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The distributed embedded systems industry is poised to lewetd devices.
age emerging real-time operating systems, such as Inferno,
Windows CE 2.0, and Palm OS, to support mobile commu-
nication applications. Advances in off-the-shelf real-time og-  |ntroduction
erating systems provides an enabling framework for a wide

relmge Of. mob!lle commurg)lcatlo_n apph((j:auons, iUCh as SUChéasting markets for distributed embedded systems, in particu-
electronic mail, Internet browsing, and network managemepf; j)anq-held devices like Personal Digital Assistants (PDAs),

Idgally, these applications' can be develqped using S,ta”d*’ar% increasingly leveraging off-the-shelf real-time operating
middleware components like CORBA to improve thewqugbstems, such as Inferno, Windows CE 2.0, and Palm OS.

constraints on the available memory in embedded systemsﬂg]—ng sold by 1999. However, responses to recent surveys
poses a severe limit on the footprint of CORBA middlewareby users of PDAs indicate a dearth of software and applica-

. This paper provid_es three pontributions to_the study an,d CH;o'ns. Many users require PDAs to possess high-speed, built-
sign of small footprint, real-time CORBA middleware. FirSf, qata/cellular/fax modems that enable the PDA to be used as
we describe the optimizations used to develop the protocol gieiyjar phone, a fax machine, Internet browser, as well as to
gine and CORBA IDL compiler provided by TAO, which is OWLnd and receive email.

real-time CORBA implementation. TAO's IDL compiler pro- Adding efficient and predictable communication capability

duces stubs that can use either compiled and/or imerpret[\éedistributed embedded systems yields many research chal-
marshaling. Second, we compare the performance and fciglt'-

print of TAO IDL compiler-generated stubs and skeletons tl&tjges related to mobile computing [2]. These challenges in-

use compiled and/or interpretive marshaling for a wide ranqi de dealing with low bandwidth, heterogeneity in the net-

. i . rk connections, frequent changes and disruptions in the es-
of IDL data types. Third, we illustrate the benefits of the sm?P : : o L
. o ' . blished connections due to migrating targets, maintainin
footprint and efficiency of TAO IDL compiler-generated stu 9 g farg 9

. . %nsistency of data, and dealing with heterogeneous architec-
and skeletgns for a range of standard CORBA services IMR{fres to which these devices can be docked. In addition to the
mented using TAO.

Our results comparing th forman fth mpiled |r1r1é)bilityiss:ues, the restrictions on the physical size and power
urresulls comparing tne performance orth€ compiied ag nsumptions of these devices constrains the amount of stor-

interpretive stubs and skeletons indicate that the interpreti biliti
ties th .
stubs and skeletons perform between 75-100% of the comp%gg gaRp; A |[|1|8e]sis ;)éic;?r?bz?:jisbsject computing middleware

stubs and skeletons for a wide range of data types. On the . .
other hand, the code sizes for the interpreted stubs and sk@ gndard defined by the Object Management Group (OMG).

tons were between 26-45% and 50-80% of the compiled sty sRBA |s_deS|gn.ed to allow clients to invoke ope_ratlonslon
remote objects without concern for where the object resides

*This work was supported in part by NSF grant NCR-9628218. or what language the object is written in [23]. In addition,




CORBA shields applications from non-portable details relatezthniques used by TAO’s IDL compiler so it generates stubs

to the OS/hardware platform they run on and the commuaid skeletons that have a small footprint; Section 4 describes

cation protocols and networks used to interconnect distributhd experimental setup and the results of our benchmarks that

objects. These benefits of CORBA make it ideally suited tompare the performance and code size of compiled and in-

provide core communication services for distributed embadfpreted stubs and skeletons for a representative range of IDL

ded systems. data types; Section 5 describes related work; and Section 6
A key research challenge, however, is determining howsommarizes the results.

maintain a small footprint for the ORB middleware and the

stubs and skeletons generated automatically by a CORRA .

IDL compiler. Likewise, the performance of the generat Overview of the CORBA ORB Ref-

stubs should not be unduly compromised due to footprintcon- erence Model

straints. To address these issues, the OMG has recently issued

a Request for Proposals (RFPs) for a minimal-CORBA [16JORBA Object Request Brokers (ORBs) [23] allow clients to

implementation geared towards embedded systems and ofi@fke operations on distributed objects without concern for:

ial hath i h ilabl : . .
special systems that have constraints on the available resoubqbe]gct location: CORBA objects can be collocated with the
such as memory.

Our prior research on CORBA middleware has explorecHent or distributed on a remote server, without affecting their

. . . . Implementation or use.
several dimensions of real-time ORB endsystem design P

cluding static [21] and dynamic [4] real-time scheduling’rogramming language: The languages supported by
real-time request demultiplexing [8], real-time event proce$sORBA include C, C++, Java, Ada95, COBOL, and
ing [11], real-time I/O subsystem integration [20], and th@malltalk, among others.

real-time performance of various commercial and reseaggh platform: CORBA runs on many OS platforms, includ-

ORBs [22] over ATM networks. This paper focuses on a preyjig wWin32, UNIX, MVS, and real-time embedded systems like
ously unexamined point in the real-time ORB endsystem dguorks, Chorus, and LynxOS.

sign space:techniques for optimizing the footprint and per- L . _

formance of CORBA middleware in distributed embedded Sgl‘gm_mu_nlcatlon protocols and interconnects: The com-

tems unication protocols and interconnects that CORBA can run
To address these issues, this paper compares comp‘?l'éﬂqc'”de TCP/IP, IPX/SPX, iDlDI’ATM’ Ethhernet, Fast Eth-

and interpretive marshaling used by CORBA IDL stubs afgnet embedded system backplanes, and shared memory.

skeletons in terms of their performance and footprint. Th&ardware: CORBA shields applications from side-effects
stubs and skeletons evaluated in this paper use a hylsteimming from differences in hardware such as storage layout
compiled/interpreted marshaling technique generated by #mel data type sizes/ranges.

TAO [21] IDL compiler. TAO (The ACE ORB) is a real-time

ORB that complies with OMG's recently adopted Portable Ob-Figure 1 illustrates the components in the CORBA refer-
ject Adapter standard [18]. TAO's IDL compiler-generateghce model, all of which collaborate to provide the portability,
stubs use a highly optimized interpretive scheme [9] to mémteroperability, and transparency outlined above. Each com-
shal and demarshal data types. ponent in the CORBA reference model is outlined below:

_ Typically thg code sizg fo.r stubs/skeletons that use.interp@rem: This program entity performs application tasks by
tive schemes is smaller in size compared to the compiled fo%taining object references to objects and invoking opera-
In addition, interpreted stubs/skeletons are slightly slower thédhs on them. Objects can be remote or collocated rela-
their counterparts. However, since TAO's interpretive Mafye to the client. Ideally, accessing a remote object should
shaling engine is highly optimized, the performance of thg, 55 simple as calling an operation on a local objeet,
stubs/skeletons is almost comparable to that of the compigﬁﬁlect —operation(args) . Figure 1 shows the under-
stubs. At the same time, the footprint of TAO IDL compileg;ing components that ORBs use to transmit remote operation

(tao -idl ) generated stubs/skeletons is significantly 5ma'@quests transparently from client to object.
than the compiled version. This quality makes it applicable "

for PDAs and other distributed embedded systems that hQRIect: I CORBA, an object is an instance of an Interface
stringent memory restrictions. Defmmoq Language (IDL) mterf_ace. The object is |_dent|f|ed
This paper is organized as follows. For completeness, SB¢-an object referencewhich uniquely names that instance
tion 2 presents a brief overview of the CORBA referen@¢r0SS servers. AB@bjectidassociates an object with its ser-
model. Section 3 summarizes the optimizations we develog@jt implementation, and is unique within the scope of an Ob-

for TAO's interpretive marshaling engine and describes tfct Adapter. An object has one or more servants associated
with it that implement the interface.
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INTERFACE IDL IMPLEMENTATION IDL Compiler:  An IDL compiler automatically transforms
REPOSITORY COMPILER REPOSITORY OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-

in args

operation() ggﬂ%

out args + return value

portunities for automated compiler optimizations [1].
v IDL || psi - i
oI IDL ORB SKELETON omimcr Dynamic Invocation Interface (DII): The DIl allows
STUBS TR Py —— clients to generate requests at run-time. This flexibility is

useful when an application has no compile-time knowledge
[ % ] of the interface it is accessing. The DII also allows clients
to makedeferred synchronousalls, which decouple the re-
guest and response portions of twoway operations to avoid
@ ORB-seeciric terrace () sTaNDARD PROTOCOL blocking the client until the servant responds. In contrast,
Sll stubs currently only suppdmwoway i.e., request/response,
Figure 1: Components in the CORBA Reference Model andonewayi.e., request only operations, though the OMG has
standardized an asynchronous method invocation interface in

. _ _ the recent Messaging Service specification [17].
Servant: This component implements the operations de-

fined by an OMG Interface Definition Language (IDL) inDynamic Skeleton Interface (DSI): The DSl is the server's
terface. In languages like C++ and Java that support objedtalogue to the client's DII. The DSI allows an ORB to deliver
oriented (OO) programming, servants are implemented usigguests to a servant that has no compile-time knowledge of
one or more objects. In non-O0 languages like C, servantst#&IDL interface it is implementing. Clients making requests
typically implemented using functions astfuct  s. Aclient need not know whether the server ORB uses static skeletons or

never interacts with a servant directly, but always through @namic skeletons. Likewise, servers need not know if clients
object. use the DIl or SlI to invoke requests.

O STANDARD INTERFACE OSTANDARD LANGUAGE MAPPING

ORB Core: When a client invokes an operation on an otg?.tt):‘eCL'Ad?ptder: ﬁn IOble(?t Adapter assoc;at:asﬂ;a servantt
ject, the ORB Core is responsible for delivering the requestVY objects, demuttiplexes incoming requests fo the servant,
d dispatches the appropriate operation upcall on that ser-

the object and returning a response, if any, to the client. . '
. . ) : nt. Recent CORBA portability enhancements [18] define
objects exectiting remotely, a CORBA-compliant [18] ORge Portable Object Adapter (POA), which supports multi-

Core communicates via some version of the General Intef- .
ORB Protocol (GIOP), most commonly the Internet InteP-® nested POAs per ORB. Object Adapters enable ORBs to

ORB Protocol (IIOP), which runs atop the TCP transport prggpport various types of servants that possess similar require-

tocol. An ORB Core is typically implemented as a run-tim ents.. This desigp results in a small and S"T‘P'e ORB that
library linked into both client and server applications. can still support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

ORB Interface: An ORB is an abstraction that can be iMperface Repository: The Interface Repository provides
plemented various ways,g, one or more processes or a S¢f;n-time information about IDL interfaces. Using this infor-
of libraries. To decouple applications from implementatiqfation. it is possible for a program to encounter an object
details, the CORBA specification defines an interface to @Rgse interface was not known when the program was com-
ORB. This ORB interface provides standard operations thakq, yet, be able to determine what operations are valid on
(1) initialize and shutdown the ORB, (2) convert object refre gpject and make invocations on it. In addition, the In-
erences to strings and back, and (3) create argument listsdpface Repository provides a common location to store ad-
requests made through tignamic invocation interfad®Il).  gitional information associated with interfaces ORB objects,

such as stub/skeleton type libraries.
OMG IDL Stubs and Skeletons: IDL stubs and skeletons yp

serve as a “glue” between the client and servants, respectivishplementation Repository: The Implementation Reposi-
and the ORB. Stubs provide a strongly-typethtic invoca- tory [12] contains information that allows an ORB to activate
tion interface(Sll) that marshals application parameters intosgervers to process servants. Most of the information in the Im-
common data-level representation. Conversely, skeletonsmglementation Repository is specific to an ORB or OS environ-
marshal the data-level representation back into typed parament. In addition, the Implementation Repository provides a
ters that are meaningful to an application. common location to store information associated with servers,



such as administrative control, resource allocation, security, IpL
and activation modes.

AST CLASS HIERARCHY

Module
L1

[TAO IDL Compile

3 Optimizing TAO's IDL Compiler

This section describes the design of TAO’s IDL compiler at
presents results from experiments that compare the optim
tion techniques we used to reduce the size of its generg
stubs and skeletons without unduly reducing run-time OR
performance.

FRONT END|

PARSER
AST Generator

Generated
AST

driver_interface(),

3.1 Overview of TAO’s IDL Compiler

Figure 2 illustrates the design of the TAO IDL Compiler. Th
TAO IDL compiler is based on the freely available SunSq
IDL compiler front-endt The front-end of the compiler parse
OMG IDL input and generates an in-memory abstract synt. E—
tree (AST). We customized the back-end to process the AST Visitor Factory|
and generate C++ source code that is optimized for the inter- make yhllorgs

pretive IIOP protocol engine [9].

Abstract
Visitor Factory

\
N
N
Generated _ N make visitor()
Code Compiled N
Visitor Factory)| AN
\
~
N
N
N
P
N

make_visitor(
<

Interpreted
Visitor

3.1.1 The Design of TAO’s IDL Compiler Front-end

cod
Abstract Gaciy

TAQO's IDL compiler front-end contains the following compo- Visitor
nents adapted from the original SunSoft IDL compiler: ookl

Compiled
Visitor

gen_code()

OMG IDL Parser; The parser comprisesyacc specifi-
cation of the OMG IDL grammar. The action for each gram- Figure 2: The TAO IDL Compiler
mar rule invokes methods of the AST node classes to build the
AST.
3.1.2 The Design of TAO'’s Back-end Code Generator

Abstract Syntax Tree Generator: Different nodes of the o _
AST correspond to the different constructs of CORBA IDLIhe original SunSoft IDL compiler front-end parses OMG
The front-end defines a base class cale®T Decl that !DL and generates the abstract syntax tree (AST). To create
maintains information common to all AST node types. Spa-complete CORBA IDL compiler for TAO, we developed a
cialized AST node classes (suchAB8T.Interface ) inherit back-end for the OMG IDL to C++ mapping. TAO's IDL
from this base class. compiler back-end uses several design patterns [3] susb-as

In addition, the TAO IDL compiler defines a class calleffract Factory StrategyandVisitor. As a consequence, TAO's
UTL Scope, which maintains scoping information such akack-end can be reconfigured to produce stubs/skeletons that
the nesting level and each component of the fully scopdgf either compiled and{ormterpreuye marshaling.
name. All AST nodes representing CORBA IDL constructs The back-end of TAO’s IDL compiler produces stubs and

also inherit from theJTL_Scope class. terpretive protocol engine [9]. The interpreted stubs and skele-

tons generated by TAO’s IDL compiler are explained below.
Driver program: The driver program directs the parsinyVe use th@est _short method from théParam_Test in-
and AST generation process. It reads an input OMG IDL filerface shown in Appendix A to explain the behavior of the
and invokes the parser and the AST generator. stubs and skeletons.

1The original SunSoft IDL compiler implementation is available aﬁnterpreted stubs: _ The StUb§ produced by TAO's IDL com-
ftp://ftp.omg.org/pub/OMG DL CFE1.3. piler use a table-driven technique to pass parameters to the un-



derIying inter_pretive marshaling engine. The basic structure of DS| SKELETON
a stub is outlined below:
1 CREATE NVLIST
1. Initialize table entries describing each parameter’s type ’
via its TypeCode , and its parameter passing mode. v
2. Initialize a table describing the operation including its 2. HEAP ALLOCATE
L PARAMETERS
name, whether it is oneway or twoway, the number of :
parameters it takes, and a pointer to the table described in 5 POPULATE
3. Avariable for the return value, if any, is allocated. v
4. A stub object is retrieved from the object reference on 4. UNMARSHAL
which this operation is invoked. PARAMETERS
5. Thedo_call methodisinvoked on this stub object pass-
ing it the operation description table and the parameter S. MAKE UPCALL
values in the same order in which they were defined in v
the IDL definition. 5 INSERT RETURN
Thedo_call method described above is the interface to \ VALUE NANY %

TAO's interpretive IIOP protocol engine. It takes a variable

t '

. ) . - e
number of parameters starting with the operation description OBJECT REQUEST BROKER
table followed by the parameters of the operation. The stub for
o . . INVOKE SKELETON
thetest _short operation is shown in Appendix B.1. | | | MARSHAL PARAMS |
The table-driven technique and the_call interface were
available in the original SunSoft IOP implementation. How- | FIND SKELETON | | BUILD REPLY MSG |
ever, since the SunSoft IOP implementation did not have an
IDL compiler each. stub had tq be hand-crafted. In contrast, |F|ND TARGET OBJECT| | SEND REPLY MSG |
the TAO IDL compiler automatically generates stubs that use
this scheme.
\| RECEIVE REQUEST | | DEALLOC PARAMS |/

Interpreted skeletons: The skeletons use a Dynamic Skele-
ton Interface (DSI) approach for marshaling parameters. The
basic (non-optimized) algorithm for a skeleton is shown in

Figure 3: Unoptimized skeletons

Figure 3 and described below:

The skeleton fotest _short _skel operation is shown in

1. Create alNVList , which is a container class, to hold th%\ .
parameters ppendix B.2.
' . Memory is allocated from the heap forout , out , and
2. Heap allocate all theeturn , inout , andout param- return  values. This heap allocation is essential because

eters since they ghave to be marshaled back into the QHEse parameters are marshaled into the outgoing IIOP Reply
going stream. Then parameters can be allocated on th@essage after the call to the the skeleton has returned. As a

skeleton call stack. result, it is not possible to allocate the parameters on the call
3. Add each parameter value to tN&/List using the op- Stack of the skeleton. These heap allocated data structures are
erations provided by the DSI mechanism. owned by the ORB and are freed using an interpretive scheme
4. Use the DS operaticarguments  to unmarshal incom- that is S|m|I§1r to the interpretive marshaling scheme. .
ing parameters. As ment.loned before, SunSoft IIOP does not provide an
) o IDL compiler and these skeletons must be hand-crafted.
5. Make an upcall on the target object passing it all the UfaO's IDL compiler produces these skeletons automatically.

6. Create £ORBA::Any to hold the return value, if any.

marshaled parameters. ) ) )
Compiled stubs and skeletons: For this paper, the compiled

stubs and skeletons are hand-craftebhe basic structure of

- Return from the skeleton and let the ORB internally h‘jl”_ZWe are currently implementing a back-end for TAO IDL compiler that

dle the task of marshaling theturn ,inout , andout  contains strategies for producing stubs and skeletons using compiled marshal-
parameters. ing. This enhancement will be complete in time for the final version of the



a compiled stub is shown below. The skeleton’s algorithm is | Optimization Principles |

very similar to the stub: Factor out all common features
. ] ] Avoid unnecessary heap allocation
1. Retrieve the stub object from the object reference. Leverage compile time knowledge of data types

2. Setup a CDR stream object into which the parameters
will be marshaled. Table 1: Optimization Principles

3. The CDR stream obiject is initialized with the details of

the receiving endpoint. mizations required the addition of several features to TAO's

4. Insert each parameter into the stream in the same ordédRB Core. In particular, it was necessary to provide a pair
which they are defined in the IDL description. of methods that marshal and unmarshal parameters while the

5. Send the parameters and wait for return values. activation record of the stub and skeleton is active. Thus, pa-
rameters can now be allocated on the stack instead of from the

6. Urgmarshal all the return, inout, and out parameters gt \which reduces dynamic memory allocation and locking.
return.

The hand-crafted compiled stub and skeleton fdr2.1 Reducing the Size of Interpretive Stubs
test _short are shown in Appendix B.3.

The compiled stubs and skeletons use overloadngAo' the interpreted stubs need the underlying stub ob-

ject on which thedo_call method is invoked. For this each

C++ iostream insertion and extraction operatorise., . . .
operator<<  and operator>> , respectively, to marshalswb is required to ca(DueryI.nterche on the iject ref-.
rence.Querylnterface is an internal operation used in

data types to/from the underlying CORBA Common Da . i .
Representation (CDR) stream. TAO's ORB Core proVid%‘unSoﬂllOP and TAO to retrieve the stub object that contains

£ . . . ) o ;
these operators for primitive types. However user—defin'giormat'on necessary to identify the object. Th!s information
types are generated by the IDL compiler. In this paper V(\:Igntalns the object key and the TCP/IP endpoint. Therefore,
hand-crafted these overloaded operators for the differdy factored out common code and added an operation on the

user-defined types we tested. RBA::Object class to return the underlying stub object.

A significant difference between the compiled skeleton ahrge modified code fragment s shown in Appendix B.4.

the interpreted skeleton is that no unnecessary heap allocation
is required in the compiled skeleton. This is due to the fa&2.2 Reducing the Size of Interpretive Skeletons

that a compiled skeleton has static knowledge of the types it

marshals and unmarshals. At the same time. all the unnﬁ?-Shown in Figure 3, each interpretive skeleton is required to
' : eate arNVList and populate it with parameters. In addi-

shaling and marshaling of the parameters occur in the sc§ i< allocated f the h ther th h I
of the skeleton. In contrast, in the interpretive skeletons usihy™ memory IS aflocated from the heap rather than on the ca
stack for thenout ,out , andreturn types. This is neces-

the DSI scheme, the marshaingefurn ,inout , andout . h hali fh inth .
parameters occur inside the ORB after the activation recGRJY Since the marshaling of these parameters in the outgoing

of the skeleton has been destroyed, thereby requiring dynaﬁ“@ém t'akes plgce after the call to the .skelejton has returned.
allocation. Applications using DSI must comply with this style. How-

ever, the ORB Core can be modified to provide the necessary
] ) operations that is used on by the IDL generated code. Appli-
3.2 Techniques for Reducing Stub/Skeletoncations cannot directly access these operations since they are
Code Size protected.

As described in Section 3.1 and shown in Appendix B, the si eClose scrutiny of the skeleton code reveals that each skele-
%f
€

: : On must create aNVList and populate it with parameters.

of the interpreted stubs and skeletons is large. However, r%ilarl anv return value must be stored ICORBA:-An
to stringent constraints on the available memory in hand-held y. any Ay

. L . o . data structure. These are common features that can be factored
devices, it is imperative to maintain a small footprint of thgut into a method provided by the ORB Core. Based on this
stuTbhse?Q% fgeﬁéogsv?;e\g? ta;m? cjeR?oCr%rgﬁce the code olgservation, we implemented a table-driven technique similar
. ’ . ; q . . ?o e one used in the stubs. We defined two new interfaces to
in TAO. Our code-size reduction techniques for mterpretﬁg

e marshaling engine that are similar totteecall method.

stubs/skeletons are guided by the following three optimiz\?\\/-e could not reuse theo call method since these two in-
tion principles shown in Table 1. Implementing these opp— -

erfaces were required on the server-side “request” object. The
paper. space-efficient skeleton is shown in Figure 4. The correspond-




TAO SKELETON
STACK ALLOCATE
1. PARAMETERS
UNMARSHAL
2. PARAMETERS
3. MAKE UPCALL
. MARSHAL | |
: PARAMETERS
5 DEALLOC
: PARAMETERS
\_ J
INVOKE SKELETON BUILD REPLY MSG CREATE NVLIST
MARSHAL PARAMS POPULATE NVL
I
SENDREPLY MSG
OBECTREQUESTBROKER

~

Figure 4: Optimized skeletons

ing code using this approach is shown Appendix B.5.

The main benefit of this scheme is that marshaling of out-
going parameters can occur while the activation record on the
call stack frame of the skeleton is still valid. As aresultthere is
no need to allocate theout , out , andreturn parameters
from the heap. They can be allocated on the call stack in the
same way that the compiled skeletons do. In addition, if any of
the outgoing types is a pointer type, we can directly invoke the
C++delete operator rather than interpretively deallocating
it.

The remainder of this paper describes the results of our ex-
periments comparing the performance of the optimized inter-
pretive stubs and skeletons with that of the hand-crafted com-
piled stubs and skeletons. In addition, we also report the indi-
vidual sizes of the stubs and skeletons for both the approaches.

4 Experimental Results Comparing In-
terpreted and Compiled Marshaling

4.1 Hardware and Software Platforms

The experiments reported in this section were conducted on
three different combinations of hardware and software, includ-

ing:

e An UltraSPARC-II with two 300 MHz CPUs, a 512
Mbyte RAM, running SunOS 5.5.1, and C++ Workshop
Compilers version 4.2;

e A Pentium Pro 200 with 128 Mbyte RAM running Win-
dows NT 4.0 and the Microsoft Visual C++ 5.0 compiler;

e A Pentium Pro 180 with 128Mb RAM running Redhat
Linux 4.2 kernel recompiled for SMP support and Lin-
uxThreads 0.5. The GNU g++ 2.7.2.1 C++ compiler was
used.

4.2 Profiling Tools

The code size information for various methods reported in
Section 4 is obtained using the GNabjdump binary util-
ity on SunOS 5.5.1 and Linux. On Window NT, we used the
dumpbin binary utility. In both cases, we used thHesasm
and linenumbersoptions to disassemble the object code and
insert line numbers in the assembly listing, respectively. Code
size for individual stubs/skeletons is reported by counting the
total number of bytes of assembly level instructions produced.
In addition, we used the UNDstrip  utility to measure the
total size of the object code after removing the symbols and
other debug information.

The profile information for the empirical analysis was ob-
tained using th&Quantify  [14] performance measurement



tool. Quantify  analyzes performance bottlenecks and iden- Data Type Compiled Interpreted

. . . . . Avgtime | Calls/sec | Avgtime | Calls/sec
tifies sections of code that dominate execution time. Un- ingmsec ingmsec
like traditional sampling-based profilers (such as the UNIX short 0.802 1,247 0.938 1,066
rof tool ntify  reports results without including it ubstring 09071 pioz| 106 238
gprof tool), Quantify _reporis results outincluding Its fixed struct 0.182 1,002 111 901
own overhead. In additiorQuantify measures the over- strseq 1852 540 174 576
el i i i iri varstruct 2.014 497 2.020 493
head of system calls and third-party libraries without requiring e T} ST e STos P
access to source code. structseq 10.99 91 10.25 98

All data is recorded in terms of machine instruction cy-
cles and converted to elapsed times according to the cldekle 2: Twoway Latency of Stubs/Skeletons on UltraSPARC
rate of the machine. The collected data reflect the cost of Bgnning Sun0S5.5.1
original program’s instructions and automatically exclude any

Quantify  counting overhead. Data Type Compiled Interpreted

Avgtime | Calls/sec | Avgtime | Calls/sec
in msec in msec

short 1234 810 1312 762
4.3 Parameter Types for Stubs/Skeletons ubstring 1453 688 | 1491 670
fixed_struct 1.275 785 1.414 707
. . . . strseq 2.84 352 2.819 355
Appendix A provides th@aram_Test IDL interface and its varstuct 399 5 597 %

operations. All the operations test the four parameter passing [[ nestedstruct 3.489 325 3.02 331
modes (1)in , (2) inout , (3) out , and (4)return  for a structseq 22.93 44 ] 17247 58
wide range of data types. The data types we tested include .
primitives such ashort s, and complex data types such grable 3: Twoway Latency of Stubs/Skeletons on Pentium Pro
unbounded strings, fixed size structures, variable sized st Running Windows NT 4.0

tures, nested structures, sequence of strings, and sequence of

structures. All operations are tvv_oway. Sequences are "miFﬁﬂning the tests in loopback mode. We configured our pro-
to a length of 9 elements and strings are 128 chars long. filing tool Quantify  (explained in Section 4.2) to measure
only the overhead of the stubs and skeletons.
4.4 Methodology The code size of individg.al stgbs and skeIeFons is measured
using the GNU binary utilityobjdumpand Windows NT's

Each operation of thearam _Test interface is invoked 2,000 dumpbinas explained in Section 4.2.

times. We measure the average latency for making the twoway

calll for the 2,000 iterations. Since we are interested in megg Comparing Interpreted versus Compiled

suring the performance of the stubs and skeletons, all tests .

were run in the loopback mode. This way we avoided any net- Marshaling

work transfer overhead. However, OS effects such as pagimsis section describes the results comparing the performance

context switching, and interrupts are measured. In additigihd code size of stubs and skeletons using interpretive and

delays incurred due to the run-time costs of the implemenggmpiled form of marshaling. As explained in Section 4.4,

tion of the operation by the servant object are also measuiggch operation of thearam_Test interface is invoked 2,000

The servant object implements each operation by copyingtjties. The tests are performed in a loopback mode to avoid

in parameter into thénout , out , andreturn  parame- uynnecessary network delays. The twoway average latency of

ters. For complex data types suchsimict _sequence , invoking the operations is reported. First, we report the per-

this overhead becomes significant compared to the others.formance results followed by comparison of the code sizes.
One approach to eliminating OS effects in the measure-

ments is to use co-Iocat_ed objects. However, even t.hough Tﬁ‘%.l Comparing Twoway Average Latencies

supports co-located objects, we cannot use them in our mea-

surements. This is due to the fact that operations on co-localables 2, 3, and 4 depict the twoway average latency for invok-

objects result in a direct C++ method call on the target abg different methods of thBaram _Test for 2,000 iterations

ject. Co-located objects entirely bypass the stubs/skeleton fhathe UltraSPARC, a PC running NT, and PC running Linux,

perform the marshaling of data types. However, we are integspectively. Figure 5 illustrates this information graphically

ested in measuring the overhead of marshaling. Forcing tbeUltraSPARC.

co-located objects to use the stubs/skeletons required signififhese tables indicate that the twoway latency of the in-

cant reengineering of the TAO ORB Core and the IDL Conterpreted stubs and skeletons is within 75 to 95 % of

piler. Therefore, we decided to approximate this behavior the compiled stubs for primitive types such slorts
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Figure 5: SPARC Performance
Data Type Compiled Interpreted
Avgtime | Calls/sec | Avgtime | Calls/sec
in msec in msec
short 0.745 1,342 0.8277 1,226
ubstring 0.114 1,094 0.982 1,017
fixed_struct 0.7735 1,293 0.898 1,112
strseq 2.21 452 1.814 551
var_struct 2.47 406 2.05 487
nestedstruct 2.48 405 2.098 477
structseq 22.0 44 13.22 76

Data Type Role Type Interpreted Compiled
msec | called msec | called
fixed _struct server | marshal 84.21 6,000 13.76 6,000
demarshal 57.29 4,000 9.93 4,000
client marshal 56.17 | 4,000 9.17 4,000
demarshal| 85.89 | 6,000 1490 | 6,000
strseq server | marshal 335.46 | 6,000 | 279.00 | 6,000
demarshal| 98.52 | 4,000 | 219.00 | 4,000
client marshal 95.43 4,000 68.76 4,000
demarshal| 256.24 [ 6,000 | 665.71 | 6,000
Table 5: Whitebox Analysis of Performance of

Stubs/Skeletons on UltraSPARC

and complex types such as unbounded strings and fixed
size structs. However, for other complex types such as
sequence of string s,sequence of struct s, variable-
sizedstruct s, and nestestruct s, the twoway latency for
interpreted stubs/skeletons exceeds that of the compiled stubs.
The superior performance of the interpreted stubs/skeletons
was more prominent to that of the compiled stubs/skeletons
on the Pentium Pro 180 running Linux.

As mentioned in Section 4.4, these measurements do not
exclude the effects of the OS, as well as the runtime costs of
the implementation of the operations. The runtime costs of
the implementation of the operations is more significant for
thetest _struct _seq case. EacBequence ofstruct s
has 9 variable sized structs. Each variable-s&aatt  ele-
ment in turn has two string members, each of length 128, and
asequence ofstring member. This member in turn has 9
string  elements, each of length 128. The costs of copying
thein parameter into th@out, out, andreturn is significant.
However, irrespective of the type of marshaling used by the
stubs and skeletons, the implementation of the operations is
same in both cases. Hence, our comparisons of twoway la-
tency are valid.

The blackbox results presented in Tables 2, 3, and Aado
convey the effects of the OS, as well as runtime costs of the
implementation of the operations. To pinpoint precisely the
runtime costs of the stubs and skeletons in marshaling and de-
marshaling, we configured our profiling toQuantify  to
measure only these costs. Table 5 illustrates the Quantify anal-
ysis for thetest _fixed _struct and thetest _strseq
tests on the UltraSPARC platforn.

Table 5 indicates that fdiixed _struct , the compiled
stubs and skeletons accounted for 47.76 msec compared to

Table 4: Twoway Latency of Stubs/Skeletons on Pentium P283.56 msec required for the interpretive stubs and skeletons.
180 Running Linux

This explains why the compiled marshaling is significantly
better than the interpretive marshaling for fixed size structs.
On the other hand, fosequence s of string s, the com-
piled stubs and skeletons required 1,232.47 msec compared
to only 785.65 msec hy the interpretive stubs and skeletons.
This explains why the interpretive stubs perform better than

3We did not have Quantify for Linux and Windows NT.



Operator Size Stub name [ Interpreted size [ Compiled size

operator< < (char *) 192 stub | table | total stub | helper total
operator> > (char *) 240 test.short 320 88 408 1,112 1,112
operator< < (fixed_struct) 280 testubstring 352 88 440 1,000 432 | 1,432
operator>> (fixed_struct) 256 testfixed_struct 344 88 432 1,112 536 | 1,648
operator< < (strseq) 312 teststrseq 496 88 584 1,120 576 | 1,696
operator>> (strseq) 264 testvar_struct 496 88 584 1,120 368 | 1,488
operator < < (var_struct) 176 testnestedstruct 496 88 584 1,120 176 | 1,296
operator>> (var_struct) 192 teststruct_seq 496 88 584 1,120 416 | 1,536

operator< < (nestedstruct) 88
operator>> (nestedstruct) 88

operator < < (struct_seq) 508 Table 7: Stub Sizes on UltraSPARC
operator>> (struct_seq) 208
1800.0 | . Compiled
Table 6: Sizes of Overloaded Operators for Compiled 1600.0 Interpreted
Stubs/Skeletons on UltraSPARC 14000
8 1200.0
the compiled stubs for all the data types thatsgguence s 2 10000
or havesequence s as their members. £ 6000
TAO’s interpretive marshaling engine has a highly opti- & '
mized component for marshalirsgquence s. It defines a 6000
generic bassequence class with virtual methods. For ev- 400.0
ery user-definegequence , the TAO IDL compiler gener- 200.0
ates a C++ class that inherits from this basgquence class. 00
The C++ class generated for thequence s (in accordance & © F PO & F P
with the IDL to C++ mapping) overrides all the methods of the oF oF T g7 N7 &
base class. The derived class does not define any data mem- MY & °
bers since these are already defined in the base class. The Figure 6: SPARC Stub Sizes

interpreter marshals and demarshedgjuence s by invok-
ing methods on the base class. At runtime, due to polymor-

phism and dynamic binding, these calls are made on the belper calls the helper forar _struct , we do not add the
rived class. This speeds up the marshaling and demarshdhtigr's size to the size computation of the stub/skeleton of
of sequence s significantly. nested _struct . Figures 6 and 7 illustrate this information
graphically for the UltraSPARC platform.

Tables 7 and 8 indicate that the stubs for interpretive mar-
shaling are much smaller than the ones for compiled marshal-
This section describes the measurements of code size weirttid As shown in Section 4.6, the interpretive stub sizes are
for the stubs and skeletons. As mentioned in Section 4:@ughly 26-45% of the size of the compiled stubs. As shownin
we used the GNU binary utility calledbjdump and NT’s Section 3, in addition to explicitly marshaling and demarshal-
dumpbin to measure the individual code sizes. ing parameters, the compiled stub must initialize a GIOP/IIOP

Table 6 depicts the code sizes for the overloaded opdguest message and invoke it. On the contrary, for the inter-
tors used for marshaling and demarshaling user-defined IDEtive stubs theo _call method provided by the ORB Core
data types. The code size of thested _struct is only handles all this. The size of skeletons for compiled marshal-
88 bytes since internally it calls the overloaded operator 6@ is relatively smaller since thfgerverRequest  object is
var _struct . already available. The skeleton code size for primitives such

Tables 7 and 8 illustrate the code sizes for the stubs and
skeletons, respectively. We account for the size of the ta

4.5.2 Comparing Code Size for Stubs and Skeletons

. . . . Stub name Interpreted size Compiled size
bles in the size of the stubs and skeletons using interprefed | Skel | table | total | kel he'fper total
marshaling. Hence the total size of the stub/skeleton is ﬁhgeszSEO?,—ske'k | ‘51‘512 gg Zig ggg = 1?‘;‘)

. . . rng-. y
size of the stub/skeleton and the size of the statically aIIH:-tzztﬁxsd_sgusctike, e B
cated tables. Similarly, for the compiled marshaling, we aff-teststrseqskel 848 88 | 936 || 952 576 | 1,528

H Il tqstvar_struct_skel 680 88 768 784 368 | 1,152
count for the size of helper over[oaded operator methods u :et\ésmestedstmct_skel 550 s5 —es I 784 75 566
to marshal/demarshal user-defined data types. Since thES&tstruct seqskel 848 88 | 936 || 952 416 | 1,368
helper methods are not inlined by the compiler, we account
for them only once. Thus, although tnested _struct 's Table 8: Skeleton Sizes on UltraSPARC
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1800.0 . Compiled interpretive stubs indicate that on an average, the interpretive
16000 | Interpreted stubs perform 86% for primitive types, 75% for fixed size
14000 | structures, and over 100% for data types vddguence s
as well as the compiled stubs. At the same time, the code size
g ooy for user-defined types for interpreted stubs was 26-45% and
5 10000 for interpreted skeletons was 50-80% of the size of the com-
é 800.0 | piled stubs and skeletons, respectively. For primitive types,
D o000 the skeleton sizes were comparable. However, the interpreted
2000 - stubs were-40% the size of the compiled stubs.
200.0 |
00 4.7 Benefits of TAO’s Interpretive Stubs and
Skeletons
This section illustrates how the efficiency and small foot-
Figure 7: SPARC Skeleton Sizes pri_nt of TAO’§ interpretive stups and skeletons can bg useful
in implementing a number of important CORBA services on
operation Performance | Stub size | Skeleton size memory-constrglned systems. . .
test__short 85.48 36.69 97.06 Table 10 depicts a number of important CORBA higher-
test _ubstring 85.12 30.73 57.14 ; ; ; _
sl fored — Stuct =156 SoT =517 Ievgl services. We provide details on the number of user
test__strseq 106.66 34.43 61.26 defined structures, sequences, and total number of operations
test var _struct 99.20 39.25 66.66 and/or attributes defined by their IDL definitions. We have not
test _nested _struct 95.77 45.06 80.00 .
fest Stuct _seq 10769 38.00 68.42 reported other data types such as unions, enums, and excep-

tions defined by these IDLs.

Table 9: Comparison of Interpretive with Compiled Code on As shown in Sections 3 and 4, the total size of all the stubs

UltraSPARC in Percentages and skeletons using compiled form of marshaling will exceed
that of interpretive marshaling as the number of operations and
user-defined types increase.

asshorts are comparable for interpretive and compiled mar- Table 10 shows examples of CORBA services such as the

shaling since the overloaded operators for primitives are pfading service, naming service, and others. As shown in the
vided by the ORB Core. As a result, there is no extra code

generated. However, for the rest of the data types, the skeleﬁorgemce structures | sequences| op/attributes
code size for the interpreted marshaling is between 50-80% [pfrrading 11 7 63
the compiled form. ANV Streams 2 3 50

The results of code size measurements for NT and LinUX Property 3 5 33
are shown in Appendix C. Although the code sizes are smallerNaming 2 2 13
for both types of marshaling compared to the code size on Ul-

traSPARC, the relative measurements are comparable. Tietsle 10: Number of Operations and User-defined Types in

is one exception, however, where the code for the skeleton$wsindard OMG Services

shorts using compiled marshaling is slightly smaller compared

to the interpretive one. This is due primarily to the extra oveable, the IDL definitions for these services define a very large

head of the two statically allocated tables. number of operations and/or attribufehe total size of stubs
and skeletons using compiled marshaling will far exceed that

. of interpretive marshaling.
4.6 Summary of Comparisons In addition, for every user-defined type, the compiled form
This section summarizes the results of Sections 4.5.1 produce overloaded operators to marshal and demarshal

4.5.2. Table 9 illustrates how interpreted stubs and skefdSse types. As shown in Section 4, the performance of the

tons compared with the compiled versions for the UItraSPAFﬁ'E;erpreted stubs and skeletons is comparable or exceeds that
the compiled ones. At the same time, their code size is

platform. Similar results are observed for the other two pI h ller than th iied
forms. Appendix C provides the detailed measurements. Apch smaller than the compried ones.

values are in percenta}ges. ) 4Attributes are handled similar to operations. TAO's IDL compiler gener-
Our results comparing the performance of the compiled asek two operations for each read/write attribute.
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5 Related Work 6 Conclusions

This section describes related work orsaA performance The distributed embedded systems industry, particularly hand-
measurements and presentation layer marshaling. held devices, is poised to undergo a revolution with the emer-
gence of operating systems, such as Inferno, Windows CE 2.0,
Related work on interpretive and compiled forms of mar- and Palm OS, that provide support for mobile communica-
shaling: TAO uses an interpretive marshaling/demarshalitigns for applications. Ideally these applications can be de-
engine. An alternative approach is to usempiledmarshal- veloped using standard middleware components like CORBA
ing/demarshaling. A compiled marshaling scheme is basedoteverage the benefits of distributed object computing. How-
a priori knowledge of the type of an object to be marshaleelver, stringent constraints on the available memory in embed-
Thus, in this scheme there is no necessity to decipher the tgpd systems imposes a severe limit on the footprint of the
of the data to be marshaled at run-time. Instead, the typamisidleware, particularly the stubs and skeletons generated by
known in advance, which can be used to marshal the data@®RBA IDL compilers.
rectly. This paper compares the performance and code size of stubs
[13] describes the tradeoffs of using compiled and inténd skeletons using interpretive and compiled form of mar-
preted marshaling schemes. Although compiled stubs a@ling. The interpretive stubs and skeletons are generated by
faster, they are also larger. In contrast, interpretive marshalihg TAO IDL compiler. The compiled stubs and skeletons are
is slower, but smaller in size. [13] describes a hybrid schef@nd-crafted.
that combines compiled and interpretive marshaling to achievéur results comparing the performance of the compiled and
better performance. This work was done in the context of tiéerpretive stubs indicate that on an average, the interpretive
ASN.1/BER encoding [15]. stubs perform roughly 86% for primitive types, 75% for fixed
We are currently implementing a CORBA IDL comsSize structures, and over 100% for data types with sequences
piler [10] that can generate compiled stubs and skeletons. @&rwell as the compiled stubs. At the same time, the code
goal is to generate efficient stubs and skeletons by extendit#§ for user-defined types for interpreted stubs was roughly
optimizations provided in USC [19] and “Flick” [1], which is26-45% and for interpreted skeletons was 50-80% of the size
a flexible, optimizing IDL compiler. Flick uses an innovativef the compiled stubs and skeletons, respectively. For primi-
scheme where intermediate representations guide the geli@-types, the skeleton sizes were comparable. However, the
ation of optimized stubs. In addition, due to the intermednterpreted stubs were roughly 40% of the compiled stubs.
ate stages, it is possible for Flick to map different IDes(, ~ Our results are encouraging since the code size of the gen-

CORBA IDL, ONC RPC IDL, MIG IDL) to a variety of target erated stubs and skeletons are significantly smaller. At the
languages such as C, C++. same time, they do not unduly degrade performance. Hence,

these results indicate a positive step towards implementing ef-

Related work on CORBA performance measurements: ficient middleware for hand-held devices and other memory-
[5, 6, 7] show that the performance©brBA middleware im- constrained embedded systems. We are currently investigat-
plementations is relatively poor, compared to lower-level infg techniques to implement the minimal ORB specification
plementations using C/C++. The primary sourc@ai-level for which the OMG has recently issued request for proposals
overhead stems from marshaling and demarshaling. [5] m&3FP).
sures the performance of the static invocation interface. [6]
measures the performance of the dynamic invocation interfﬁ%ferences
and the dynamic skeleton interface. [7] measures performa
of CORBA implementatio.ns in terms of latency and support fo[1] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
very large number of objects. strom. Flick: A Flexible, Optimizing IDL Compiler. IfPro-

However, the results of earlieorRBA benchmarking exper- ceedings of ACM SIGPLAN '97 Conference on Programming
iments were restricted to measuring the performance of com- Language Design and Implementation (PLLUgs Vegas, NV,
munication between homogeneonsBs. These tests do not ~ June 1997. ACM.
explicitly measure the cost of marshaling for all the paramet¢?] G. Forman and J. Zahorhan. The Challenges of Mobile Com-
passing modes. In addition, these tests were restricted to mea- puting. IEEE Computer27(4):38-47, April 1994.
suring the performance of compiled stubs and skeletons. O] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
earlier work [9] provides a detailed analysis and optimizations sides.Design Patterns: Elements of Reusable Object-Oriented
for an interpretive marshaling engine. However, that study did Software Addison-Wesley, Reading, MA, 1995.
not compare interpretive and compiled marshaling. In addj4] Christopher D. Gill, David L. Levine, and Douglas C.
tion, it did not comment upon the relative code sizes. Schmidt. Evaluating Strategies for Real-Time CORBA Dy-
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out Fixed_Struct s3); number of parameters. The number of parameters is deter-
mined by theTAQCall _Data argument. This supplies in-
formation such as the operation name (“tesbrt”), whether

it is oneway or twoway, and a pointer to a table of parame-
ters TAQParam _Data ). TheTAQParam_Data data struc-

ture provides th@ypeCode and parameter type for each pa-

rameter of the operationTypeCode s are CORBA pseudo-

/I Sequences and typedefs.
typedef sequence<string> StrSegq;

StrSeq test_strseq
(in StrSeq s1,
inout StrSeq s2,

out StrSeq s3);

objects that describe the format and layout of primitive and

typedef string DUMMY;
/I variable structures
struct Var_Struct

DUMMY dummy1l;
DUMMY dummy2;
StrSeq seq;

¥ {

Var_Struct test_var_struct
(in Var_Struct s1,
inout Var_Struct s2,
out Var_Struct s3);

/I Nested structs (We reuse the var_struct
/I definition above to make a very

/I complicated nested structure).

struct Nested_Struct

{

Var_Struct vs;

h

Nested_Struct test_nested_struct
(in Nested_Struct s1,

inout Nested_Struct s2,

out Nested_Struct s3);

/I sequences of structs
typedef sequence<Var_Struct> StructSeq;

StructSeq test_struct_sequence
(in StructSeq s1,

inout StructSeq s2,

out StructSeq s3);

B Stubs and Skeletons

invokes thedo _call

constructed IDL data types.

CORBA::Short Param_Test::test_short

(CORBA::Short s1,
CORBA::Short &s2,
CORBA::Short_out s3,
CORBA::Environment &env)

static const TAO_Param_Data
Param_Test_test_short_paramdata [] =

{CORBA::_tc_short,
{CORBA::_tc_short,
{CORBA::_tc_short,
{CORBA::_tc_short,
h

static const TAO_Call_Data
Param_Test_test_short_calldata =
{"test_short", 1, 4,
Param_Test_test_short_paramdata,
0. O}

PARAM_RETURN, 0},
PARAM_IN, O},
PARAM_INOUT, 0},
PARAM_OUT, 0}

CORBA::Short retval;
STUB_Object *istub;

this->QuerylInterface (IID_STUB_Object,
(void **) &istub);

/I Querylnterface incremented refcount.
this->Release ();
istub->do_call

(env,

&Param_Test_test_short_calldata,

&retval, &sl, &s2, &s3);
return retval;

This stub first obtains the underlying stub object and then
method on it. Thelo_call internally

creates the IIORRequest message and marshals all tine
This section illustrates a stub and skeleton generated by TA@'slinout parameters. It then invokes the remote procedure

IDL compiler for thetest _short
Appendix AS

operation described incall. It blocks for the incoming reply if the IDL operation is
twoway; otherwise it returns immediately. The return value,

inout, andout parameters are demarshaled from the incoming
IIOP Reply message.

B.1 Unoptimized Interpreted Stub

The do_call

interpretive marshaling enginedo_call takes a variable

space.
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For thetest

5Some exception handling and error checking has been omitted to redi@ first cr'eates NVList . )
pseudo object that holds a list of parameters. The parame-

method shown below is the interface to thB.2 Unoptimized Skeleton

skeleton shown below, the skele-
An NVList is a CORBA

_short _skel



ter types, theiTypeCodes , and memory to store their val-

ues are inserted into tHéVList . Thein andinout param- CORBA:Short Param_Test::test_short

eters are demarshaled via a call to fe@ams method on

(CORBA::Short s1,
CORBA::Short &s2,

CORBA::ServerRequest . The skeleton then makes the corpa::Short_out s3,

to it.

void POA_Param_Test::test_short_skel
(CORBA::ServerRequest &_tao_server_request,
void *_tao_object_reference,
void *context,
CORBA::Environment &_tao_environment)

CORBA::NVList_ptr nvlist;
POA_Param_Test_ptr impl =
(POA_Param_Test_ptr) _tao_object_reference;
CORBA::Any *result;
CORBA::Short *retval = new CORBA::Short;
/I Create an NV list and populate
/I it with typecodes.
_tao_server_request.orb ()

->create_list (3, nvlist);

/I Add each argument according to the in,
/I out, inout semantics
CORBA::Short s1;
(void) nvlist->add_item
("s1", CORBA:ARG_IN,
_tao_environment)->value ()
->replace (CORBA::_tc_short, &s1,
0, _tao_environment);
CORBA::Short *s2 = new CORBA::Short;
(void) nvlist->add_item
("s2", CORBA::ARG_INOUT,
_tao_environment)->value ()
->replace (CORBA::_tc_short,
s2, 1, _tao_environment);
CORBA::Short *s3 =
new CORBA::Short;
(void) nvlist->add_item
("s3",
CORBA::ARG_OUT,
_tao_environment)->value ()
->replace (CORBA::_tc_short,
s3, 1, _tao_environment);
/I Parse the arguments.
_tao_server_request.params
(nvlist, _tao_environment);
*retval = impl->test_short
(s1, *s2, *s3, _tao_environment);

/I Store the result
result = new CORBA:Any
(CORBA::_tc_short, retval, 1);
/I Save the Any into the server request.
_tao_server_request.result

(result, _tao_environment);

B.3 Compiled Stubs and Skeletons

upcall on the target object passing the appropriate parameter$£ORBA::Environment &env)
{

CORBA::Short retval = 0;
IIOP_Object *istub;

this->QuerylInterface (IID_IIOP_Object,

(void **) &istub);
/I Querylnterface incremented refcount.
this->Release ();

/I Set up a GIOP/IIOP message.
TAO_GIOP_Invocation call

(istub, ACE_OS::strdup ("test_short"), 1);
env.clear ();
/I Setup a IIOP Request message.
call.start (env);

/I Get the marshal stream.
CDR &stream = call.stream ();

/I Insert parameters.
stream << sl; stream << s2;

/I Now invoke the request.
TAO_GIOP_ReplyStatusType status;
CORBA::ExceptionList exceptions;

exceptions.length
exceptions.buffer

= exceptions.maximum = 0;

= (CORBA::TypeCode_ptr *) 0;
/I Send the request.

status = call.invoke (exceptions, env);

/I Retrieve the parameter values.

if (status == TAO_GIOP_NO_EXCEPTION)
stream >> retval; stream >> s2; stream >> s3;

return retval;

The skeleton is similar and is shown below.

void POA_Param_Test::test_short_skel

(CORBA::ServerRequest &_tao_server_request,
void *_tao_object_reference,

void * context,

CORBA::Environment &_tao_environment)

POA_Param_Test_ptr impl
= (POA_Param_Test_ptr) _tao_object_reference;
CORBA::Short retval, sl, s2, s3;

/I Get the incoming CDR stream.
CDR &instream = _tao_server_request.incoming ();

/I Retrieve parameters.
instream >> sl1; instream >> s2;

This section illustrates the hand-crafted compiled stub ang; make upcall.

skeleton for theest _short operation.

retval = impl->test_short



(s1, s2, s3, _tao_environment);

/I Get the outgoing CDR stream.

CDR &outstream = _tao_server_request.outgoing ();

/I Create a IIOP Reply message.
_tao_server_request.init_reply (_tao_environment);

/I Marshal outgoing parameters.

outstream << retval;
outstream << s2; outstream << s3;

B.4 Optimized Stub

/I Call_Data and Param_Data tables are the same.

CORBA::Short Param_Test::test_short
(CORBA::Short s1,
CORBA::Short &s2,
CORBA::Short_out s3,
CORBA::Environment &env)

STUB_Object *istub = this->stubobj (env);
if (istub) {
CORBA::Short retval;
istub->do_call
(env,
&Param_Test_test_short_calldata,
&retval, &sl, &s2, &s3);
return retval,

}

return O;

B.5 Optimized Skeletons

This section illustrates the optimized skeletons that TAO's IDL
compiler generates. The skeleton fest _short _skel

shown.

void POA_Param_Test::itest_short_skel
(CORBA::ServerRequest &_tao_server_request,
void *_tao_object_reference,
void *context,
CORBA::Environment &_tao_environment)

static const TAO_Param_Data_Skel

Param_Test_test_short_paramdata [] =

{
{CORBA::_tc_short, 0, 0},
{CORBA::_tc_short, CORBA::ARG_IN, 0},
{CORBA::_tc_short, CORBA::ARG_INOUT, 0},
{CORBA::_tc_short, CORBA::ARG_OUT, 0}

3

static const TAO_Call_Data_Skel
Param_Test_test_short_calldata =
{"test_short",

1,

4,

Param_Test_test_short_paramdata};

POA_Param_Test_ptr impl

= (POA_Param_Test_ptr) _tao_object_reference;
CORBA::Short retval, s1, s2, s3;

/I Demarshal parameters.

_tao_server_request.demarshal
(_tao_environment,
&Param_Test_test_short_calldata,
&retval, &sl, &s2, &s3);

/I Make upcall.

retval = impl->test_short

(s1, s2, s3,

_tao_environment);

/I Marshal outgoing parameters.

_tao_server_request.marshal
(_tao_environment,
&Param_Test_test_short_calldata,
&retval, &sl, &s2, &s3);

C Comparison of Performance and

Code
Linux

Size for Windows NT and

This section provides the cost of marshaling and the size of the
generated stubs and skeletons for the Windows NT and Linux

platforms.

Operator Size
operator< < (char *) 111
operator>> (char *) 95
operator< < (fixed_struct) 207
operator>> (fixed_struct) 159
operator< < (strseq) 111
operator>> (strseq) 221
operator< < (var_struct) 63
operator>> (var_struct) 95
operator < < (nestedstruct) 31
operator>> (nestedstruct) 31
operator< < (struct_seq) 239
operator>> (struct_seq) 287

Table 11: Sizes of Overloaded Operators for Compiled
Stubs/Skeletons on PC running Windows NT

Stub name [ Interpreted size [ Compiled size

stub | table | total stub | helper total
testshort 205 88 293 570 0 570
testubstring 205 88 293 586 206 792
testfixed_struct 205 88 293 570 366 936
teststrseq 269 88 357 664 332 996
testvar_struct 333 88 421 812 158 970
testnestedstruct 333 88 421 702 62 764
teststruct_seq 205 88 293 670 526 | 1,196

Table 12: Stub Sizes on PC running Windows NT
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Stub name [ Interpreted size [ Compiled size

skel | table | total skel | helper total
test.short_skel 253 88 341 143 0 143
testubstring_skel 333 88 421 239 206 445
test fixed_struct_skel 285 88 373 191 366 557
teststrseqg.skel 468 88 556 358 332 690
testvar_struct_skel 856 88 944 794 158 952
testnestedstruct_skel 867 88 955 726 62 788
teststruct_seqskel 615 88 703 616 526 | 1,142

Table 13: Skeleton sizes on PC running Windows NT

Operator Size
operator< < (char *) 92
operator>> (char *) 92
operator< < (fixed_struct) 200
operator>> (fixed_struct) 140
operator< < (strseq) 284
operator> > (strseq) 344
operator< < (var_struct) 192
operator>> (var_struct) 216
operator< < (nestedstruct) 24
operator>> (nestedstruct) 24
operator< < (struct_seq) 168
operator>> (struct_seq) 244

Table 14: Sizes of Overloaded Operators for Compiled
Stubs/Skeletons on PC running Linux

Stub name [ Interpreted size [ Compiled size

stub | table | total stub | helper total
testshort 104 88 192 452 0 452
testubstring 116 88 204 492 184 676
test fixed_struct 108 88 196 452 340 792
teststrseq 212 88 300 576 628 | 1,204
test.var_struct 240 88 328 608 408 | 1,016
testnestedstruct 240 88 328 588 48 636
teststruct_seq 212 88 300 576 412 988

Table 15: Stub Sizes on PC running Linux
Stub name [ Interpreted size [ Compiled size

skel | table | total skel | helper total
testshort_skel 136 88 224 180 0 180
testubstring_skel 228 88 316 276 184 460
test fixed_struct_skel 132 88 220 192 340 532
teststrseqg.skel 308 88 396 368 628 996
testvar_struct_skel 544 88 632 596 408 | 1,004
testnestedstruct_skel 544 88 632 596 48 644
teststruct_seqskel 308 88 396 368 412 780

Table 16: Skeleton Sizes on PC running Linux
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