Techniques for Developing and Measuring
High-Performance Web Servers over ATM Networks

James C. Hy Sumedh Mungee, Douglas C. Schmidt
{jxh,sumedh,schmidt ~ }@cs.wustl.edu
TEL: (314) 935-4215 FAX: (314) 935-7302

Campus Box 1045/Bryan 509
Washington University
One Brookings Drive
St. Louis, MO 63130, USA

This paper appeared in the INFOCOM '98 conference, Sihility, relative to other Web servers. Our empirical results
Francisco, March/April 1998. illustrate that highly efficient communication software is not
antithetical to highly flexible software.

Abstract

High-performance Web servers are essential to meet the grdw- Introduction
ing demands of the Internet and large-scale intranets. Satis-
fying these demands requires a thorough understanding of Keying the past two years, the volume of traffic on the World
factors affecting Web server performance. This paper presenisle Web (Web) has grown dramatically. Traffic increases
empirical analysis illustrating how dynamic and static adagre due largely to the proliferation of inexpensive and ubig-
tivity can enhance Web server performance. Two reseatdtous Web browsers (such as NCSA Mosaic, Netscape Nav-
contributions support this conclusion. igator, and Internet Explorer). Likewise, Web protocols and
First, the paper presents results from a comprehensive dmmewsers are increasingly applied to specialized computation-
pirical study of Web servers (such as Apache, Netscape Engdliy expensive tasks, such as image processing servers used by
prise, PHTTPD, Zeus, and JAWS) over high-speed ATM rgiemens [8] and Kodak [18] and database search engrgs (
works. This study illustrates their relative performance ariltaVista and Lexis Nexis).
precisely pinpoints the server design choices that cause perfo keep pace with increasing demand, it is essential to de-
formance bottlenecks. We found that once network and dielop high-performance Web servers. Therefore, the central
I/O overheads are reduced to negligible constant factors, ttiemes of this paper are:
main determinants of Web server performance are its proto- . ,
col processing path and concurrency strategy. Moreover, Ad1igh-performance Web servers must be adaptive: To
single strategy performs optimally for all load conditions an@chieve optimal performance, Web servers must adapt to vari-
traffic types. ous condlthns, su_ch as machine load and network cgngestlon,
Second, we describe the design techniques and optimip§-tyPe of incoming requests, and the number of simultane-
tions used to develop JAWS, our high-performance, adapfH$ connect.lons. While it is 'always possible to improve per-
Web server. JAWS is an object-oriented Web server that W&nance with more expensive hardware or a faster OS, our
explicitly designed to alleviate the performance bottlenecRIECtive is to produce the fastest Web server possible for a
we identified in existing Web servers. It consistently outp@fven hardware/OS platform configuration.
forms all other Web servers over ATM networks. The pgr-standard Web server benchmarking suites are inad-
formance optimizations used in JAWS include adaptive pigate over high-speed networks: Our experience mea-
spawned threading, fixed headers, cached date processifiing Web server performance on ATM networks reveals
and file caching. In addition, JAWS uses a novel software gfat existing benchmarking tools (such as WebSTONE and
chitecture that substantially improves its portability and ﬂe)SPECWeb) designed for low-speed Ethernet networks are in-

“This work was funded in part by NSF grant NCR-9628218, Object Tecidlequate to capture key performance determinants on high-
nologies International, Eastman Kodak, and Siemens MED. speed networks.

To address these issues, this paper describes an adaftize Adaptive Web Servers
Web server framework and a Web server/ATM testbed deﬁ. - . .
signed to empirically determine (1) the scalability of We-lb— IS paper presents'emplrllcal'resul.ts thatlllustrgte that no sin-
servers under varying load conditions, (2) the performance | e Web server configuration is optimal for all circumstances.

pact of different server design and implementation strategigg,sed on these rgsults, we .conclude th"’.‘t optlmal Web server
erformance requires bosfiaticanddynamicadaptive behav-

and (3) the pros and cons of alternative Web server design% ;
Staticadaptivity allows a Web server to bind common op-
erations to high-performance mechanisms provided by the na-
tive OS €.g, Windows NT 4.0 support for asynchronous 1/0
1.1 Web Server Performance and network/file transfer). Programming a Web server to use
generic OS interfaces (such as synchronous POSIX threading)

Web servers are often considered synonymous with HTipNnsufficient to provide maximal performance across OS plat-
servers and the HTTP 1.0 and 1.1 protocols are re|ativgp)pms. Therefore, asynchronous I/O mechanisms in Windows
straightforward. HTTP requests typically name a file, whidhT and POSIX must be studied, compared, and tested against
the server locates and returns to the client requesting it. On#fidgitional concurrent server programming paradigms that uti-
surface, therefore, Web servers appear to have few opportli# synchronous event demultiplexing and threading [8].

ties for optimization. This may lead to the conclusion that op- Dynamicadaptivity allows a Web server to alter its run-time
timization efforts should be directed elsewhere (such as trapghavior “on-the-fly.” This is useful when external conditions

port protocol optimizations [14], specialized hardware [5], ah@ve changed to the point where the initial configuration no
client-side caching [27, 15]). longer provides optimal performance. Such situations have

- . . . een observed in [8] and [11].
However, empirical analysis in [8] and in Section 2 revea?s (8] (11

that Web server performance problems are complex and th&he remainder of this paper is organized as follows: Sec-

solution space is quite diverse. For instance, our experim#an 2 outlines our Web server/ATM benchmarking testbed and

tal results show that a heavily accessed Apache Web sermslyzes our benchmark results; Section 3 describes the OO
(the most popular server on the Web today [23]) is unalslesign and performance of JAWS, our high-performance Web

to maintain satisfactory performance on a dual-CPU 180 Mberver; Section 4 summarizes the Web server optimization

UltraSPARC 2 over a 155 Mbps ATM network, due largely ttechniques identified by our empirical studies; Section 5 com-

its choice of process-level concurrency. Other studies [12,8ires our research with related work; and Section 6 presents
have shown that the relative performance of different ser¢@ncluding remarks.

designs depend heavily on server load characteristics (such as

the number of simultaneous connections and file size).

The explosive growth of the Web, coupled with the Iarge2r Web Server Performance over ATM

role servers play on the Web, places increasingly larger §¢q section describes our experimental methodology, bench-
mands on servers [3]. In particular, the high loads that Servg{Si«ing and analysis tools, the results of our experiments, and
like the NASA Pathfinder Web site and AltaVista already egyr analysis of the results. To study the primary determinants
counter handling millions of requests per day will be cor \yep server performance, we selected five Web server im-
founded with the deployment of high-speed networks, Sug,mentations and analyzed their performance through a series
as ATM or Glgablt Ethernet. Therefore, it is critical t_o un.d.er blackbox and whitebox benchmarking experiments. Our
stand how to improve server performance and predictability, v sis of these results identified the following key determi-
Server performance is already a critical issue for the Inants of Web server performance:
ternet [1] and is becoming more important as Web protocelsFilesystem access overhead costs are highviost dis-
are applied to performance-sensitive intranet applications. Edvuted applications benefit from caching and Web servers
instance, electronic imaging systems based on HTTP (sacé no exception. In general, Web servers that implement
as Siemens MED or Kodak Picture Net) require serversftie caching strategies (such as Enterprise, Zeus, and JAWS)
perform computationally-intensive image filtering operatiomerform substantially better than those that did not (such as
(such as smoothing, dithering, and gamma correction). Likgache).
wise, database applications based on Web protocols (suck &encurrency overhead is significant: A large portion of
AltaVista Search by Digital or the Lexis Nexis) support coomon-1/O related Web server overhead is due to the Web server’s
plex queries that may generate a higher number of disk aoncurrency strategy. Key overheads include synchronization,
cesses than a typical Web server. thread/process creation, and context switching. Therefore, it

is crucial to choose the right concurrency strategies to ens

optimal performance. § ’2 ‘jg

e Protocol processing overhead can be expensivalthough *§ Request o
the HTTP/1.0 protocol is relatively simple, a naive implemel ‘i Requests Lifecycle t
tation can introduce a substantial amount of overhead. For *§ DD
stance, the dynamic creation of response headers and the Web Client Web Server

of multiple write system calls significantly inhibits perfor-

mance. , (ATM Switch
B X

These and related performance issues are described in .

- = (-
tion 4. L) I’ E)
Ultra L = Utra@
; AT Ethernet 22222/
2.1 Web Server Test Suite T Ura @

The servers chosen for our tests were Apache v1.1, PHTTPD
v0.99.76, Java Server 1.0, Netscape Enterprise v2.01 and Zeus
Server v1.0. The choice of servers for our study were based
on two factors. The first wagariation in Web server design LattisCell 10114 is a 16 Port, OC3 155 Mbs/port switch. Each
to gauge the performance impact of alternative approachesipaSPARC-2 contains 2 168 MHz CPUs with a 1 Megabyte
concurrency, event dispatching, and filesystem access. Thehe per-CPU, 256 Mbytes of RAM, and an ENI-155s-MF
second wapublished performances reported by benchmarkATM adaptor card that supports 155 Megabits per-sec (Mbps)
results published by Jigsaw [2] and NCSA [13], as well @ONET multi-mode fiber. The Maximum Transmission Unit
information available from WebCompare [23]. (MTU) on the ENI ATM adaptor is 9,180 bytes. Each ENI
Apache and PHTTPD are implemented in C. The Jayard has 512 Kbytes of on-board memory. A maximum of
Server is implemented in Java. Netscape Enterprise and Z&ikbytes is allotted per ATM virtual circuit connection for
servers are commercial servers with only binaries availableceiving and transmitting frames (for a total of 64 K). This
Apache utilizes process level concurrency, PHTTPD spavéiows up to eight switched virtual connections per card. This
a thread per request, as does the Java Server from . testbed is similar to the one used in [7].
though source code for Netscape Enterprise and Zeus is un-
available, their concurrency model can be inferred using togl$ > Benchmarking Methodology
like truss and TNF. Our analysis indicates that Netscape

Enterprise uses a Thread Pool implementation, whereas 28gsused the WebSTONE [6] v2.0 benchmarking software to
uses a Process Pool implementation. collect client- and server-side metrics. As described in Sec-

tion 2.3, these metrics includesterage server throughpav-
erage client throughpytverage number of connections-per-
2.2 Web Server/ATM Testbed secong and average client latency The testbed comprised
221 Hardware and Software Platforms multiple concurrentVeb clients running on UNIX hosts de-
picted in Figure 1. Each Web client transmits a series of HTTP
We studied Web server performance by observing how ffeguests to download files from the server. The file access pat-
servers in our test suite performed on high-speed networks win used in the tests is shown in Table 1.
der heavy workloads. To accomplish this, we constructed a

Figure 1: Web Server/ATM Testbed Environment

hardware and software testbed consisting of the Web server Document Size| Frequency
being tested, and multiple clients connected to it via a high- 500 bytes 35%
speed ATM switch [26], as shown in Figure 1. 5 Kbytes 50%

The experiments in this paper were conducted using a Bay 50 Kbytes 14%
Networks LattisCell 10114 ATM switch connected to four 5 Mbytes 1%

dual-processor UltraSPARC-2s running SunOS 5.5.1. The .
Table 1: File Access Patterns

1The Java Server actually performs Thread-per-Connection. However, our
testbed is based on HTTP 1.0 and does not use “keep-alivesa(new con- This table represents actual load conditions on popular servers,
nection is established for every new request). Therefore, Java Server e%—sed on a study of file access patterns conducted by SPEC [4]
tively performs Thread-per-Request. y P y !
2We also performed measurements over 10 Mbps Ethernet, but due to X\/e benchmarked each Web server on an UltraSPARC-2

lack of performance variance, we omitted the discussion from this paper. host, while the Web clients ran on three other UltraSPARC-

2s. Web clients are controlled by a centégbmasterwhich number of simultaneous connections per Web client. The tests
starts the Web clients simultaneously. The Webmaster alsported below use 42 concurrent connections on three hosts
collects and combines the measurements made by individiual, 14 concurrent connections per host).

clients. Since the Webmaster is less performance critical, it

ran on an UltraSPARC-1 connected to the testbed machines)

with 10 Mbps Ethernet. The UliraSPARC-1 contained a 1873 Blackbox Performance Analysis

MHz CPU with 1 Megabyte cache and 128 MBytes of RAMThe following WebSTONE blackbox metrics were measured

in our Web server performance study. These metrics were
2.2.3 Web Server Performance Analysis Techniques obtained using a range of simultaneous connections from
We used two techniques to analyze the performance of V\}glgo 42',, Sprver file caqhes were pre-loaded by running a
servers: blackboxand whiteboxbenchmarks. Thélackbox oummy client before doing the performance mgasurements.
tests measure externally visible Web server performance Vg? present the biackbox resu!ts belqw. The whitebox results
obsach server are presented in Section 2.4.

rics (such as throughput and average response time seen

clients). We accomplished this by controlling the Web clienéger throughput: This measures the number of bits the
to vary the load on the serverd,, the number of simultaneousse ey writes onto the network per second. Figure 2 depicts

connections). These clients computed several blackbox Mgk resyits. The process-based concurrency models of Apache
rics, as explained in Section 2.3.

To precisely pinpoint thesource of performance bottle-
necks, we employed whitebox benchmarks. This involved the
use of profiling tools, including the UNIXruss(1) tool, =«
TNF[24], andQuantify [9]. These tools trace and log the «
activities of Web servers and measure the time spent on vari-
ous tasks, as explained in Section 2.4. 2

2.2.4 Limitations of WebSTONE v2.0 over High-speed
Networks

15

Server Throughput in Mb

10

Although WebSTONE measures several key performance met;

rics, a study of its source code revealed that it uses process-

based concurrency on UNIX.e., multiple Web clients are

spawned on a host using therk system call. Context -

switching overhead between these processes is high. This Connections s

overhead limits the number of concurrent clients on a single

host to~10, which prevents the clients from heavily loading

the Web servet. The standard WebSTONE model is accept- Figure 2: Average Server Throughput

able for ordinary LANs €.g, 10 Mbps Ethernet). However,

the high cost of ATM interfaces limits the number of avail-

able machines to use in our high-speed testbed 155 Mbps exhibits the lowest overall throughput. The multi-threaded

ATM). Thus, this model is unsuitable for our purposes. Netscape Enterprise server consistently outperforms the other
To overcome these limitations, we modified WebSTONES€Ivers; the Process Pool based Zeus server also performs

concurrency mechanism to use threads rather than procesidite well. Both sustained aggregate throughput higher than

This modification alleviated the client-side limitations and e Mbps over the 155 Mbps ATM network (for one concurrent

hanced the ability of the testbed to stress Web servers. GRgnection to the server, the server throughputis low because

a result, our modified WebSTONE required just one procdbg average size of the requested files are relatively small).

per host. In contrast, the original WebSTONE process-based)))

concurrency model requireidt processeper host. Therefore,server connections/sec: This metric computes the number

the servers in our study could be subjected to a much higRbfonnections the server completes per second. The results
are shown in Figure 3. This figure depicts how many connec-

3The number of processes can increase beyond 10, limited by the availdipeis are completed per second by the servers, as we increase
memory of the machine. However, beyond 10 processes, the context switchif number of simultaneous connections to the server. The En-

overhead becomes very high, which causes a performance bottleneck o . .
client side and inhibits WebSTONE's ability to stress the Web server. Tépﬁnse server completed more connections per second than
other Web servers, followed by the Zeus server.

PHTTPD
Enterprise

Apache
Java Server

4

|

Connections/sec
Response Time in msec

42
39
3 36

3
30
24 27 Concurrent
Connections

Concurrent
Connections

Enterprise
Zeus
PHTTPD
Java Server
Java Server
PHTTPD
Zeus
Enterprise

Figure 3: Average Connections/sec Figure 5: Average Client Latency

.) o . results are shown in Figure 5. This graph is similar to the
Client throughput: This is the average number of bits régjiant throughput graph in Figure 4. It shows how the latency
ceived per second by the client. The number of bits receiv, erved by individual clients increases, especially for the

includes the HTML headers sent by the server. The resy{§.oss hased concurrency mechanism employed by Apache.
are depicted in Figure 4. Clearly, as the number of concurrent

2.4 Whitebox Performance Analysis

To determine the design and implementation issues that cause
Web servers to exhibit the blackbox performance results in
Section 2.3, we conducted the following whitebox experiment.
Every Web server in our suite was subjected to an identical
load. 15 simultaneous connections were set up to the Web
server. Each connection made 1,000 requésts15,000 total
requests). The access patterns of these requests were identical
to those presented in Section 2.2.2.

While the Web server was serving these requests, we used
o the Solarigruss andTNFtools to count the number of sys-
PHTTPD tem calls made and the time spent in each call. We then cate-
s gorized these calls into the tasks shown in Table 2.

Client Throughput in Mbits/sec

Enterprise

Apache

Task System calls
Figure 4: Average Client Throughput File operations | open, close, stat , etc.
Writing files write, writev, ioctl , etc.
Reading requests read, poll, getmsg , etc.
clients increases, the server throughput is multiplexed among&ignal handling | sigaction, sigsetmask , etc.
a larger number of connections, and hence the clients’ aver 1?”Chr0”iza“°“ lwp mutex {lock,unlock }, etc.
throughput drops. Therefore, those servers that exhibit hﬂg rocess control | fork, execve, waitid, exit etc.
server throughpug(g, Enterprise and Zeus) also exhibit cot._Viscellaneous | time, getuid , etc.

respondingly high average client throughput. .
Table 2: Categories of Web Server System Call Tasks

Client latency: Latency is defined as the average amount of
delay in milliseconds seen by the client from the time it sendsln addition, we used a software monitoring tool called
the request to the time it completely receives the file. Theiss to measure the amount of time the Web server spent

at user-leveli(e., when the server was not making a systefthe .htaccess mechanism: A feature of the Apache
call). This allowed us to estimate the amount of time ea@Yeb server is its ability to configure Web server behavior on a
Web server spent in HTTP processing. The whitebox resyier-directory basise(g, different error messages for different
for each Web server are presented below, ordered by increfi®ctories). This is achieved by placing a configuration file
ing performance. (typically called.htaccess) in every directory that contains
Note that theideal Web server would spend most of itdiles being served by Apache. When a request arrives for a file,
time performing network 1/Oi,e., reading HTTP requests andhe server tries to open thietaccess file in that directory,
writing requested files to the network. In particular, it wouldh an attempt to read the per-directory configuration. In addi-
have negligible overhead resulting from synchronization (dtien, the Web server attempts to read all thiaccess files
to efficient concurrency control and threading strategies) andlirectoriesabovethe one containing the requested file. This
filesystem operations (due to caching). causes a very large numberagen system calls{100,000
calls for 15,000 requests). Moreover, thigen calls fail if the
. . .htaccess file is not present, which executes error handling
24.1 Apache Whitebox Analysis code. Clearly, this feature increases latency since it causes the

The results of the whitebox analysis of Apache are illustraté@rver to make several filesystem calls and handle their failure
in Figure 6. The key determinants of Apache performance ¥fgile a client waits for a response.

Lack of effective file-caching: Analysis of the system call
trace reveals that the Apache server does not perform file
caching. Instead, aopen system call is made for each file
requested and the file is read into memory before being sent to
the client.

Wiiting Files

Reading Requests
5%

Memory-mapped files are not used: After the file has been
opened, the server reads the file contents into a memory buffer
viatheread system call and then writes it out to the network.
This introduceslata copying overheadrhis overhead can be
avoided withmemory-mapped filegia the UNIX mmapsys-

File operations

Context Switching
o

Signal Handing
7%

Process Control
1%

HTTP processing
9%

Figure 6: Apache Whitebox Analysis

outlined below:

tem call. Themmapcall makes the contents of a file available
to a process as a pointer to its address space. This technique is
explained further in Section 4.

Signal handling: A significant fraction (7%) of the total
time was consumed in signal handling activities. For example,
sigaction installs signal handlers for thelIGUSRL1 sig-

nal andsigprocmask controls the responses to various sig-

) i nals. Apache employs signals to assist inter-process communi-
Process-based concurrency: The primary performanceaion hetween the multiple server processes. For instance, the
bottleneck of Apache is its process-based concurrency modgysRr1signal is used by the parent process to inform child
where concurrent connections are handled by concurrent g or processes that they should quit, so that new processes

cesses. Apache performs a number of optimizations to ¢&p, e |aunched with fresh configuration information.
duce the overhead of process creation. The server pre-forks a

number of children into a process-pool to handle connecti . .
which are yet to be established. A new child is spawneciglzfi'2 Java Server Whitebox Analysis
the pool is depleted. When a child finishes handling a conn&ée results of the whitebox analysis of Java Server are illus-
tion, it returns to the pool. Thus, the cost of process creatipated in Figure 7. The key determinants of Java Server perfor-
is amortized by handling multiple requedtisratively, which mance are outlined below:
has less overhead than a pure process-per-request model.
with these optimizations, it is possible for the number of
tlvg processes to match the qum_ber of concurrent connecthpas es thegetcontext
which yields high context switching overheéd.

4The context switching overhead was calculated by using the UikiX reported bytime |, to yield the context-switching overhead. The overhead for
utility, which reports the total time spent by kernel on behalf of the Apaclige other servers were negligible and was not computed.

Web serveri(e., in system calls) and the total user level time consumed by the 3Java Server uses the “green-threads?, (user-level threads) Java Virtual
Web server process. These times were subtracted from the “wall-clock” tiMachine implementation.

E\é?ﬁ]ext switching: The Java Web Server uses the Java run-
me system, which supports user-level threads. On Solaris,
andsetcontext system call®

Witing Files
15¢

client. It also causes the number of threads to grow rapidly as
the number of outstanding requests increases, which increases
context switching overhead.

Reading Requests
10%

Background hostname lookups: In addition to the threads
mentioned above, PHTTPD spawns threads to perform host-
name lookups in the background. Numeric IP addresses of
HTTP clients are available locally using tigetsockname
system call. However, the full hostname is more useful for
logging client hits.

File operations

HTTP Processing /
Java VM overhead

))) Background ident lookups: PHTTPD also uses threads
Figure 7: Java Server Whitebox Analysis to performident [10] lookups in the background. The
ident lookups obtain the name of the user who issued the

to context switch between the Java threads. The Java Se'r_|v-<re1r—P request, which is typically used for logging purposes.

spends over 20% of its per-request processing performynchronization: The threads spawned by PHTTPD use
user-level context switching. Moreover, context switchingutex locks and semaphores to serialize access to shared data
overhead increases as the number of concurrent clients grd@, the file cache table). Our whitebox analysis reveals that
Hence, the average server throughput decreases and the @igmhronization overhead€., the time spent by PHTTPD in
latency increases as the number of simultaneous connectiguiring and releasing locks) is the major performance bottle-
increases, as shown in Figures 4 and 5. neck in PHTTPD, contributing over 70% of its total execution

) . time. For instance, for 15,000 requests approximately 600,000
HTTP processing and Java VM overhead: Apartfromthe ., oy |ocks were acquired by various threads, causing an av-

user-level context switching mentioned above, alargefractmge of 40 locks acquireuer request(an equal number of
(46%) of the total time is consumed by user-level activity, mutex locks were released)

HTTP processing and Java VM processing. This overhead

constitutes the main performance bottleneck of Java Server, . i
2.4.4 Zeus Whitebox Analysis

2.4.3 PHTTPD Whitebox Analysis The results of the whitebox analysis of Zeus are illustrated
in Figure 9. The key determinants of Zeus performance are
The results of the whitebox analysis of PHTTPD are illustrated

in Figure 8. The key determinants of PHTTPD performance synehronizaton

Overhead
11%

HTTP processing
o Witing Files

Misc. System Calls

Reading Requests
2% HTTP processing
ations 12%

Writing Files
41%

Misc. System Calls

File operations
21%

Synchronization
73%

Reading Requests
9%

Figure 8: PHTTPD Whitebox Analysis Figure 9: Zeus Whitebox Ana|ysis

are outlined below: outlined below:

Concurrency model: PHTTPD is a single-process multi-Concurrency model: Zeus employs a static process pool
threaded server and employs the Thread-per-Request conturdel of concurrency. The server initialization process creates
rency model. Thus, a new thread is created to handle eaghool of processes, which is known @®-forking All pro-
incoming request, which increases the latency seen by tlegses in the pool run concurrently, though each process serves

HTTP processing

its requests using asynchronous I/O mechanisms. The use of a
Process Pool avoids the overhead of dynamic process creation.
The cache also limits the number of processes and the context
switching overhead. This accounts for the superior perfor-
mance of Zeus over Apache, which also employs a process-
based concurrency model, as explained in Section 2.4.1. The
Zeus documentation recommends that the number of the pro-
cesses in the pool should equal the number of processors.
Therefore, we used two processes in our tests since the server
ran on a dual-processor machine, as explained in Section 2.2.1.

Synchronizing witing Fi
15% riing Fies

File operations

Reading Requests

Memory-mapped files and file caching: Zeus uses
memory-mapped files via the use of themapsystem call.
Therefore, files need not be read into server memory before
being written to the Network. This technique is explained fur-

ther in Section 4. In addition, each file is memory—mapp%mory_mapped files and file caching: The Enterprise

the f'irst time it is regugsted so that subsequgnt caII§ byp@éﬁ/er employs memory-mapped files via thenapsystem

the filesystem. This indicates that Zeus empiBigscaching o) and file-caching to minimize filesystem access. This is
which contributes to its relatively high performance. evident from thetruss output, which reveals that files re-
guested by clients are only mapped into memory the first time
I;lhey are requested. Subsequent calls to the same file are ser-
viced from the cache.

Figure 10: Enterprise Whitebox Analysis

Optimized file-writes: Zeus uses theritev system call,
which allows multiple buffers to be written to a socket wit
a single system call. Theritev call transmits the HTTP
header and the requested file irsiagle system call, as ex- Optimized synchronization mechanisms: A system call
plained in Section 4. trace of Enterprise reveals that although the threads acquire
and release locks for accepting new connections, once a new

Synchronization overhead: Since all processes in the Zeugequest has been acceptemllocking overhead is incurred un-
Process Pool serve connections arriving on the same sodiadfter the request has been completely servidgs reduces
they use inter-process synchronization to synchronize acagignt latency, as seen in Figure 5.
via the UNIX process-level advisory file locking APIse,
thefentl system call). This overhead is significant (10%). Thus, a combination of lightweight concurrency model, effi-

. _ cient synchronization mechanisms, and file-caching optimiza-
Other system calls: Zeus also spends appreciable timg,ns gives Enterprise superior performance over the other

dling. The major contributors include obtaining the current

time via thetime system call and setting signal masks via the _)]
sigprocmask system call. 3 Strategies for Developing High-

Performance Web Servers

2.4.5 Enterprise Whitebox Analysis
The analysis in Section 2 illustrates the superior performance

The results of the whitebox analysis of Netscape EnterpriseNetscape Enterprise and Zeus and identifies key factors that
are illustrated in Figure 10. The key determinants of Netscagstermine Web server performance. These factors include the
Enterprise performance are outlined below: server concurrency strateggynchronization overheagbro-
tocol processing overhea@dnd caching strategy Applying

Concurrency model: Enterprise is a multi-threaded servefhitebox measurement techniques in our ATM/Web Server
that employs the thread pool concurrency model. Theg8thed enabled us to determine precisehy Netscape En-
threads are created at server initialization time. This avoidgprise and Zeus perform much better than other Web servers
the overhead of dynamic thread creation and thus improyg@r high-speed ATM networks.
latency. After empirically determining the key Web server perfor-

o i . . , mance factors, our next objective was to develop an OO Web
Optimized file writes: Like Zeus, Netscape Enterprise eMsqor development framework called JAWS. JAWS is de-

ploys thewritev optimizations. Therefore, it sends thgjgneq to systematically develop and test the performance im-
HTTP header and the requested file using a single system call.

8

pact of different Web server design strategies and optimizataiar, which is parameterized by a concurrency strategy and an
techniques. This section outlines the object-oriented desifd strategy, as discussed below.

of JAWS and presents the results of systematically applyi) .

techniques uncovered in the analysis in the previous Secti@g_ncurrgncy Strategy: _Th|s implements concurrency

We conclude this section by demonstrating how a highly o echanisms (such as single-threaded, Thread-per-Request,

timized version of JAWS gives equivalent (and sometimes su- synchronous/asynchronous Thread Pool [8]) that can

perior) performance compared with Netscape Enterprise sgleqted 'adaptlvely at run-t|m e or pre-determl'ned at
initialization-time. These strategies are discussed in Sec-

Zeus. .
eus tion 3.2.3.

3.1 The Object-Oriented Architecture of JANS I/O Strategy: This implements the I/O mechanisms (such as
) asynchronous, synchronous, and reactive). Multiple /O mech-

anisms can be used simultaneously.

Protocol Handler: This component allows developers to

1/0 Strat Cached Virtual K
Framework % Fiéllsﬂ/sta"rllr ’ apply the JAWS framework to create various Web server
ElC I @ @@ % configurations. A Protocol Handler is parameterized by a
d concurrency strategy and an I/O strategy (though these re-

| Asynchronous Completion Token E')!Sgn s TN main opaque to the protocol handler). In JAWS, the Proto-
Protooo /home/... col Handler implements parsing and processing of HTTP re-
Handler % J Event Dispatcher quest methods. The abstraction allows other protoaals, (
HTTP/1.1 and DICOM) to be incorporated easily into JAWS.

101d200 Y

Strategy

Protocol

Filter \ Q To add a new protocol, developers simply implement a new
\ Protocol Handler, which is then configured into the JAWS
\.:) O @ @ gg framework.
Concurrency @ 3 Protocol Pipeline: This component provides a framework to
Protocol Pipeline Strategy]
<

Framenork Framonork allow a set of filter operation(g, compression, decompres-
Service Configurator sion, and parse HTML) to be incorporated easily into the data
being processed by the Protocol Handler. This enables a server
Figure 11: The Object-Oriented Architecture of JAWS Programmer to easily incorporate functional extensions (such
as image filters or database operations) transparently into the
Web server.

Figure 11 illustrates the OO software architecture of t
JAWS Web server. As shown in Section 2, concurrency str

gies, event dispatching, and caching are key c.ieterm.inant§ o access. The caching policy is strategized (LRU, LFU
Web server performance. Therefore, JAWS is designed inted, and Structured). This allows different caching policies

allow these Web server strategies to be customized acc?i pe profiled for effectiveness and enables optimal strategies

Ing to key environmental factor;. .These factors include tr?) be configured statically or dynamically. These strategies are
fic patterns, workload characteristics, support for kemel'le\g%cussed in Section 3.2.4
IS 2.4,

threading and/or asynchronous I/O in the OS, and the number

of available CPUs. Tilde Expander: This mechanism is another cache compo-
JAWS is structured as a framework [22] that contains thent that uses a perfect hash table [20] to map abbreviated

following components: arkEvent Dispatcher Concurrency user login namese(g, ~schmidt) to user home directo-

Strategy I/O Strategy Protocol Pipeling Protocol Handlers ries (.9, /home/cs/faculty/schmidt). When per-

Cached Virtual Filesystejrand Tilde Expander Each com- sonal Web pages are stored in user home directories (and user

ponent is structured as a set of collaborating objects implirectories do not reside in one common root), this component

mented with the ADAPTIVE Communication Environmensubstantially reduces the disk I/O overhead required to access

(ACE) C++ communication framework [21]. Each componeatsystem user information file, such/atc/passwd

plays the following role in JAWS:

ached Virtual Filesystem: This component improves
etb server performance by reducing the overhead of filesys-

In general, the OO design of JAWS decouples the func-
Event Dispatcher: This componentis responsible for coortionality of Web server components from their implementation
dinating theConcurrency Strategwith the I/O Strategy As strategies. For instance, the JAWS Concurrency Strategies can
events are processed, they are dispensed tBriftecol Han- be decoupled from its Protocol Handlers. Thus, a wide range

of strategies can be supported, configured, tested, and evaflF
ated. As a result, JAWS can adapt to environments that may
require different concurrency, I/O, and caching mechanisms?
This additional flexibility is not antithetical to performance}
as shown in Section 3.3.1 where JAWS demonstrates thatZle
. . . =.
coupled and flexible Web server designs can achieve supetior
performance. 3

w
8

N
S

3.2 Performance Impacts of Web Server
Strategies

Server Throughpu

—&— JAWS With Protocol Tweaks

10
The following subsection describes the concurrency, I/0, and, = JAWS Baseline

caching strategies supported by JAWS. The discussion focuses
on the performance of the various strategies and how they in-: = ¢ o 2 5 1 2 2 2 x = ® 3
teract with each other. The JAWS framework allows the Web Concurrent Connections

server strategies to be Ch‘?‘”ged easily, Which facili'tates Ccfﬂgure 12: JAWS Performance After Protocol Optimizations
trolled measurements of different server configurations. The
results of this study are described below.

321 JAWS Baseline Thread Pool results: In t.ht.a.Threa.d Pololmodel, a group of
threads are spawned at initialization time. All threads block
Our study of the performance impact of different Web seniaraccept © waiting for connection requests to arrive from
strategies began with a version of JAWS that was not tundignts. This eliminates the overhead of waiting to create a
with any optimizations. Thidaselineimplementation of new thread before a request is served. The Thread Pool model
JAWS consists of its original default run-time configuratioms used by the JAWS baseline implementation.
running with a pool of 20 threads. Below, we illustrate the The performance graph in Figure 13 compares the perfor-
performance impacts in relation to the baseline implementdance of JAWS using the Thread Pool strategy on a dual-CPU

tion. UltraSPARC 2, while varying the number of threads in the
Thread Pool. Note that the server throughput does not corre-
3.2.2 Protocol Processing Optimizations late clearly with the size of the Thread Pool. In addition, as

we increase the size of the Thread Pool the variance in server
Our initial optimizations for JAWS implemented techniquasroughput is not appreciable. Therefore, we conclude that a
that reduced protocol processing overhead. These technigumealler Thread Pook(g, 6 threads) performs just as well as
included: caching the HTTP response header, lazy time heaalégirger Thread Pook(g, 42 threads). However, the traffic
calculation, and the use of theritev system call to send patterns used in our benchmarks (shown in Table 1) exhibit
multiple buffers of data in a single operation. Figure 12 large distribution of small files. Therefore, if the distribu-
shows the performance improvements when these enhatioer shifted to larger files, a larger Thread Pool may behave
ments were implemented. As shown in the figure, these opiiere efficiently than a smaller Thread Pool because a smaller
mizations resulted in &65% improvement in server throughThread Pool will be depleted with many long running requests.

put over the baseline version. In this case, latency for new requests will increase, thereby de-
creasing the overall throughput.
3.2.3 Concurrency Strategies To avoid underutilizing CPU resources, the number of

threads in the Thread Pool should be no lower than the num-
Our experiments in Section 2 suggest that the choice of coer of processors in the system. Thus, Figure 13 illustrates that
currency and event dispatching strategies significantly impas#sver throughput is low when only one thread is in the Thread
the performance of Web servers that are subject to chandhuwl, especially under higher loads 24 concurrent connec-
load conditions. Carrying these results forward, we detéiens). This behavior is due to the absence of concurrency.
mined the quantitative performance impacts of using differ-
ent concurrency strategieise(, Thread Pool and Thread-per- ®Several operating systems.g, Solaris 2.5) only allow one thread in a
Request), as well as varying parameters of a particular condfcess to calaccept on the same port at the same time. This restriction

trat th . d . b orces JAWS to use thread mutexes to seriatizeept calls, which intro-
renlcy Stra egye{.g, € minimum and maximum NUMDBEr Ol .eq aqditional synchronization overhead.
active threads) in JAWS.

10

45

3 6 9 12 15 18 21 24 27 30 33 36 39 42
Concurrent Connections

=
o

\ all users of the cached file must acquire it through the
w0 L A CVF. Thus, within the CVF, operations on a cached file
A / N ﬁ are serialized automatically.
35 v I i/ |
§ o ‘ | / Figure 14 shows a significant performance gain with the
E 2 Z - N new CVF. In particular, with lower synchronization overhead
£ 25
F N read 45
L7 = T
5 20 =g | Bize 20
'a:» 15 / 13
§ y 21 g 35
10 = g 30
—36 f
5 — 45 =2
0 é’ 20
3

=
S

Figure 13: Performance of the JAWS Thread Pool

@

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42

Thread-per-Request results: A common model of concur-
rency €.g, used byinetd) is to spawn a new process to han-
dle each new incoming requeStiread-per-Reques similar, Figure 14: JAWS Performance after File Cache Optimizations
except that threads are used instead of processes. While a child
process requires a (virtual) copy of the parent’s address space,
athread shares its address space with other threads in the $henperformance improves by as much as 40% when concur-
process. rent contention for files is high.

[Note to reviewers: We did not have enough time to com-
plete Thread-per-Request results for this paper. If the pape%s\% Performance Analysis
accepted, Thread-per-Request results will be included in the

Concurrent Connections

final submission.] In the previous section, we demonstrated the impact that each
design strategy had on the performance of JAWS compared to
3.2.4 File Caching Strategies its baseline implementation. Below, we provide detailed per-

. . i) _ formance analysis of the optimized version of JAWS. We first
Our analysis in Section 2 determined that accessing the filesy$ssent whitebox performance results comparing the JAWS
tem is a significant performance inhibitor. This concurs Wﬁeline with the optimized JAWS. We conclude with black-
other Web server performance research [15, 27] that UggS penchmarking results that demonstrate how the optimized
caching to achieve better performance. While the baseline VEivs outperforms Netscape Enterprise and Zeus, which have

sion of JAWS does employ caching, it spends too much tifg pest performance of the Web servers benchmarked in Sec-
synchronizingconcurrent thread access to the Cached Virtygl, 2 3.

Filesystem (CVF).
To address this concern, the CVF was re-engineered. The))
new implementation accounted for the following factors: ~ 3-3-1 JAWS Whitebox Analysis

« Locking the entire cache can be avoidedhe original This section compares whitebox analysis of the JAWS baseline

implementation locked on entry to every operation, b@jplementation against the optimized JAWS implementation.

cause each operation was implemented to modify shaﬁlgl“re 15 illustrates the percentage of time the JAWS baseline

state. Once this requirement was removed, greater coPENdS servicing HTTP requests.

currency was achieved by only locking the hashed indexn contrast, Figure 16 provides insight into how combin-
entry of the cache. ing the optimization strategies analyzed in the previous section

helped to improve the performance of JAWS. In particular, the
e The cache lock can be inherited by the fildcquiring a synchronization time is reduced by 7%, and the network trans-
new lock for the cached object itself is unnecessary sirfee time increased by 5%.

11

HTTP processing

Writing Files

Misc. System Calls

Reading Request
5%

best commercial Web servers. We believe this achievement
is possible due to JAWS’ adaptive framework that allowed us
to systematically tune run-time parameters to optimize JAWS’
performance. With automated adaptation, it should be possi-
ble for JAWS to dynamically adjust its behavior at run-time to
handle different server load conditions than those encountered

during our benchmarking tests.

60

File operations
9%

Synchronization

50 N\
. , : , >< N——
Figure 15: Whitebox Analysis of Baseline JAWS ™~
[—

IN
)

HTTP processing
16%

Wiiting Files

w
o

27%

N
o
L

Server Throughput in Mbits/sec

“===Enterprise

“===Zeus

===JAWS Optimized | |
JAWS Baseline

10 +

Reading Requests
8%

Synchronization
37%

File operations 0

1 3 6 9 12 15 18 21 24 27 30 33 36 39
Concurrent Connections

Figure 16: Whitebox Analysis of Optimized JAWS
Figure 17: Average Server Throughput

Earlier in this section we described the individual impacts of,,

42

\

applying the different design strategies to the baseline JAWS.
Our whitebox results demonstrate that combining these techy |

. / \
nigues have yielded an optimized version of JAWS with much

/\

I N\/

improved performance. The deployment of the protocol optkso / /y
mization strategies reduced HTTP processing time and the jm- / / //

proved file cache implementation minimized synchronizatiélzpo
overhead. The use of a tuned Thread Pool strategy remadyes
thread creation overhead and minimizes the resource utiligﬁﬂf
tion of the server. A

«===Enterprise
“===Zeus
===JAWS Optimized
JAWS Baseline

100 4

3.3.2 JAWS Blackbox Analysis 50 1/

We conclude this section by comparing the benchmark results

of the optimized JAWS against Netscape Enterprise andthe: s s 9 12 15 18 21 24 27 30 33 3 3
Zeus Web servers. Figures 17-20 provide a new insight us- coneurrent Connections

ing the same metrics described in Section 2.3. These metrics
reveal the following conclusionJAWS is capable of outper-
forming the best existing Web servers

Figure 18: Average Connections-per-Second

This result confirms that a open flexible Web server frame-Further evidence of the need for adaptivity is seen in the
work is capable of providing equivalent performance to thperformance difference between JAWS and Netscape Enter-

12

42

. N 4 Summary of Web Server Optimiza-
° \\ tion Techniques
14
8 \ - Based on our study of existing Web server designs and imple-
g 2 \ oerprise mentation strategies, as well as our experience tuning JAWS,
£10 \ Topns opimized the following summarizes optimizations for developing high-
£, performance Web servers.
3 \
£ . Lightweight concurrency mechanism: Process-based con-
5 ‘? currency mechanisms can yield poor performance, as is evi-
4 i) dent in the case of the Apache Web server. In multi-processor
, | \> systems, a process-based concurrency mechanism might per-
‘ ‘ ”ﬁﬁe‘ i form well, as in the case of Zeus, especially whenrtbmbgr
Y of processes are equal to the number of processtmsthis
Concurrent Connections case, each processor can run a Web server process and context
switching overhead is minimized.
Figure 19: Average Client Throughput In general, processes shouldze-forkedto avoid the over-

head of dynamic process creation. However, it is preferable to
use lightweight concurrency mechanisnesg(using POSIX
threads) to minimize context switching overhead. Similar to
processes, threads should be created at server startup time and

200 ‘ ‘ organized into a thread pool to avoid dynamic thread creation
180 .| overhead.
160 Critical path system call overhead: The critical path in a
Web server is defined as the sequence of instructions that must
140 be executed by the server after it receives an HTTP request
2 L~1 from the client and before it sends out the requested file. The
E 120 / -
c d time taken to execute the critical path of instructions directly
2.0 ‘ / impacts the latency observed by clients. Therefore, it is im-
P | /' _—"_| portant to minimize system call overhead and other process-
g 80 -1 // ing in the critical path. The remainder of this section describes
& | | // various places in Web servers where such overhead can be re-
60 ~—
‘ ‘ //// == Enterprise duced.
40— ‘ A s Synchronization mechanism: Process-based concurrency
k JAWS Optimized K . X)]
v L~ JAWS Baseline mechanisms often employ signals to assist synchronization.
2 T For instance, Apache uses tB86GUSR1signal to restart all
ol the server processes. In such cases, the use of signal mask-

13 6 9 12 15 18 21 24 27 30 33 3 3 42 jngcallslikesigprocmask should be minimized since they
Concurrent Connections . . .
cause substantial overhead, as observed for Apache in Fig-
Figure 20: Average Client Latency ure 6.
For thread-based concurrency mechanisms, synchroniza-
tion using locks should be minimized. In particular, it is im-
portant to minimize the number of locks acquired (or released)
on the critical path. Servers that average a lower number of
lock operations per request (Enterprise perford3 perform
prise. Although JAWS consistently outperforms Enterpriseuch better than servers that perform a high number of lock
under heavy loads, Enterprise consistently delivers higlogerations (PHTTPD averages40 lock operations per re-
server throughput during light loads. These results indicate theest).
need to alter server behavior to handle light heavy loads. In some cases, acquiring and releasing locks can also result
Further research is necessary to reveal how Enterprise delivergreemption Thus, if a thread reads in an HTTP request
this performance. and then attempts to acquire a lock, it might be preempted,

13

and may wait for a relatively long time before it is dispatchedincrease in critical path complexity: Logging requests in

again. This increases the latency incurred by a Web client. the critical path can cause severe performance penalties since
typically file operations are required to write the log informa-

File Caching and themmapmechanism: If the Web server tion to disk. This overhead can be reducedbagching log

does not perform file caching, the overhead ofdpen sys- file writes Batching allows several requests to be logged to

tem call is typically incurred on the critical path. Servers thatmemory buffer, which is written to diskazily (e.g, when

perform file caching€.g, Enterprise and Zeus) perform muckhe server is not servicing requests or after the memory buffer

better than servers that do netd, Apache). Caching can begrows beyond a certain threshold).

effectively performed using memory-mapped filesg(So-

laris provides thenmapsystem call). Memory-mapped files® Synchronization overhead: A typical Web server has

have two advantages over the conventiopald /write /0 Multiple active threads or processes serving requests. If these
cycle: threads/processes are required to log requests to a common

shared log file, access to this log file needs to be synchronized,
¢ Reduced data copying overhead: Since the file is di- i.e., at most one thread/process can write to the shared log file
rectly mapped into memory, it need not be read into mema@iany time. This synchronization introduces additional over-
buffers before being transmitted to the client. head and is thus detrimental to performance. This overhead
can be reduced by keeping multiple independent log files. If
e Reduced critical path length: Since system calls like memory buffers are used, these should be storetiread-
open and read are avoided, the critical path becomespecific storagé¢o eliminate locking contention.

shorter, thereby reducing latency.
y g 4 ¢ Reverse hostname lookups: The IP address of the client

The “gather-write” mechanism: Thewritev system call iS available to a Web server locally. However, the hostname

allows multiple buffers to be written to a device in a singl typically more useful information in the log file. Thus, the
system call. This is useful for Web servers since the typidRl address of the client needs to be converted into the corre-

server response to a valid client request is composed of $Rending host name. This is typically done usiegerse DNS
following two parts: lookups Since these lookups often involve network I/O, they

are very costly. Therefore, they should be avoided or done in
e The HTTP header: This header contains various HTTPbackground thread®(g, as done by PHTTPD).

related information, such as the the HTTP success code, the
document type, and the document date. e |dent lookups: The Ident protocol [10] allows a Web

server to obtain the user name for a given HTTP connection.
o The requested file: Using themmaptechnique discussedThis typically involves setting up a new TCP/IP connection to

earlier, this file is typically available in the server's addre$d€ user's machine and thus involves a round-trip delay. Also,
space. the ident lookup must be performed while the HTTP connec-

tion is active and therefore cannot be performed lazily. To
If these two buffers are transmitted using a singigtev achieve high performance, such lookups must thus be avoided
call the overhead of switching between user-mode and kernwdhenever possible.
mode will be reduced by a factor ef2.

re-computation of HTTP responses: Typical HTTP re-
ests result in the server sending back the HTTP header,
ich contains the HTTP success code and the MIME type of

Logging overhead: Most Web servers support features thd
allow administrators to log the number of hits on various pag%

they serve. Logging is often done to estimate the load on p ted text/lai Si h
server at various times during the day. It is also commorL}}; lle requestede(g, text/plain)- Since such responses

performed for commercial reasoresg, Web sites might base part of the expected case they capieecomputedWhen

their advertising rates on page hit frequencies. However, %’f_ﬂe enters the cache, the corresponding HTTP response can

ging HTTP requests causes a significant overhead for the I be stored alo.ng with the file. Wr_]en an HTTP request ar
lowing reasons: rives, the header is thus directly available in the cache. This

saves processing time on the critical path.

e Filesystem calls: A heavily loaded Web server makes he time system call: Web servers are expected to send
significant number of I/O calls, which stresses the filesysteyp; 1P responses that contain the current time. This time
and underlying hardware. Writing data to log files increasgs,m, can be used by clients to determine how current the in-
this stress and thus contributes to lower performance. Keepifignaion requested is if the last modification time is also for-

log files and the HTTP files on separate filesystems andyff,4eq. Invoking theime system call on receipt of every
possible, on separate physical devices can limit this overhead.

14

request causes the Web server to incur the overhead of switcnother way to improve Web performance is by remov-
ing between user-mode and kernel-mode. This overhead itanoverhead in the protocol itself. The3® has recently
be overcome by caching the time and only changing it whstandardized HTTP/1.1, which enables multiple requests over
absolutely necessary (such as, when a file has a newer modifiingle connection. This “connection-caching” strategy can
cation time than the current cached time). Netscape Enterpsigmificantly enhance the performance over HTTP/1.0 [25, 19,
uses this scheme. 17]. The need for persistent connections to improve latency
Transport layer optimizations: The following transport was notsd by Mogul [Ua]' Latr]gncy cI:'an alsolbhe |m|cr)]ror:/ed by us-l
layer options should be configured to improve Web server plgrg_jl.cac m% prox:::s an ;:alllc N9 c'lents, although the remova
formance over high-speed networks: policy needs to be carefu y.con5|dered [27]. JAWS can be
extended to become a caching proxy, allowing it to leverage
e The listen backlog: Most TCP implementations buffer in-directly from this work. Yeager and McGrath of NCSA dis-
coming HTTP connections on a kernel-resident “listen queugtss many of these issues in [16].
so that servers can dequeue them for servicing wsiogpt . The analyses presented above have aided our work, which
If the TCP listen queue exceeds the “backlog” parameterftwuses on improving end-to-end Web performance by im-
thelisten call, new connections are refused by TCP. Thusroving the efficiency of Web servers. The related work on
if the volume of incoming connections is expected to be higbaching is particularly rich, and our own results corroborate its
the capacity of the kernel queue should be increased by givingportance. However, we extend the related work by studying
a higher backlog parameter (which may require modificatiotie performance impacts of different combinations of concur-
to the OS kernel). rency, caching, and 1/O dispatching strategies for Web servers
] . . . that are subjected to varying loads. Workload studies provide
» Socket send buffers: Associated with every sacket is %vidence that Web server workloads can vary from server to

Se.”d buffer, ‘.Nh'Ch holds data sent by the Server, while 'tégrver, motivating the need for adaptation. Work on remov-
being transmitted across the network. For high performanﬁ1

it should be set to the highest permissible limiie{ large %j protocol overhead will make Web server bottlenecks more
buffers). On Solaris, this Iir?ﬂt o 681k \larg prominent. We believe there is a need for comprehensive un-

derstanding ofvhento apply various combinations of opti-

« Nagle’s algorithm (RFC 896): Some TCP/IP implemen-mization strategies in order to overcome these bottlenecks.

tations implement Nagle’s Algorithm to avoidongestion = The JAWS framework facilitates the fundamental under-
This can often result in data getting delayed by the netwatanding of Web server performance by holding the develop-
layer before it is actually sent over the network. Severalent framework constant and systematically configuring and
latency-critical applications (such as X-Windows) disable tHigsting different strategies under varying load conditions on
algorithm, €.g, Solaris supports thECP.NQDELAYsocket high-speed networks. This allows us to construct profiles that
option). Disabling this algorithm can improve latency by forsan predict the optimal combinations of strategies to use in dif-
ing the network layer to send packets out as soon as possilié#ent Web server conditions. By incorporating these profiles
into the framework, JAWS can support automatic configura-
tion of optimal combinations of concurrency, I/0, and caching

5 Related Work strategies.

Measuring and analyzing the performance of Web serversis an

increasingly popular research topic. Existing research onid- Concluding Remarks

proving Web performance has focused largely on reducing net-

work latency, primarily through caching techniques [15, 27] he research presented in this paper was motivated by a desire

protocol optimizations [14, 19, 17]. In addition, the workloatb build high-performance Web servers. Naturally, it is always

of Web servers have been modeled analytically at the Univpossible to improve performance with more expensive hard-

sity of Saskatchewan [12]. ware €.g, additional memory and faster CPUs) and a more
SGl's WebSTONE is widely considered as the standagfficient operating system. However, our research objective is

benchmarking system for measuring the performance of Welproduce the fastest server possiolea given hardware/OS

servers [6], and it is the basis of our own benchmarkimdatform configuration

methodology. A detailed analysis of the bottlenecks in a sin-As shown in Section 2, we began by analyzing the perfor-

gle Web serverife., Apache) has been performed at Bostanance of existing servers. The servers that performed poorly

University [1]. Our work extends this work by benchmarkingere studied to discover sources of bottlenecks. The servers

a wide range of Web servers to identify the impacts of alterrthat performed well were examined even more closely using

tive server designs. whitebox techniques to examine what they did right. We found

15

that checking and opening files creates significant overhead,

which can be alleviated by applying perfect hashing and other
caching techniques. [6]

When network and file 1/0 are held constant, however, the
largest portion of the HTTP request lifecycle is spent dispatch7—
ing theGETrequest to the Protocol Handler that processes ttﬁé

DMA and Other Techniques. IRroceedings of INFOCOM '97Kobe,
Japan, April 1997. IEEE.

Gene Trent and Mark Sake. WebSTONE: The First Generation in HTTP
Server Benchmarking. Silicon Graphics, Inc. whitepaper, February
1995. ww.sgi.com/.

Aniruddha Gokhale and Douglas C. Schmidt. Measuring the Perfor-
mance of Communication Middleware on High-Speed Networks. In

request. The time spent in dispatching depends largely on the Proceedings of SIGCOMM "9pages 306-317, Stanford, CA, August

choice of the concurrency strategy. Our results show that no
single concurrency strategy provides optimal performance [fl
all circumstances.

1996. ACM.

James Hu, Irfan Pyarali, and Douglas C. Schmidt. Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server Perfor-
mance Over High-speed Networks. Proceedings of the™ Global

In general, research on adaptive software has not been pur- internet Conferencd EEE, November 1997.
sued deeply in the context of Web systems. Current reseaigh pureatria Software Inc. Quantify User's Guide PureAtria Software

on Webserverperformance has emphasized caching [15, 27],
concurrency [8], and I/O [16, 1]. While our results corrohso]
orate that caching is vital to high performance, non-adaptive
caching strategies do not provide optimal performance in el
servers [11]. Moreover, current server implementations and
experiments rely ostaticallyconfigured concurrency and I/O[12]
strategies.

As aresult of our empirical studies, we observed that servers
relying on static, fixed strategies cannot behave optimally in
many high load circumstances. Therefore, we conclude tHat
high-performance Web servers mustdsaptive i.e., be cus-
tomizable to utilize the most beneficial strategy for particular
traffic characteristics, workload, and hardware/OS platformgl.4]

JAWS supports Web server adaptivity by providing a frame-
work built using an adaptive communication environment
(ACE) [21]. Future versions of JAWS will support prioritized5]
request handling (to promote requests for smaller objects of re-
quests for larger objects), dynamic protocol pipelines (to Séff’]
port optimal end-to-end data filtering operations, such as com-
pression), as well as automatic configuration for concurrency,
I/O dispatching and caching strategies. We believe that cqum
bining these techniques will produce a Web server that exhibits
extremely low latency and high throughput.

The complete source code for JAWS is available &g]
www.cs.wustl.edu/ ~schmidt/ACE.html

References

[1] Jussara Almeida, Viitio Almeida, and David J. Yates. Measuring the
Behavior of a World-Wide Web Server. Technical Report TR—CS—Q?—
025, Department of Computer Science, Boston University, October EQ]
1996.

[2] Anselm Baird-Smith. Jigsaw performance evaluation. WWW.W3.0rg[/21
October 1996.]

Kenneth P. Birman and Robbert van Renesse. Software for Reliable
Networks. Scientific AmericanMay 1996.

[4] Alexander Carlton. An Explanation of the SPECweb96 Bencli22]
mark. Standard Performance Evaluation Corporation whitepaper, 1996.
www.specbench.org/.

[5] Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox. The APIC
Approach to High Performance Network Interface Design: Protectf2B]

[19]

(3]

16

Inc., 1996.

M. St. Johns. Identification ProtocdWetwork Information Center RFC
1413 February 1993.

Evangelos P. Markatos. Main memory caching of web documents. In
Proceedings of the Fifth International World Wide Web Conferehtasy
1996.

Martin F. Arlitt and Carey L. Williamson. Intenet Web Servers: Work-
load Characterization and Performance Implications. Technical report,
University of Saskatchewan, December 1996. A shorter version of this
paper appeared in ACM SIGMETRICS '96.

Robert E. McGrath. Performance of Several HTTP Demons on an HP
735 Workstation. Avaiable from http://www.ncsa.uiuc.edu/, April 25
1995.

Jeffrey C. Mogul. The Case for Persistent-connection HTTPPrbw
ceedings of ACM SIGCOMM '95 Conference in Computer Communi-
cation Reviewpages 299-314, Boston, MA, USA, August 1995. ACM
Press.

Jeffrey C. Mogul. Hinted caching in the Web. Rroceedings of the
Seventh SIGOPS European Workshop: Systems Support for Worldwide
Applications 1996.

] Nancy J. Yeager and Robert E. McGratveb Server Technology: The

Advanced Guide for World Wide Web Information Providekdorgan
Kaufmann, 1996.

Henrik Frystyk Nielsen, Jim Gettys, Anselm Baird-Smith, Eric
Prud’hommeaux, Bkon Wium Lie, and Chris Lilley. Network Perfor-
mance Effects of HTTP/1.1, CSS1, and PNGTénappear in Proceed-
ings of ACM SIGCOMM '971997.

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt. De-
sign and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical ImagingSENIX Computing Systems
9(4), November/December 1996.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hyper-
text Transfer Protocol — HTTP/1.1. Standards Track RFC 2068, Network
Working Group, January 1997. www.w3.0rg/.

Douglas C. Schmidt. GPERF: A Perfect Hash Function Generator. In
Proceedings of the”? C++ Conference pages 87-102, San Francisco,
California, April 1990. USENIX.

Douglas C. Schmidt. ACE: an Object-Oriented Framework for Develop-
ing Distributed Applications. IfProceedings of thét® USENIX C++
Technical Conferenc&€ambridge, Massachusetts, April 1994. USENIX
Association.

Douglas C. Schmidt. Applying Design Patterns and Frameworks to De-
velop Object-Oriented Communication Software. In Peter Salus, editor,
Handbook of Programming LanguagddacMillan Computer Publish-
ing, 1997.

David Strom. Web Compare. webcompare.iworld.com/, 1997.

[24] SunSoft Inc. TNFtools:Programming Utilities Guide2550 Garcia Av-
enue, Mountain View CA 94043, May 1995.

[25] T.Berners-Lee, R. T. Fielding, and H. Frystyk. Hypertext Transfer Pro-
tocol — HTTP/1.0. Informational RFC 1945, Network Working Group,
May 1996. www.w3.org/.

[26] J.S. Turner. An optimal nonblocking multicast virtual circuit switch. In
Proceedings of the Conference on Computer Communications (INFO-
COM), pages 298-305, June 1994.

[27] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghalleb Ab-
dulla, and Edward A. Fox. Removal Policies in Network Caches for
World Wide Web Documents. IRroceedings of SIGCOMM '9fages
293-305, Stanford, CA, August 1996. ACM.

17

