchically. Theentralized effectofirst com- ware. This work was further extended by QARMA [6],
putes the values of various system parameters for all thewhich provides resource management aseevicefor ex-
nodes in the domain to achieve ti@ntrol | er rec- isting QoS-enabled DOC middleware, such as RT-CORBA.

ommended adaptation. The computed values of sys-Kokyu [7] also enhances RT-CORBA QoS-enabled DOC



middleware by providing a portable middleware scheduling design-time with Qosket components, such as monitors,
framework that offers flexible scheduling and dispatching controllers, and effectors. This approach thus requires re
services. Kokyu performs feasibility analysis based on es-design and reassembly of existing applications built witho
timated worst case execution times of applications to de- Qoskets. When applications are generated at run-tngg (
termine if a set of applications ischedulable Resource by intelligent mission planners [9]), this approach would
requirements of applications, such as memory and networkrequire planners to augment the applications with Qosket
bandwidth, are not captured and taken into consideration bycomponents, which may be infeasible since planners are de-
Kokyu. Moreover, Kokyu lacks the capability to track uti- signed and built to solve mission goals and to work atop any
lization of various system resources as well as QoS of ap-component middleware, not just CCM.

plications. To address these limitations, research pteden Compared with related work, RACE provides adaptive
in [2] enhances QoS-enabled DOC middleware by combin-resource and QoS management capabilities in a more trans-
ing Kokyu and QARMA. parent and non-intrusive way. In particular, it allocates

Our work on RACE extends this earlier work on QoS- CPU, memory, and networking resources to application
enabled DOC middleware by providing an adaptive re- components and tracks and manages utilization of various
source management framework for DRE systems built atopsystem resources, as well as application QoS. In contrast
QoS-enabled component middleware. DRE systems builtto our own earlier work on QoS-enabled DOC middleware,
using RACE benefit from the additional capabilities offered such as FC-ORB [25] and HiDRA [20], RACE is a QoS-
by QoS-enabled component middleware compared to QoS-enabledcomponeniiddleware framework that enables the
enabled DOC middleware, as described in Section 1. More-deployment and configuration of feedback control loops in
over, the elements of RACE are designed as CCM compo-DRE systems.
nents, so RACE itself can be configured using DSML tools,  In summary, RACE’s novelty stems from its combina-
such as PICML [1]. tion of design-time DSML tools and QoS-enabled compo-
nent middleware run-time platforms. RACE can be used
to deploy and manage component-based applications that
are composed at design-time via the PICML [1] DSML, as
well as at run-time the SA-POP [9] intelligent mission plan-

4.2 QoS-enabled Component Middleware

Design-time. Cadena [8] is an integrated environment
for developing and verifying component-based DRE sys-

te”.‘s by applying static aqalysis, model-checking, and{igh ner (described in Section 2.1). Moreover, RACE’s reusable
weight formal methods. Like PICML, Cad_ena ?"?0 provides entities, such as resource monitors, QoS monitors, and ef-
a component assembly framework for visualizing and de- fectors, can be configured to incorporate a range of exist-

veloping components and their connections. VEST [22] is ing control algorithms, such as EUCON [13] and HySU-
a DSML that enables embedded system composition fromCON [10], as well as future algorithms

component libraries and checks whether timing, memory, .

power, and cost constraints of real-time and embedded ap® Concluding Remarks

plications are satisfied. This paper described RACE, which is our adaptive re-
These tools are similar to PICML and usstimatessuch source management framework that provides end-to-end

as estimated worst case execution time, estimated CPUadaptation and resource management for open DRE sys-

memory, and/or network bandwidth requirements. Thesetems built atop QoS-enabled component middleware. We

tools are targeted for systems that executdasedenviron- demonstrated how RACE helps resolve key resource and
ments, where operational conditions, input workload, and QoS management challenges associated with a prototype of
resource availability can be characterized accuratglyi- the NASA MMS system.

ori. Since RACE tracks and manages utilization of various  Since the elements of RACE are designed and imple-
system resources, as well as application QoS, it can be usedhented as CCM components, RACE itself can be config-
in conjunction with these tools to build DRE systems that ured using DSML tools, such as PICML. Moreover, new
execute in open environments. | nput Adapters, Al l ocators, Configurators,

Run-time. QoS provisioning frameworks, such as QuO and Control | ers can be plugged into RACE using
and Qoskets [19] help ensure desired performance of DREPICML without any modifications to the existing archi-
systems built atop QoS-enabled DOC middleware and QoS-tecture. RACE can be used to deploy, allocate resources
enabled component middleware, respectively. When ap-to, and manage performance of, applications that are com-
plications are designed using Qoskets (1) resources argosed both at design time as well as at runtime. More-
dynamically (re)allocated to applications in response to over, due to the ease with which RACE can be config-
changing operational conditions and/or input workload and ured, RACE can be employed in a wide range of DRE sys-
(2) application parameters are fine-tuned to ensure thatems. CIAO, DANCE, and RACE are available in open-
allocated resources are used effectively. With this ap- source for download att t p: / / deuce. doc. wust | .
proach, however, applications are augmented explicitly atedu/ Downl oad. ht ni .
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