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Abstract

Message-based process architectures are widely regarded as
an effective method for structuring parallel protocol pro-
cessing on shared memory multi-processor platforms. A
message-based process architectures is formed by binding
one or more processing el ements with the data messages and
control messages received from applications and network
interfaces. In this architecture, parallelismis achieved by
simultaneously escorting multi plemessages on separate pro-
cessing el ementsthrough a stack of protocol tasks. Thispaper
reports performance results from an empirical comparison
of a connection-oriented protocol stack implemented using
two different message-based process architectures. These
performance experiments measure the throughput, context
switching, and synchronization exhibited by the two parallel
process architectures on a shared memory multi-processor
platform. The experimental results demonstratethe extent to
which the selection of a parallel process architecture affects
protocol stack performance.

Keywords: Paraldizing Protocols for High-Speed Net-
works, Testbeds and Measurements

1 Introduction

Advances in VLS| and fiber optic technology are shifting
performance bottlenecks from the underlying networks to
the communication subsystem. A communication subsys-
tem consists of protocol tasks and operating system mech-
anisms. Protocol tasks include connection establishment
and termination, end-to-end flow control, remote context
management, segmentation/reassembly, demultiplexing, er-
ror protection, session control, and presentation conversions.
Operating system mechani sms include process management,
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timer-based and 1/0-based event invocati on, message buffer-
ing, and layer-to-layer flow control. Together, protocol tasks
and operating system mechanisms support the implementa-
tion and execution of communication protocol stacks com-
posed of protocol tasks [1].

Executing protocol stacks in parallel on multi-processor
platforms is a promising technique for increasing protocol
processing performance [2]. Significant increases in perfor-
mance are possible, however, only if the speed-up obtained
from paralelism outwei ghts the context switching and syn-
chronization overhead associated with parallel processing.
A context switch is triggered when an executing process
relinquishesitsassociated processing el ement (PE) voluntar-
ily or involuntarily. Depending on the underlying OS and
hardware platform, a context switch may require dozens to
hundreds of instructions to flush register windows, mem-
ory caches, instruction pipelines, and trand ation |ook-aside
buffers [3]. Synchronization overhead arises from locking
mechanisms that serialize access to shared objects (such
as message buffers, message queues, protocol connection
records, and demultiplexing maps) used during protocol pro-
cessing [4].

Message-based process architectures are widely regarded
as an effective method for structuring parale protocol
processing on shared memory multi-processor platforms
[5,6,7,4,8]. A message-based processarchitectureisformed
by binding one or more PEs with data messages and control
messages received from applicationsand network interfaces.
Inthisarchitecture, parallelismisachieved by simultaneously
escorting multiple messages on separate PEs through a stack
of protocol tasks.

Protocol stacks (such as the TCP/IP protocol stack and
the ISO OSl 7 layer protocol stack) may be implemented
using different types of message-based process architec-
tures. Existing studies have generaly selected a single
message-based process architecture and studied it in isola
tion. Moreover, these studies have been conducted on dif-
ferent OS and hardware platforms, using different protocol
stacks and implementation techniques, which makes it diffi-
cult to meaningfully compare results. This paper reportsthe
performance results of systematic, empirica comparisons
of two message-based process architectures implemented
on a widely-available shared memory multi-processor plat-
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form. The performance experiments were conducted using
an object-oriented framework [9] that supports controlled
experiments with aternative types of parallel process archi-
tectures. The framework controls for a number of relevant
confounding factors (such as protocol functionality, concur-
rency control strategies, application traffic characteristics,
and network interfaces). This enables precise measurement
of the performance impact of using different process archi-
tectures to parallelize communication protocol stacks.

The paper is organized as follows: Section 2 outlines the
two types of message-based process architectures and classi-
fies related work accordingly; Section 3 examines empirical
results from experiments performed using the framework;
and Section 4 presents concluding remarks.

2 Message-based Process Architecture
Examples

Message-based process architectures associate processes’®
with messages, rather than with protocol layers or proto-
col tasks. Two common examples of message-based pro-
cess architectures are Connectional Parallelismand Message
Parallelism. The primary difference between these process
architecturesinvol vesthe point at which messagesare demul -
tiplexed onto a process. Connectional Parallelism demulti-
plexes all messages bound for the same connection onto the
same process, whereas Message Parallelism demultiplexes
messages onto any available process.

Connectional Parallelism uses a separate process to han-
dle the messages associated with each open connection. As
showninFigurel1 (1), connectionsCy, C, C3, and C4 reside
in separate processes that execute a stack of protocol tasks
on all messages associated with their respective connection.
Within a connection, multiple protocol tasks are invoked
sequentially on each message flowing through the protocol
stack. Outgoing messages generaly borrow the thread of
control from the application process and useit to escort mes-
sages down a protocol stack [11]. For incoming messages,
a network interface or packet filter typicaly performs de-
multiplexing operations to determine the correct process to
associate with each message.

Connectional Perallelism is particularly useful for server
applicationsthat handle many active connections simultane-
oudly. The advantages of Connectional Perallelism are (1)
inter-layer communication overhead is reduced (since mov-
ing messages between protocol layers does not requireacon-
text switch), (2) synchronization and communication over-
head is relatively low within a given connection (since syn-
chronous intra-process downcalls and upcalls may be used
to communicate between the protocol layers), and (3) the
amount of available parallelism is determined dynamically

2Inthispaper, theterm “ process” is used to refer to aseries of instructions
executing within an address space; this address space may be shared with
other processes. Different terminology (such as lightweight processes or
threads) has also been used to denote the same basic concepts. Our use of
the term processis consistent with definitions presented in [10, 11].
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since it is a function of the number of active connections
(rather than afunction of the number of layersor tasks, which
are determined statically). One disadvantage with Connec-
tional Perallelism isthe difficulty of PE load balancing. For
example, a highly active connection may swamp its PE with
messages, leaving other PEs tied up at less active or idle
connections.

Message Parallelism associates a separate process with
every incoming or outgoing message. Asillustrated in Fig-
ure 1 (2), a process receives a message from an application
or network interface and escorts that message through the
protocol processing tasksinthe protocol stack. Aswith Con-
nectional Parallelism, outgoing messages typicaly borrow
the thread of control from the application that initiated the
message transfer.

The advantages of Message Paralelismaresimilar tothose
for Connectional Parallelism. In addition, the amount of
available parallelism may be higher since it depends on the
number of messages exchanged, rather than the number of
connections. Likewise, processing loads may be balanced
more evenly between PES since each incoming message may
bedispatched to an avail able PE. Theprimary di sadvantage of
Message Parallelism isthe overhead resulting from synchro-
ni zation and mutual exclusion primitivesrequired to serialize
access to shared resources (such as memory buffersand con-
trol blocks that reassemble protocol segments addressed to
the same higher-layer connection).

A number of studies have investigated the performance
characteristics of message-based process architectures. All
these studies utilized shared memory platforms. [6] mea
sured the performance of the TCP, UDR, and IP protocols
using Message Parallelism on a uniprocessor platform run-
ningthex-kernel. [4] measured theimpact of synchronization
on Message Perallelism implementations of TCP and UDP
transport protocols built within a multi-processor version of
the x-kernel. Likewise, [8] examined performance issuesin
pardlelizing TCP-based and UDP-based protocol stacks us-
ing a different multi-processor version of the x-kernel. [10]
measured the performance of the Nonet transport protocol
onamulti-processor version of Plan 9 STREAM S devel oped
using Message Parallelism. [7] measured the performance
of the ISO OSl protocol stack, focusing primarily on the
presentation and transport layers using Message Parallelism.
[12] measured the performance of the TCP/IP protocol stack
using Connectional Parallelism in a multi-processor version
of System V STREAMS.

Theresearch presented in this paper extends existing work
by measuring the performance of two message-based pro-
cess architecturesin a controlled environment. Furthermore,
our experiments report the impact of both context switch-
ing and synchronization overhead on communication sub-
system performance. In addition to measuring data link,
network, and transport layer performance, our experiments
also measure presentation layer performance. The presenta
tion layer is widely considered to be a major bottleneck in
high-performance communi cation subsystems [13].
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Figure1: Message-based Process Architecture Examples

3 Communication Subsystem Perfor-
mance Experiments

This section presents performance results obtained by mea-
suring the data reception portion of a connection-oriented
protocol stack implemented using the Message-Parallelism
and Connectional Parallelism process architectures. In this
section, the multi-processor platform and the measurement
toolsused in the experiments, communication protocol stack
and process architectures, and performance results are pre-
sented.

3.1 Multi-processor Platform

All experiments were conducted on an otherwise idle
Sun SPARCcenter 2000 shared memory symmetric multi-
processor.  This SPARCcenter platform contained 640
Mbytes of RAM and 20 superscadar SPARC 40 MHz pro-
cessing elements (PEs), each rated at approximately 135
MIPs. The operating system used for the experiments was
release 5.3 of SUNOS. SUNOS 5.3 provides a multi-threaded
kernel that allows multiple system calls and device inter-
rupts to execute in paralel on the SPARCcenter platform
[14]. Both the process architectures in the experiments exe-
cute protocol tasks using separate SunOS unbound threads.
These unbound threads are multiplexed over 1,2,3,...20
SunOS lightweight processes (LWPs) within an OS process.
The SunOS scheduler maps each LWP directly onto a sep-
arate kernel thread. Since kernel threads are the units of
PE scheduling and execution in SUnOS, multiple LWPs run

protocol tasksin parallel on the SPARCserver’s 20 PES.
The memory bandwidth of the SPARCserver platform is
approximately 750 Mbits/sec. In addition to memory band-
width, communication subsystem throughput is significantly
affected by the context switching and synchronization over-
head of the multi-processor platform. Scheduling and syn-
chronizing a SUnOS LWP requires a kernel-level context
switch. This context switch flushes register windows and
updates instruction and data caches, instruction pipelines,
and trandation lookaside buffers [3]. These activities take
approximately 50 pisecs to perform between LWPS running
in the same process. During this time, the PE incurring the
context switch does not execute any protocol tasks.
Synchronization operations were implemented using
SunOS adaptive spin-locks (called mut ex objects [14]).
Adaptive spin-locks ensure mutual exclusion by using an
atomic hardware instruction that polls a designated memory
location until one of the following conditions occur:

e Thevalueat thislocation ischanged by the process that
currently ownsthe lock. This signifiesthat the lock has
been rel eased and may now be acquired by the spinning
process.

e The process that is holding the lock goes to dleep. At
this point, the spinning process also putsitself to sleep
to avoid unnecessary polling [14]. When contention for
anmut ex islow, acquiring an adaptive spin-lock rarely
triggers a context switch.

On a multi-processor, the overhead incurred by a spin-lock
isrelatively minor. Hardware-based polling does not cause
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contention on the system bus since it only affects the local
PE caches of processes that are spinning on anmut ex object.
Measurements indicated that approximately 4 psecs were
required to acquire or release anut ex object when no other
PEs contended for the lock. In contrast, when all 20 PEs
contended for anmut ex object, the timerequired to perform
the locking methods increased to approximately 55 pisecs.

3.2 The Structure and Functionality of the
Communication Protocol Stack

The protocol stack investigated in the experiments was based
on the connection-oriented TCP transport protocol. This
protocol stack contained data-link, network, transport, and
presentation layers. The presentation layer was included
in the experiments since it represents a mgjor bottleneck in
hi gh-performance communi cation subsystems [ 7, 13].

The connection-oriented communication protocol stack in
this study was developed using components provided by the
ADAPTIVE Server eXecutive (ASX) framework [9]. The
ASX framework contains an integrated set of object-oriented
components that facilitate experimentation with process ar-
chitectures on shared memory multi-processor platforms.

Componentsin the ASX framework are responsiblefor co-
ordinating one or more Streams. A Stream is an object used
to configure and execute protocol-specific functionality in
the ASX framework’s run-time environment. Asillustrated
in Figure 2, a Stream contains a series of inter-connected
Modul es that may be linked together by developers at
installation-time or by applications at run-time. Modul es
are objects that devel opers use to decompose the architecture
of aprotocol stack into distinct layers of functionality. Each
layer implements a cluster of related protocol -specific tasks
(such as an end-to-end transport service, a presentation layer
formatting service, or a rea-time PBX signa routing ser-
vice). Every Modul e containsapair of Queue objects that
partition a layer into its constituent read-side and write-side
protocol -specific processing tasks.

The ASX framework employsanumber of object-oriented
design techniques (such as design patterns [15] and hier-
archica decomposition [16]) and object-oriented language
features (such as abstract classes, inheritance, dynamic bind-
ing, and parameterized types). These design techniques and
language features enabl e devel opers to incorporate protocol -
specific functionality into a Stream without modifying the
protocol-independent framework components. For example,
incorporating a new layer of protocol functiondity into a
Stream at installation-time or at run-time involves the fol-
lowing steps:

1. Inheriting from the Queue interface and selectively
overriding the put and svc methods® in the Queue

SA Queue’s put method borrows the thread of control from an ad-
jacent Queue that invoked it. In contrast, a Queue’s svc method is
invoked by a separate process associated with the Queue. Theput method
synchronously performs protocol tasks that require immediate processing,
whereas the svc method performs protocol tasks that may be deferred and
run asynchronously.
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subclass to implement protocol-specific functionality

2. Allocating a new Modul e that contains two instances
(onefor the read-side and one for the write-side) of the
protocol-specific Queue subclass

3. Inserting the Mbdul e into a Stream object at the ap-
propriate layer (e.g., the transport layer, network layer,
data-link layer, etc.)

The ASX framework incorporates concepts from several
other modular communication frameworks such as System
V STREAMS [17], the x-kernel [6], and the Conduit [18]
(asurvey of these and other communi cation frameworks ap-
pearsin[1]). Theseframeworkscontain toolsthat supportthe
flexible configuration of communication subsystems. These
tools support the interconnection of building-block protocol
components (such as message managers, timer-based event
dispatchers, and connection demultiplexers [6] and other
reusabl e protocol mechanisms[19]) to form protocol stacks.

In addition to supplying building-block protocol compo-
nents, the ASX framework also extends the features provided
by existing communication frameworks. In particular, ASX
provides components that decouple protocol -specific func-
tionality from the following structural and behavioral char-
acteristics of a communication subsystem:

e The type of locking mechanisms used to synchronize
access to shared objects

e The use of different message-based process architec-
tures

e Theuse of kernel-level vs. user-level execution agents

In this study, inheritance and parameterized types were
used to hold protocol stack functionality constant, while the
process architecturewas systematically varied. Each layerin
aprotocol stack wasimplemented asaModul e, whoseread-
side and write-side inherit interfaces and implementations
from the Queue abstract class. The synchronization and
demulti plexing mechanisms required to implement different
process architectureswere parameterized using C++ template
class arguments. These templates were instantiated based
upon the type of process architecture being tested.

Data-link layer processing in the protocol stack was per-
formed by the DLP Modul e. This Modul e transformed
network packets received from a network interface into the
canonical message format used internally by the intercon-
nected Queue components in a Stream. Preliminary tests
conducted with the widely-available t t cp benchmarking
tool indicated that the SPARCcenter multi-processor platform
processed messages through a protocol stack much faster
than our 10 Mbps Ethernet network interface was capable
of handling. Therefore, the network interface in our process
architecture experiments was simulated with a single-copy
pseudo-device driver operating in loop-back mode. Thisap-
proach is consistent with thoseused in [4, 7, 8].

The transport and network layers of the protocol stack
was based on the TCP/IP implementations in the BSD 4.3
Reno release. The 4.3 Reno TCP implementation contains
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Figure 2: ASX-based Message-based Process Architectures

the TCP header prediction enhancements, aswell asthe TCP 3.3 Structureof the Process Architectures
dow start algorithm and congestion avoidance features. The
TCP transport protocol was configured into the ASX frame-
work viathe TCP Modul es. Network layer processing was
performed by thel P Modul e. This Modul e handled rout-

ing and segmentation/reassembly of Internet Protocol (IP)
packets. 3.3.1 Connectional Paralldism

This section outlines the structure of the message-based pro-
cess architectures used to parallelize the connection-oriented
protocol stack described above.

Presentation layer functionality was implemented in the ~ The protocol stack depicted in Figure 2 (1) illustrates an
XDR Modul e us ng marsha“ng routines produced by the ASX-based Implementatlon of the Connectional Paralelism
ONC eXternd Data Repre%nta[ion (XDR) stub generator_ (CP) process architectureoutlinedin Section 2. Each process
The ONC XDR stub generator translates type specificar performs the data-link, network, transport, and presentation

tions into marshaling routines. These marshaling routines layer tasks sequentialy for a single connection. Protocol
encode/decode implicitly-typed messages before/after ex- tasks are divided into four interconnected Modul es, corre-
Chang| ng them among hoststhat may POoSSess haerogeneous Spondi ng to the data'“nk, netWOfk, transport, and pre%nta'
processor byte.orders_ The ONC prew’lta[ion |ayer con- tionlayers. Data-link proceg ng iSperfOfmed intheCP_DLP
version mechanisms consist of a type specification language Modul e. The Connectional Parallelism implementation of
(XDR) and aset of library routinesthat implement the appro- this Mbdul e performs “eager demultiplexing” via a packet
priate encoding and decoding rulesfor built-inintegral types ~ filter & the datarlink layer. Thus, the CP_DLP Modul e uses
(e_g_, Char, Short, int, and |Ong), as wdl as red types (e_g_, itsread-side svc method to demultlplex incomi Ng messages
float and double). These library routines may be combined onto the appropriate transport layer connection. In contrast,
to produce marshaling routines for arbitrarily complex user- the CP_I P, CP_TCP, and CP_XDR Mbdul es perform their
defined composite types (such as record/structures, unions, processing synchronously in their respective put methods.
arrays, and pointers). Messages exchanged via XDR are To eliminate extraneous data movement overhead, a pointer

implicitly-typed, which improvesmarshaling performance at to amessage is passed between protocol |ayers.
the expense of run-timeflexibility.

. . 3.3.2 Message Paralldism
The XDR routines generated for the connectionless and g

connection-oriented protocol stacks converted incoming and Figure?2 (2) depictsthe Message Parallelism (MP) process ar-
outgoing messages into and from variable-sized arrays of chitecture used for the TCP-based connection-oriented pro-

structures containing a set of integral and real values. The tocol stack. When anincoming message arrives, itishandled
XDR processing involved byte-order conversions, as well as by the MP_DLP: : svc method. This method manages a pool

dynamic memory allocation and deallocation. of pre-spawned SunOS unbound threads. Each message is
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associated with an unbound thread that escorts the message
synchronously through a series of interconnected Queues
that form a protocol stack. Each layer of the protocol stack
performs the protocol tasks defined by its Queue. When
these tasks are complete, an upcall may be used to pass the
message to the next adjacent layer in the protocol stack. The
upcall is performed by invoking the put method in the ad-
jacent layer’'s Queue. Thisput method borrowsthe thread
of control from its caller and executes the protocol tasks
associated with itslayer.

The connection-oriented MP_TCP: : put method utilizes
several mut ex synchronization objects. As separate mes-
sages from the same connection ascend the protocol stack
in parald, these mut ex objects seridize access to per-
connection control blocks. Seriaizationisrequiredto protect
shared resources (such as message queues, protocol connec-
tion records, TCP segment reassembly, and demultiplexing
tables) against race conditions.

The ASX-based Connectiona Parallelism and Message
Parallelism implementati ons opti mi ze message management
by using SUnOS thread-specific storage [14] to buffer mes-
sages as they flow through a protocol stack. This optimiza
tion leverages off the cache affinity properties of the SunOS
shared memory multi-processor. In addition, it minimizes
the cost of synchronization operations used to manage the
global dynamic memory heap.

3.4 Measurement Results

This section presents results obtained by measuring the data
reception portion of the connection-oriented protocol stack
developed using the process architectures described in Sec-
tion 3.3. Three types of measurements were obtained for
each combination of process architecture and protocol stack:
average throughput, context switching overhead, and syn-
chronization overhead. Average throughput measured the
impact of parallelism on protocol stack performance. Con-
text switching and synchronization measurements were ob-
tained to help explain the variation in the average throughput
measurements.

Average throughput was measured by holding the proto-
col functionality, application traffic, and network interfaces
congtant, while systematically varying the process architec-
turein order to determine the impact on performance. Each
benchmarking run measured the amount of time required to
process 20,0004 kbytemessages. Inaddition, 10,0004 kbyte
messages were transmitted through the protocol stacks at the
start of each run to ensure that all the PE caches were fully
initialized (the time required to process these initial 10,000
messages was not used to calculate the throughput perfor-
mance). Eachtestwasrunusingl, 2, 3, . ..20 PES, witheach
test replicated a dozen times and the results averaged. The
purpose of replicating the tests was to insure that the amount
of interference from internal OS process management tasks
did not perturb the results.

Various statisticswere collected using an extended version
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of the widdly available t t cp protocol benchmarking tool.
Thett cp tool measures the amount of OS processing re-
sources, user-time, and system-time required to transfer data
between a transmitter process and a receiver process. The
flow of data is uni-directional, with the transmitter flooding
the receiver with a user-specified number of data buffers.
Various sender and receiver parameters (such as the number
of data buffers transmitted and the size of data buffers and
protocol windows) may be selected at run-time.

The version of t t cp used in our experiments was mod-
ified to use ASX-based connection-oriented and connection-
less protocol stacks. These protocol stacks were configured
in accordance with the process architectures described in Sec-
tion3.3. Thet t cp tool was also enhanced to alow a user-
specified number of connectionsto be active simultaneously.
This extension enabled us to measure the impact of multiple
connections on the performance of the connection-oriented
protocol stacks using message-based process architectures.

3.4.1 Throughput Measurements

Figures 3 and 4 depict the average throughput for the Con-
nectional Parallelism and Message Parallelism process archi-
tectures used to implement the connection-oriented protocol
stack. Each test run for these connection-oriented process
architectures used 20 connections. These figures report the
average throughput (in Mbits/sec), measured both with and
without presentation layer processing. The figuresillustrate
how throughput is affected as the number of PEs increase
from 1 to 20. Figures 5 and 6 indicate the relative speedup
that resulted from successively adding another PE to each
process architecture. Relative speedup is computed by di-
viding the average aggregated throughput for » PES (shown
in Figures 3 and 4, where 1 < n < 20) by the average
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throughput for 1 PE.

The results from Figures 3, 4, 5, and 6 indicate that in-
creasing the number of PES generally improves the aver-
age throughput in the message-based process architectures.
Connection-oriented Connectional Paralelism exhibited the
highest performance, both in terms of average throughput
and interms of relative speedup. The average throughput of
Connectional parallelism with presentation layer processing
peaks at approximately 100 Mbits/sec (shown in Figure 3).
The average throughput without presentation layer process-
ing pesks at just under 370 Mbits/sec. These resultsindicate
that the presentation layer represents a significant portion of
theoverall protocol stack overhead. AsshowninFigure5, the
relative speedup of Connectiona Parallelismwithout presen-
tation layer processing increases steadily from 1 to 20 PEs.
The relative speedup with presentation layer processing is
similar up to 12 PEs, at which point it begins to level off.
This speedup curve flattens due to the additiona overhead
from data movement and synchronization performed in the
presentation | ayer.

The average throughput achieved by connection-oriented
Message Parallelism without presentation layer processing
peaks at just under 130 Mbitg/sec (shown in Figure 4).
When presentation layer processing is performed, the av-
erage throughput is 1.5 to 3 times lower, pesking at ap-
proximately 90 Mbits/sec. Note, however, that the relative
speedup without presentation layer processing (showninFig-
ure 6) flattens out after 8 CPUs. This speedup curve flattens
out when presentation layer processing is omitted dueto in-
creased contention for shared synchronization objects at the
transport layer. This synchronization overhead is discussed
further in Section 3.4.3. In contrast, the relative speedup
of connection-oriented Message Pardlelism with presenta
tion layer processing grows steadily from 1 to 20 PEs. This
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behavior suggests that connection-oriented Message Paral-
[elism benefitsmorefrom paral lelism when the protocol stack
contains presentation layer processing. Thisfinding is con-
sistent withthosereportedin[8], andisrelated to theminimal
synchronization regquirements of the presentation layer (com-
pared with the higher relative amounts of synchronization in
the connection-oriented transport layer).

A limitationwith Connectiona Parallelismisthat each in-
dividua connection executes sequentially. Therefore, Con-
nectional Parallelism becomes most effective as the number
of connections approaches the number of PES. In contrast,
Message Parallelism utilizes multiple PEs more effectively
when the number of connectionsis much less than the num-
ber of PEs. Figure7illustratesthispoint by graphing average
throughput as a function of the number of connections. This
test held the number of PEs constant at 20, whileincreasing
the number of connectionsfrom 1t020. Connectional Paral-
[elism consistently out-performs Message Parallelism as the
number of connections becomes greater than 10.

3.4.2 Context Switching Measurements

M easurements of context switching overhead were obtained
by modifyingthet t cp benchmarking tool to use the SUnOS
5.3 / proc process file syssem. The / pr oc file system
provides access to the executing image of each process in
the system. It reports the number of voluntary and invol-
untary context switches incurred by SunOS LWPs within a
process. Figures 8 and 10 illustrate the number of voluntary
and involuntary context switchesincurred by transmittingthe
20,000 4 kbyte messages through the process architectures
and protocol stacks measured in this study.

A voluntary context switch is triggered when a protocol
task puts itself to deep awaiting certain resources (such as
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Figure 6: Relative Speedup for Connection-oriented Mes-
sage Paralelism

I/O devices or synchronization locks) to become available.
This causes the SUnOS kernel to preempt the current thread
of control and perform a context switch to another thread
of control that is capable of executing protocol tasks imme-
diately. For each combination of process architecture and
protocol stack, voluntary context switching increases fairly
steadily as the number of PEs increase from 1 through 20
(shown in Figures 8 and 10).

An involuntary context switch occurs when the SunOS
kernel preempts a running unbound thread in order to sched-
ule another thread of control to execute other protocol tasks.
The SunOS scheduler preempts an active thread of control
every 10 millisecondswhen thetime-dicealoted toits LWP
expires. Notethat the rate of growth for involuntary context
switching shownin Figures8 and 10 remainsfairly consistent
as the number of PES increase.

Connectional Parallelismincurred thelowest levelsof con-
text switching for the connection-oriented protocol stack,
compared with Message Paralelism. In the Connectional
Parallelism process architecture, after amessage hasbeen de-
multiplexed onto a connection, all that connection’s context
information isdirectly accessible within the address space of
the associated thread of control. Thus, a thread of control
in Connectiona Parallelism processes its connection’s mes-
sages without incurring additional context switching over-
head.

3.4.3 Synchronization Measurements

Measurements of synchronization overhead were collected
to determine the amount of time spent acquiring and reless-
ing locks on mut ex objects during protocol processing on
the 20,000 4 kbyte messages. Unlike context switches, the
SunOsS 5.3 / pr oc file system does not maintain accurate
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Figure7: Comparison of Connectional Parallelism and Mes-
sage Paralelism

metrics on synchronization overhead. Therefore, these mea-
surementswereobtained by bracketingtherut ex operations
with calstotheget hrti me system call. This system call
uses the SUnOS 5.3 high-resolution timer, which expresses
time in nanoseconds from an arbitrary timein the past. The
time returned by the get hrti me system call is not sub-
ject to resetting or drifting since it is not correlated with the
current time of day.

Figures9and 11 indicatethetotal time(measuredin msecs)
used to acquire and release locks on mut ex objects. These
tests were performed using Connectional Parallelism and
M essage Parallelismtoimplement aconnecti on-oriented pro-
tocol stack that contained data-link, network, transport, and
presentation layer functionality. Connection-oriented Con-
nectional Parallelism (shown in Figure 9) exhibited the [ow-
est levels of synchronization overhead, which peaked at ap-
proximately 700 msecs. This synchronization overhead was
approximately 1 order of magnitude lower than the results
shown in Figures 11. Moreover, the amount of synchroniza-
tion overhead incurred by Connectional Perallelism did not
increase significantly as the number of PEsincreased from 1
to 20. Thisbehavior occurs since after amessage isdemulti-
plexed onto a PE/connection, few additional synchronization
operations are required.

The synchronization overhead incurred by connection-
oriented Message Parallelism (shown in Figure 11) peaked
at just over 6,000 msecs. Moreover, the rate of growth in-
creased fairly steadily as the number of PEsincreased from 1
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to 20. This behavior occurs from the lock contention caused
by mut ex objectsthat serialize access to connection demul-
tiplexing mechanisms at the transport layer.

3.4.4 Summary of Observations

Thefollowing observationsresulted from conducting perfor-
mance experiments on message-based process architectures
for a connection-oriented protocol stack:

o Connectional Parallelismismore suitablethan Message
Parallelism asthe number of connectionsapproachesthe
number of PEs. Message Parallelism, on theother hand,
is more suitable when the number of active connections
is significantly less than the number of available PEs.
In addition, unlike Connectional Paralelism, Message
Parallelism is suitable for connectionless applications.

o Connection-oriented M essage Parallelism benefitsmore
from paraléelism when the protocol stack contains pre-
sentation layer processing. As shown in Figure 6, the
speedup curve for connection-oriented M essage Paral-
[elismwithout presentation layer processing flattens out
after 8 PEs. In contrast, when presentation layer pro-
cessing is performed, the speedup continues until 16
PEs. This behavior results from the relaively low
amount of synchronization overhead associated with
paralel processing at the presentation layer. In con-
trast, the relative speedup for Connectional Parallelism
without presentation layer processing continues to in-
crease steadily up to 20 PEs (shown in Figure 5). Con-
nectional Parallelism performs well in this case due to
itslow levels of synchronization and context switching
overhead.

e The relative cost of synchronization operations has
a substantial impact on process architecture perfor-
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mance. On the SPARCcenter 2000 shared memory
multi-processor running SUnOS 5.3, the Connectiona
Parallelism and Message Parallelism process architec-
turesbenefit from their use of inexpensive adaptive spin-
locks. We conjecture that a multi-processor platform
possessing different synchronization properties would
produce significantly different results. For example, if
theexperimentsreported inthis paper werereplicated on
anon-shared memory, message-passing transputer plat-
form, it islikely that the performance of the message-
based process architectures would have decreased sig-
nificantly.

4 Concluding Remarks

Thispaper describes performance measurements obtai ned by
using the ASX framework to parall elizeaconnection-oriented
protocol stack implemented with Connectional Parallelism
and Message Parallelism process architectures. The ASX
framework providesanintegrated set of object-oriented com-
ponents that facilitate experimentation with different types
of process architectures on multi-processor platforms. By
decoupling the protocol-specific functionality from the un-
derlying process architecture, the ASX framework increased
component reuse and simplified the devel opment, configura:
tion, and experimentation with parallel protocol stacks.

The experimental results presented in this paper demon-
stratethat toincrease performance significantly, the speed-up
obtained from parallelizing a protocol stack must outweight
the context switching and synchronization overhead associ-
ated with parallel processing. If these sources of overhead
are large, paraldizing a protocol stack will not yield sub-
stantia benefits. Compared with Connectiona Parallelism,
the Message Parallelism process architecture exhibited rela-
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Figure 10: Connection-oriented Message Pardlelism Con-
text Switching

tively high levels of context switching and synchronization
overhead. This overhead helpsto account for the higher per-
formance exhibited by Connectional Parallelism. In generd,
theresultsfrom these experiments underscoretheimportance
of the process architecture on parallel communication sub-
system performance.

Components in the ASX framework are freely avail-
able via anonymous ftp from i cs. uci . edu in the file
gnu/ C++_w apper s. tar. Z. This distribution contains
complete source code, documentation, and example test
drivers for the ASX C++ components. Components in the
ASX framework have been ported to both UNIX and Win-
dows NT. The ASX framework is currently being used in a
number of commercia productsincluding the AT& T Q.port
ATM signaling software product [15], aswell asthe network
management subsystemsin the Ericsson EOS project [9] and
the Motorola Iridium global persona communications sys-
tem.
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