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Abstract

Distributed object computing (DOC) middleware, such as
CORBA, COM+, and Java RMI, shields developers from many
tedious and error-prone aspects of programming distributed
applications. It is hard to evolve distributed applications after
they are deployed, however, without adequate middleware sup-
port for meta-programming mechanisms, such as smart prox-
ies, interceptors, and pluggable protocols. These mechanisms
can help improve the adaptability of distributed applications
by allowing their behavior to be modified without changing
their existing software designs and implementations signifi-
cantly.

This article examines and compares common meta-
programming mechanisms supported by DOC middleware.
These mechanisms allow applications to adapt more readily to
changes in requirements and run-time environments through-
out their lifecycles. Some of these meta-programming mech-
anisms are relatively new, whereas others have existed for
decades. Until recently, however, DOC middleware has not
provided all these mechanisms in a single integrated frame-
work, so researchers and developers may not be familiar with
the breadth of meta-programming mechanisms available to-
day. This article provides a systematic evaluation of these
mechanisms to help researchers and developers determine
which are best suited for their application needs.

1 Introduction

Motivation: Developers of distributed applications face
many challenges stemming from inherent and accidental com-
plexities, such as latency, partial failure, and non-portable
low-level OS APIs. The magnitude of these complexities—
combined with increasing time-to-market pressures—make
it increasingly impractical to develop complex distributed
applications manually from scratch. Commercial-off-the-
shelf (COTS) distributed object computing (DOC) middleware
helps address these challenges by:

1. Defining standard higher-level programming abstrac-
tions, such as distributed object and component interfaces, that
provide location and platform transparency to client and server
components;

2. Shielding application developers from low-level net-
work programming details, such as connection management,
data transfer, parameter (de)marshaling, endpoint and request
demultiplexing, error handling, multi-threading synchroniza-
tion, and fault tolerance; and

3. Amortizing software lifecycle costs by leveraging pre-
vious development expertise and reifying the implementation
and deployment of key patterns [1, 2] via reusable middleware
frameworks and common services.

In the case of standards-based DOC middleware, such as
Object Management Group’s (OMG) Common Object Re-
quest Broker Architecture (CORBA) [3], these capabili-
ties are realized through an open specification process.
The resulting products can therefore interoperate across
many OS/network/hardware platforms and programming lan-
guages [4].

To date, DOC middleware has been used successfully in
domains ranging from telecommunications to aerospace, pro-
cess automation, and e-commerce. It has enabled developers
to create applications rapidly that can meet a particular set of
requirements with a reasonable amount of effort. DOC mid-
dleware has been less successful, however, at shielding devel-
opers from the effects of changes to requirements or environ-
mental conditions that occur late in an application’s lifecycle,
i.e., during deployment and/or at run-time. For example, ap-
plication developers may want to change the following aspects
of their programs after initial deployment:

� Adding security mechanisms, such as authentication of
credentials

� Buffering invocations to enable batch transfer and mini-
mize calls to remote target objects

� Supporting advanced quality-of-service (QoS) features,
such as multi-level distributed resource management
based on adaptive feedback control

� Configuring new transport protocols that are tailored for
a particular network environment

� Monitoring application behavior to detect run-time errors
or intrusions or

� Interacting with objects whose interfaces did not exist
when a distributed application was deployed initially.



With conventional DOC middleware, applying these types of
changes requires tedious and error-prone re-design and re-
implementation of existing application software. Moreover,
it is not possible to make some of these changes efficiently if
the middleware itself is not available in source code format.
For example, certain middleware internals may need to be in-
strumented and modified to support modifications to security,
buffering, feedback control, protocol, and monitoring mecha-
nisms.

Meta-programmingmechanisms help to address the lim-
itations of conventional DOC middleware outlined above.
This article describes and evaluates meta-programming mech-
anisms that DOC middleware can apply to help improve the
adaptability and flexibility of distributed applications, while
avoiding obtrusive changes to existing applications and/or
DOC middleware. For concreteness, we focus on meta-
programming mechanisms available with CORBA, though
similar mechanisms are supported by other DOC middleware,
such as COM+ and Java RMI. The meta-programming mecha-
nisms presented in this article can be grouped into the follow-
ing three categories:

1. Meta-programming mechanisms for developing and
scripting generic applications. These mechanisms include:

� The dynamic invocation interface (DII), which allows
clients to generate requests at run-time. This mecha-
nism is useful for interpretive applications (such as those
scripted with CorbaScript [5]) that cannot have compile-
time knowledge of the interfaces they access.

� The dynamic skeleton interface (DSI):The DSI is the
server’s analogue to the client’s DII. The DSI allows an
Object Request Broker (ORB) to deliver requests to ob-
ject implementations that have no compile-time knowl-
edge of the interfaces they implement defined using
CORBA’s Interface Definition Language (IDL).

� Interface repositories, which provide run-time informa-
tion about IDL interfaces. Using this information, it
is possible for an application to interact with an object
whose interface was not known when the application was
compiled. Interface repositories allow applications to (1)
determine what operations are valid on an object, (2)
make invocations on it using the DII, and (3) implement
the object’s interface via the DSI.

Section 3.1 describes the DII, DSI, and interface repository
meta-programming mechanisms in more detail.

2. Meta-programming mechanisms that enable the context
and behavior of applications to change without affecting
the application implementation itself. These mechanisms
include:

� Smart proxies, which allow distributed applications to
customize their client-side behavior on a per-interface ba-

sis. Smart proxies are application-provided stub1 imple-
mentations that transparently override the default stubs
created by an ORB’s IDL compiler.

� Interceptors, which are objects that an ORB invokes in
the path of an operation invocation to monitor or modify
the behavior of the invocation without changing client or
server application software.

� Interceptors are often used in conjunction with other
meta-objects, such asservant managers[3], to provide
containers[6], which manage the resources required to
customize server components transparently.

Section 3.2 describes the smart proxy and interceptor meta-
programming mechanisms and Section 3.3 describes the ser-
vant manager and container meta-programming mechanisms.

3. Meta-programming mechanisms that enable the context
and behavior of ORB middleware to change without affect-
ing the ORB implementation itself. These mechanisms in-
clude:

� Pluggable protocols, which are objects that implement
the transport mechanisms used internally in an ORB [7].
Much like the UNIX System V Streams framework [8]
allows new device drivers to be added into an OS ker-
nel transparently, pluggable protocols allow application
developers to use different transport mechanisms in an
ORB without having to modify its internal implementa-
tion directly. Section 3.4 describes pluggable protocol
meta-programming mechanisms.

� Bridges, which are software components that connect dif-
ferent ORB domains [3] or other distributed middleware
technologies, such as Microsoft’s COM+ or Sun’s Java
RMI, and enable them to interoperate with each other
transparently from an application’s perspective. Dif-
ferent ORB domains may use different security poli-
cies or transport protocols. Bridges translate the meta-
information from one ORB domain into a different for-
mat that another ORB domain or distributed middleware
technology understands. Section 3.5 describes bridge
meta-programming mechanisms.

The meta-programming mechanisms outlined above can be
used to configure new or enhanced functionality into DOC
middleware applications with little or no impact on exist-
ing software. The material presented in this article is based
on our experience implementing, using, and benchmarking
these meta-programming mechanisms in TAO [7], which is
a CORBA-compliant, open-source ORB designed to support
applications with both stringent QoSand flexibility require-
ments.

1Stubs provide a strongly-typed,static invocation interface(SII) that mar-
shals application parameters into a common message-level representation.
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Article organization: The remainder of this article is
structured as follows: Section 2 provides an overview of
meta-programming; Section 3 describes alternative meta-
programming mechanisms that can be applied to develop and
use CORBA middleware and applications; Section 4 compares
these meta-programming mechanisms; and Section 5 presents
concluding remarks.

2 Overview of Meta-Programming

Meta-programming is a term given to a collection of tech-
nologies designed to improve software adaptability by decou-
pling application behavior from the various cross-cutting as-
pects [9] and resources used by applications. Applying meta-
programming involves identifying and dissecting program-
ming constructs into the following entities:
� Base-objects, which implement certain application-

centric functionality; and
� Meta-objects, which abstract certain properties from

base-objects (such as persistence, concurrency, schedul-
ing, atomicity, ordering, state, replication, and change no-
tifications) and control various aspects of their behavior
at run-time.

Meta-programming techniques can be used in both pro-
gramming languages and middleware, as described below.

Language-based meta-programming: In most object-
oriented programming languages, objects are defined by
classes, and class implementations determine the behaviors of
objects. Certain languages, such as Java and Smalltalk, sup-
port meta-programming natively viameta-classfeatures. A
meta-object is an instance of a meta-class that encapsulates
the type information and class implementation of a “base-
object.” A base-object implements a well-defined unit of ap-
plication functionality, whereas a meta-object implements a
higher-order set of behavior that can monitor and control vari-
ous aspects of a base object [10].

In languages that support meta-programming natively, base-
objects can interact with their meta-objects to realize object
behaviors. For example, thenewInstance method in Java’s
Class class creates a new instance of an object. AClass
is therefore a factory that determines what type of object it
creates and customizes the object’s behavior accordingly.

Likewise, meta-objects can interact with each other to coor-
dinate the behavior of base-objects. For instance, methods like
DefineClass in Java’sClassLoader class allow other
meta-objects to determine how and when aClass definition
is loaded, thereby controlling base-object behavior indirectly.
The interfaces that define how objects/meta-objects and meta-
objects/meta-objects interact are calledmeta-object protocols
(MOPs) [10], which define valid interactions between base-
objects and meta-objects.

Some languages provide little or no native support for meta-
programming. For example, C does not support it at all and
C++ just supports it natively via its run-time type identifica-
tion (RTTI) feature. C and C++ programmers can still utilize
meta-programming techniques, however, by applying patterns
to implement their own meta-objects manually and then us-
ing these meta-objects to control the behaviors of base-objects.
For example, a meta-object implementation can apply the Re-
flection pattern [11] to serialize object instances and recreate
them later. Likewise, meta-objects can be used to encapsulate
behaviors of some classes and allow class instances to deter-
mine their behaviors dynamically.

Middleware-based meta-programming: Techniques for
meta-programming can also be applied to DOC middleware,
where various aspects of client/server behavior can be affected
by meta-objects, such as the smart proxies, interceptors, and
interface repositories described in this article. Figure 1 illus-
trates how client meta-objects are used in CORBA to forward

Client-side
meta-objects

Server-side
meta-objects

Object
representations

Object
implementations

Transport media

Figure 1: Meta-objects in CORBA Middleware

operation invocations to a server object implementation and
how the object implementation returns the operation results
via server meta-objects. From a client application perspective,
its stub meta-object represents the remote object; whereas a
skeleton meta-object represents the invoking client to a server
application.

The meta-objects shown in Figure 1 represent a higher
level of control than the base-objects that perform application-
specific processing. For example, meta-objects can help con-
nect clients to their remote server (base-)objects. They can
also coordinate resources used by DOC middleware in support
of client and server applications end-to-end.

Meta-programming has become prevalent in DOC middle-
ware R&D. For example, theQuality Object (QuO) mid-
dleware [12] developed at BBN Technologies applies meta-
programming techniques, such as smart proxies, interceptors,
and bridges, to imbue regular CORBA base-objects with QoS
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characteristics controlled by meta-objects. Likewise, the dy-
namicTAO [13] reflective ORB applies meta-programming
techniques to dynamically configure ORB properties for con-
currency, scheduling, security, and monitoring. As these R&D
activities transition into COTS middleware, such as TAO, dis-
tributed application developers can increasingly benefit from
knowledge of the meta-programming mechanisms described
in this article.

3 Alternative DOC Middleware Meta-
Programming Mechanisms

Figure 2 provides a road map of meta-programming mecha-
nisms we discuss in this article. As described in Section 2,
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Figure 2: End-to-End Interactions Between CORBA Requests
and Meta-objects

an ORB provides a meta-object framework to facilitate com-
munication between clients and servers. The following meta-
programming mechanisms can be used at different levels to
enhance application performance and adaptability end-to-end:

� DII, DSI, and interface repositories provide an applica-
tion with direct access to the meta-object system and are
often used to implement ORB-level bridges

� Smart proxies and interceptors can alter object behavior
selectively

� Pluggable protocols control how ORBs exchange mes-
sages and

� servant managers and CORBA Component Model
(CCM) [6] containers coordinate resource management
on the server.

The remainder of this section describes the key capabilities
provided by the meta-objects illustrated in Figure 2.

3.1 DII, DSI, and Interface Repositories

Meta-objects are commonly used in DOC middleware to pro-
vide local representations for clients and remote objects in
distributed object computing systems. For example, a client
process interacts with a remote object via its client-side meta-
object, which is called astub in CORBA terminology. Like-
wise, a CORBAskeletonis a meta-object that invokes the tar-
get object implementation’s operation on the client’s behalf
and represents the client for the duration of this upcall. These
meta-objects are created by an ORB automatically as a con-
sequence of using an interface definition language (IDL) to
define component interfaces. In CORBA, for example, an IDL
compiler transforms OMG IDL definitions supplied by devel-
opers into stubs and skeletons written using a particular pro-
gramming language, such as C++ or Java.

In addition to providing programming language and plat-
form transparency, an IDL compiler helps eliminate common
sources of network programming errors and provides oppor-
tunities for automated compiler optimizations. CORBA appli-
cations can use these IDL compiler-generated meta-objects by
linking their implementations into applications directly. While
this approach is straightforward, it requires that IDL compiler-
generated meta-objects be available in advance and limits ap-
plications to use a pre-determined number of interfaces.

The dynamic invocation interface (DII): For certain types
of applications, such as debugging and management services,
it is infeasible to know what interfaces they will encounter
a priori. To support these applications effectively, therefore,
CORBA defines adynamic invocation interface(DII) mech-
anism that allows clients to construct invocation requests dy-
namically and use them to invoke the specified operations on
remote objects. The DII API in CORBA is essentially a “meta-
meta” mechanism that application developers can use to pro-
gram the behavior of stub meta-objects dynamically. Thus,
client application developers can use the DII API to invoke op-
erations on objects whose interfaces are unknown at compile-
time.

The dynamic skeleton interface (DSI): Server application
developers may also need to process operation invocations
on objects that a server has no built-in knowledge about at
compile-time. To support this use-case, therefore, CORBA
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provides adynamic skeleton interface(DSI). The DSI allows
a server application at run-time to

� Use dynamically acquired meta-information describing
the type of object it will support and

� Use this information to process invocations on this object
accordingly.

Interface repositories: One purpose of DII/DSI is to de-
fer an application’s binding onto specific interface types un-
til run-time. Ensuring the type-safety of this run-time binding
requires aninterface repository, which is a service that pro-
vides run-time information about component interfaces. For
example, CORBA applications can query an interface reposi-
tory to obtain meta-information that describes IDL interface
types, operation signatures, operation arguments and return
types, and the definition of user-defined data types. Both DII
clients and DSI servers can use the meta-information provided
in an interface repository to construct “generic” applications
whose behavior can be determine at run-time,e.g.via an inter-
pretive language like CorbaScript [5]. Moreover, these generic
applications can be used to reduce the effort required to de-
velopbridges, which are described in Section 3.5.

3.2 Smart Proxies and Portable Interceptors

As mentioned in Section 3.1,stubandskeletonmeta-objects
in CORBA serve as the “glue” between the clients and ser-
vants, respectively, and the ORB. This glue shields application
developers from tedious and error-prone network program-
ming details needed to transmit client operation invocations
to server object implementations. For example, CORBA stubs
implement theProxypattern [2] and marshal operation infor-
mation and data type parameters into a standardized request
format. Likewise, CORBA skeletons implement theAdapter
pattern [2] and demarshal the operation information and typed
parameters stored in the standardized request format.

Traditionally, the stubs and skeletons generated by an IDL
compiler arefixed, i.e., the code emitted by the IDL compiler
is determined entirely at interface translation time. Fixing the
generation of stubs and skeletons at this early stage, however,
makes it hard for certain types of applications to adapt readily
to new requirements, such as:

� The need to monitor system resource utilization may not
be recognized until after an application has been de-
ployed

� To execute securely in a particular environment, cer-
tain remote operations may require additional parame-
ters, such as authentication certificates

� The priority at which clients invoke requests or servers
handle requests may vary according to environmental
conditions, such as the amount of CPU or network band-
width available at run-time [14].

applying these types of changes to CORBA applications
that use conventional fixed stubs and skeletons often requires
considerable re-engineering and re-structuring of existing ap-
plication software. One way to minimize the impact of these
changes is to write the clients and servers entirely using the DII
and DSI meta-programming mechanisms described in Sec-
tion 3.1. While this approach is quite flexible, it also incurs a
non-trivial time and space overhead due to the dynamic mem-
ory allocation and data copying associated with DII and DSI.

In many cases, therefore, it may be more effective to apply
other meta-programming mechanisms that allow applications
to adapt to various types of changes with little or no modifica-
tions to existing software. In particular, stubs and skeletons (as
well as certain other points in the end-to-end operation invo-
cation path) can be treated asmeta-objects[10]. As operation
invocations pass through these meta-objects, certain aspects
of application and middleware behavior can be adapted trans-
parently (e.g., when system requirements and environmental
conditions change) just by modifying the meta-objects.

To modify meta-objects, the DOC middleware can either:

� Provide mechanisms for developers to install customized
meta-objects into clients or

� Embed hooks implementing a meta-object protocol
(MOP) [10] into the meta-objects and provide mecha-
nisms to install meta-objects implementing the MOP to
strategize these meta-object behaviors.

In the context of CORBA,smart proxiesare customized meta-
objects andinterceptorsare meta-objects that implement the
MOP. We explore both of these meta-programming mecha-
nisms below.

3.2.1 Overview of Smart Proxies

Most CORBA application developers use the fixed stubs gen-
erated by an IDL compiler without concern for how the stubs
are implemented. There are situations, however, where the de-
fault stub behavior is inadequate. For example, an application
developer may wish to transparently change stub code in order
to:

� Perform application-specific functionalities, such as log-
ging

� Add parameters to a request
� Cache requests or replies to enable batch transfer or min-

imize calls to a remote target object, respectively or
� Support advanced QoS features, such as load balancing

and fault-tolerance.

To support these capabilitieswithoutmodifying existing client
code, applications must be able to override the default stub im-
plementations selectively. These application-defined stubs are
calledsmart proxies, which are customizable meta-objects that
can mediate access to target objects in a server more flexibly
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than the default stubs generated by an IDL compiler. Smart
proxies allow developers to modify the behavior of interfaces
without re-implementing client applications or target objects.
Although not yet standardized by the OMG, many ORBs pro-
vide smart proxy mechanisms.

The two main entities in smart proxy designs are thesmart
proxy factoryand thesmart proxy meta-object, which are
shown in Figure 3. When developers use smart proxies to
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Figure 3: TAO’s Smart Proxy Model

modify the behavior of interfaces, they implement smart proxy
factory classes and register them with the ORB. After in-
stalling an application-supplied smart proxy factory, the ORB
automatically uses the factory to create object references when
a client invokes thenarrow operation on an interface. Thus,
if smart proxies are installed before a client accesses these in-
terfaces, the client application can transparently use the new
behavior of the proxy returned by the factory.

3.2.2 Overview of Portable Interceptors

The smart proxies feature outlined above is a meta-
programming mechanism that increases client application
flexibility. Interceptorsare another meta-programming mech-
anism used in DOC middleware to increase clientandserver
application flexibility. CORBA interceptors are standard
meta-objects that stubs, skeletons, and certain points in the
end-to-end operation invocation path can invoke at predefined
“interception points.” The two types of interceptors defined
in the CORBA Portable Interceptors specification [15] are de-
scribed below.

1. Request interceptors: Request interceptors consist of
client requestinterceptors andserver requestinterceptors,
which intercept the flow of a request/reply sequence through
the ORB at specific points in clients and servers, respectively.
Developers can install instances of these interceptors into an
ORB via an IDL interface defined by the Portable Intercep-
tor specification. Regardless of what interface an operation
is invoked by, after request interceptors are installed they will

be called oneveryoperation invocation at the pre-determined
ORB interception points shown in Figure 4.
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PORTABLE     OBJECT     ADAPTER

 ORB  CORE

IDL
SKELETONIDL

STUBS

operation ()
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out args + return value
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INFO
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PORTABLE  INTERCEPTOR  API :
1)  send_request()/send_poll()
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3)  receive_request()
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5)  receive_reply()/receive_exception()/
   receive_other()

3

CLIENT

Figure 4: Request Interception Points in the CORBA Portable
Interceptor Specification

As shown in this figure, request interception points occur
in several parts of the end-to-end invocation path: when a
client sends a request, when a server receives a request, when
a server sends a reply, and when a client receives a reply. Dif-
ferent hook methods will be called at each point in this inter-
ceptor chain to allow modification of object behaviors,e.g.,
by throwing an exception or forwarding a request to another
server. The behavior of an interceptor is defined by applica-
tion developers. An interceptor can examine the state of the
request it is associated with and perform various actions based
on the state. Interceptors can also be used to insert and ex-
tractout-of-banddata into and out of a request invocations, re-
spectively, via aServiceContextList encapsulated with
each request.

2. Interoperable Object Reference (IOR) interceptors:
Version 1.1 of the CORBA Internet Inter-ORB Protocol (IIOP)
introduced an IDL attribute calledcomponents , which con-
tains a list oftagged components to be embedded within an
IOR. When an IOR is created, tagged components provide a
placeholder for an ORB to store additional information per-
tinent to the object. This information can contain various
types of QoS-related information pertaining to security, server
thread priorities, network connections, CORBA policies, or
other domain-specific data.

IOR interceptors are objects invoked by the ORB when it
creates IORs. They allow an IOR to be customized,e.g.,
by appending tagged components. Whereas request intercep-
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tors access operation-related information viaRequestInfo
objects, IOR interceptors access IOR-related information via
IORInfo objects. Figure 5 illustrates the behavior of IOR
interceptors.
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Figure 5: IOR Interceptors

3.3 Servant Managers and Containers

The CORBA specification [3] defines Portable Object
Adapters (POAs) that allow server applications to register ser-
vant managers. Servant managers allow server application de-
velopers to strategize the selection, loading, unloading, and
activation of object implementations. There are two types of
servant managers in CORBA:

1. Servant activators: This meta-object provides two hook
methods calledincarnate and etherealize . The
incarnate method indicates that a servant must be cre-
ated thefirst time an object is accessed by a client. The
etherealize method indicates when a servant can be de-
stroyed and its resources reclaimed when the servant is deac-
tivated and no longer needed.

2. Servant locators: This meta-object provides hook
methods calledpreinvoke and postinvoke . The
preinvoke method is invoked by a POA to locate a servant
for each requeston an object. Thepostinvoke method no-
tifies the servant locator after each request that a servant is no
longer in use.

Figure 6 illustrates how servant locators can be used in a
CORBA application to perform various resource management
activities before dispatching an operation to a servant. As
shown in this figure, a POA can use a servant locator to link
an implementation for an object dynamically when an oper-
ation request first arrives, thereby minimizing the resources
committed to inactive servants. Other meta-mechanisms, such
as theevictor shown in Figure 6, can help reduce system re-
source usage by deactivating and unlinking infrequently used
servants.
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Load
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Figure 6: Managing Resources with a Servant Locator

A servant manager is similar to a server-side interceptor in
several respects. For example, both implement the Interceptor
pattern [1]. Moreover, both can intercept requests before they
are dispatched to servants, invoke additional operations, and
affect the outcome of request invocations,e.g., by throwing
exceptions.

Unlike interceptors, however, servant managers only affect
the POAs that install them and can therefore only provide ac-
cess to a limited subset of request-related information. As a
result, they are more tightly coupled with POAs and servant
implementations than are interceptors. For example, servant
managers are used primarily to coordinate the resources neces-
sary to activate and deactivate servants, rather than modifying
internal ORB behavior.

The CORBA Component Model (CCM) [6] introduced the
concept of acontainer, which is a meta-programming mech-
anism that provides the run-time environment for component
implementations. Containers decouple application component
logic from the configuration, initialization, and administration
of servers. As shown in Figure 6, a CCM container creates
the POA and servant locator required to activate and control a
component. Standard CCM containers can be extended to im-
plement various resource management activities, such as au-
tomatic load balancing, persistence, transactional properties,
event dispatching, and QoS adaptation, without changing the
behavior of application components (which play the role of
base-objects).

3.4 Pluggable Protocols

Pluggable protocols frameworks[7] are another type of
meta-programming mechanism provided by DOC middle-
ware. These frameworks can be used to decouple an ORB’s
transport protocols from its higher-level component architec-
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ture. Developers can therefore add new protocols without
changing existing middleware or application software. Plug-
gable protocols frameworks provide meta-objects that control
the behavior of base-objects, which in this case are an ORB’s
message delivery mechanisms.

Figure 7 illustrates the architecture of a pluggable protocols
framework that allows developers to install custom transport
protocol implementations into The ACE ORB (TAO). TAO’s
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Figure 7: TAO’s Pluggable Protocols Framework Architecture

pluggable protocol framework is designed to control the fol-
lowing two levels of protocols:

� ORB messaging protocols, which define the messaging
format an ORB uses to exchange meta-information with
other ORBs to facilitate object requests/replies, locate ob-
ject implementations, and manage communication chan-
nels.

� ORB transport protocol adapters, which define the un-
derlying message transport mechanism an ORB uses to
exchange meta-information with other ORBs.

Separating these two protocol levels allows TAO to

� Utilize high-speed transport protocols, such as AAL5
over ATM and

� Eliminate unnecessary overhead and features in
CORBA’s General Inter-ORB Protocol (GIOP), which
is the standard interoperability protocol that CORBA
clients and servers use to exchange requests and replies.

Higher-level application components and CORBA services
can use the Component Configurator pattern [1] to dynami-
cally configure custom protocols into TAO’s pluggable proto-
cols framework without requiring obtrusive changes to them-
selves or the ORB.

Pluggable protocol capabilities are being standardized by
the OMG in the Extensible Transport Framework [16] (ETF)
specification effort. Unlike TAO’s pluggable protocols frame-
work, which allows both ORB messaging and transport proto-
col to be configured, the ETF specification only standardizes

the interface to install the transport adaptation factory portion
depicted in Figure 7. The reason for this restriction is because
the ETF specification focuses primarily on Real-time CORBA
ORBs that use non-TCP/IP protocols to ensure deterministic
message delivery. Thus, GIOP remains the sole ORB messag-
ing protocol standard and is not itself pluggable in the ETF
specification.

3.5 Bridges

An ORB domain is a group of inter-connected ORBs that have
the same administrative policies, such as security policies, use
the same ORB messaging and transport protocols, and are ca-
pable of invoking operations directly upon one another. In
contrast, ORBs that reside in different domains cannot invoke
operations on each other directly because they may not be us-
ing the same protocols or direct invocations may violate cer-
tain administrative policies,e.g., such as Internet firewall re-
strictions.

To allow inter-domain communication, the CORBA speci-
fication defines the concept ofbridges. A bridge can connect
an ORB in one ORB domain to other ORBs in different ORB
domain or other systems running different distributed middle-
ware technologies, such as COM+ [17] or Java RMI. It can
also connect different ORB domains and allow invocations
across domain boundaries by translating these requests.

Figure 8 illustrates how bridges can be used to allow
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Figure 8: Applying Bridges to Inter-connect ORBs Across
Separate Domains

CORBA applications to communicate across a wide range
of communication links, ranging from firewalled TCP/IP to
wide-area group communication protocols. In the context of
this article, a bridge can be viewed as a high-level meta-object
that handles requests by using their meta-data to translate them
into different protocols, thereby allowing its client and server
base-objects to interact end-to-end.
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It is not feasible to implement astatically configuredgeneric
bridge that can receive, process, and forward all types of
requests. Many CORBA bridge implementations therefore
use the DII, DSI, and interface repositories described in Sec-
tion 3.1. For example, a generic bridge can use the DII and
DSI to process a two-way operation as follows:

1. Receive a request and use the DSI API and an interface
repository to decompose the request into a name/value
list (NVList ), which is a standard CORBA construct
that stores each argument in a separateany data struc-
ture

2. Use the sameNVList to construct a DII request and use
the DII API to send this request to the target object

3. When reply is received the bridge uses the DII request
object to extract the return value and output arguments

4. The DII object is then used to fill in the return value and
output arguments for the original DSI request.

It should be clear from the discussion above that an ORB
bridge architecture can incur significant overhead. In particu-
lar, an ORB may require multiple data copies,e.g., first copy-
ing the data from the request buffer into each one of theany s
of the DSI argument list and then later copying the reply from
the DSI argument list into the DII request buffer. Copies are
also required from the DII reply buffer into theany s used to
extract each argument and finally into the DSI reply buffer.

4 Comparing ORB Middleware Meta-
Programming Mechanisms

Section 3 describes a range of middleware-oriented meta-
programming mechanisms—i.e., DII/DSI, interface reposito-
ries, smart proxies, interceptors, servant managers, pluggable
protocols, and bridges—that we have implemented in TAO.
These meta-programming mechanisms allow CORBA appli-
cations to adapt to requirement or environmental changes that
occur late in an application’s life-cycle with little or no obtru-
sive changes to existing software. Based on our experience
implementing and using the meta-programming mechanisms
in TAO, we have observed the tradeoffs and limitations de-
scribed in this section.

4.1 Generality vs. Overhead

To select suitable meta-programming mechanisms, developers
must understand the tradeoffs between generality vs. overhead
in their applications. Typically, the greater the generality of a
meta-programming mechanism, the greater its overhead with
respect to non-functional properties, such as static/dynamic
memory footprint, function-call indirection, or CPU consump-
tion. Thus, DSI/DII, interface repositories, and bridges often

incur the most overhead since they are the most general meta-
programming mechanisms.

The other mechanisms presented in this article incur less
overhead, ranked roughly in terms of how closely they tar-
get specific ORB or application mechanisms. In general, the
broader the scope a mechanism targets, the greater the over-
head incurred by the mechanism. For example, portable inter-
ceptors often incur more overhead than smart proxies because
they influence operation processing at multiple points along an
invocation path. Thus, they must handle all interfaces via the
CORBA genericany type, whereas smart proxies only affect
the specific interfaces they target.

Although reducing overhead is often worthwhile, the flexi-
bility afforded by the more general meta-programming mech-
anisms may be important for certain types of applications.
For example, it may be infeasible for network management
applications to know at compile-time all the types of object
schemas in a management information base (MIB). To solve
this problem generically therefore necessitates some type of
DII and interface repository to navigate arbitrary MIBs at run-
time.

Often, the additional indirection incurred by certain meta-
programming mechanisms may be a small cost relative to the
large potential gain in performance at a higher level. For ex-
ample, although pluggable protocols frameworks require ad-
ditional levels of indirection,e.g., due to virtual method calls,
the ability to install and use new protocols rapidly can improve
end-to-end performance by several orders of magnitude [7].
Moreover, a well-crafted ORB implementation can minimize
overhead when certain features are not used by the application
at run-time. When combined with patterns (such as Compo-
nent Configurator [1] or Reflection [11]) and OS features (such
as explicit dynamic linking), meta-programming mechanisms
can be configured selectively and dynamically into CORBA
clients and servers.

4.2 Early vs. Late Lifecycle Integration

Different meta-programming mechanisms can be introduced
at different stages in an application’s lifecycle. For example,
bridges and pluggable protocols can be (re)configured trans-
parently into applications. Moreover, some ORBs allow new
protocols to be linked into the ORB at run-time [7]. Smart
proxies, portable interceptors, and servant managers can be
retrofitted into applications with minimal impact on existing
code.

DII and DSI share some commonalities with portable in-
terceptors,e.g., they can all be used on any interface and
cannot modify argument values directly. Behavioral ada-
pation can therefore be achieved by changing the meta-
information they received at run-time. However, unlike
portable interceptors—which can be installed without chang-
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ing application implementations—the use of DII/DSI must be
selected during an application’s design phase. This constraint
can be offset to some extent by using DII/DSI in conjunction
with scripting languages, such as CorbaScript [5], although the
use of scripting languages can degrade performance relative to
compiled applications.

4.3 Portability

If an application must run on multiple ORB implementa-
tions, portability is an important criteria when selecting meta-
programming mechanisms. The meta-programming mecha-
nisms described in this article can be grouped into the three
general portability categories shown in Table 1

Standardization
Level

Features

Standardized DII/DSI, interface repositories, servant man-
agers, and bridges have been defined in the
CORBA specification for many years. They
should therefore work with any CORBA-
conformant ORB. The portable intercep-
tor [15] and CCM container [6] specifications
have being adopted recently and many ORBs
should support these features soon.

Standardization
underway

The extensible transport framework [16] is
in the process of being standardized by the
OMG. At the present time, however, many
ORBs provide proprietary implementations
of this feature.

Non-standard Smart proxies are not currently part of the
CORBA standard. However, many ORBs
provide some form of smart proxy mecha-
nism as an extension.

Table 1: Meta-programming Mechanism Portability

5 Concluding Remarks

DOC middleware has been applied successfully to many do-
mains. Its primary benefits are:

� Shielding developers from distributed computing and
communication challenges, such as security, partial fail-
ure, and end-to-end QoS-enabled resource management;
and

� Allowing applications to invoke operations on target ob-
jects efficiently without concern for their location, pro-
gramming language, OS platform, communication proto-
cols and interconnects, and hardware [4].

Historically, however, many DOC middleware solutions have
tightly coupled interfaces and implementations. This coupling
makes it hard to adapt middleware and applications to changes

in requirements and environmental conditions that occur late
in a system’s life-cycle,i.e., after deployment and/or at run-
time.

The meta-programming mechanisms described in this ar-
ticle are becoming commonplace in DOC middleware. In
CORBA, for example, ORBs are responsible for transmitting
client operation invocations to target objects and returning
their replies (if any). When a client invokes an operation, it
interacts with a stub meta-object directly or through a smart
proxy. The stub works in conjunction with transport-protocol
meta-objects controlled by a pluggable protocol framework to
access and/or transform (as in the case of a CORBA bridge),
a client operation invocation into a request message and trans-
mit it to a server. On the server’s request processing path var-
ious meta-objects, such as interceptors and servant managers,
can then access and/or perform inverse transformations on the
operation invocation message and dispatch the message to its
servant. An invocation result is returned in a similar fashion in
the reverse direction.

The growing availability and use of meta-programming
mechanisms is helping to increase the flexibility and adapt-
ability of DOC middleware and applications. The meta-
programming mechanisms described in this article are
all implemented in the TAO open-source CORBA ORB,
which can be downloaded fromwww.cs.wustl.edu/$\
sim$schmidt/TAO.html . Our experience using TAO on
many commercial and research projects indicates that im-
provements in flexibility and adaptability can occur without
significant performance degradation if developers select their
meta-programming mechanisms carefully.

Future challenges confronting researchers and developers
involve identifying the appropriate patterns, protocols, and ar-
chitectures that can be applied to devisepoliciesfor configur-
ing and controlling meta-programming mechanisms robustly
and efficiently. Another important theme underlying future
meta-programming efforts isadaptive and reflective middle-
ware [14]. Adaptive middleware is software whose functional
and/or QoS-related properties can be modified either:

� Statically, e.g., to reduce footprint, leverage capabilities
that exist in specific platforms, enable functional subset-
ting, and minimize hardware/software infrastructure de-
pendencies; or

� Dynamically, e.g., in response to changes in environmen-
tal conditions or requirements, such as changing com-
ponent interconnection topologies; component failure or
degradation; changing power-levels; changing CPU de-
mands; changing network bandwidth and latencies; and
changing priority, security, and dependability needs.

Reflective middleware goes a step further to permit automated
examination of the capabilities it offers, and then permits auto-
mated adjustment to optimize those capabilities [12, 13]. Re-
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flective middleware supports a more advanced form of adap-
tive behavior, in that the necessary adaptations can be per-
formed autonomously (or semi-autonomously) based on dy-
namic conditions within the system, in the system’s environ-
ment, or in the policies defined by system users. Such auto-
matic adaptations must clearly be performed carefully to en-
sure that distributed optimizations retain distributed system
stability and converge rapidly.
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