IPC SAP
C++ Wrappers for Efficient, Portable,
and Flexible Network Programming

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis 63130

An earlier version of this paper appeared in the Novem- vantages and disadvantages of using C++ to develop OO
ber/December 1992 issue of the C++ Report magazine. Anwrappers for native OS interfaces.
expanded version of this paper [1] that includes perfor-
mance results over Ethernet and ATM networks is available

atwww.cs.wustl.edu/ ~schmidt/COOTS-95.ps.Z. 2 Overview of Network Programming
Interfaces
1 Introduction Writing robust, extensible, and efficient communication soft-

ware is hard. Developers must master many complex OS and
This paper describes object-oriented (OO) techniques for en-communication concepts such as:
capsulating OS interprocess communication (IPC) mecha-
nisms with C++ wrappers. The paper focuses on the C++ o Network addressing and service identification.
wrappers provided by tH®C SAP componentsin the ACE
framework [2]. ACE is a collection of reusable C++ class li-
braries and OO framework components that simplify the de-
velopment of portable, high-performance and real-time com-
munication softwarelPC SAP is a componentin ACE that] o
provides a family of OO network programming interfacesto ~ ® Process and thread creation and synchronization.
encapsulate the Socket interface [3], the System V transport e System call and library function interfaces to local and

e Presentation conversions (such as encryption, compres-
sion, and network byte-ordering conversions between
heterogeneous end-systems with alternative processor
byte-orderings).

layer interface (TLI) [4], SVR4 STREAM pipes [5], UNIX remote interprocess communication (IPC) mechanisms.
FIFOs [6], and Windows NT named pipes [7].
The C++ wrappers itPC SAP shield developers and ap- Various programming tools and interfaces have been cre-

plications from non-portable details of native OS local and ated to help simplify the development of communication
remote IPC mechanisms. The IPC mechanisms encapsusoftware. Figure 1 illustrates the IPC interfaces available
lated bylPC SAPinclude standard connection-orientedand on contemporary OS platforms, such as UNIX and Win32.
connectionless protocols, such as TCP, UDP, and IPX/SPX,As shown in the figure, applications may access several lev-
available in UNIX/POSIX, Win32, and real-time operating
systems. IPC SAP utilizes OO techniques and C++ fea-
tures to provide a rich set of components that simplify the Hi
development of efficient, portable, and flexible communica-

3 USER
DOC MIDDLEWARE SPACE

tion software. . 5| SOCKETS AND TLI

This paper is organized as follows: Section 2 outlines the © 5
levels of abstraction for programming communication soft- § 5 OPEN/CLOSE/PUTMSG/GETMSG
ware; Section 3 describes existing network programming X % -----------------------
interfaces; Section 4 outlines their limitations; Section 5 <

presents the OO design and implementatiodRE SAP STREAMS 41'1\}1;}
and explains how it overcomes limitations with existingnet- Lo y FRAMEWORK\DLPI
work programming interfaces; Section 6 examines the OO

design of the C++ wrappers for Sockets, TLI, STREAM Figure 1: Levels of Abstraction for Network Programming
pipes, and FIFOs in detail; Section 7 illustrates several exam-

ples that uséPC SAP to implement a client/server stream- els of network programming interfaces for local and remote
ing application; Section 8 discusses the principles the guidedIPC. The remainder of this section outlines each level of ab-
the design ofPC SAP; and Section 9 summarizes the ad- straction, ranging from high-level distributed object comput-

KERNEL
SPACE

ing (DOC) middleware, to user-level network programming teleconferencing, medical imaging, and video-on-demand

interfaces, to low-level kernel programming interfaces. are examples of streaming applications.
The quality of service requirements of streaming appli-
2.1 DOC Middleware cations frequently cannot tolerate the performance overhead

caused by DOC middleware [11]. This overhead stems
Applications that exchange data with clients in a “request- from non-optimized presentation format conversions, non-
response” fashion are often developed using distributed ob-optimized memory management, inefficient receiver-side de-
ject computing (DOC) middleware. DOC middleware is de- multiplexing, stop-and-wait flow control, synchronous send-
fined broadly to include object request brokers (ORBs) like side method invocations, and non-adaptive retransmission
CORBA [8] and Microsoft's DCOM [9], as well as message- timer schemes. Traditionally, meeting the requirements of
oriented middleware like MQseries. DOC middleware auto- streaming applications has involved direct access to network

mates many tedious and error-prone aspects of distributedorogramming interfaces such as Sockets [3] or TLI [4].
application development, including:

e Authentication, authorization, and data security; 2.3 Kernel-level Network Programming In-
e Service location and binding; terfaces
e Service registration and activation; Lower-level network programming interfaces are available

 Demultiplexing and dispatching in response to events; in an OS kernel's communication subsystem. For example,
the SVR4putmsg andgetmsg system calls may be used
to directly access the transport provider interface (TPI) [12]
and the data-link provider interface (DLPI) [13] available in
» Presentation conversion issues involving network byte- system vV STREAMS [14].

ordering and parameter marshaling. It is also possible to develop network services like routers
or network file systems that reside entirely within the OS
kernel [5]. However, programming at this level is usually
not portable between different OS platforms. Moreover, it's
often not even portable across different versions of the same
0sS.

e Implementing message framing atop bytestream-
oriented communication protocols like TCP;

In addition, DOC middleware provides a set of high-level
tools, such as IDL compilers and naming services, that shield
developers from the complexities of lower-level OS system
calls that transmit and receive packets across a network.

2.2 User-level Network Programming Inter-

faces 2.4 Evaluation

It is generally harder to program distributed applications us-
ing user-level or kernel-level network programming inter-
faces rather than DOC middleware. Conventional network
grogramming libraries like Sockets and TLI lack type-safe,
portable, re-entrant, and extensible interfaces. For instance,
Socket endpoints are implemented via weakly-typed descrip-
¢ Minimize the time and space overhead of unneces-tors that increase the potential for subtle errors to occur at
sary functionality- Applications may omit unnecessary run-time [15].
functionality, such as presentation layer conversionsfor The IPC SAP components described in this paper pro-
ASCII data or memory footprint. vide a mid-point in the design space by encapsulating much
« Allow fine-grained control over behavior Network of the complexity of netwprk programming interfaces. The
programming interfaces enable finer-grain control over goals ofIPC SA,P are to improve th@orrgctnessease of
behavior, such as permitting multicast transmission and use andportability/reusabilityof communication software,

signal-driven asynchronous 1/0 without adversely affecting its performancé?C SAP is

. o distributed with the ACE framework [2] and is used on
¢ Increase portability- Network programming interfaces many commercial projects including Bellcore, Boeing, Lu-

like Sockets are available across a wider range of OS ont” Motorola. Nortel. SAIC. and Siemens.
platforms that DOC middleware. ’ ’ ’ ’

DOC middleware is typically built upon network program-
ming interfaces such as Sockets [3], TLI [4], or Windows NT
named pipes [7]. Compared with higher-level DOC middle-
ware, there are several advantages to developing application
via user-level network programming interfaces:

The request-response and “oneway” communication :
mechanisms provided by DOC middleware is not well-suited 3 Survey of Network Programmmg
for a certain class of applications, known as “streaming” ap- Interfaces
plications [10]. Streaming applications are characterized by
high-bandwidth, long-duration communication of untyped This section surveys the behavior and limitations of conven-
bytestreams or relatively simple datatypes that possess strintional network programming interfaces such as Sockets and
gent communication performance requirements. Interactive TLI.

3.1 Background maintained by the OS.

.) The Socket interface is shown in Figure 2. This interface
In many operating systems, such as UNIX and Win32, com-

munication protocol stacks reside within the protected ad-
dress space of the OS kernel. Application programs run-

ning in user-space access the kernel-resident protocol stack oo TS
via interfaces such as Sockets, TLI, or Win32 named pipes. . o ﬂé QE) § g
These interfaces manage local and remote endpoints ofcom < _ N E 22558822
munication by allowing applications to open connectionsto 3 ~ 8 g§©o§§©©§ ZTEZES ?é 3 § 2 2
remote hosts, negotiate and enable/disable certain options § S € 8 8% % g ‘qé 22525 22282< 2
exchange data, and close all or part of the connectionswher 26 S22 S 2522228 2228 H & H DS
transmissions are complete.

Sockets and TLI are loosely modeled on the UNIX file I/O Figure 2: Functions in the Socket Interface
interface, which defines thapen, read , write , close ,
ioctl , Iseek , andselect functions [14]. However, c4ntains around two dozen system calls that can be classified

Sockets and_ TLI provide additional functiqnality _that IS NOt o the following categories:

supported directly by the standard UNIX file I/O interfaces.

This extra functionality stems from certain syntactic and se- Local context management: The Socket interface pro-

mantic differences between file /0 and network 1/O. For ex- Vides the following functions for managing local context in-

ample, the pathnames use to identify files on a UNIX system formation:

are not globally uniqge across hqsts in a distributed environ- 4 socket — which allocates the lowest unused Socket

ment. Therefore, a different naming scheme (such as IP host pgnqle:

addresses) is used to uniquely identify network applications.
The Socket and TLI interfaces provide similar function-

ality. They support a general-purpose interface to multiple

e bind — which associates a Socket handle with a local
or remote address;

communication domair8]. A domain specifies a protocol e getsockname and getpeername - which deter-
family and an address family. Each protocol family contains mine the local or remote address, respectively, a Socket
a stack of protocols that implement certain types of com- is connected with;

munication in the domain. Common protocol stacks pro-
vide reliable, bi-directional, connection-oriented, message
and bytestream services.§, protocols such as TCP, TP4,

and SPX), as well as unreliable, connectionless datagram _ _ _ o
service €.g, protocols such as UDP, CLNP, and IPX). Connection establishment and connection termination:

An address family defines an address forneag(the ad- The Socket interface provides the following functions for es-
dress size in bytes, number and type of fields, and order oftablishing and terminating connections:
fields) and a set of kernel-resident functions that interpretthe e connect - a client typically usesonnect to ac-
address formate(g.,to determine which subnet an IP data- tively establish a connection with a server;
gram is destined for).

e close —which deallocates a Socket handle, making it
available for subsequent reuse.

Section 3.2 ai . Sockets. Section 3.3 listen —aserverusdssten toindicate it willing-
Section 5.2 gIVES an OVErvIew on Sockets, section . ness to listerpassivelyfor incoming client connection
briefly outlines TLI, Section 3.4 covers STREAM pipes, and requests:

Section 3.5 discusses UNIX FIFOs. A complete discussion

of these interfaces is beyond the scope of this paper (see ® accept —a server usesccept to create a new end-

[5, 3, 7, 6, 16] for additional details). point of communication to service a client;

e shutdown - which selectively terminates the read-

3.2 The Socket Interface sjde and/or write-side stream of a bi-directional connec-
tion.

The Socket interface was originally developed in BSD UNIX

to provide an interface to the TCP/IP protocol suite [3]. From Data transfer mechanisms: The Socket interface pro-

an application’s perspective, a Socket is a local endpoint of vides the following functions that send and receive data:

communication that is bound to an address residing on a lo-

cal or aremote host. Sockets are accesseldanaleswhich

are are also referred to descriptors

e read/write — which receive and transfer buffers of
data via a particular handle;

In UNIX, Socket handles share the same namespace as e send/recv — which are similar toread /write
other handlese.q, file, pipe, and terminal device handles. though they provide an extra parameter that controls
Handles provide an encapsulation mechanism that shields certain Socket-specific operations (such as exchanging
applications from knowledge of internal OS data structures. “urgent” data or “peeking” at data in a receive queue
A handle identifies a particular communication endpoint without removing it from the queue);

¢ sendto/recvfrom — which exchange connection- delivery of bytestream and prioritized message data between
less datagrams; processes and/or threads executing on the same host machine

o readv/writev — which support scatter-read and [16]. Although thepipe system ggll interfacg remains thg
gather-write semantics, respectively (these operationsS@Me: STREAM pipes offer additional functionality that is
optimize user/kernel mode switching and simplify oughly equivalent to UNIX-domaiSOCKSTREAMSock-
memory management): ets. They are someyvhat more flexible than UNIX-domain

Sockets, however, since they enable STREAM modules to

e sendmsg/recvmsg — which are general-purpose g« shed” and “popped” to and from pipe endpoints.
functions that subsume the behavior of all the other

data transfer functions. For UNIX-domain Sockets, the By default, a STREAM pipe provides only a single chan-
sendmsg andrecvmsg functions also provide the nel of data between its two endpoints. Therefore, if mul-
ability to pass “access rights” (such as open file handles) tiple senders write to the pipe all the messages are placed
between arbitrary processes on the same host machineinto the same communication channel. This is often too re-
strictive since multiplexing data from multiple clients over
Note that these interfaces also can be used for other types o single channel must be programmed manually. For exam-
/O, such as files and terminals. ple, each message must include an identifier that enables the
Options management: The Socket interface defines the receiver to determine which sender transmitted the message.
following functions that allow users to alter the default se- BY using mounted STREAM pipes and tbennid module
mantics of Socket behavior: [17], applications may dedicate a separate non-multiplexed

. . 1/0 channel between a server and each instance of a client.
e setsockopt and getsockopt — which modify

or query options within different layers in a protocol STREAM pipes andonnld work as follows. The server
stack. Options include multicasting, broadcasting, and invokes thepipe system call, creating a bi-directional end-
setting/getting the size of send and receive transportpoint of communication. Thiattach system call mounts
buffers; a pipe handle at a designated location in the UNIX file
system. A server application may be created by pushing
¢ the connld STREAM module onto the mounted end of
the STREAM pipe. A client application running on the
same host machine as the server subsequently opens the file-
. .) name associated with the mounted pipe. At this point, the
In'adqmon to the Socket functions dgscnbe above,' COM- connld module ensures that the client and server each re-
munication software may use the following standard library ;e 5 unique /O handle identifying a non-multiplexed, bi-

functions and system calls: directional channel of communication.

e fcntl andioctl —which are UNIX system calls that
enable asynchronous I/O, non-blocking I/0, and urgen
message delivery on Sockets.

e gethostbyname and gethostbyaddr — which
handle various aspects of network addressing such as
mapping host names to IP addresses;

e getservbyname — which identifies services by their
port numbers or humanly-readable names; 3.5 The FIFO Interface

e ntohl, ntohs, htonl, htons — which per-

form network byte-order transformations;) .
UNIX FIFOs (also called named pipes [6]) are a restricted

e select — which performs I/O-based and timer-based {5rm of a STREAM pipe. Unlike STREAM pipes, FIFOs
event demultiplexing on sets of open handles. offer only a uni-directional data channel from one or more
senders to a single receiver. Moreover, messages from dif-
3.3 The TLI Interface ferent senders are all placed into the same communication
, .) .. channel. Therefore, some type of demultiplexing identifier
TLI is an alternative interface for accessing communication must be included explicitly in each message to enable the

protocol stacks. TLI provides basically the same set of Ser- o caiver to determine which sender transmitted the message.
vices that Sockets does. However, it places greater emphasis

on shielding applications from the details of the underlying The STREAMS-based implementation of FIFOs in SVR4

transport provider. [5] discusses TLI in detail. UNIX provides both message and bytestream data delivery
semantics. In contrast, earlier versions of UNIX (such as
3.4 STREAM Pipes SVR3 and SunOS 4.x) only provide bytestream-oriented FI-

FOs. Therefore, unless fixed length messages are always
STREAM pipes are an enhancement to the original UNIX used, each message sent via a FIFO must be distinguished
pipe mechanism. Earlier generation UNIX pipes provided a by some form of byte count or special termination symbol.
single uni-directional stream of bytes from a writer endpoint This allows a receiver to extract messages from the FIFO
to a reader endpoint. STREAM pipes support bi-directional bytestream. FIFOs are described further in [5, 6, 16].

#include <sys/types.h>
#include <sys/socket.h>

const int PORT_NUM = 10000;
int buggy_echo_server (void)

sockaddr s_addr;
int length; // (1) uninitialized variable.
char buf[BUFSIZ];
int s_fd, n_fd;
/I Create a local endpoint of communication.
if (s_fd = socket (PF_UNIX, SOCK_DGRAM, 0) == -1)
return -1;
/I Set up the address information to become a server.
/I (2) forgot to "zero out" structure first...
s_addr.sin_family = AF_INET;
/I (3) used the wrong address family ...
s_addr.sin_port = PORT_NUM;
/I (4) forgot to use htons() on PORT_NUM...
s_addr.sin_addr.s_addr = INADDR_ANY;
if (bind (s_fd, (sockaddr *) &s_addr,
sizeof s_addr) == -1)
perror ("bind"), exit (1);
/I (5) forgot to call listen()

/I Create a new endpoint of communication.
/I (6) doesn't make sense to accept a SOCK_DGRAM!
if (n_fd = accept (s_fd, &s_addr, &length) == -1) {
/I (7) Omitted a crucial set of parens...
int n;
/I (8) doesn't make sense to read from the s_fd!
while ((n = read (s_fd, buf, sizeof buf)) > 0)
/I (9) forgot to check for "short-writes"
write (n_fd, buf, n);
/I Remainder omitted...

Figure 3: Buggy Echo Server

4 Problem: Limitations with Existing
IPC interfaces

Sockets, TLI, STREAM pipes, and FIFOs provide a wide

1. Forgetting to initialize théen parameter taccept
to the size obtruct sockaddr in;

2. Forgetting to initialize all bytes in the Socket address
structure to “0”;

3. Using an address family type that is inconsistent with
the protocol family of the Socket;

4. Neglecting to use thbtons library function to con-
vert port numbers from host byte-order to network byte-
order and vice versa;

5. Omitting thelisten system call when creating a
passive-modSOCKSTREAMsocket;

6. Applying theaccept function on aSOCKDGRAM

Socket;

7. Erroneously omitting a key set of parentheses in an as-
signment expression;

8. Trying to read from a passive-mode Socket that should
only be used to accept connections;

9. Failing to properly detect and handle “short-writes” that
occur due to buffering.

Several of the problems listed above are classic problems
with C. For instance, by omitting the parentheses in the ex-
pression
if (n_fd = accept (s_fd, &s_addr, &length) == -1)

the value oh_fd will always be set to either 0 or 1, depend-
ing on whetheaccept() == -1 .

A deeper problem is that C data structures lack adequate
abstraction. For example, the genestckaddr address
structure forces the use of typecasts to provide a form of in-
heritance for Internet domain and UNIX-domain addresses.
These “subclass” address structuresckaddr _in and
sockaddr _un, respectively, overlay theockaddr “base
class.”

In general, the use of typecasts, combined with the

range of interfaces for accessing local and remote IPC mech-\Ve2akly-typed handle-based Socket interface, makes it very

anisms. These interfaces share several limitations, however.

The following discussion focuses on limitations with the

Socket interface, though most of these limitations apply to

the other network programming interfaces, as well.

High potential for error: In UNIX and Win32, handles

hard for a compiler to detect mistakes at compile-time. In-
stead, error checking is deferred until run-time, which com-
plicates error handling and reduces application robustness.

Complex interface: Sockets provides a single inter-
face that supports multiple protocol families like TCP/IP,
IPX/SPX, ISO OSI, and UNIX-domain Sockets. The

for Sockets, files, pipes, terminals, and other devices areSocket interface contains many functions to support differ-
identified using “weakly-typed” integer or pointer values. entcommunication rolegsuch as active vs. passive connec-
This weak type checking enables subtle errors to occur attion establishment)gommunication optimizationsuch as
run-time. For example, the Socket interface cannot enforcewritev that sends multiple buffers in a single system call),
the correct use of Socket functions for different communica- andoptionsfor infrequently used operations such as broad-
tion roles (such as active vs. passive connection establish-casting, multicasting, asynchronous 1/0, and urgent data de-
ment or datagram vs. stream communication). Moreover, alivery.
compiler cannot detect or prevent erroneous use of handles Although Sockets combine this functionality into a com-
since handles are weakly typed. Thus, operations may bemon interface, the resulting mechanism is complex and hard
applied incorrectly on handles,g.,invoking a data transfer to master. This complexity stems from the overly broad
operation on a handle set up for establishing connections. andone-dimensional desigof the Socket interface. For in-
Figure 3 depicts the following subtle and all-too-common stance, all the functions appear at a single level of abstrac-
bugs that occur when using the Socket interface: tion, as shown in Figure 2. This design increases the amount

of effort required to learn and use Sockets correctly. Thus, 5 Solution: the IPC SAP C++ Wrap-
programmers must understand the entire Socket interface,
)) pers
even if they only use part of it.
If Sockets are examined carefully, however, it becomes

clear that the interface may be decomposed into the follow- 5.1 Overview

ing three clusters of functionality: IPC SAP encapsulates common handle-based IPC inter-
1. Type of communication servieei.e., stream vs. data- faces such as Sockets, TLI, STREAM pipes, and FIFOs. As
gram vs. connected datagram; shown in Figure 5IPC SAP is designed as a forest of class

2. Communication role-i.e.,active vs. passive (clients are
typically active, whereas servers are typically passive);

3. Communication domaini.e.,local vs. local/remote. W

IPC_SAP \
Figure 4 clusters the related Socket functions according to /7/,\\//:\\

these criteria.

SOCK_SAP TLI_SAP SPIPE_SAP FIFO_SAP
< COMMUNICATION DOMAIN /—_T_~—\ /——I———- /—_I_,—\ /—_1/___—\
O | | / /
6‘«)0"\ S‘\fﬁ LOCAL LOCAL/REMOTE _/ SOCKET / y TR::‘S(I;(;RTZ // STREAM PIPJ / NAMED PIPl‘)
Co$ %0\'&) ?P‘S ¢ AP _INTERFACE AP, A &3 A &3
»‘7‘«&

S | o __L___1___ Figure 5: IPC SAP Class Category Relationships
> | -~ socket(PF_UNX) _ “socket(PF_| INET)
Ef} EE ;/,/, ‘bind() recvfrom() 1/7 __bind() recvfrom()
> 88| 7 socket®F UNIX) | - “socket(PF_INET) categories that includ&0OCK SARwhich encapsulates the
1S Phd bind() sendto() . bind() sendto() . . .
= ' ‘ ‘ ‘ Socketinterface)[LI SAP (which encapsulatesthe TLIin-
S 8 | socket®F_UNIX) | .~ socket®FINET) |~ _~| terface) SPIPE SAP(which encapsulates the UNIX SVR4
z E L bind() connect() recv()‘ < _bind() connect() recv() . . .
2 ;3 Mkit(l:FiU;J o | JJk—t(—PF— INET) STREAM pipe interface), anBIFO SAP (which encapsu-

socket socket .
= : - /bmd() connect() send() | .- bmd() connect() send() lates the UNIX FIFO interface).
g S8 e e L e e T _] L __
° |~ accept(PF_ UNIXO) | " aceept(PE_INET) Each class category is organized as an inheritance hierar-

- | d 1 d()/1 . . .

S o2 _listenQsendQirenng, 7 _ listen0 sengofreev0 | chy. Every subclass provides a well-defined interface to a
= socket(PF_UNIX) bmd() socket(PF INET) bind() .. .
& & |~ connmect(send(/recv() connect() send()/recv() subset of existing IPC mechanisms. Together, the subclasses
z . 3

within a hierarchy comprise the overall functionality of a
. i . particular communication abstraction, such as the Internet-
Figure 4: Socket Dimensions domain or UNIX-domain protocol families. This section de-
scribes the design goals BFC SAP, outlines its class cat-
Since the interface is one-dimensional, however, this naturalegories, and discusses the principles that underly its OO de-
clustering is obscured. Section 6 illustrates how this classi- sign.
fication can be restructured into a hierarchy of classes that

simplify the Socket interface and enhance the type-safety of .
communication software. 5.2 IPC SAP Design Goals

Non-uniform: Another problem with the Socket interface IPC SAP is designed to improve theorrectnessease of

is that its several dozen functions lack a uniform naming con- learningandease of usgortability, andreusabilityof com-

vention. Non-uniform naming makes it hard to determine the munication software, while maintaining a high level of per-

scope of the Socket interface. For example, it is not immedi- formance and functionality. This section discusses H@

ately obvious thasocket , bind ,accept , andconnect SAPachieves these goals.

are related. Other network programming interfaces solve this

problem by prepe_nding common prefix before eac.h fu_nction. 5.2.1 Improve Correctness

For example, 4 _ is prepended before each function in the

TLI library. Several of the problems with Sockets are related to its weak
However, the TLI interface also contains operations with typecheckingIlPC SAP improves the correctness of appli-

overly complex semantics. For example, unlike the Socket cation networking code by permitting only “type-safe” op-

interface, the TLI option handling interface is not speci- erations on instances of its classes. To enforce type-safety,

fied in a standard manner. This makes it hard to write IPC SAP ensures all of its objects are properly initialized

portable applications that access standard TCP/IP optionsvia constructors. In addition, only well-defined operations

Likewise, subtle application-level code is necessary to han-are permitted ohPC SAP objects.

dle the non-intuitive, error-prone behaviortafisten and IPC SAP is designed to prevent accidental violations of

t _accept inaconcurrent server withgen > 1[5]. type-safety. For example, components in 8@CK SAP

class category prevent the accidental use of connection-Utilizes traits to convey “metaclass” information: For
oriented operations on datagram objects. Therefore, it is im-instance, everyPC SAP class contains a uniform set of
possible to invoke thaccept method on a datagram object, traits. These traits argypedef 'd to designate the ad-
recv orsend data on a connector or acceptor factory ob- dress classe(g., ACEINET _Addr) and/or stream class
ject, or invoke asendto operation on a connection-oriented (e.g.,ACETLI _Stream) associated with eaciPC SAP
object. type, as follows:

SincelPC SAP classes are strongly typed, any attempts
to perform invalid operations are rejected at compile-time
rather than at run-time. This point is illustrated in the re- pubiic:
visedSOCK SARersion ofbuggy _echo _server shown /I Traits
A .) . typedef ACE_INET_Addr PEER_ADDR;
in Figure 14. This example fixes all the problems with Sock- typedef ACE_SOCK_Stream PEER_STREAM:
ets identified in Figure 3. \ ..

5.2.2 Enhance Ease of Learning and Ease of Use ?lass ACE_TLI_Connector : public ACE_SOCK

Simplifying the use of common IPC operations is a goal re- p“f’/"cT:raits

lated to correctness. By providing simpler interfaces, devel- typedef ACE_INET_Addr PEER_ADDR;

opers are able to concentrate on writing applications, instead typedef ACE_TLI_Stream PEER_STREAM;

of wrestling with low-level networking code. In general,

IPC SAP simplifies its network programming interfaces as

follows: As shown in Section 7, the use of traits in conjunction
Provides auxiliary classes that shield applications from ~ With C++ parameterized types supports a powerful design
error-prone details: For instancelPC SAP contains the ~ Paradigm known as “generic programming” [18].

Addr class hierarchy shown in Figure'6.This hierarchy

class ACE_SOCK_Connector

5.2.3 Increase Reusability

\/\/\,\ Inheritance-based hierarchical decomposition is usé&eln
< Addr / SAPto increase the amount of common code shared by the
8\/__) various IPC mechanisms. For instant®C SAP provides
a C++ interface to lower-level OS device control system calls
PP o like fcntl andioctl . Inheritance enhances reuse within
A~) INET”) 4 I}/NDE/\’ thelPC SAP implementation by sharing code between dif-
<‘ SPIPE)) Addr / ’\) Addr /[ferent subclasses. .
! Aiigr 4 ST N = For example, théPC SAP root base class provides stan-
- dard methods and data that is shared by the other derived

Figure 6: ThdPC SAP Address Class Hierarchy classes. These shared components provide a handle and its

relatedset/get methods. In addition, methods are pro-
4jided to enable and disable asynchronous I/O, non-blocking
I/0, and urgent message delivery on the handle.

supports several diverse network addressing formats via
type-secure C++ interface. Thaldr hierarchy eliminates
several common programming errors associated with using
the C-basedtruct sockaddr data structures directly.
For example, it is no longer possible to forget to zero-out a 9-2-4 Portability

sockaddr addressing structure. Several C++ features help to enhatie€ SAP portability.

Combines several operations to form a single operation: ~ For examplelPC SAP provides a platform-independentin-
For instance, theACESOCKAcceptor is a factory for terface that improves communication software portability by
passive connection establishment. Its constructor performsusing C++ templates. As illustrated in Figure 7, a subset of

the various Socket system calls (suchsasket , bind , the SOCK SARandTLI SAP classes offer the same OO
andlisten) required to create a passive-mode server end- interface. Each platform may possess a different underlying
point; interface for local and remote network programmiegy(,

Sockets vs. TLI). However, it is possible to write appli-
)) . cations that can be parameterized transparently with either
ment values: For instance, the addressing parameters to . o A
) S class. This enhances application portability across OS plat-
accept are frequently NULL pointers. To simplify pro-
. . forms that may not support both Sockets and TLI.
gramming, these values are given as C++ default parame- :
) B The use of classes (as opposed to stand-alone functions)
ters inSOCKAcceptor::accept , So that programmers hel impli K ina by allowi i
ide thern explicitly. elps to simp ify network programming by allowing applica-
ITo reduce clutter, th&CE. prefix has beén omitted from all ACEEC tions to be parameterized by the type of IPC mechanism they
SAPclass names shown in the figures. require. As discussed in Section 8, parameterization helps to

Supplies default parameters for typical method argu-

ing C++ wrappers to encapsulate the Socket interface are:

ANAAMCAIORG] || AHAUCNIORp) || AWHUEAIORE ¢ Enhanced typesafetySOCK SARletects many subtle
application typesystem violations at compile-time.

e Portability — SOCK SARrovides a portable platform-

COMMON INTERFACE
(PARAMETERIZED TYPES)

independent network programming interface.
SOCK_SAP TLI_SAP e Ease of use- SOCK SARyreatly reduces the amount
SOCKET SystEmM V USER of application code and development effort expended
API TLI API SPACE on lower-level network programming details.

¢ Efficient— SOCK SARnhances the software qualities

Dz KERNEL listed above without sacrificing performance [1].
PROTOCOL MECHANISMS SPACE

(Tce/ip, OSI, ETC.)

TheSOCK SARIlass category provides applications with
an OO interface to the Internet-domain and UNIX-domain
protocol families [6]. SOCK SAPFconsists of~12 C++
classes. The general structureS®§CK SARorresponds to
the taxonomy ofommunication servicesonnection roles
andcommunication domairghown in Figure 8. Itis instruc-

NETWORK
INTERFACE Y
Figure 7: Usmg C++ Templates to Enhance Portability

improve portability among platforms that support different
network programming interfaces (such as Sockets or TLI).

COMMUNICATION DOMAIN

5.2.5 Performance @C‘\oé 5 LOCAL LOCAL/REMOTE
. -)
To encourage developers to substitft€ SAP for existing © @0‘; |3
interfaces, it is designed to operate efficiently. The follow- p.C“V
ing techniques help improve performance without sacrificing 5 ‘ ‘ ‘ ‘
clarity and modularity: E Eé L -7 LSOCK Dgram | _ - SOCK_Dgram
. - B . w < T T T T T - . QROCK Doram - T

Use inline functions: ManyIPC SAP methods are spec- z S8 -7 Lsock pgram | - Socﬁoggaggrggst
ified as C++ inline functions. This eliminates the extra run- z = : | ~_SOCK Dgram Meast
. . L. . Q | e
time overhead of calhngPC SAP methodg. Inlining is a g gé - LSOCK Dgram |~ SOCK_Dgram
reasonable approach since each method is very short (aver- g 8% e m -] —m e -
aging approximately 3 lines per method). z §§ 7 LSOCK CODgram| -~ SOCK_CODgram

. . . . s} ‘ “1SOCK Accentor T COCK Aot T T r— "
Avoid virtual functions: Virtual functions are not used E R ff;@i{is‘i;’;nﬁi_ - 7%’&&’;2;’:;,3{ |
in theIPC SAP inheritance hierarchy. This improves per- g é -7 LOCK Connector | _ - “SOCK_Connector
formance since (1) it eliminates indiregiable function z - LSOCK Stream | - SOCK_Stream

pointer dispatching and (2) it facilitates the direct inlining of

certain short, frequently-accessed methods (such as sendingigure 8: Taxonomy of SOCK SAP Classes and Communi-
and receiving user data). cation Dimensions

. . . tive to compare Figure 4 with Figure 8. The components

6 The ObJeCt'O“ented DeS|gn of IPC in Figure 8 are more concise since they use C++ wrappers

SAP to encapsulate the behavior of multiple Socket mechanisms

within classes related by inheritance.

This section describes the OO design of the C++ class cat- Each class irSOCK SAPRprovides an abstract interface
egories that comprise IPC SAP, with particular emphasis for a subset of mechanisms that comprise the overall class
on the design of th&OCK SARC++ wrapper for Sock- ~ category. The functionality of various types of Internet-
ets. SOCK SAFhas been ported to many UNIX platforms, domain and UNIX-domain Sockets is achieved by inherit-
as well as to the WinSock network programming interface. ing mechanisms from the appropriate classes described be-
Readers who are not interested in this level of detail may low. These classes and their relationships are illustrated via
want to skip to Section 8, which discusses the general prin-Booch notation [19] in Figure 3.
ciples underlying the design of ttROCK SARvrappers. Applications access the functionality of the underlying
Internet-domain or UNIX-domain Socket types by inherit-
ing or instantiating the appropriaOCK SAPRsubclasses

6.1 Overview of SOCK SAP
. L . 2Dashed clouds indicate classes and directed edges indicate inheritance
SOCK SARs designed to overcome the limitations with relationships between these classeg, ACESOCKStream inherits from

Sockets described in Section 4. The primary benefits of us-ACESOCK

/7 IPC (/ (
SOCK
\._sap_) /\\ “/\\
_ s~ - =N s~
—_ — N~ — —

¢ \T\sf/ ——7\ > b < b B) NI h)
J SOCK) (\’ SOCK /‘) ¢ SOCK / socK || ¢ sockK /) SOCK
. Dgram () Dgram \ \/CODgram (\ < Stream (/ \/ Connector (\/ Acceptor (\

) Becast) N ——7 \Y_d/ < \ N _/\ N Y

N == - -~ —— 7 —_———— —_— T

oS ST CTO | | T <“V’\i\ L

) SOCK) / \, J \) \l J \] J

Dgram /’ { LSOCK | " LSOCK - LSOCK o CLSOCK) ¢ LSoCK

\ \ N\ Str \Connector ((

) Mecast \‘ y Dgram \)\ \/CODgram (/ 1 eam (\)) Acceptor |

S i \ - — _ ~d N - R \ -~ o N - — Vi N _~ o —— J

GROUP DATAGRAM d _\\J W\\\ STREAM CONNECTION
COMM COMM N /] COMM ESTABLISHMENT
/ LSOCK b
N -

Figure 9: TheSOCK SARClass Categories

shown in Figure 9. TheACESOCK* subclasses encap- ACELSOCK?*classes use UNIX pathnames as addresses and
sulate Internet-domain functionality and tA€ ELSOCK* allow only intra-machine IPC. ThACESOCK?*classes, on
subclasses encapsulate UNIX-domain functionality, as de-the other hand, use Internet Protocol (IP) addresses and port
scribed below. numbers and allow both intra- and inter-machine IPC.

6.1.1 Base Classes 6.1.2 Connection Establishment

ThelPC SAP, ACESOCKandACELSOCKelasses anchor communication software is typified by asymmetric connec-

the inheritance hierarchy and enable subsequent derivationion roles between clients and servers. In general, servers
and code sharing. Objects of these classes cannot be instantjjsien passivelyfor clients to initiate connectionactively

ated since their constructors are declared irptiogected [20]. The structure of passive/active connection establish-
section of the class definition. ment and data transfer relationships are captured by the fol-
IPC SAP: This class is the root of thi"C SAP hierar- lowing connection-orienteBOCK SARlasses:

chy of C++ wrappers for interprocess communication mech-
anisms. It provides mechanisms common tolR SAP
components,i.e, SOCK SAPTLI SAP, SPIPE SAP,
andFIFO SAP. For instance, it provides methods that set
a handle into non-blocking mode or enable asynchronous
signal-driven I/O.

ACE _SOCK_Acceptor
and ACE_LSOCK _Acceptor: These classes are facto-
ries [21] that passively establish new endpoints of com-
munication in response to active connection requests. The
'"ACESOCKAcceptor andACELSOCKAcceptor pro-
duceACESOCKStream andACELSOCKStream con-
SOCK: This class is the root of theOCK SAmierarchy. nection endpoint objects, respectively.
It provides mechanisms common to all other classes, such as
opening and closing local endpoints of communication and ACE-SOCK_Connector and ACELSOCK_Connector:
handling options (like selecting Socket queue sizes and en-These classes are factories that actively establish new
abling group communication). endpoints of communication. These classes establish
))] connections with remote endpoints and produce the ap-
LSOCK: This class provides mechanisms that allow ap- propriate *Stream object when a connection is estab-
plications to send and receive open file handles between unyished. A connection may be initiated either synchronously
related processes on the local host machine (hence the prefig, asynchronously. TheACESOCKConnector and

'L). Note that System V and BSD UNIX both support this Acg| SOCKConnector factories produce
feature, though Windows NT does not. Other classes inherit AcE SOCKStream andACELSOCKStream connection
from ACELSOCKto obtain this functionality. endpoint objects, respectively.

SOCK SARIistinguishes between tHeCELSOCK*and
ACESOCK?* classes on the basis of network address for- Note that the’Acceptor andConnector classes pro-
mats and communication semantics. In particular, the vide no methods for sending or receiving data. Instead, they

are factories that produce th&tream data transfer ob- datagrams between processes on the same host. The
jects described below. The use of strongly-typed factory in- ACESOCKDgram class, on the other hand, may exchange
terfaces detects and prevents accidental misuse of local andlatagrams between processes on local and/or remote hosts.

non-locaI*Stream objects at compile-time. In cqntrast, ACE_SOCK_CODgram and ACE_LSOCK_CODgram:

the Soc_:ket interface can only detect these type mlsmatchesl- hese classes provide a “connected-datagram” mechanism.

atrun-time. Unlike the connectionless classes described above, these
classes allow theend andrecv operations to omit the

6.1.3 Stream Communication address of the service when exchanging datagrams. Note

Althouah establishi i . distinction b that the connected-datagram mechanism is only a syntactic
ough establishing conneclions requires a aistinclion be- ., niance since there are no additional semantics associ-

tyveen active and passive roles,. once a connectlor! IS eStabéted with the data transfer.€., datagram delivery remains
lished data may be exchanged in any order according to the

; unreliable). ACESOCKCODgram inherits mechanisms
protocol used py the endpomtSOCK SARsolates the data from the ACESOCKbase class. ACELSOCKCODgram
transfer behavior in the following classes:

inherits mechanisms from bothCESOCKCODgramand
ACE _SOCK_Stream and ACE_LSOCK _Stream: These ACELSOCKwhich provides the ability to pass file handles).
classes are created by th&cceptor or *Connector

factories described above. ThBtream classes provide 6.1.5 Group Communication

mechanisms for transferring data between two processes. o))
ACELSOCKStream objects exchange data between pro- Standard TCP and UDP communication is point-to-point.

cesses on the same host machiR€E SOCKStream ob- However, some applications benefit from more flexible
jects exchange data between processes that can reside on diflelivery mechanisms that provide group communication.
ferent host machines. Therefore, the following classes encapsulate the multicast

The overloadedend andrecv *Stream methods pro- anq broadcast protocols provided by the Internet protocol
vide standard UNIXvrite andread semantics. Thus, a SUlte:
send orrecv may write or read less, respectively, than the ACE_SOCK_Dgram_Mcast: This class provides mecha-
requested number of bytes. These “short-writes” and “short- nisms for multicasting UDP datagrams to processes running
reads” occur due to buffering in the OS and flow control in on local and/or remote hosts attached to local subnets. The
the transport protocol. To reduce programming effort, the interface for this class supports the multicast of datagrams to
the *Stream classes provideend _n andrecv _n meth- a particular multicast group. This class shields the end-user
ods that allow transmission and reception of exaetlyytes. from the low-level details required to utilize multicasting ef-
“Scatter-read” and “gather-write” methods are also provided fectively.
to efficiently send and receive multiple buffers of data simul-

ACE_SOCK_Dgram Bcast: This class provides mecha-
taneously.

nisms for broadcasting UDP datagrams to processes running
o on local and/or remote hosts attached to local subnets. The
6.1.4 Datagram Communication interface for this class supports the broadcast of datagrams

This paper focuses primarily on connection-oriented streamto (1) all network interfaces connected to the host machine
pap P Y or (2) a particular network interface. This class shields the

communication. However, the Socket interface also provides . . -
connectionless service that uses the IP and UDP protocols inend-.user f“’”? the low-level details required to utilize broad-
the Internet protocol suite. IP and UDP are unreliable data- casting effectively.
gram services that do not guarantee a particular message will The ACESOCKDgram_Bcast class is used below to
arrive at its destination. Connectionless service is used bybroadcast a message to all servers listening on a designated
applications (such asvho daemons [6]) that can tolerate port number in a LAN subnet:
some degree of loss. In addition, IP and UDP provide a foun-
dation for higher-layer reliable protocols like TCP and Sun "t .
RPC. Enaln (int argc, char *argvl])

The SOCK SAPSocket wrappers encapsulate Socket = AcE_sOCK_Dgram_Bcast b_sap (ACE_Addr::sap_any);
datagram communication with the following classes: char *msg;

ACE_SOCK_Dgram and ACE_LSOCK Dgram: These u_short b_port,
classes provide mechanisms for exchanging datagrams be- msg = argc > 1 ? argv[l] : "hello world\n";
tween processes running on local and/or remote hosts. b_port = argc > 2 ? atoi (argv[2]) : 12345;
Unlike the connected-datagram classes described below,
each send and recv operation must provide the ad- v
dress of the service with every datagram sent or received b_port) == -1)

) . - : perror ("can’t send broadcast");
ACELSOCKDgram inherits all the operations of both return O:
ACESOCKDgram and ACELSOCK It only exchanges }

if (b_sap.send (msg, strlen (msg),

10

It is instructive to compare this concise example with the ging facility described in [22]. In the code below, a subclass

dozens of lines of C source code required to implement derived fromEvent Handler is parameterized by a par-

broadcasting using the Socket interface directly. ticular type of network programming interface and its corre-
sponding protocol address class:

6.2 Network Addressin
9 /I Logging_Handler header file.

Designing an efficient, general-purpose network addressingtemplate <class PEER_STREAM>
interface is hard. The difficulty stems from trying to repre- ¢lass Logging_Handler : public Event_Handler
sent different network address formats with a space efficient

. . . . public:
and uniform interface. Different address formats store di- P Logging_Handler (void);
verse types of information represented with various sizes. virtual “Logging_Handler (void);
For example, an Internet-domain service (suchitps _ _ _
or telnet) is identified using two fields: (1) a four-byte virtual int handle_close (int);

virtual int handle_input (int);

IP address (which uniquely identifies the remote host ma- virtual int get_handle (void) const

chine throughout the Internet) and (2) a two-byte port num-
ber (which is used to demultiplex incoming protocol data return this->xport_sap.get_handle ();
units to the appropriate client or server process on the re- }
mote host machine). In contrast, UNIX-domain Sockets ren- ected
H H rotectea:
glezvous via UNIX pathnames (which may be up to 108 bytes P PEER STREAM xport_sap:
in length and are meaningful only on a single local host ma- Y
chine). ’

The existingsockaddr -based network addressing struc-
tures provided by the Socket interface is cumbersome and
error-prone. It requires developers to explicitly initialize all
the bytes in the address structure to 0 and to use explicit
casts. In contrast, tfeOCK SARddressing classes shown
in Figure 6 contain mechanisms for manipulating network
addresses. . ,

_ The constructor; for t.htf_\ler base class ensure that all @Le%ﬂni%élgaiﬁiifrigrg KFE>EETI§|22_STRE AM:
fields are automatically initialized correctly. Moreover, the 4gjse

different sizes, formats, and functionality that exist between typedef ACE_TLI_Stream PEER_STREAM;
different address families are encapsulated in the derived ad4/ Logging application.

dress subclasses. This makes it easier to extend the networkendif // MT_SAFE_SOCKETS.

addressing scheme to encompass new communication do- .)
class Logging_Handler :

Depending on certain properties of the underlying OS plat-
form (such as whether it is BSD-based SunOS 4.x or System
V-based SunOS 5.x), the logging application may instantiate
the Client Handler class to use eitheBOCK SAPRr

TLI SAP, as shown below:

mains._ For example, theNIX Addr subclass is associ- public Logging Handler<PEER_STREAM>
ated with theACELSOCK* classes, thACEINET _Addr {
subclass is associated with tAE ESOCK*andACETLI* ..

classes, and th8PIPE Addr subclass is associated with }
the STREAM pipe wrappers iBPIPE SAP.
The increased flexibility offered by templates is useful

6.3 TLI SAP when developing portable applications that run on multiple

) OS platforms. For instance, the ability to parameterize ap-
The TLI SAP class category provides a C++ interface to plications by network programming interface is necessary
the System V Transport Layer Interface (TLI). TH&l across variants of SunOS platforms. In particular, the Socket
SAPinheritance hierarchy for TLI is almost identical to the implementation in SunOS 5.2 was not thread-safe and the
SOCK SAPRC++ wrapper for Sockets. The primary dif- TLIimplementationin SunOS 4.x contained a number of se-
ference is that TLI and’LI SAP do not define an inter- rious defects.
face to the UNIX-domain protocol family. By combining TLI SAP also shields applications from many peculiari-
C++ features (such as default parameter values and temties of the TLI interface. For example, thecept method
plates) together with thérdwr (theread/write com- in the ACETLI _Acceptor class encapsulates the subtle
patibility STREAMS module), it becomes relatively straight- application-level code required to handle the non-intuitive,
forward to develop applications that may be parameterized aterror-prone behavior df_listen andt _accept inacon-
compile-time to operate correctly over either a Socket or TLI current server with glen > 1 [5]. Theaccept method
network programming interface. passively establishes client connection requests. Through the

The following code illustrates how C++ templates may be use of C++ default parameter values, the standard method for
applied to parameterize the IPC mechanisms used by an apealling theaccept method is syntactically equivalent for
plication. This code was extracted from the distributed log- bothTLI SAP -based anéOCK SAMbased applications.

11

6.4 SPIPE SAP and FIFO SAP #define PORT_NUM 10000

The SPIPE SAP class category provides a C++ wrapper "a¢fine TIMEOUT 5

interface for mounted STREAM pipes amdnnld [17]. I* Socket client. */

TheSPIPE SAPinheritance hierarchy mirrors the one used |

for SOCK SAPRand TLI SAP. It offers functionality that ~ /0'¢ Send_dat@ (const char hostf], u_short port_num)

is similar to theSOCK SAP ACESOCK* classes (which struct sockaddr_in peer_addr;

themselves encapsulate UNIX-domain Sockets). However, struct hostent *hp;

SPIPE SAP is more flexible than theACELSOCK* in- o o ook ¢ bytes,

terface since it enables STREAM modules to be “pushed” B B B

and “popped” to and fronSPIPE SAP endpoints, respec- /* Create a local endpoint of communication */

tively. SPIPE SAP also supports bi-directional delivery of s_sd = socket (PF_INET, SOCK_STREAM, 0);

bytestream and prioritized message data between processes /+ Set s_sd to non-blocking mode. */

and/or threads executing within the same host machine [16]. n = fentl (s_sd, F_GETFL, 0); _
The FIFO SAP class category encapsulates the UNIX fentl (s_sd, F_SETFL, n | O_NONBLOCK):

FIFO mechanism. /* Determine IP address of the server */
hp = gethostbyname (host);

/* Set up address information to contact server */

7 PrOgramming Wlth SOCK SAP C++ memset ((void *) &peer_addr, 0, sizeof peer_addr);
peer_addr.sin_family = AF_INET,;
Wrappers peer_addr.sin_port = port_num;

memcpy (&peer_addr.sin_addr,

This section illustrates the ACEOCK SARC++ wrappers hp->h_addr, hp->h_length);

by using them to develop a client/server streaming applica- /* Establish non-blocking connection server. */

tion. This application is a simplified version of tiep if (connect (S—Sdsliz(sgf“de:fc:gggr_*2 &Be?r_addfv
program qlescriped in [1]. For comparison, this app'lication if (ermo == ElNPRO%RE—SS) {
is also written with Sockets. Most of the error checking has struct timeval tv = {TIMEOUT, 0};
been omitted in these examples to keep them short. Natu- ‘;:dﬁsgtEé%s?;} dWSra:)O!S?
rally, robust programs should check the return values of li- FD_ZERO (&wr_sds):
brary and system calls. FD_SET (s_sd, &wr_sds);
Figures 10 and 11 present a client/server program writ- FD_SET (s_sd, &rd_sds);
ten in C that uses Internet-domain Sockets artkct /* Wait up to TIMEOUT seconds to connect. */
to implement the stream application. The server shown in if (select (s_sd + 1, &rd_sds, &wr_sds,
Figure 11 creates a passive-mode listener Socket and waits .0 &y <=0
. . perror (“connection timedout"), exit (1);
for. clients to connect toit. Once conn_ected, the_server re- /I Recheck if connection is established.
ceives the data transmitted from the client and displays the if (connect (s_sd,
. . . *
data on its standard output stream. The client-side shown S;:;;t ;gg:‘a:(?ér)):fpier—add"
in Figure 10 establishes a TCP connection with the server && ermo = EISCONN)
and transmits its standard input stream across the connec- perror ("connect failed"), exit (1);
tion. The client uses non-blocking connections to limit the) }
amount of time it waits for a connection to be accepted or
refused. /* Send data to server (correctly handles

Most of the error checking for return values has been omit- short writes” due to flow control) */

ted to save space. However, it is instructive to note all the while ((r_bytes = read (0, buf, sizeof buf)) > 0)
Socket initialization, network addressing, and flow control for (w_bytes = O; w_bytes < r_bytes; w_bytes += n)
details that must be programmed explicitly to make even this n = write (S—Srdby?g; ¥ \)’v"—gytteess)

simple example work correctly. Moreover, the code in Fig- - —Pyies)

ures 10 and 11 is not portable to platforms that do not support /* Close down the connection. */

both Sockets anselect .) close (s_sd);
Figures 12 and 13 useOCK SARo reimplement the C
versions of the client/server programs. T3@CK SARro- int main (int argc, char *argv[])
grams implement Fhe same functionality as those presented .. «ost = argc > 1 2 argv[1] : “ics.uci.edu’;
in Figure 10 and Figure 11. TIHROCK SARC++ programs u_short port_num =
exhibit the following benefits compared with the Socket- htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

based C |mplementat|on: /* Send data to the server. */

. . send_data (host, port_num);
Increased clarity: e.g.,network addressing and hostloca- ety o (port_num)

tion is handled by thé&ddr class shown in Figure 6, which '}
Figure 10: Socket-based Client Example

12

#define PORT_NUM 10000

/* Socket server. */

void recv_data (u_short port_num)

{

}

struct sockaddr_in s_addr;
int s_sd;

/* Create a local endpoint of communication */
s_sd = socket (PF_INET, SOCK_STREAM, 0);

/* Set up the address information for a server */
memset ((void *) &s_addr, 0, sizeof s_addr);
s_addr.sin_family = AF_INET;

s_addr.sin_port = port_num;
s_addr.sin_addr.s_addr = INADDR_ANY;

/* Associate address with endpoint */
bind (s_sd, (struct sockaddr *) &s_addr,
sizeof s_addr);

/* Make endpoint listen for service requests */
listen (s_sd, 5);

I* Performs the iterative server activities */

for (i) {
char buf[BUFSIZ];
int r_bytes, n_sd;
struct sockaddr_in peer_addr;
int peer_addr_len = sizeof peer_addr;
struct hostent *hp;

/* Create a new endpoint of communication */
while ((n_sd = accept (s_sd, &peer_addr,
&peer_addr_len)) == -1
&& ermo == EINTR)
continue;

hp = gethostbyaddr (&peer_addr.sin_addr,
peer_addr_len, AF_INET);

printf (“client %s\n", hp->h_name);
/* Read data from client (terminate on error) */

while ((r_bytes = read (n_sd, buf, sizeof buf)) > 0)
write (1, buf, r_bytes);

/* Close the new endpoint
(listening endpoint remains open) */
close (n_sd);

}
I* NOTREACHED */

int main (int argc, char *argv[])

{

}

u_short port_num =
htons (argc > 1 ? atoi (argv[l]) : PORT_NUM);

/I Receive data from clients.

recv_data (port_num);
return O;

Figure 11: Socket-based Server Example

13

static const int PORT_NUM 10000;

static const int TIMEOUT 5;
/I SOCK_SAP Client.

template <class CONNECTOR>
void send_data (CONNECTOR::PEER_ADDR peer_addr)
{
/I Data transfer object.
CONNECTOR::PEER_STREAM peer_stream;

/I Establish connection without blocking.
CONNECTOR connector
(peer_stream, peer_addr, ACE_NONBLOCK);

if (peer_stream.get_handle () == -1) {
/I If non-blocking connection is in progress,
/I wait up to TIMEOUT seconds to complete.
Time_Value timeout (TIMEOUT);

if (errno = EWOULDBLOCK ||
connector.complete
(peer_stream, peer_addr, &timeout) == -1)
perror (“"connector”), exit (1);

/I Send data to server (send_n() handles
/I "short writes" correctly).

char buf[BUFSIZ];

for (int r_bytes;
(r_bytes = read (0, buf, sizeof buf)) > 0;)
peer_stream.send_n (buf, r_bytes);

/I Explicitly close the connection.
peer_stream.close ();

}

int main (int argc, char *argv[])
{
char *host = argc > 1 ? argv[l] : "ics.uci.edu”;
u_short port_num =
htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

/I Address of the server.
ACE_INET_Addr s_addr (port_num, host)

/I Use SOCK SAP wrappers on client's side.

send_data <ACE_SOCK_Connector> (s_addr);
return O;

Figure 12: SOCK SAP-based Client Example

static const int PORT_NUM = 10000;

/I SOCK_SAP Server.

template <class ACCEPTOR>
void recv_data (ACCEPTOR::PEER_ADDR s_addr)

{

}

/I Factory for passive connection establishment.
ACCEPTOR acceptor (s_addr);

/I Data transfer object.
ACCEPTOR::PEER_STREAM peer_stream;

/I Remote peer address.
ACCEPTOR::PEER_ADDR peer_addr;

/I Performs iterative server activities.

for (;;) {
/I Create a new STREAM endpoint
/I (automatically restarted if errno == EINTR).
acceptor.accept (peer_stream, &peer_addr);

printf (“client %s\n", peer_addr.get_host_name ());
/I Read data from client (terminate on error).
char buf[BUFSIZ];

for (int r_bytes = 0;;) {
r_bytes = peer_stream.recv (buf, sizeof buf);
if (r_bytes > 0)
write (1, buf, r_bytes);
else
break;
}

/I Close peer_stream endpoint
/I (acceptor endpoint stays open).
peer_stream.close ();

}
I* NOTREACHED */

int main (int argc, char *argv[])

{

u_short port_num =

argc == 1 ? PORT_NUM : atoi (argv[1]);
/I Port for the server.
ACE_INET_Addr s_addr (port_num);

/I Use Socket wrappers on server’'s side.

recv_data<ACE_SOCK_Acceptor> (s_addr);
return O;

Figure 13: SOCK SAP-based Server Example

hides the subtle and error-prone details that must be pro-
grammed explicitly in Figures 10 and 11. Moreover, the
low-level details of non-blocking connection establishment
are performed by th8OCK Connector factory. In addi-
tion, the use of templataits minimizes the number of type
parameters that must be specified when instantiated the pa-
rameterized functions.

Increased typesafety: e.g., the ACESOCKAcceptor

and ACESOCKConnector connection factories create
ACESOCKStream objects. This prevents the type errors
shown in Figure 3 from occurring at run-time.

Decreased program size: e.g.,a substantial reduction in
the lines of code results from localizing active and passive
connection establishmentin tAMCESOCKAcceptor and
ACESOCKConnector connection factories. In addition,
default values are provided for constructor and method pa-
rameters, which reduces the number of arguments needed
for common usage patterns.

Increased portability: e.g., due to the use of template
traits, switching between Sockets and TLI simply requires
changing

send_data <ACE_TLI_Connector> (s_addr);

in the client to
send_data <ACE_SOCK_Connector> (s_addr);

and
recv_data<ACE_SOCK_Acceptor> (s_addr);

in the server to

recv_data<ACE_TLI_Acceptor> (s_addr);

As shown in Section 8, conditional compilation directives
can be used to further decouple the communication software
from reliance upon a particular type of network program-
ming interface.

8 Socket Wrapper Design Principles

This section describes the following design principles that
are applied throughout tH®OCK SARlass category:

¢ Enforce typesafety at compile-time

¢ Allow controlled violations of typesafety

¢ Simplify for the common case

¢ Replace one-dimensional interfaces with hierarchical
class categories

e Enhance portability with parameterized types

¢ Inline performance critical methods

¢ Define auxiliary classes to hide error-prone details
Although these principles are widely known and widely used

in domains like graphical user interfaces they have been less
widely applied in the communication software domain.

8.1 Enforce Typesafety at Complle_tlme int echo_server (ACE_INET_Addr s_addr)

Several limitations with Sockets discussed in Section 4 stem? Il Initialize the passive mode server.

from the lack of typesafety in its interface. To enforce type- ACE_SOCK_Acceptor acceptor (s_addr);
;afety,SQCK SARensures all |t§ pbjects are proper!y ini- I Data transfer object,

tialized via constructors. In addition, to prevent accidental ~ aAce_sock_sStream peer_stream;

violations of typesafety, only legal operations are permitted _ _

onSOCK SARbjects. This latter point is illustrated in the XCCE"eIr,LtEfR%tjr %cé%rresazd?_bled'

SOCK SAPevision ofecho _server shown in Figure 14. -7 -

This version fixes the problems with Sockets and C identified (f/ Accept a new connection.

in Figure 3. Sinc6&OCK SARlasses are strongly typed, in- It (acceptor.accept (peer—Stg%Z‘Q; addr) = -1) {
valid operations are rejected at compile-time rather than at char buf[BUFSIZ]; B

: g : : for (size_t n;
run-time. For example, it is not possible Fo invaleev or péer_stream.recv (buf, sizeof buf, n) > 0:)
send on aACESOCKAcceptor connection factory since /I Handles "short-writes."
these methods are not part of its interface. Likewise, return if (peer_stream.send n (buf, n) != n)

. /I Remainder omitted.
values are only used to convey success or failure of opera-

tions. This reduces the potential for misuse in assignment}

expressions.
Figure 14:SOCK SARRevision of the Echo Server

8.2 Allow Controlled Violations of Typesafety
. o . o Define parsimonious interfaces: This principle localizes
This principle is exemplified by theget _handle ~and the cost of using a particular abstraction. TR SAP

set _handle methods provided by théPC SAP root . . . L
; interfaces limits the amount of details that application de-
class. These methods extract and assign the underly-

. : - velopers must rememberlPC SAP provides developers
ing handle, respectively. By providinget _handle and ; :

L . with clusters of classes that perform various types of com-
set _handle ,IPC SAP allows applications to circumvent o . . .
; . : T . munication (such as connection-oriented vs. connectionless)
its type-checking mechanisms in situations where applica- . :))
. : . ; and various connection roles (such as active vs. passive).
tions must interface directly with UNIX system calls (such

! To reduce the chance of error, tA& ESOCKAcceptor

asselect) that expect a handle. Another way of stating class onlv permits operations that aoply for broarams pla
this principle is “make it easy to useOCK SARoorrectly, yp P bply for prog play

o . : g ing passive roles and thACESOCKConnector class
hard to use it incorrectly, but notimpossible to use it in ways onlv bermits operations that apolv for proarams plavin
the class designers did not anticipate.” yp P bRy brog piaying

an active role. In addition, sending and receiving open
file handles has a much simpler calling interface using
8.3 Simplify for the Common Case ACESOCKSAP compared with using the highly-general
UNIX sendmsg/recvmsg functions. For example, using

This principle is applied in the following ways in the ACE ACELSOCK*classes to pass Socket handles is very concise:

C++ Socket wrappers:
ACE_LSOCK_Stream stream;

Supply defaglt parameters for common method argu- ACE_LSOCK_Acceptor acceptor (“tmp/foo®):
ments: for instance, theACESOCKConnector con- _
structor has six parameters: /" Accept connection.
acceptor.accept (stream);
ACE_SOCK_Connector Il Pass the Socket handle back to caller.
(ACE_SOCK_Stream &new_stream, stream.send_handle (stream.get_handle ());

const ACE_SOCK_Addr &remote_sap,
ACE_Time_Value *timeout = 0,

const ACE_SOCK_Addr &local_sap = versus the code that is required to implement this using the
] (ACE_SOCK__AddI’ &) Addr::sap_any, Socket interface:
int protocol_family = PF_INET,
int protocol = 0); int n_sd;
int u_sd,;
However, only the first two commonly vary from call to call: SOC';]addfT;]n addr,
u_char a[2];
ACE_SOCK_Stream stream; IoVeC 10V,

msghdr send_msg;

/I Compiler supplies default values.
ACE_SOCK_Connector con (stream,

Il ACE_INET_Addr (port, hosy); memset ((void *) &addr, O, sizeof addr);

addr.sun_family = AF_UNIX;
strcpy (addr.sun_path, "/tmp/foo");

u_sd = socket (PF_UNIX, SOCK_STREAM, 0);

Therefore, to simplify programming, the values are given as _ _
defaults in theACESOCKConnector constructor so that ~ °nd (usd, &addr, S'Zeosftrlae‘:]dr('ﬁfm”a;?omof.'%_ *
programmers need not provide them every time. ’

15

listen (u_sd, 5);

/I Accept connection.
n_sd = accept (u_sd, 0, 0);

/I Sanity check.
a[0] = Oxab; a[l] = Oxcd;

iov.iov_base = (char *) a;
iov.iov_len = sizeof a;

send_msg.msg_iov = &iov;
send_msg.msg_iovlen = 1,
send_msg.msg_name = (char *) 0;
send_msg.msg_namelen = O;
send_msg.msg_accrights = (char *) &n_sd;
send_msg.msg_accrightslen = sizeof n_sd,;

/I Pass the Socket handle back to caller.
sendmsg (n_sd, &send_msg, 0);

Combine multiple operations into a single operation:

template <class ACCEPTOR>
int echo_server (ACCEPTOR::PEER_ADDR s_addr)

/I Initialize the passive mode server.
ACCEPTOR acceptor (s_addr);

/I Data transfer object.
ACCEPTOR::PEER_STREAM peer_stream;

/I Remote address object.
ACCEPTOR::PEER_ADDR peer_addr;

/I Accept a new connection.
if (acceptor.accept (peer_stream,
&peer_addr) = -1) {

char buf[BUFSIZ];
for (size_t n;

peer_stream.recv (buf, sizeof buf,

n) > 0;)
if (peer_stream.send_n (buf, n) != n)
/I Remainder omitted.

Creating a conventional passive-mode Socket requires mul—}

tiple calls:

int s_sd = socket (PF_INET, SOCK_STREAM, 0);
sockaddr_in addr;

memset (&addr, 0, sizeof addr);

addr.sin_family = AF_INET;

addr.sin_port = htons (port);

addr.sin_addr.s_addr = INADDR_ANY;

bind (s_sd, &addr, addr_len);

listen (s_sd);

..

In contrast, theACESOCKAcceptor is a factory for pas-

sive connection establishment. Its constructor performs the

Socket callssocket , bind , andlisten required to cre-
ate a passive-mode listener endpoint. Therefore, application
simply write the following:

ACE_INET_Addr addr (port);
ACE_SOCK_Acceptor acceptor (addr);

to achieve the functionality presented above.

8.4 Replace One-dimensional Interfaces with
Hierarchical Class Categories

S

Figure 15: Template Version of the Echo Server

mechanisms towards the “root” of the inheritance hierar-
chy in thelPC SAP andSOCK SAPase classes. These
mechanisms include operations for opening/closing and set-
ting/retrieving the underlying Socket handles, as well as cer-
tain option management functions that are common to all the
derivedSOCK SARlasses. Subclasses located towards the
“bottom” of the inheritance hierarchy implement specialized
operations that are customized for the type of communica-
tion provided (such as stream vs. datagram communication
or local vs. remote communication). This approach avoids
unnecessary duplication of code since the more specialized
derived classes reuse the more general mechanisms provided
at the root of the inheritance hierarchy.

8.5 Enhance Portability with Parameterized
Types
Wrapping Sockets with C++ classes (rather than stand-alone

C functions) helps to improve portability by allowing the
wholesale replacement of network programming interfaces

This principle involves using hierarchically-related class cat- ;5 parameterized types. Parameterized types decouple ap-
egories to restructure existing one-dimensional Socket i”ter'plications from reliance on specific network programming
faces (shown in Figure 9). The criteria used to structure the yierfaces. Figure 15 illustrates this technique by modifying
SOCK SARlass category involved identifying, Clustering, theecho _server to become a C++ function template. De-
and encapsulatllng related Socket functions to maximize thepending on certain properties of the underlying OS platform
reuse and sharing of class components. (such as whether it implements TLI or Sockets more effi-

Inheritance supports different subsets of functionality for ciently), theecho _server may be instantiated with either
theSOCK SARlass categories. For instance, not all operat- gock SARr TLI SAP classes. as shown below:

ing systems support passing open file handieg Windows

NT). Thus, it is possible to omit thACELSOCKclass (de-

scribed in Section 6.1) from the inheritance hierarchy with-

out affecting the interfaces of other classes inSECK SAP

design typedef ACE_TLI_Acceptor ACCEPTOR;

» . . #endif // USE_SOCKETS.

Inheritance also increases code reuse and improves modu-

larity. Base classes expresinilarities between class cat- const int PORT_NUM = 10000;

egory components and derived classgs expresgliffer- int main (void)

ences For example, thdPC SAP design places shared {

/I Conditionally select IPC mechanism.

#if defined (USE_SOCKETS)

typedef ACE_SOCK_Acceptor ACCEPTOR,;
#else /I USE_TLI

16

" .. via a typesafe C++ interface. Thiddr hierarchy elimi-
nates common programming errors associated with using the
C-based family oktruct sockaddr data structures di-
m _ rectly. For example, the constructor ACEINET _Addr
Q&%Eggﬁg;iggg—ﬁ%%ﬁ ?ad(?ér)(;PORT—NUM)’ automatically zeros-out treockaddr addressing structure
} and converts the port number to network byte order, as fol-

/I Invoke the echo_server with appropriate
/I network programming interfaces. Note the
/I use of template traits for addr class.

lows:

In general, the use of parameterized types is less intrusive
and more extensible than conventional alternatives, such a
implementing multiple versions or littering conditional com-
pilation directives throughout the source code.

For example, th6&OCK SARNdTLI SAP classes of-
fer the same OO interface (depicted in Figure 7). Certain
OS platforms may possess different underlying network pro-
gramming interfaces such as Sockets but not TLI or vice
versa. UsindPC SAP, applications can be written that are
transparently parameterized with either tROCK SARor

class ACE_INET_Addr :

public ACE_Addr

public:

ACE_INET_Addr::ACE_INET_Addr (u_short port,
long ip_addr = 0)

memset (&this->inet_addr_, 0,
sizeof this->inet_addr_);
this->inet_addr_.sin_family = AF_INET;
this->inet_addr_.sin_port = htons (port);
memcpy (&this->inet_addr_.sin_addr,
&ip_addr, sizeof ip_addr);
}

TLI SAP class category. C++ templates support a loose private: o .

form of type conformance that does not constrain an in- ¥ sockaddr_in inet_addr_;

terface to encompassafi potential functionality. Instead,

templates are used to parameterize application code that is

carefully designed to invoke only a subset of methods that 9 Concluding Remarks

are common to the various communication abstractiers,(

open, close ,send,recv ,etc.). IPC SAP provides a family of OO C++ wrappers that en-
The type abstraction provided by templates improves capsulate standard local and remote IPC mechanisms avail-

portability among platforms that support different network able on contemporary operating systems. These encapsu-

programming interfaces (such as Sockets or TLI). For exam-lated interfaces simplify the development of communica-

ple, the parameterizing the network programming interface tion software by making it easier to write correct, com-

turned out to be useful for developing applications across pact, portable, and efficient code. In addition, the wrapper

various SunOS platforms. The Socket implementation in methodology facilitates organizational transition to C++ by

SunOS 5.2 was not thread-safe and the TLI implementation(1) incrementally teaching developers OO design principles

in SunOS 4.x contains a number of serious defects. and (2) leveraging off of an existing code base in languages

other than C++. This paper concludes by describing several

advantages and disadvantages of using C++ to implement

IPC SAP and outlining future papers that explore additional

. uses ofPC SAP.
To encourage developers to replace existing low-level net-
work programming interfaces with C++ wrappers, 8@CK Advantages and Disadvantages of Using C++:The pri-
SAP implementation must operate efficiently. To ensure mary advantages of C++ to develop wrappers include the fol-
this, methods in the critical performance path (such as thelowing:
ACESOCKStream recv andsend methods) are speci-
fied as C++ inline functions to eliminate run-time function
call overhead. Inlining is both time and space efficient since
these methods are very short (approximately 2 or 3 lines per
method). The use of inlining implies that virtual functions
should be used sparingly since most contemporary C++ com-
pilers do not fully optimize away virtual function overhead.

8.6 Inline Performance-critical Methods

e Encapsulate variatior Classes hide differences in ad-
dressing formats, such as Internet vs. UNIX-domain
addressing. In addition, they encapsulate distinct in-
terface behaviors in different classes. For instance, an
ACESOCKAcceptor object’s interface is specially-
tailored for server operations.

e Enhance functional subsettirg Inheritance makes it
easier to define functional subsets. For instance, the

8.7 Define Auxiliary Classes that Hide Error-
prone Programming Details

The C interface to Socket addressing is awkward and error-
prone. It is easy to neglect to zero-ousackaddr _in

or convert port numbers to network byte-order. To shield
applications from these low-level detail®C SAP define

ACELSOCKclass can be omitted on operating systems
that do not support passing of file handles.

¢ Increased portability- Templates enable the parameter-
ization of different IPC mechanisms into applications,
which improves portability across platforms.

One disadvantage of C++ is its lack of a portable na-

the Addr class hierarchy (shown in Figure 6). This hier- tive exception handling. When used properly, C++ excep-
archy supports several diverse network addressing formatstion handling helps to simplify error recovery and improves

17

type-safety. For example, an exception can be thrown if an[10] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design
ACEINET _Addr constructor fails because a remote address and Performance of a CORBA Audio/Video Streaming Ser-
does not correspond to a valid host. Without C++ exception vice,” in submitted to the Hawaiian International Conference
handling, however, it is possible to begin usingR€ SAP on System Sciengekan. 1999' . .

object without initializing it properly. This problem will be ~ [11] A. Gokhale and D. C. Schmidt, "Measuring the Performance

solved over time as the ANSI/ISO C++ exception handling gfrgc(;rgé?ﬁglscsggggg?\;e&v ?ggsﬁgﬂgz'%%egy %“gg_rgi’?m

mechanism becomes available on most OS platforms. ACM, August 1996.

Current Status and Future Topics: IPC SAP is avail- [12] OSI Special Interest Grouplransport Provider Interface
able with the ACE [2] framework. The OS platforms sup- SpecificationDecember 1992.

ported by ACE include Win32 (WinNT 3.5.x, 4.x, Win95, [13] OSI Special Interest Groufata Link Provider Interface
and WIinCE using MSVC++ and Borland C++), most ver- Spec.lflce.ltlonDecember 1992.

sions of UNIX (SunOS 4.x and 5.x; SGI IRIX 5.x and 6.x; [14] D. Ritchie, “A Stream Input-Output SystemAT&T Bell
HP-UX 9.x. 10.x. and 11.x: DEC UNIX 3.x and 4.x. AIX Labs Technical Journalol. 63, pp. 311-324, Oct. 1984.

3.x and 4.x, DG/UX, Linux, SCO, UnixWare, NetBSD, and [15] D. C. Schmidt, “IPCSAP: An Object Oriented Interface to
FreeBSD), real-time operating systems (VxWorks, Chorus, mé?/g)gwobceer7geigmr§:rni%%?n Service§H+ Report vol. 4,
Lynx0S, and pSoS), and MVS OpenEdition. {16] W. R. StevensAdvanced Pr(;gramming in the UNIX Environ
ACE has been used in research and development project " L , .)
- o .) ment Reading, Massachusetts: Addison Wesley, 1992.
at many universities and companies. For instance, ACE 9 y

has been used to build real-time avionics svstems at Boein [17] D. L. Presotto and D. M. Ritchie, “Interprocess Communica-
u ul : vioni Yy Ing tion in the Ninth Edition UNIX System,UNIX Research Sys-

[23]; telecommunication systems at Bellcore [22], Ericsson tem Papers, Tenth Editiorol. 2, no. 8, pp. 523-530, 1990.

[24]'_ Motorola [25], and Lucent; med|c§1I |mag|ng .syster.ns [18] A. Stepanov and M. Lee, “The Standard Template Library,”

at Siemens [26] and Kodak [27]; and distributed simulation Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April

systems at SAIC/DARPA. It is also widely used for research 1994,

projects and classroom instruction. [19] G. Booch, Object Oriented Analysis and Design with Ap-
All the source code described in this paper is available on- plications @™ Edition). Redwood City, California: Ben-

line at www.cs.wustl.edu/ ~schmidt/ACE.html . jamin/Cummings, 1993.

Many projects using ACE are described at [20] D. C. Schmidt, “Acceptor and Connector: Design Patterns

www.cs.wustl.edu/ ~schmidt/ACE-users.html . for Actively and Passively Initializing Network Services,”

In addition, comp.soft-sys.ace is a USENET news- in Workshop on Pattern Languages of Object-Oriented Pro-

grams at ECOOP '95(Aarhus, Denmark), August 1995.

[21] E.Gamma, R. Helm, R. Johnson, and J. Vlissifesign Pat-
terns: Elements of Reusable Object-Oriented SoftwRead-

group devoted to ACE-related topics.

References ing, MA: Addison-Wesley, 1995.
[22] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
[1] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object- Concurrent Event Demultiplexing and Event Handler Dis-
Oriented Components for High-speed Network Program- patching,” in Pattern Languages of Program Desi@_. 0.
ming,” in Proceedings of thel* Conference on Object- Coplien and D. C. Schmidt, eds.), pp. 529-545, Reading, MA:
Oriented Technologies and SysteméMonterey, CA), Addison-Wesley, 1995.
USENIX, June 1995. [23] T.H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design
[2] D. C. Schmidt, “ACE: an Object_Oriented Framework for and Performance of a Real-time CORBA Event Service,” in
Developing Distributed Applications,” ifProceedings of the Proceedings of OOPSLA "97Atlanta, GA), ACM, October
6" USENIX C++ Technical ConferencéCambridge, Mas- 1997.
sachusetts), USENIX Association, April 1994. [24] D.C. Schmidt and P. Stephenson, “Experiences Using Design
[3] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter- Patterns to Evolve System Software Across Diverse OS Plat-
man, The Design and Implementation of the 4.4BSD Operat- forms,” in Proceedings of the'" European Conference on
ing SystemAddison Wesley, 1996. Object-Oriented Programming(Aarhus, Denmark), ACM,
’ August 1995.
4 Mi k1 f P ' i
[4] Sun MicrosystemsiNetwork Interfaces Programmer's Guide [25] D.C. Schmidt, “A Family of Design Patterns for Application-
Chapter 6 (TLI Interface) ed., 1992. - A
.] level Gateways,The Theory and Practice of Object Systems
[5] S. Rago,UNIX System V Network Programmindreading, (Special Issue on Patterns and Pattern Languages). 2,
MA: Addison-Wesley, 1993. no. 1, 1996.
[6] W.R. StevensUNIX Network Programming, Second Edition [26] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
Englewood Cliffs, NJ: Prentice Hall, 1997. for Dynamic Configuration of Services,” iRroceedings of
[7] H. Custer,Inside Windows NTRedmond, Washington: Mi- the3"¢ Conference on Object-Oriented Technologies and Sys-
crosoft Press, 1993. tems USENIX, June 1997.
[8] Object Management GroupThe Common Object Request [27] |. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Broker: Architecture and SpecificatipB.2 ed., Feb. 1998. Performance of an Object-Oriented Framework for High-
. . . Performance Electronic Medical Imaging/SENIX Comput-
[9] Iiégl370x, Essential COM Addison-Wesley, Reading, MA, ing Systemsvol. 9, November/December 1996.

18

