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Abstract A distributed application can be given increased resistance to certain
types of malicious behavior, even when the environment in which it is
operating contains untrustworthy elements. Recent trends in protecting
applications use operating systems as only the first layer of security, an-
ticipating that this layer may be breached. Another layer is added to
react to and repair the damage done by intruders that succeed in breach-
ing the first layer. A promising approach to designing the second layer
of protection uses adaptive middleware to enable agile behavior and to
coordinate protective responses across the distributed system, even in
resource-depleted environments. This new approach to protection com-
plements more traditional approaches – in which only one layer of secu-
rity is used – by hardening critical components at multiple system levels.
When integrated effectively, this multi-level approach makes it harder for
intruders to corrupt or disable distributed systems and applications.

This paper presents three contributions to the study of protecting dis-
tributed applications against malicious behavior. First, we describe the
key ideas and technologies behind the emerging multi-level approach to
protecting distributed applications. Second, we explain how these ideas
relate to security engineering in general. Finally, we report recent re-
sults in evaluating a collection of technologies that implement this ap-
proach. These results reinforce the premise that an adaptive middleware
approach to increasing survival time and enabling applications to oper-
ate through attacks is feasible, though much additional research remains
to be done.
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1. MOTIVATION: COUNTERING
MALICIOUS INTRUSIONS IN
DISTRIBUTED APPLICATIONS

Distributed applications are growing more interconnected and inter-
networked. They are also relying increasingly on commercial-off-the-
shelf (COTS) hardware and software. As a result, they are becoming
dependent on the common information technology (IT) infrastructure
used to build distributed applications. The increasing reliance on COTS
hardware and software stems from a variety of factors, including dereg-
ulation, international economic competition, and time-to-market pres-
sures, as well as the gradual commoditization of the global IT industry.

Unfortunately, the common IT infrastructure contains security flaws,
both known and unknown. Computer system intrusions (also known as
cyber attacks) that take advantage of these flaws have become ubiqui-
tous. These deliberate and malicious actions against computer systems
can result in application corruption, with corrupt applications delivering
either faulty service or not delivering any service at all. Disrupting or
corrupting critical applications and services is often the specific intent
of break-ins and denial-of-service attacks. Vulnerability to such intru-
sions is a key risk area for open, interconnected automated systems, such
as those needed to support e-commerce, as well as those systems that
protect critical infrastructure, such as power grids, telecommunications,
air transportation, and emergency services. Most of these systems are
highly mission-critical and interdependent, i.e., failures in some parts of
the infrastructure can have catastrophic consequences for other parts.

It is becoming increasingly clear that we do not yet have a trustwor-
thy computing base that is economical enough to use as the basis for
mission-critical distributed applications. Moreover, due to the inher-
ent complexities of developing distributed systems, it is not clear that
a completely trustworthy computing base can be achieved in the long
run either. A key challenge therefore is how to build applications that
exhibit better security and survivability characteristics than the poten-
tially flawed common IT infrastructure they are built upon.

Many intrusions into computer systems target specific applications
with an intent to stop them from functioning properly. One way to de-
fend against such threats is to try to ensure the applications’ continued
ability to provide useful service despite the ongoing attack(s). A new
approach to this problem is derived from the concepts of providing a
layered defense against intrusions, while continuing to provide varying
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degrees of service despite the ongoing intrusion. We call applications
that can deal with potential flaws in their infrastructure “defense en-
abled” applications, and we call adding the survivability properties to
an application “defense enabling.”

The premise of this paper is that it is possible to build more surviv-
able systems using an infrastructure that is not completely reliable and
trustworthy. The key to success is the systematic use of adaptation, sup-
ported by redundancy, heterogeneity, and use of current security mech-
anisms, such as access-control, intrusion detection and packet filtering.
Adaptive behavior is paramount to defense and survival in imperfect in-
frastructure environments. Since the operating condition of the system
can change as a result of even a partially successful attack, the system
and application must cope with changes in order to survive.

The need for adaptive behavior is particularly essential for mission-
critical distributed real-time and embedded (DRE) applications, such
as supervisory control and data acquisition (SCADA) systems used to
control power grids. For instance, a cyber attack on a DRE system
may consume resources, such as bandwidth, memory, or CPU cycles. A
survivable DRE application must therefore be able to either continue
with the degraded resources (perhaps also providing degraded levels of
service) or actively engage other mechanisms to counter the shortage or
degradation. Two things are important in this regard:

1 the adaptation strategy, i.e., what to do in general as a response
to various forms of attack or potential attack, and

2 the mechanisms exercised as part of the adaptation strategy, i.e.,
the mechanisms that act as sensors and actuators for the strategy.

1.1. A NEW GENERATION OF
INFORMATION ASSURANCE
TECHNOLOGY

The emerging multi-level, adaptive approach toward information as-
surance is enabling a new generation of techniques and technologies to
augment the approaches and technologies of previous generations that
have proven to be deficient. One way to categorize the collection of cur-
rent techniques is through their intent and approach toward contributing
to a solution, as shown in Figure 1.

We characterize each generation of information assurance (IA) as fol-
lows:

1 First generation IA technologies sought to provide protection, i.e.,
preventing an attacker from getting through a boundary estab-
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Figure 1 Information Assurance Technology Generations

lished to insulate applications from malicious behavior [1, 29, 27].
Despite significant effort and progress in mechanisms for protec-
tion, however, intrusions still occur.

2 Second generation IA technologies focused on intrusion detection,
attempting to identify successful intrusions and alert system ad-
ministrators to remedy the situation [9, 15, 10]. Evaluations of
intrusion detection approaches were mixed, with some types of
intrusions being detected, while others went undetected. Work
continues on better intrusion detection, but there is growing real-
ization that neither protection nor detection will be of sufficient
quality any time soon to completely resolve the problem.

3 Third generation IA technologies recognize that there will be fail-
ures, both in the low-level infrastructure protection and in intru-
sion detection mechanisms. Survivability (or intrusion tolerance) is
the goal of these third generation approaches, in particular the abil-
ity to operate through the effects of intrusions [16, 14]. Intrusion
tolerance has three main tenets: (a) focus and harden protection
of key resources, (b) provide layers of protection which comple-
ment each other, and (c) use intrusion detection and other means
of identifying anomalous behavior to trigger adaptation to cope
with the effects of a successful intrusion on limiting the correct
functioning of critical applications.
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1.2. SURVIVABILITY, THIRD GENERATION
INFORMATION ASSURANCE

The premise behind the third generation IA activities is the realization
that the number and sophistication of cyber attacks is increasing and
that some of these attacks will succeed, despite our current deployment
of first and second generation solutions. It is therefore essential that the
new generation of distributed systems be capable of operating through
attacks by:

1 Protecting the most valuable assets,

2 Layering defenses in-depth,

3 Accepting some degradation in service, and

4 Trying to move faster than the intruder.

This approach differs from the static (and often unrealistic) “all or noth-
ing” ideal of previous generations.

Our R&D efforts focus on developing, demonstrating, and deploying
a set of technologies that allow any mission-critical distributed software
application to resist many forms of malicious intrusions. Our approach
is based on the new generation of fine-grained, flexible, late binding
adaptive middleware [25] technology that we developed to manage end-
to-end application quality of service (QoS) and to enable more agile
applications. Our premise is that applications that can adapt to work
around the effect of attacks will offer more dependable service, and will
minimize the loss from inevitable intrusions. For this approach to be
workable, “defense enabling” needs to be applicable without requiring
major modifications to the bulk of the application software.

In general, agile responses to survivability are hard since there are
so many different avenues to intrusion, i.e., too many to deal with one
by one. If an application just reacts to specific intrusions, therefore, it
will continuously be playing catch-up with intruders. A more realistic
approach is therefore to deal with the symptoms or effects of intrusions,
such as excessive bandwidth (or more generally resource) consumption,
identifiable resource abuse, identifiable corruption of files and data, loss
of QoS delivered to applications, and measuring application progress
against some established expectation.

The remainder of this paper discusses the ideas behind the defense
enabling concept, as well as some of the current mechanisms and strate-
gies that have been developed, categorized, utilized, and partially eval-
uated in pursuing it. Section 2 begins by discussing current trends in
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QoS management middleware that form a basis for the adaptive secu-
rity approaches. Section 3 discusses the concept and practice of using
the adaptive QoS management technology to defend against intrusions,
focusing on the current set of mechanisms we have used and strategies
with which we have experimented. Section 4 introduces and evaluates
a series of activities we have conducted to ascertain the viability of this
new direction. Section 5 presents conclusions drawn from our work to
date.

2. CURRENT TRENDS IN MIDDLEWARE:
INTEGRATED END-TO-END QOS,
LAYERING, AND ADAPTIVE BEHAVIOR

2.1. TECHNICAL BACKGROUND
For a significant number of mission-critical systems, both the current

operating environment and information processing requirements can be
expected to change during operation. This dynamism often implies the
need to adapt to changing conditions. A key challenge is to design a dis-
tributed system infrastructure architecture and reify this architecture
into a concrete, reusable, multi-level middleware framework for build-
ing adaptive applications. The recently completed DARPA Quorum
research program has addressed these issues. As depicted in Figure 2,
the Quorum architectural framework is organized around QoS-oriented
specification, feedback, negotiation, and control mechanisms that can
be applied to the wide range of QoS aspects that were investigated in
Quorum.

Projects in Quorum developed advanced, reusable middleware that
enabled a new generation of flexible distributed real-time and embedded
(DRE) applications. These new types of applications can exert more
explicit control over their resource management strategies than the pre-
vious generation of statically provisioned applications. As a result, DRE
applications can be reconfigured and adapted more easily in response to
dynamic changes in their network and computing environments. In par-
ticular, they have wider operating range than the conventional prevailing
binary mode between “working” and “broken”.

¿From one perspective, Quorum projects developed an extensible soft-
ware development framework, built on a distributed object (DOC) mid-
dleware infrastructure that simplifies the support of dynamic run-time
adaptation to changing configurations, requirements, or availability of
resources. ¿From a complementary perspective, Quorum projects pro-
vided the baseline for an evolving network-centric architecture with a
growing set of
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Figure 2 Quorum: Providing Predictable, Controllable, End-to-End Response on a
Shared COTS Hardware and Software Infrastructure

concepts, such as contracts to collect and organize QoS require-
ments, region based QoS resource management, and system con-
dition measurement objects,

components, such as resource status services, real-time event ser-
vices, and resource managers,

Mechanisms, such as end-to-end priority and reservation resource
management, active and passive replication management, dynamic
access control,

Products, such as The ACE ORB (TAO) and Eternal, and

Standards, such as those for Real-Time CORBA and Fault-Tolerant
CORBA.

Subsequent DARPA programs, such as PCES, MoBIES, and ARMS, are
filling out the network-centric architecture to support an integrated QoS
concept for managing collections of system aspects and the tradeoffs
among these aspects to support a wide range of operating objectives
effectively.



8

2.2. TECHNICAL INTEGRATION IN
QUORUM

In any DOC middleware architecture, the functional path is the flow
of information between a client’s invocation to a remote object and back.
The middleware is responsible for exchanging this information efficiently,
predictably, scalably, and securely between the remote entities by using
the capabilities of the underlying network and endsystems. The infor-
mation itself is largely application-specific and determined solely by the
functionality being provided (hence the term “functional path”). The
functional path deals with the “what” of the client⇔object interaction
from the perspective of the application, e.g., what function is to be
requested for that object, what arguments will be provided and what
results, if any, will be returned to the client.

In addition to providing middleware that supports the functional path,
projects in Quorum added a system path (a.k.a., the “QoS path”) to
handle issues regarding “how well” the functional interactions behave
end-to-end. Quorum middleware is therefore also intimately concerned
with the systemic aspects of distributed and embedded application de-
velopment, which include the resources committed to client⇔object in-
teraction and possibly subsequent interactions, proper behavior when
ideal resources are not available, the level of security needed, and the
recovery strategy for detected faults. A significant portion of the Quo-
rum middleware focused on collecting, organizing, and disseminating the
information required to manage how well the functional interaction oc-
curs, and to enable the decision making and adaptation needed under
changing conditions to support these systemic “how well” QoS aspects.

Quorum projects separated the systemic QoS requirements from the
functional requirements for the following reasons:

To allow for the possibility that these requirements will change
independently, e.g., over different resource configurations for the
same applications;

Based on the expectation that the systemic aspects will be de-
veloped, configured, and managed by a different set of specialists
than those customarily responsible for programming the functional
aspects of an application.

In their most useful forms, systemic QoS aspects affect end-to-end ac-
tivities. As a result, they have elements applicable to the network sub-
strate, the platform operating systems, the distributed system services,
and the programming run-time system in which they are developed, the
applications themselves, as well as the middleware that integrates all



Protecting Applications Against Malice Using Adaptive Middleware 9

these elements together. Thus, the following basic premises underlie
adaptive middleware:

Different levels of service are possible and desirable under different
conditions and acceptable cost profiles.

The level of service in one dimension may need to be coordinated
with and/or traded off against the level of service in other dimen-
sions to achieve the intended overall result.

There were three complementary parts to Quorum’s middleware or-
ganization:

1 The features and components needed to introduce the concepts for
predictable and adaptable behavior into the application program
development environment, including specification of desired levels
of QoS aspects.

2 Providing run-time middleware to ensure appropriate behavior,
including the collection of information and coordination of any
needed changes in behavior.

3 Inserting the mechanisms for achieving and controlling each par-
ticular aspect of QoS that is to be managed, including aggregate
allocation, scheduling, and control policies.

Integrating these facets and inserting sample mechanisms and behavior
required a significant integration job, which remains an ongoing area of
interest in subsequent DARPA programs.

Figure 3 illustrates our general concept of middleware and some of the
key layers we are using to organize the technology integration activities.
Based on our prototyping and benchmarking activities to date [6, 11],
the integrated components enable an unprecedented degree of dynamic
application-level control and adaptability to varying conditions typically
found in both embedded and Internet environments. In turn, these
integrated capabilities enable a new generation of applications whose
resource management capabilities can be customized easily, without the
need to complicate the task of application developers significantly.

The remainder of this section briefly highlights the various project
techniques used to populate the Quorum adaptable system vision to
provide the necessary infrastructure components and specific QoS prop-
erty mechanisms. These activities contribute toward, and form a basis
for, the array of mechanisms and adaptations now available for use to
develop agile applications that can respond appropriately to successful
intrusions. Each of these activities has been described in more detail
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Figure 3 Network-Centric QoS Interface and Control as Part of a Layered Architec-
ture

elsewhere, and we provide pointers to the individual project web sites
for additional information on the particular technologies.

Quality Objects (QuO) is a distributed object-based middleware
framework developed at BBN [33, 30, 13]. QuO facilitates the creation
and integration of distributed and embedded applications that can spec-
ify

Their QoS requirements,

The system elements that must be monitored and controlled to
measure and provide QoS, and

the behavior for adapting to QoS variations that occur at run-time.

QuO adds the abstractions of a QoS contract that summarizes the service
requirements of the possible states the system might be in and actions
to take when changes occur, system condition objects that measure and
control behavior, and delegates that are packaged inline adaptive behav-
iors. In addition, QuO introduces the concept of an Object Gateway [24]
that provides a means to integrate a wide variety of transport-level QoS
mechanisms into the DOC middleware paradigm. Figure 4 highlights
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the components of the QuO framework and their relationship to other
parts of the Quorum adaptive QoS environment.

Figure 4 QuO is middleware that offers an application the ability to adapt to a
changing environment

The ACE ORB (TAO) is an open-source implementation of CORBA [19]
being developed Washington University, St. Louis, the University of Cal-
ifornia, Irvine, and Vanderbilt University. TAO provides a CORBA com-
pliant, QoS-enabled, COTS middleware object request broker (ORB)
and related ORB services. The ORB endsystem encapsulates the net-
work, OS, and communication interfaces and contains CORBA-compliant
middleware components and services illustrated in Figure 5.

In addition to supporting the standard OMG CORBA reference model,
TAO also supports the Real-time CORBA specification [18], with en-
hancements to ensure predictable QoS behavior for real-time applica-
tions. In particular, TAO provides a real-time object adapter and run-
time schedulers for both static and dynamic real-time scheduling strate-
gies [26]. It also provides a real-time event service [7] that enables appli-
cations to utilize the Publisher/Subscriber pattern [4] within a CORBA
context.

Figure 6 highlights the layering of adaptive QoS middleware over the
integrated QuO and TAO real-time CORBA DOC environment in an
avionics context. In this view, the task of interfacing to the appli-
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Figure 5 TAO: A Real-Time CORBA-Compliant ORB

Figure 6 Adaptive Real-Time Behavior
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cation is assigned to the adaptive middleware layer, which tracks the
progress and changes the control parameters accordingly for the enforce-
ment mechanisms provided by the real-time DOC middleware layer. The
adaptive QoS management functions as a higher level of middleware that
can interoperate with both the application-specific requirements and the
lower-level middleware control mechanisms to produce the desired be-
havior under varying circumstances. Real-time CORBA mechanisms,
such as prioritization and filtering, can be modified dynamically to bet-
ter match the current application requirements with the current operat-
ing conditions, as measured and evaluated by the adaptive middleware
layer.

Object-Oriented Domain and Type Enforcement for Access
Control. Adaptive security is supported through another Quorum tech-
nology called Sigma, being developed by Network Associates Inc. Labs.
Sigma is a DOC-based access control mechanism and policy language
that employs a domain and type enforcement model. Introducing Sigma
into the Quorum environment involved providing adaptive security poli-
cies, enforceable through the ORB and the Object Gateway. In addition,
Sigma provides a response mechanism that can be connected to a vari-
ety of triggers, such as variations in delivered QoS or specific Intrusion
Detection Systems (IDS), to form the basis of defensive actions taken
under suspicious circumstances. Figure 7 illustrates the concept inte-
grated with DOC. For more details on the adaptive security aspects of
this work, see [28, 20].

The Proteus Dependability Manager was developed primarily at
the University of Illinois based on using off-the-shelf group communica-
tion mechanisms (Ensemble [8]) to control the consistency of object repli-
cas. It provides a prototype property (dependability) manager compo-
nent that coordinates the number and location of object replicas, as well
as coordinating the selection of a replica control strategy, from among
a growing class of supported strategies with various footprint and fault
coverage capabilities. For more details on the design for dependability
see [5, 21] and [17] for the emerging CORBA Fault Tolerance standard
which this work has influenced. Figure 8 highlights the Proteus design
for the dependability aspects in Quorum.

Network Measurement and Control Functions. Measurement
and control of network resources are an important part of the bandwidth
management QoS capability. The REMOS component from Carnegie
Mellon University was developed in Quorum to acquire and disseminate
information about network and host resource utilization, and an emerg-
ing capability for predicting future use. Integrated Services (IntServ)
and Differentiated Services (DiffServ) are emerging Internet standards [32,
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Figure 7 Adaptable Access Control Policy

Figure 8 Dependability Using Replication Management
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3] for managing network resources, by providing a resource reservation
mechanism capability (IntServ) and a priority based mechanisms (Diff-
Serv) for controlling network communication in a more predictable man-
ner. Figure 9 illustrates how these technologies integrate with other
components in the Quorum DOC framework.

Figure 9 Bandwidth Management Measures and Controls Network Resources

Additional information about the adaptive middleware activities de-
scribed above can be found at the following websites:

BBN’s QuO website at
www.dist-systems.bbn.com/tech/QuO/

the Washington University website for The ACE ORB (TAO) at
www.cs.wustl.edu/∼schmidt/TAO.html

The Network Associates SIGMA website at
www.nai.com/products/security/tis research/applied/arse corba.asp

the University of Illinois AQuA website at
www.crhc.uiuc.edu/PERFORM/AquA.html

CMU’s Remos website at
www.cs.cmu.edu/∼cmcl/remulac/remos.html
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These Quorum-sponsored activities form the underlying technology
basis for a new generation of highly monitored and QoS-managed behav-
ior. In addition, they provide the basis for adapting that QoS-managed
behavior to enable survivable applications that can operate through sys-
tem intrusions. Section 3 outlines how we are applying these underlying
technologies in pursuit of a defense enabling strategy using mechanisms
based on these controlled and adaptive behaviors emerging from mid-
dleware R&D.

3. USING ADAPTIVE MIDDLEWARE TO
DEFEND AGAINST INTRUSIONS:
CONCEPTS AND PRACTICE

3.1. MOTIVATION FOR DEFENSE
ENABLING

Given sufficient time and effort, a determined attacker can in principle
defeat whatever flawed protection is offered by operating systems or
networks, thus gaining privileges that can be used either to kill the
system completely or to corrupt it in some pernicious way. Although one
might try to protect data using encryption and digital signatures that
are computationally infeasible to break [27], when that data is processed
by the system it will almost certainly become vulnerable to an attacker
whose intrusion gains enough privilege.1

In practice, an attacker may not have the skill, perseverance, prepa-
ration, or time needed to carry out the attacks that are possible in the
worst case. Some attackers rely on prepackaged attack “scripts” and do
not have the skill to repair the scripts if they fail. An attacker who meets
unexpected obstacles may look elsewhere for easier targets rather than
persevere in an attack. An attacker who is not prepared in advance to cir-
cumvent dynamic protection elements in a specific system will be more
likely to trigger intrusion detection alarms [9]. In any case, the more
time attackers take, the more vulnerable they are to being detected and
stopped by system administrators. In summary, system protection is not
perfect, but neither are attacks and attackers. Moreover, we can increase
the survivability of applications by applying strategies and mechanisms
that can limit the effects when protection fails and intruders gain some
privileges.

1Note that encrypted data is worthless unless it is decrypted at some time, and it can be
read at that time by an attacker with sufficient privileges. Also note that digitally signed
data must be re-signed when it is modified, and an attacker who gains the privilege to re-sign
data can forge new, corrupt data as well.
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Flaws in an application’s implementation can be corrected more eas-
ily than flaws in its environment, and the latter are likely to be better
known to attackers and exploited by them. Note that we are assuming
we can modify or extend the design and implementation of critical ap-
plications. This is in sharp contrast with the design and implementation
of the environment, which is largely beyond our immediate control. In
other words, we must live with the inevitable flaws in the environment
but, because our goal is defending critical applications, we will expend
the effort to make those applications much more trustworthy than the
operating systems and networks on which they depend.

We make a distinction between protection, which seeks to prevent the
attacker from gaining privileges, and defense, which includes protection
but also seeks to frustrate an attacker in case protection fails and the
attacker gains some privileges anyway. Protection mechanisms are typ-
ically static and proactive; defense mechanisms enhance the protection
mechanisms with a dynamic strategy for reacting to partially successful
attacks. Both protection and defense aim to keep a system functioning,
but protection tends to be all-or-nothing (i.e., either it works or it does
not), whereas defense can choose from among a range of responses, some
more appropriate and cost-effective than others.

During an intrusion, an attacker and an application both contend for
resources, and one key criteria of successful defense is the ability to con-
tinue despite changes in the environment caused by the attack. Under
these circumstances, putting up a static number of replicas or using a
fixed access control policy may not be a successful strategy. The ini-
tial deployment, configuration, resource allocation, and service-delivery
set-up of an application will need to adapt dynamically. Consequently,
requirements generated from the defense strategies often involve recog-
nition of environmental changes and dynamic reaction to these changes.

Under severe resource depletion, for example, certain operations of an
application will be made unavailable. Another example involving adap-
tation involves migration of application objects from a host as soon as
an attack on the host is suspected. The strategic adaptations are usually
(but need not always be) reactive, i.e., in response to some events. A
defense strategy may involve pro-active adaptation as well. For exam-
ple, to counter the attack on a service, one may include multiple objects
providing that service and periodically switch the set of service providers
pro-actively.
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3.2. DEFENSE ENABLING: MECHANISMS
AND STRATEGIES

We say that an application is defense enabled if mechanisms are in
place that cause most attackers to take significantly longer to corrupt it
than would be necessary without the mechanisms. In other words, at-
tackers must not only defeat protection mechanisms in the environment,
they must spend additional time defeating defense mechanisms added to
the application.

A typical use-case for our technology begins with the defense or sur-
vivability needs of a critical application. Based on the attacks or at-
tack effects that this application needs to survive, a defense strategy is
then devised. Implementation of this strategy may require identification
and integration of external services of defense mechanisms ranging from
packet filtering to replication management. The final step of defense
enabling is the integration of the defense strategy with the application.
We are attempting to develop a catalog of general defense strategies
that are independent of the application context and therefore poten-
tially reusable. Implementing the defense in the middleware is a key
concept in this regard because of its end-to-end purview. Since mid-
dleware is explicitly removed from the application context, yet is close
enough to be aware of specific application requirements, it can provide
the right combination of integrating the use of diverse infrastructure
based mechanisms with application-centric customization.

Defense strategies vary in their objectives. Examples of different strat-
egy objectives include countering the attack, working around the attack
by moving elements of the computation, imposing a stronger barrier
against future attacks, etc. Various aspects of the system including
application-level behavior, QoS management, and organization and con-
figuration of infrastructure resources may be affected and altered by a
defense strategy. In theory, any mechanism whose services are useful
in implementing a defense strategy can potentially be used as a defense
mechanism. In practice, however, one has to overcome the technical
challenge of integrating diverse (and often conflicting) mechanisms. For
defense, we have used both standard security mechanisms and other
mechanisms adapted for security ends. Examples of security mechanisms
used as defense mechanisms include access control, packet filtering, and
intrusion detection mechanisms. Among the defense mechanisms that
are not historically perceived as security mechanisms include replication
management and bandwidth management mechanisms.
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3.3. IMPLEMENTING DEFENSES USING
MIDDLEWARE

It is possible to construct the adaptation and coordination required
to implement the strategies at the application level, exercising the ca-
pabilities of defense mechanisms directly from application code. This
ad-hoc approach is not reusable, however, and controlling infrastructure
protection mechanisms are not typically considered an application level
prerogative. It also violates the separation of concern between func-
tional and survivability aspects and leads to unwieldy and custom code.
A better software engineering practice is to devise and deploy a mid-
dleware layer that lies between the application and systems resources to
implement the adaptation. Integration of a defense mechanism with the
middleware brings the awareness and control closer to the application,
while simultaneously decoupling survivability aspects of the application
from the functional aspects. We believe that recent advances in adap-
tive distributed middleware technology (some key elements of which were
described in section 2.2) have reached the level of maturity where one
can achieve this kind of integration and coordination systematically and
without undue difficulty.

3.4. SOME SAMPLE MECHANISMS
Below, we present examples of adaptive middleware mechanisms that

can be used to defense-enable applications.
Mechanism: Bandwidth Management Can Counter Flooding

Between Routers. Communication bandwidth management mecha-
nisms, such as RSVP, can be used to counter a network flooding attack
by reserving bandwidth for a defense-enabled application, as shown in
figure 10. RSVP can be given a CORBA interface and “protected” with
Access control (OO-DTE/Sigma), but unfortunately RSVP offers other
interfaces that an attacker can use to deny bandwidth to the applica-
tion. Thus, the defense mechanism can be turned to the advantage of
the attacker. For this reason, a QoS manager must offer some degree
of trustworthiness before being used for defense-enabling. In the case of
RSVP, a trusted variant is under development in the ARQoS project [31].

Mechanism: Replication Management Can Replace Killed
Components. Replicating key components of an application increases
the application’s ability to withstand certain types of attacks, e.g., at-
tacks which attempt to make individual components unusable by the
rest of the system. The replicas must be coordinated to ensure that,
as a group, they will not be corrupted when the attacker succeeds in
corrupting some of them. If one replica is compromised, the applica-
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Figure 10 Mechanism: Bandwidth Management Can Counter Flooding Between
Routers

tion can rely on the other existing replicas to provide continued service.
Replication management systems vary in their ability to tolerate the way
replicas can fail (e.g., crash, value, or Byzantine failures). Depending on
the underlying failure model, a replication management system may be
able to maintain service availability as long as a certain number of repli-
cas have not failed. It may also be possible to dynamically change the
replication management strategy. Failure reports obtained from replica-
tion management systems can be used to track abnormal failure patterns
indicative of a potential intrusion [12].

Some examples of how the services of a typical replication manage-
ment system may be used in a defense strategy include:

Increasing replication level to increase the probability of the ap-
plication’s survivability when some hosts are suspected to be com-
promised by the attacker;

Migrating replicas from one host when that host is under attack;

Start voting on responses (instead of accepting the first response)
when an attack on some host is suspected (i.e., change replication
management strategy).
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We have used the replication management facilities of the Proteus
dependability manager [22] as a representative example of using replica-
tion management as a defense mechanism. We used Proteus’ CORBA
interfaces to integrate it with QuO system conditions, thereby bringing
both awareness and control of the replication management aspects to
the adaptive middleware. Figure 11 shows schematically how Proteus
can be used as a defense mechanism.

Figure 11 Mechanism: Replication Management Can Replace Killed Components

Mechanism: Security Domains Can Limit the Damage From
A Single Intrusion. Defense enabling depends on slowing the spread
of privileges to attackers. To see this, note that if privileges could be
obtained instantly, the attacker could immediately grab all the privileges
needed to stop all application processing and thus deny all service. No
defense would be possible against this unlimited attack. To help slow the
spread of privileges, we divide the system into several security domains,
each with its own set of privileges.

A security domain can be a network host, a LAN consisting of several
hosts, a router, or some other structure. The domains are chosen and
configured to make best use of the existing protection in the environment
to limit the spread of privilege. The domains must not overlap. For
example, if the domains are sets of hosts then each host is in exactly
one domain. Each security domain may offer many different kinds of
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privilege. The following hierarchy is a minimal set that is typical in
many domains:

Anonymous user privilege – allows interaction with servers in
a security domain only via network protocols, such as HTTP, that
do not require the client to be identified;

Domain user privilege – allows access only to a well defined set
of data and processes in one particular security domain (e.g., the
user must ”log in” to get this access);

Domain administrator privilege – allows reading and writing
of any data and starting and stopping any processing in one par-
ticular security domain (e.g., “root” privilege on Unix hosts).

This hierarchy is listed in order of increasing privilege. Each of these
privileges subsumes all the previous ones. To increase the protection of
critical applications we create a new kind of privilege in each domain:

Application-level privilege – allows one to interact with a defense-
enabled application using protocols at the application level (e.g.
CORBA calls that query the application or issue commands).

An attacker with application-level privilege would find it easy to control,
and thus corrupt, an application, so defense enabling must make it hard
for an attacker to get this privilege. Application-level privilege is a
key part of defense enabling. It differs from other kinds of privilege in
that (a) It is not part of the environment but is created specifically to
defend an application (b) It uses cryptographic techniques (c) It does
not subsume any of the other kinds of privilege and it is not subsumed
by any of them.

The intent of the security domain strategy described above is to force
the attacker to take more time accumulating the privileges needed to
corrupt the applications. This strategy can succeed if each critical ap-
plication has parts that are intelligently distributed across many domains
so that privilege in a set of several domains is needed to corrupt it, as
shown in Figure 12. We assume and attempt to ensure that the attacker
cannot accumulate privileges concurrently in any such set of domains.

Mechanism: Using Application Centric Adaptation as a De-
fense Mechanism. Several components of a defense strategy may in-
volve application-level adaptation. For instance, to cope with an attack
that captures the CPU resources of a server, a client may start sending
fewer requests to that server, may use cached values instead of issuing a
remote invocation, or perhaps begin using a different algorithm or im-
plementation approach which relies less on the resource under attack.
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Figure 12 Mechanism: Security Domains Can Limit the Damage From a Single
Intrusion

Middleware that supports adaptive behavior can be used for this pur-
pose. The QuO middleware that we use for integrating diverse defense
mechanisms provides a systematic way to implement application level
adaptation through its contract mechanism.

A sampling of other defensive adaptations we have used and experi-
mented with to isolate or confuse attackers include the following:

Dynamically configuring firewalls to block traffic

Dynamically configuring routers to limit traffic

Dynamically changing communication ports and

Dynamically changing communication protocols.

3.5. CLASSIFYING DEFENSIVE
ADAPTATIONS

An application’s defense will use one or more kinds of adaptation to
counter a particular attack. This section classifies, in several dimensions,
a basic set of potential adaptations, which are shown in Table 1.

The two dimensions shown in Table 1 are described below:
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Defeat Work Around Guard Against
Attack Attack Future Attack

application retry failed redirect reqst; increase
level request degrade srvc self-checking
QoS mgmt reserve CPU, migrate tighten crypto,
level bandwidth replicas access control
infrastructure block IP change ports, configure
level sources protocols IDSs

Table 1 A Classification of Defense Mechanisms

In the vertical dimension, adaptations differ according to the level
of system architecture at which they work. At the highest level,
an application can choose to change its own behavior in the face of
an attack, either finding an alternate way to proceed or degrading
its service expectations. At the next lower level, the application
can use QoS management support to try to make its environment
offer the QoS it needs. At the lowest level, the application uses
services from the operating system and network level to counter
the attack, for example by changing details of how application
components communicate

In the horizontal dimension, adaptations differ according to how
aggressively the attack can be countered. At best, the attack can
be defeated, i.e., the effect of the attack on the application can be
completely canceled. Second best is for the application to work
around the attack, avoiding its effects. Finally, if the attack can
neither be defeated nor avoided, the application can make changes
to protect itself against continuing or similar attacks in the near
future.

Although Table 1 shows at least one kind of adaptation for each of
the nine possible boxes, the set of adaptations is not intended to be
comprehensive. Therefore, others can undoubtedly be invented or would
be available with specific operating environments. There may also be
other useful categories; for example, Table 1 does not Provide for any
”honeypot” defenses, in which an attacker is lured into wasting effort on
a decoy. Despite these limits, this set of adaptation mechanisms seems
to offer a useful variety of options for creating a strategy for responding
to attacks.
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A third dimension for classifying adaptations is according to the kinds
of attack they work against. In Table 1, the following two broad kinds
of attack are countered:

1 Direct attacks against the application, for example by disrupting
the communication between its parts;

2 Indirect attacks, in which resources the application needs are
denied.

Direct attacks are countered by the mechanisms working at the appli-
cation level, plus the use of encryption. An indirect attack might be
countered by any of the mechanisms in Table 1 but generally lower-level
mechanisms can be more focused. For example, configuring a firewall
to block packets from a particular source is a highly focused defense,
but one that needs detailed information about the attack to have been
collected first. At the QoS level, flooding the network can be countered
by bandwidth reservation, over-consumption of CPU can be countered
by scheduling and priorities, crashing of a node running an application
component can be countered by migrating the component elsewhere,
and relatively privileged operations can be disabled with flexible access
control if there is a high risk that they might be used maliciously.

A fourth dimension for classifying defenses is whether a mechanism
can be used for protection from attack as well as for response to attack,
or just for response alone. Mechanisms in Table 1’s right-hand column,
plus CPU and bandwidth reservation, can be used for protection as well.

It is worthwhile to contemplate why these strategies should not sim-
ply always be enabled for best protection? The reason is because some
of these defenses, e.g., an IDS configured to be very sensitive to attacks,
have significant costs and so may need to be used sparingly. Likewise,
others defenses, such as disabling highly privileged operations, impede
the normal functioning of the system and so should be used only when
necessary. In addition, incorporating many or all of these adaptation
mechanisms into a single application can greatly complicate the applica-
tion’s design. Fortunately, every one of these mechanisms is orthogonal
to an application’s functionality, i.e., the application should compute
the same results regardless of whether or how many defense adaptations
have been used. In other words, every one of these adaptations changes
how an application computes its results, not what results are computed.
This orthogonality allows the design of defenses to be separated from
the design of functionality.

As discussed in section 2, the work on separating application func-
tionality from QoS management system behavior, and treating them as
separate aspects, feeds directly into the software engineering dimensions
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of managing defense enabling characteristics as well. It is natural to sep-
arate the design of functionality from the design of defenses by putting
the latter into middleware [23]. The functionality can be designed first,
with a strategy for defensive adaptation added later.

Ideally, the defensive strategy and the mechanisms it uses would be
reusable in many different applications, but this is not always possible.
For example, access controls are often specific to an application, and
self-checking of application invariants will depend on application-specific
data structures. These mechanisms seem to be exceptions, however, and
most of the other mechanisms in Table 1 can be reused across applica-
tions.

3.6. DEFENSE STRATEGIES
We have recently begun to experiment with integration a variety of

defense enabling mechanisms into a single, coherent strategy that com-
plement their effects and limitations, and to begin the evaluation and
understanding of the survivability effectiveness for these mechanisms
working together. Our best current strategy has two parts:

1 Outrun the attacker by moving application component replicas
off bad hosts and on to good ones faster than they can be compro-
mised. This approach is currently performed using pure replace-
ment only (a policy decision). In the future, we will implement
other options, such as increasing the number of replicas or reduc-
ing the functionality.

2 Contain the attacker by quarantining bad hosts and bad LANs,
limiting or blocking network traffic from them and, within limits,
shutting them down so they do no further damage. Containment is
triggered by intrusion detectors, flooding, or other detected anoma-
lous behavior.

We use the QuO middleware to coordinate the collection of selected
defense mechanisms within the selected strategy. Elements from this
strategy have been and are undergoing rigorous evaluation, as described
in Section 4.

4. VALIDATION AND EXPERIMENTATION
The defense-enabling approach can be validated in several ways, each

of which will be described in detail in this section:

Modeling, which constructs a mathematical object that encapsu-
lates key features of the system, then reasons about the properties
of this object.
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Testing, which ensures that individual defense mechanisms work
as expected.

Intrusion injection, which creates situations that might arise dur-
ing an attack, but which the designers believe are impossible or
very hard to arrange.

Red Team experiments, which seeks attacks that are not foreseen
by the original system designers.

We are applying each of these validation techniques to defense-enabled
distributed applications to learn whether defense enabling increases re-
sistance to attack, by how much, and which parts of the defense are
weakest. In the process, we are also learning which of these techniques
gives the best insights into defense enabling and the most accurate mea-
surements of its value.

4.1. VALIDATION BY MODELING
This approach involves constructing a mathematical object that en-

capsulates key features of the system and then reasoning about the prop-
erties of this object. The model must include some features of the ap-
plication being defended, the defense mechanisms and defense strategy,
and assumptions about what the attacker can and cannot do. In general,
we do not know for certain what the attacker cannot do, so the model’s
assumptions about the attacker are necessarily statements about attacks
that are unlikely or hard to carry out. Whenever possible, we base such
assumptions on observation of real-world attacks.

To date, we have constructed models of replication management and
of attack containment using dynamic firewalls. Reasoning about these
models allows conclusions such as:

Conditions under which one management strategy is better than
another;

Estimates of how much extra survival is gained using a particular
strategy;

Requirements on the environment, such as the quality of intrusion
detectors, needed to gain a specified level of survivability.

The other validation methods differ from modeling in that they work
with the actual defense-enabled system at a software code level rather
than an abstraction of it.
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4.2. VALIDATION BY TESTING
This approach involves ensuring that the individual defense mecha-

nisms work as expected. This kind of validation is, of course, part of
the normal software development process. It is specialized for defense
enabling by testing the effects of expected kinds of attack. For example,
when using replication management, one expects that the attacker will
be able to kill some replicas. One tests the mechanism under this attack
to ensure that the mechanism responds correctly, but also to measure
the response time and overhead; these measurements will be used in the
validation by modeling already described.

4.3. VALIDATION BY INTRUSION
INJECTION

This approach goes beyond ordinary testing by creating situations
that might arise during an attack, but which the designers believe are
impossible or very hard to arrange. For example, a replica coordina-
tion protocol may be designed to reject any message that comes from
a replica known to have behaved incorrectly in the past and therefore
likely to have been damaged by the attacker. Intrusion injection would
be used to “inject” such messages at a point in the protocol where they
should not exist and thus test what would happen in this thought to
be impossible situation. To date, we only started to experiment with
intrusion injection.

4.4. VALIDATION BY RED TEAM
EXPERIMENT

This approach goes beyond ordinary testing by seeking attacks not
foreseen by the designers. Experience shows that a system’s designers
(also called the Blue Team) are not the best people to find new kinds of
attacks against the system they designed. Needed is a different group of
people, (the Red Team), who will find it easier to think about the system
in new ways and who are skilled in finding system vulnerabilities.

A Red Team experiment is a test in which attacks on the system are
tried and the results observed. The Red Team is given

The system, including defense-enabled applications;

A set of goals, called “flags” (e.g., “cause the system to deny service
for 15 minutes”)

A set of constraints, also called “rules of engagement”, that pro-
hibit the Red Team from attacking known vulnerabilities that
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could be closed in known ways (e.g., “killing client C is prohib-
ited because in a real system it will be protected by some other
mechanism not reproduced in the experiment testbed”).

The Red Team then tries to “capture the flag” without going “out of
bounds”, i.e., without violating the rules of engagement.

We have run two Red Team experiments against a defense-enabled
application. The Red Team was provided by an independent set of ex-
perts from Sandia National Laboratory (USA) under separate funding
by DARPA. The application was a simple video image server, shown in
Figure 13, in which clients use a broker to locate an appropriate image
server, then get images directly from that server. The defenses included
replicating the broker (as shown), and other mechanisms already de-
scribed in this paper. The primary flag was denying access to the broker
replicas.

Figure 13 Simplified Application Used in Red Team Experiments

The defense-enabled application was run in the testbed shown in Fig-
ure 14. This testbed provided 14 hosts on 4 LANs for application pro-
cesses, plus a number of other hosts needed for routing and control of
the network interconnections.
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Figure 14 Experiment Testbed

The Red Team used combinations of the following basic attacks against
the application, starting out with ”root” (i.e., system administrator on
Unix) privilege ”given” to them on a single host:

Spoofed scans to cause the defense to (mistakenly) quarantine good
hosts;

ARP cache poisoning to isolate hosts or partition the network;

TCP connection floods to consume ports;

TCP connection resets and bad traffic to disrupt communication;

Network flooding to delay or deny service;

Replay of RSVP traffic or injection of bogus traffic to stress the
bandwidth reservation mechanism.

We observed the following outcomes from both Red Team experi-
ments.

The Red Team spent significant amounts of time (measured in
weeks) learning about all the defense mechanisms and significant
amounts of time (measured in days) discovering the attacks that
captured the flag.
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After the attacks were automated in scripts, the shortest times
to capture the flag were 5-10 minutes. This represents a base-
line against which to measure continuing improvements in defense
strategies and mechanisms.

Attacks that captured the flag always set off numerous alarms soon
after the start of the attack and before service was denied.

The Red Team was always eventually able to capture the flag (i.e.,
deny service), given enough time and gathered experience.

Not all perspectives on red team attacks were exercised in these initial
experiments:

Stealthy attacks were not devised and attempted. So this group of
experiments did not yet inform us about the difficulty of capturing
the flag without setting off warning alarms.

Attacks to date did not include attempts to gain privilege on hosts
other than the one on which the Red Team was given ”root” priv-
ilege. It was felt that such attacks would mainly tell us whether
system administrators had applied the most recent operating sys-
tem patches and not whether defense enabling increased resistance
to attack. This means that this version of Red Team experiments
did not yet validate the degree to which our replication manage-
ment defense would be able, in practice, to ”outrun” an attacker,
i.e., start replacement replicas faster than they can be killed.

Although it was known in advance that an attack that corrupted
the in-memory image of any application process could be used
to capture the flag, the Red Team decided not to attempt this
attack. Such an attack would work because in the current imple-
mentation we used protocols that are only crash fault-tolerant and
would therefore not tolerate faults that are arbitrarily malicious
or Byzantine [2]. Since the application and key parts of the de-
fense were written in Java, and because Java moves data structures
around in memory, the Red Team judged that other kinds of attack
would yield greater effect for less effort. This means that these Red
Team experiments do not yet provide information about the cost of
preparing an attack that would motivate Byzantine fault-tolerant
protocols to defend against.

Continuing experiments are being planned to fill these gaps in learning
about and evaluating the survivability of the current implementation.

We draw the following conclusions from the observations based on our
experiments:
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Defense enabling will force even highly skilled attackers to work
hard to deny Service. The best attacks can be automated and
therefore eventually can be applied by people with fewer skills.

A defense-enabled application increases survival time (because an
attacker with ”root” can kill a non-defense-enabled application im-
mediately, so 5-10 minutes is a significant increase and represents
a baseline against which to measure progress), but we expect that
survival times of 20-30 minutes will be needed as a practical matter
to give human operators time to intervene in an attack.

So our current implementation of defense enabling has survival value,
but may not yet be good enough for practical purposes.

Our Red Team experiments to date have not yet settled a key ques-
tion about the value of defense enabling: In a race between ever-cleverer
attacks and ever-improving defense, which side tends to win? If the at-
tack were to win, survival times would likely shrink to near zero. If
the defense were to win, survival times would likely grow to 20-30 min-
utes or longer. Our series of two Red Team experiments was not long
enough to provide an answer. Between the experiments, we added new
mechanisms (e.g., a defense against the TCP connection flood used in
the first experiment) and we inadvertently introduced new flaws, some of
which were exploited by the Red Team in the second experiment. Only a
longer series of experiments can determine whether the evolving defense
would converge to a stable set of mechanisms, comprehensive enough to
block all quick Red Team attacks and trustworthy enough not to be a
vulnerability itself.

We argue on general grounds that the mechanisms of defense enabling
are simple enough that a trustworthy implementation of them is prac-
tical. But we have not yet demonstrated such an implementation. Cer-
tainly the defenses we have demonstrated are conceptually simpler than
most general-purpose operating systems. Therefore, creating trustwor-
thy adaptive defenses should be easier than the problem of creating
trustworthy operating system protection.

5. CONCLUDING REMARKS
A new approach to computer security is emerging, with the following

features:

Adaptive defenses are used to complement the more traditional
protection that operating systems and networks are expected to
provide.
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Adaptive defenses are organized in middleware, with variations in
QoS used as a key indicator of intrusions and control of QoS used
as a key component of intrusion response.

Since defenses adapt to the effects of an intrusion, rather than
according to a diagnosis of their cause, the mechanisms used for
defense are similar to those already built for reliability, availability,
bandwidth, real-time, and other QoS aspects.

We have built adaptive software defenses of the kind described in this
paper. That experience leads us to the following conclusions about the
value of such defenses and about the software engineering that should
support them:

The effectiveness of the defense depends crucially on the policy
that governs adaptation. Adaptation polices must answer ques-
tions such as “Where and when should new application component
replicas be started?”, “Should the choice be made in a way that’s
unpredictable for the attacker?”, “Should a decision to quarantine
a seemingly corrupt host be made locally or globally?”, and “What
kinds of evidence are sufficient to decide that a host is corrupt and
must be quarantined?”.

More validation of defense enabling is needed. Some adaptive de-
fenses have already been evaluated in Red Team experiments. The
experiments show that these defenses do increase the resistance of
critical applications to malicious attack, but they also show that
the defenses themselves are not yet robust enough for practical
use.

Changing requirements and unanticipated conditions must be han-
dled as part of dependable computing. If we are ever to truly de-
pend on the mission-critical applications, including e-commerce,
air transportation, and power grid control, these systems must
be well behaved, even when all of the best case design conditions
do not hold. In many cases, introducing major interruptions in
service, including self-denial of service when we shut our systems
down or take them offline at any sign of trouble, is not an adequate
response.

Operating with less than a full complement of resources is feasible
if the existing resources are used to support the critical applica-
tion components. Our experimentation has demonstrated that it
is feasible and practical for applications to continue to operate
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effectively with less than the optimal required resources. How-
ever, our results are as yet rather application-specific. The big
challenges ahead in this regard are making these approaches more
standardized, off the shelf, and cost effective.

Late binding distributed object middleware is an avenue to many
innovative approaches. Without late binding capabilities, we can-
not hope to achieve the flexibility we need for agile, reactive system
behavior. On the other hand, we need to continue to drive down
the cost of these late binding mechanisms so that we can still get
adequate performance when we use them. We’ve only scratched
the surface on late binding decisions and policies to drive these
bindings.

Layered solutions with integrated parts are an important develop-
ment tool, especially for large, complex problems. This involves
information sharing and cooperative behavior across and between
these layers. Our systems have grown to cover very large problem
areas and scope. One important technique in our ability to field
such systems Is to develop the systems in layers and parts, which
are often both separately developed or acquired, and later embed-
ded in larger systems. As we try to control the growing end-to-end
behavior of these systems, we must of necessity control the behav-
ior of each of the parts in light of the goals for the system as a
whole. This is a continuing challenge which must be met, unless
we are willing to redo our entire COTS infrastructure or discover
new ways to conceive of systems in larger chunks than we now
comfortably and reliably know how to build.

The overall challenge going forward is to provide a proper foundation
for building our increasingly expansive critical systems in a way which
not only combines all of requirements for high performance, realtime
connectivity with the physical universe, in a truly dependable manner,
but also uses cost effective COTS solutions and cost effective software
engineering practices which are both repeatable and easy to use by the
people responsible for the development. Making applications responsive
to their changing environment and applying this adaptive behavior to
survivability and defense behavior is an important new direction. Adap-
tive middleware provides the basis for augmenting and complementing
more traditional operating system and network based protection.
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