Evaluating Meta-Programming Mechanisms for ORB Middleware

Nanbor Wang and Kirthika Parameswaran Douglas Schmidt and Ossama Othman

{nanbor, kirthikg @cs.wustl.edu {schmidt, ossamj@uci.edu
Department of Computer Science Electrical & Computer Engineering
Washington University, St. Louis University of California, Irvine
Abstract 2. Shielding application developers from low-level net-

o)]) work programming details, such as connection management,
Distributed object computing (DOC) middleware, such gy, transfer, parameter (de)marshaling, endpoint and request

CORBA, COM+, and Java RMI, shields developers from magymtiplexing, error handling, multi-threading synchroniza-
tedious and error-prone aspects of programming distributgg, 2nd fault tolerance: and

applications. Itis hard to evolve distributed applications after

they are deployed, however, without adequate middleware sug3. Amortizing software lifecycle costs by leveraging pre-
port for meta-programming mechanisms, such as smart prgicus development expertise and reifying the implementation
ies, interceptors, and pluggable protocols. These mechanismd deployment of key patterns [1, 2] via reusable middleware
can help improve the adaptability of distributed applicatiorfsameworks and common services.

by allowing their behavior to be modified without changing, the case of standards-based DOC middleware. such as
their existing software designs and implementations Sign@bject Management Group’s (OMG) Common Object Re-
cantly. . . quest Broker Architecture (CORBA) [3], these capabili-
This article examines and compares common Mefs are realized through an open specification process.
programming mechanisms supported by DOC middlewafge resulting products can therefore interoperate across
These mechanisms allow applications to adapt more readllynl;%ny OS/network/hardware platforms and programming lan-
changes in requirements and run-time environments thm“%}&ages [4].
Ouf[their Iifecyclgs. Some of these meta—programming methy, date, DOC middleware has been used successfully in
SI’IISFT(;S areUre!;eltlver Inev;/], Wherea[s)gzr;ers dgf“’e emﬁted &%ains ranging from telecommunications to aerospace, pro-
ece}deg. " nr:' recent;;], owever, DO rlml ewared ?s Uss automation, and e-commerce. It has enabled developers
provided all these mechanisms in & single integrated ramg-; o510 applications rapidly that can meet a particular set of
work, so researchers and developers may not be familiar w Lirements with a reasonable amount of effort. DOC mid-

ghe brﬁﬁ‘?‘th Of rlneta-prggrammmg meghanlsrlns f"va'liblﬁ Baware has been less successful, however, at shielding devel-
ay. 1his article provides a systematic evaluation of t €5fers from the effects of changes to requirements or environ-
mechanisms to help researchers and developers deter

hich b ited for thei licati d tal conditions that occur late in an application’s lifecycle,
which are best suited for their application needs. i.e., during deployment and/or at run-time. For example, ap-

plication developers may want to change the following aspects

. of their programs after initial deployment:

1 Introduction _ , _ o
¢ Adding security mechanisms, such as authentication of

Motivation: Developers of distributed applications face credentials

many challenges stemming from inherent and accidental come Buffering invocations to enable batch transfer and mini-

plexities, such as latency, partial failure, and non-portable mize calls to remote target objects

low-level OS APIs. The magnitude of these complexities—e Supporting advanced quality-of-service (QoS) features,

combined with increasing time-to-market pressures—make suych as multi-level distributed resource management

it increasingly impractical to develop complex distributed based on adaptive feedback control

applications manually from scratch. ~Commercial-off-the- , onfiguring new transport protocols that are tailored for
shelf (COTS) distributed object computing (DOC) middleware 5 particular network environment

helps address these challenges by: ¢ Monitoring application behavior to detect run-time errors
1. Defining standard higher-level programming abstrac- or intrusions or

tions, such as distributed object and componentinterfaces, that |nteracting with objects whose interfaces did not exist

provide location and platform transparency to clientand server \yhen a distributed application was deployed initially.
components;

With conventional DOC middleware, applying these types of sis. Smart proxies are application-provided stirbple-
changes requires tedious and error-prone re-design and re- mentations that transparently override the default stubs
implementation of existing application software. Moreover, created by an ORB’s IDL compiler.

it is not possible to make some of these changes efficiently ify |nterceptors which are objects that an ORB invokes in
the middleware itself is not available in source code format. the path of an operation invocation to monitor or modify

For example, certain middleware internals may need to be in- the behavior of the invocation without changing client or
strumented and modified to support modifications to security, server application software.

buffering, feedback control, protocol, and monitoring mecha-. Interceptors are often used in conjunction with other

nisms. . :
. . . meta-objects, such aservant managerg3], to provide
o das oo spovs, COMBINTSL, Wrich manage e resorces requied 1
', customize server components transparently.

This article describes and evaluates meta-programming mech-
anisms that DOC middleware can apply to help improve tBection 3.2 describes the smart proxy and interceptor meta-
adaptability and flexibility of distributed applications, whilprogramming mechanisms and Section 3.3 describes the ser-
avoiding obtrusive changes to existing applications andi@nt manager and container meta-programming mechanisms.
DOC middleware. For concreteness, we focus on meta-

programming mechanisms available with CORBA, though Meta-programming mechanisms that enable the context
similar mechanisms are supported by other DOC middlewzf8d behavior of ORB middleware to change without affect-
such as COM+ and Java RMI. The meta-programming mechg the ORB implementation itself. These mechanisms in-
nisms presented in this article can be grouped into the follgude:

ing three categories:

1. Meta-programming mechanisms for developing and
scripting generic applications. These mechanisms include:

¢ Pluggable protocolswhich are objects that implement
the transport mechanisms used internally in an ORB [7].
Much like the UNIX System V Streams framework [8]
allows new device drivers to be added into an OS ker-

e The dynamic invocation interface (DJlIwhich allows nel transparently, pluggable protocols allow application

clients to generate requests at run-time. This mecha-
nism is useful for interpretive applications (such as those
scripted with CorbaScript [5]) that cannot have compile-
time knowledge of the interfaces they access.

e The dynamic skeleton interface (DSThe DSI is the o

server's analogue to the client’s DIl. The DSI allows an
Object Request Broker (ORB) to deliver requests to ob-
ject implementations that have no compile-time knowl-
edge of the interfaces they implement defined using
CORBAs Interface Definition Language (IDL).
¢ Interface repositorieswhich provide run-time informa-

tion about IDL interfaces. Using this information, it
is possible for an application to interact with an object
whose interface was not known when the application was
compiled. Interface repositories allow applications to (1)
determine what operations are valid on an object, (2)

developers to use different transport mechanisms in an
ORB without having to modify its internal implementa-
tion directly. Section 3.4 describes pluggable protocol
meta-programming mechanisms.

Bridges which are software components that connect dif-
ferent ORB domains [3] or other distributed middleware
technologies, such as Microsoft's COM+ or Sun’s Java
RMI, and enable them to interoperate with each other
transparently from an application’s perspective. Dif-
ferent ORB domains may use different security poli-
cies or transport protocols. Bridges translate the meta-
information from one ORB domain into a different for-
mat that another ORB domain or distributed middleware
technology understands. Section 3.5 describes bridge
meta-programming mechanisms.

make invocations on it using the DI, and (3) implemertthe meta-programming mechanisms outlined above can be

the object’s interface via the DSI.

used to configure new or enhanced functionality into DOC

Section 3.1 describes the DII, DSI, and interface repositdfjddieware applications with little or no impact on exist-

meta-programming mechanisms in more detail.

ing software. The material presented in this article is based

2. Meta-programming mechanisms that enable the context O OUr experience implementing, using, and benchmarking

and behavior of applications to change without affecting
the application implementation itself. These mechanisms?
include:

these meta-programming mechanisms in TAO [7], which is
CORBA-compliant, open-source ORB designed to support
applications with both stringent Qa&hd flexibility require-

nts

. : o I m
e Smart proxies which allow distributed applications to

e
1Stubs provide a strongly-typesitatic invocation interfac¢Sll) that mar-

customize their client-side behavior on a per-interface bxals application parameters into a common message-level representation.

Article organization: The remainder of this article is Some languages provide little or no native support for meta-
structured as follows: Section 2 provides an overview pfogramming. For example, C does not support it at all and
meta-programming; Section 3 describes alternative mefa-+ just supports it natively via its run-time type identifica-
programming mechanisms that can be applied to develop #nd (RTTI) feature. C and C++ programmers can still utilize
use CORBA middleware and applications; Section 4 companesta-programming techniques, however, by applying patterns
these meta-programming mechanisms; and Section 5 presentsiplement their own meta-objects manually and then us-
concluding remarks. ing these meta-objects to control the behaviors of base-objects.
For example, a meta-object implementation can apply the Re-
. . flection pattern [11] to serialize object instances and recreate
2 Overview of Meta'Programmmg them later. Likewise, meta-objects can be used to encapsulate

o . . behaviors of some classes and allow class instances to deter-
Meta-programming is a term given to a collection of tec'?ﬁine their behaviors dynamically

nologies designed to improve software adaptability by decou-

pling application behavior from the various cross-cutting adiddleware-based meta-programming: Techniques for

pects [9] and resources used by applications. Applying mefagta-Programming can aiso be applied to DOC middleware,

programming involves identifying and dissecting prograrﬁfhere various aspects of client/server behavpr can be affected
ming constructs into the following entities: y meta-objects, such as the smart proxies, interceptors, and

interface repositories described in this article. Figure 1 illus-

¢ Base_—object_s wh}ch implement certain apphcatlon_trates how client meta-objects are used in CORBA to forward
centric functionality; and

e Meta-objects which abstract certain properties from

base-objects (such as persistence, concurrency, schedl Object Object

ing, atomicity, ordering, state, replication, and change no- representations " implementations
tifications) and control various aspects of their behavior : :

at run-time.

Meta-programming techniques can be used in both pro-
gramming languages and middleware, as described below.

Language-based meta-programming: In most object-
oriented programming languages, objects are defined b
classes, and class implementations determine the behaviors of 4
objects. Certain languages, such as Java and Smalltalk, sup-
port meta-programming natively viaeta-clasdeatures. A
meta-object is an instance of a meta-class that encapsulate
the type information and class implementation of a “base-
object.” A base-object implements a well-defined unit of ap- Figure 1: Meta-objects in CORBA Middleware
plication functionality, whereas a meta-object implements a
higher-order set of behavior that can monitor and control vamperation invocations to a server object implementation and
ous aspects of a base object [10]. how the object implementation returns the operation results
In languages that support meta-programming natively, bagie-server meta-objects. From a client application perspective,
objects can interact with their meta-objects to realize objétst stub meta-object represents the remote object; whereas a
behaviors. For example, tiewlnstance method in Java’s skeleton meta-object represents the invoking client to a server
Class class creates a new instance of an objectClass application.
is therefore a factory that determines what type of object itThe meta-objects shown in Figure 1 represent a higher
creates and customizes the object’s behavior accordingly. level of control than the base-objects that perform application-
Likewise, meta-objects can interact with each other to cospecific processing. For example, meta-objects can help con-
dinate the behavior of base-objects. For instance, methods fiket clients to their remote server (base-)objects. They can
DefineClass in Java'sClassLoader class allow other also coordinate resources used by DOC middleware in support
meta-objects to determine how and whe@lass definition of client and server applications end-to-end.
is loaded, thereby controlling base-object behavior indirectly.Meta-programming has become prevalent in DOC middle-
The interfaces that define how objects/meta-objects and metare R&D. For example, th&uality Object(QuO) mid-
objects/meta-objects interact are calladta-object protocols dleware [12] developed at BBN Technologies applies meta-
(MOPs) [10], which define valid interactions between basgrogramming techniques, such as smart proxies, interceptors,
objects and meta-objects. and bridges, to imbue regular CORBA base-objects with QoS

A A

Client-side Server-side J

meta-objects meta-objects

Transport media

characteristics controlled by meta-objects. Likewise, the dy-e Pluggable protocols control how ORBs exchange mes-
namicTAO [13] reflective ORB applies meta-programming sages and
techniques to dynamically configure ORB properties for con-e servant managers and CORBA Component Model

currency, scheduling, security, and monitoring. As these R&D (CCM) [6] containers coordinate resource management
activities transition into COTS middleware, such as TAO, dis- on the server.

tributed application developers can increasingly benefit fr i
knowledgzpof the meta—pr([))gramming mechagi)s/ms descrictﬂlf remainder of this section describes the key capabilities
provided by the meta-objects illustrated in Figure 2.

in this article.

3 Alternative DOC Middleware Meta- 31 DIl DSl and Interface Repositories

programming Mechanisms Meta-objects are commonly used in DOC middleware to pro-
vide local representations for clients and remote objects in

Figure 2 provides a road map of meta-programming mecliéstributed object computing systems. For example, a client
nisms we discuss in this article. As described in SectionPFOcess interacts with a remote object via its client-side meta-
object, which is called atubin CORBA terminology. Like-
SOM Gonai wise, a CORBAskeletoris a meta-object that invokes the tar-
ontainer . . . N .
e _ get object implementation’s operation on the client’s behalf
Client descriptions Object and represents the client for the duration of this upcall. These
(Servant) . .
meta-objects are created by an ORB automatically as a con-
sequence of using an interface definition language (IDL) to
define componentinterfaces. In CORBA, for example, an IDL
compiler transforms OMG IDL definitions supplied by devel-
Intercepror opers into stubs and skeletons written using a particular pro-
gramming language, such as C++ or Java.
v In addition to providing programming language and plat-

Servant
Manager Impl
o V form transparency, an IDL compiler helps eliminate common

CUE G [POA } sources of network programming errors and provides oppor-
Transport meta-object tunities for automated compiler optimizations. CORBA appli-

Interface Repository

in args

A
Server
Request

Operation ()

A Y out args + return

Client value
Smart Proxy Request
Interceptor ORB
4 Interfaces
Y

Client-side
meta-object
(Stub)

A,

Server-side
meta-object
(Skeleton,
DSI)

A4

|_Iv cations can use these IDL compiler-generated meta-objects by
ORB % linking their implementations into applications directly. While
meta-object meta-object this approach is straightforward, it requires that IDL compiler-

cor generated meta-objects be available in advance and limits ap-
: plications to use a pre-determined number of interfaces.
Cross-Domain Protocol
Client-Side

Bridge

Service-Side
Bridge

The dynamic invocation interface (DIl): For certain types
_ of applications, such as debugging and management services,
Instantiates - Interacts . it is infeasible to know what interfaces they will encounter
a priori. To support these applications effectively, therefore,
Figure 2: End-to-End Interactions Between CORBA Requeg(QRBA defines ady'namlc Invocation !nterfac.éDII) mech-
and Meta-objects anism that allows clients to'construct |nvocf':1't|0n reque;ts dy-
namically and use them to invoke the specified operations on

an ORB provides a meta-object framework to facilitate corﬁa-mo,t,e ObJeCtS.' The DIIAPI n C.ORBA Is essentially a "meta-
munication between clients and servers. The following mef3Sta mechamsm that application dgvelopers can use to pro-
programming mechanisms can be used at different leveldfg™ the behavior of stub meta-objects dynamically. Thus,

enhance application performance and adaptability end-to-eﬂ@.m apphcathn developer.s can use the DIl APIto invoke op-
erations on objects whose interfaces are unknown at compile-

e.

¢ DIl, DSI, and interface repositories provide an appliczgll-m
tion with direct access to the meta-object system and ditee dynamic skeleton interface (DSI): Server application

often used to implement ORB-level bridges developers may also need to process operation invocations
e Smart proxies and interceptors can alter object behavior objects that a server has no built-in knowledge about at
selectively compile-time. To support this use-case, therefore, CORBA

provides adynamic skeleton interfad®Sl). The DSl allows applying these types of changes to CORBA applications
a server application at run-time to that use conventional fixed stubs and skeletons often requires

e Use dynamically acquired meta-information describirfq’”Siderame re-engineering and re-structuring of existing ap-
the type of object it will support and plication software. One way to minimize the impact of these

e Use this information to process invocations on this objedt@nges is to write the clients and servers entirely using the DIl
accordingly. and DSI meta-programming mechanisms described in Sec-
tion 3.1. While this approach is quite flexible, it also incurs a
Interface repositories: One purpose of DII/DSI is to de-pon-trivial time and space overhead due to the dynamic mem-
fer an application’s binding onto specific interface types UBry allocation and data copying associated with DIl and DSI.
til run-time. Ensuring the type-safety of this run-time binding |, many cases, therefore, it may be more effective to apply
requires arinterface repositorywhich is a service that pro-other meta-programming mechanisms that allow applications
vides run-time information about component interfaces. R@radapt to various types of changes with little or no modifica-
example, CORBA applications can query an interface repagns to existing software. In particular, stubs and skeletons (as
tory to obtain meta-information that describes IDL interfaggg|| as certain other points in the end-to-end operation invo-
types, operation signatures, operation arguments and refifion path) can be treated m&ta-object§10]. As operation
types, and the definition of user-defined data types. Both [ncations pass through these meta-objects, certain aspects
clients and DSI servers can use the meta-information prOViQﬁ%ppIication and middleware behavior can be adapted trans-
in an interface repository to construct “generic” applicatiorb%‘renﬂy €.g, when system requirements and environmental
whose behavior can be determine at run-tieng,via aninter- ~qnditions change) just by modifying the meta-objects.

pretive language like CorbaScript [5]. Moreover, these generiep, modify meta-objects, the DOC middleware can either:

applications can be used to reduce the effort required to de-
velopbridges which are described in Section 3.5. e Provide mechanisms for developers to install customized

meta-objects into clients or

) e Embed hooks implementing a meta-object protocol
3.2 Smart Proxies and Portable Interceptors (MOP) [10] into the meta-objects and provide mecha-

As mentioned in Section 3.5tuband skeletonmeta-objects niISms t.o install meta—objgcts |mplementlng the MOP to
in CORBA serve as the “glue” between the clients and ser- strategize these meta-object behaviors.

vants, respectively, and the ORB. This glue shields applicatitrihe context of CORBAsmart proxiesre customized meta-
developers from tedious and error-prone network progra@ijects andnterceptorsare meta-objects that implement the
ming details needed to transmit client operation invocatioM$P. We explore both of these meta-programming mecha-
to server object implementations. For example, CORBA stubi§ms below.

implement theProxy pattern [2] and marshal operation infor-

mation and data type parameters into a standardized reqgestt Overview of Smart Proxies

format. Likewise, CORBA skeletons implement tAdapter

pattern [2] and demarshal the operation information and tyd¥@St CORBA application developers use the fixed stubs gen-
parameters stored in the standardized request format. erated by an IDL compiler without concern for how the stubs

Traditionally, the stubs and skeletons generated by an IB{€ implemented. There are situations, however, where the de-
compiler ardixed i.e. the code emitted by the IDL compilerfa”“ stub behavior is inadequate. For example, an application

is determined entirely at interface translation time. Fixing tif€veloper may wish to transparently change stub code in order
generation of stubs and skeletons at this early stage, howeer,
makes it hard for certain types of applications to adapt readilye Perform application-specific functionalities, such as log-
to new requirements, such as: ging
e The need to monitor system resource utilization may not® Add parameters to a request
be recognized until after an application has been de-® Cache requests or replies to enable batch transfer or min-
ployed imize calls to a remote target object, respectively or
e To execute securely in a particular environment, cer-® Support advanced QoS features, such as load balancing
tain remote operations may require additional parame- and fault-tolerance.
ters, such as authentication certificates To support these capabiliti@sthoutmodifying existing client
e The priority at which clients invoke requests or servec®de, applications must be able to override the default stub im-
handle requests may vary according to environmenpémentations selectively. These application-defined stubs are
conditions, such as the amount of CPU or network barzhlledsmart proxieswhich are customizable meta-objects that
width available at run-time [14]. can mediate access to target objects in a server more flexibly

than the default stubs generated by an IDL compiler. Smhbe called oreveryoperation invocation at the pre-determined
proxies allow developers to modify the behavior of interfac€RB interception points shown in Figure 4.

without re-implementing client applications or target objects.

Although not yet standardized by the OMG, many ORBs pro- CLIENT REQUEST

vide smart proxy mechanisms. in':f;

The two main entities in smart proxy de5|gns argsﬂnart ST Sheratian 0 OBJECT
proxy factoryand thesmart proxy meta-objectwhich are “outargs + return value (SERVANT)
shown in Figure 3. When developers use smart proxies : 4

A SERVER REQUEST / E
ERVANT
MANAGER |

CLIENT o in args 7 IDL
smar <22 operation() o il
STUBSE
PROXY OBJECT PORTABLE OBJECT ADAPTER
FACTORY | [SMART (SERVANT) -1
PROXY out args + return value 4
(‘ 52

- o
{]
SKELETON REAL-TIME
DEFAULT
lNTlggngE OBJECT PORTABLE INTERCEPTOR AP :
PROXY ADAPTER 1) send_request()/send_poll()

2) receive_request_service_contexts ()
3) receive_request()
4) send_reply()/send_exception()/send_other()
5) receive_reply()/receive_exception()/
receive_other()

P

<%

1

Y

creates

; ORB CORE

Figure 3: TAO's Smart Proxy Model
Figure 4: Request Interception Points in the CORBA Portable

modify the behavior of interfaces, they implement smart pro¥gferceptor Specification
factory classes and register them with the ORB. After in-
stalling an application-supplied smart proxy factory, the ORBAS shown in this figure, request interception points occur
automatically uses the factory to create object references wiegeveral parts of the end-to-end invocation path: when a
a client invokes thenarrow operation on an interface. Thusctlient sends a request, when a server receives a request, when
if smart proxies are installed before a client accesses thesediierver sends a reply, and when a client receives a reply. Dif-
terfaces, the client application can transparently use the rigi¢nt hook methods will be called at each point in this inter-

behavior of the proxy returned by the factory. ceptor chain to allow modification of object behavioesy,
by throwing an exception or forwarding a request to another

server. The behavior of an interceptor is defined by applica-
tion developers. An interceptor can examine the state of the
The smart proxies feature outlined above is a met&questitis associated with and perform various actions based
programming mechanism that increases client applicatiam the state. Interceptors can also be used to insert and ex-
flexibility. Interceptorsare another meta-programming mechractout-of-banddata into and out of a request invocations, re-
anism used in DOC middleware to increase clienti server spectively, via &erviceContextList encapsulated with
application flexibility. CORBA interceptors are standareach request.

meta-objects that stubs, skeletons, and certain points in she Interoperable Object Reference (IOR) interceptors:
end-to-end operation invocation path can invoke at predefingdsion 1.1 of the CORBA Internet Inter-ORB Protocol (I1OP)
“interception points.” The two types of interceptors definggroduced an IDL attribute callecomponents , which con-

in the CORBA Portable Interceptors specification [15] are dgins g list oftagged comonens to be embedded within an
scribed below. IOR. When an IOR is created, tagged components provide a
1. Request interceptors: Request interceptors consist oplaceholder for an ORB to store additional information per-
client requestinterceptors andserver requesinterceptors, tinent to the object. This information can contain various
which intercept the flow of a request/reply sequence throughes of QoS-related information pertaining to security, server
the ORB at specific points in clients and servers, respectivéfyead priorities, network connections, CORBA policies, or
Developers can install instances of these interceptors intoodiner domain-specific data.

ORB via an IDL interface defined by the Portable Intercep-IOR interceptors are objects invoked by the ORB when it
tor specification. Regardless of what interface an operatmeates IORs. They allow an IOR to be customizedy,

is invoked by, after request interceptors are installed they vidlf appending tagged components. Whereas request intercep-

3.2.2 Overview of Portable Interceptors

tors access operation-related informationRequestinfo

- DLL
objects, IOR'lntercep'tors access IOR-related |nfo.rmat|on via \
IORInfo objects. Figure 5 illustrates the behavior of IOR NN 4, Strategy 3
interceptors.) e

DLL 5 . LN
) -ervan o) ~
1. Create object \ %o, | .
reference \ Evictor
\\
DL
IOR Server ORB

L
contains ServantLocator
Interceptor Component A
Repository /| Buider Object ID _
& r Object ID Child POA
& = Object ID (Servant Manager Policy)|
@ @Q) - @ Active Object Map
c
I &/ ER :
S @&v < g Container
© Vv P o I I
& ;
. IORInfo _ ¢ QLIRS D
IORInterceptor 3. add_lor_ »

Figure 6: Managing Resources with a Servant Locator
Figure 5: IOR Interceptors

A servant manager is similar to a server-side interceptor in
several respects. For example, both implement the Interceptor
d . pattern [1]. Moreover, both can intercept requests before they
3.3 Servant Managers and Containers are dispatched to servants, invoke additional operations, and
The CORBA specification [3] defines Portable Objeéffect the outcome of request invocatioesg, by throwing
Adapters (POAs) that allow server applications to register sBxceptions.
vant managers. Servant managers allow server application délnlike interceptors, however, servant managers only affect
velopers to strategize the selection, loading, unloading, 4A8 POAs that install them and can therefore only provide ac-
activation of object implementations. There are two types @SS to a limited subset of request-related information. As a
servant managers in CORBA: result, they are more tightly coupled with POAs and servant
. implementations than are interceptors. For example, servant
1. Servant actlvfe\tors. This meta-object prpwdes two hOOlf’nanagers are used primarily to coordinate the resources neces-
methods calledlncarn.ate and etherealize . The sary to activate and deactivate servants, rather than modifying
mcarnate_ method mcﬁcat(_as that a servant mqst be Cr&iarnal ORB behavior.
ated theﬁrst time an ob.Jec_t is accessed by a client. The The CORBA Component Model (CCM) [6] introduced the
etherealize - method indicates when a servant can be d oncept of acontainer which is a meta-programming mech-
stroyed and its resources reclaimed when the servant is degfer, 1t provides the run-time environment for component
tivated and no longer needed.

implementations. Containers decouple application component
2. Servant locators: This meta-object provides hooKogic from the configuration, initialization, and administration

methods calledpreinvoke and postinvoke The of servers. As shown in Figure 6, a CCM container creates
preinvoke method is invoked by a POA to locate a servatiie POA and servant locator required to activate and control a
for each requesbn an object. Theostinvoke method no- component. Standard CCM containers can be extended to im-
tifies the servant locator after each request that a servant igl®nent various resource management activities, such as au-
longer in use. tomatic load balancing, persistence, transactional properties,

Figure 6 illustrates how servant locators can be used iewnt dispatching, and QoS adaptation, without changing the

CORBA application to perform various resource manageméehavior of application components (which play the role of
activities before dispatching an operation to a servant. Base-objects).

shown in this figure, a POA can use a servant locator to link

an implementation for an object dynamically when an ope§-4 Pluggable Protocols
ation request first arrives, thereby minimizing the resources

committed to inactive servants. Other meta-mechanisms, sBtiggable protocols frameworkf7] are another type of
as theevictor shown in Figure 6, can help reduce system razeta-programming mechanism provided by DOC middle-
source usage by deactivating and unlinking infrequently usedre. These frameworks can be used to decouple an ORB’s

servants. transport protocols from its higher-level component architec-

ture. Developers can therefore add new protocols withdhe interface to install the transport adaptation factory portion
changing existing middleware or application software. Pludepicted in Figure 7. The reason for this restriction is because
gable protocols frameworks provide meta-objects that conttioé ETF specification focuses primarily on Real-time CORBA
the behavior of base-objects, which in this case are an ORBRBs that use non-TCP/IP protocols to ensure deterministic
message delivery mechanisms. message delivery. Thus, GIOP remains the sole ORB messag-
Figure 7 illustrates the architecture of a pluggable protocatg protocol standard and is not itself pluggable in the ETF
framework that allows developers to install custom transpspecification.
protocol implementations into The ACE ORB (TAO). TAO's

3.5 Bridges
CLIENT operation (args) OBJECT (SERVANT)

our 4 & serum, e An ORB domain is a group of inter-connected ORBs that have
= the same administrative policies, such as security policies, use
ORB Core the same ORB messaging and transport protocols, and are ca-
pable of invoking operations directly upon one another. In
contrast, ORBs that reside in different domains cannot invoke
operations on each other directly because they may not be us-
ing the same protocols or direct invocations may violate cer-

ORB MESSAGING COMPONENT

REAL-TIME ||MULTICAST || EMBEDDED

1oP 0P 1oP ORB MESSAGE
l ESIOP FACTORY

pPoLICY

GIOPuTE CONTROL

CONNECTION
MANAGEMENT

PROFILE
MANAGEMENT

i ORB TRANSPORT
RELIABLE, ADAPTER FACTORY

TCP BYTE-STREAM UDP

ATM CONCURRENCY

PLUGGABLE PROTOCOLS FRAMEWORK

tain administrative policieg.g, such as Internet firewall re-
ORB TRANSPORT ADAPTER COMPONENT MEMORY ..
S— strictions.
COMMUNICATION '" R G e To allow inter-domain communication, the CORBA speci-
fication defines the concept bfidges A bridge can connect

Figure 7: TAO's Pluggable Protocols Framework Architectuf® ORB in one ORB domain to other ORBs in different ORB
domain or other systems running different distributed middle-

pluggable protocol framework is designed to control the fol2re technologies, such as COM+ [17] or Java RML. It can
lowing two levels of protocols; also connect different ORB domains and allow invocations

. . . . across domain boundaries by translating these requests.
* ORB messaging protocola/hich define the messaging Figure 8 illustrates how bridges can be used to allow
format an ORB uses to exchange meta-information with

other ORBs to facilitate object requests/replies, locate o @ o o TeoTANER
ject implementations, and manage communication chat e/ T T T T s - [componen |
nels.

e ORB transport protocol adaptersvhich define the un-
derlying message transport mechanism an ORB uses
exchange meta-information with other ORBs.

A
\SKELETON
REAL-TIME

OBJECT ADAPTER

ORB QoS
NTERFACE
=IE ORB CORE ORB CORE g??

Separating these two protocol levels allows TAO to ~_, o> OS KERNEL D)

e Utilize high-speed transport protocols, such as AAL5 &'°P clop

over ATM and (——CROUP REPLICATION PROTOCOLS
e Eliminate unnecessary overhead and features in
CORBAs General Inter-ORB Protocol (GIOP), which
is the standard interoperability protocol that CORBA C
clients and servers use to exchange requests and replies. SRENICSIPEIERIPE el [serversioe sminse

Higher-level application components and CORBA servicEigure 8: Applying Bridges to Inter-connect ORBs Across

can use the Component Configurator pattern [1] to dynarBieparate Domains

cally configure custom protocols into TAO's pluggable proto-

cols framework without requiring obtrusive changes to thelBORBA applications to communicate across a wide range

selves or the ORB. of communication links, ranging from firewalled TCP/IP to
Pluggable protocol capabilities are being standardized wide-area group communication protocols. In the context of

the OMG in the Extensible Transport Framework [16] (ETFRhis article, a bridge can be viewed as a high-level meta-object

specification effort. Unlike TAO’s pluggable protocols framehat handles requests by using their meta-data to translate them

work, which allows both ORB messaging and transport prototo different protocols, thereby allowing its client and server

col to be configured, the ETF specification only standardizesse-objects to interact end-to-end.

i

BANDWIDTH L?ESERVATION‘ PROTOCOLS _

é“

IADAP:

SEG-IIOP OVER TCP/IP

Itis not feasible to implementstatically configuredjeneric incur the most overhead since they are the most general meta-
bridge that can receive, process, and forward all typespsbgramming mechanisms.
requests. Many CORBA bridge implementations thereforeThe other mechanisms presented in this article incur less
use the DII, DSI, and interface repositories described in Severhead, ranked roughly in terms of how closely they tar-
tion 3.1. For example, a generic bridge can use the DIl aget specific ORB or application mechanisms. In general, the
DSl to process a two-way operation as follows: broader the scope a mechanism targets, the greater the over-
1. Receive a request and use the DSI API and an interf4€&d incurred by the mechanism. For example, portable inter-
repository to decompose the request into a name/vafigPtors often incur more overhead than smart proxies because
list (NVList), which is a standard CORBA constructhey influence operation processing at multiple points along an
that stores each argument in a Sepam data struc- invocation path ThUS, they must handle all interfaces via the

ture CORBA generiany type, whereas smart proxies only affect
2. Use the samBVList to construct a DIl request and usé€ Specific interfaces they target. _ _
the DIl API to send this request to the target Object A|th0ugh I’edUCIng overhead is often WOI’thWhIle, the flexi-

3. When reply is received the bridge uses the DIl requ@é'f_ty afforded by Fhe more general meta-programming m.ech-
object to extract the return value and output argumentgnisms may be important for certain types of applications.
4. The DIl object is then used to fill in the return value arfd®" €xample, it may be infeasible for network management

output arguments for the original DSI request. applications to know at compile-time all the types of object
schemas in a management information base (MIB). To solve

It should be clear from the discussion above that an ORM3s problem generically therefore necessitates some type of
bridge architecture can incur significant overhead. In partiddH and interface repository to navigate arbitrary MIBs at run-
lar, an ORB may require multiple data copiesy, first copy- time.
ing the data from the request buffer into each one ofilyes Often, the additional indirection incurred by certain meta-
of the DSI argument list and then later copying the reply froptogramming mechanisms may be a small cost relative to the
the DSI argument list into the DIl request buffer. Copies algrge potential gain in performance at a higher level. For ex-
also required from the DIl reply buffer into theny s used to ample, although pluggable protocols frameworks require ad-
extract each argument and finally into the DSI reply buffer. ditional levels of indirectione.g, due to virtual method calls,

the ability to install and use new protocols rapidly can improve

. . end-to-end performance by several orders of magnitude [7].
4 Compa”ng ORB Middleware Meta- Moreover, a well-crafted ORB implementation can minimize

Programming Mechanisms overhead when certain features are not used by the application
at run-time. When combined with patterns (such as Compo-

Section 3 describes a range of middleware-oriented menant Configurator [1] or Reflection [11]) and OS features (such
programming mechanismske., DII/DSI, interface reposito- as explicit dynamic linking), meta-programming mechanisms
ries, smart proxies, interceptors, servant managers, plugg&ble be configured selectively and dynamically into CORBA
protocols, and bridges—that we have implemented in TAClients and servers.
These meta-programming mechanisms allow CORBA appli-
cations to gdapt to rgqui_rement or envirqnm_ental changes thaj Early vs. Late Lifecycle Integration
occur late in an application’s life-cycle with little or no obtru-
sive changes to existing software. Based on our experieRgerent meta-programming mechanisms can be introduced
implementing and using the meta-programming mechanisaiglifferent stages in an application’s lifecycle. For example,
in TAO, we have observed the tradeoffs and limitations deridges and pluggable protocols can be (re)configured trans-
scribed in this section. parently into applications. Moreover, some ORBs allow new
protocols to be linked into the ORB at run-time [7]. Smart
proxies, portable interceptors, and servant managers can be
retrofitted into applications with minimal impact on existing
To select suitable meta-programming mechanisms, developede.
must understand the tradeoffs between generality vs. overheddll and DSI share some commonalities with portable in-
in their applications. Typically, the greater the generality oftarceptors,e.g, they can all be used on any interface and
meta-programming mechanism, the greater its overhead veiimnot modify argument values directly. Behavioral ada-
respect to non-functional properties, such as static/dynamation can therefore be achieved by changing the meta-
memory footprint, function-call indirection, or CPU consumpnformation they received at run-time. However, unlike
tion. Thus, DSI/DII, interface repositories, and bridges oftgrortable interceptors—which can be installed without chang-

4.1 Generality vs. Overhead

ing application implementations—the use of DII/DSI must be requirements and environmental conditions that occur late
selected during an application’s design phase. This constraina system'’s life-cyclei.e., after deployment and/or at run-
can be offset to some extent by using DII/DSI in conjunctidime.

with scripting languages, such as CorbaScript [5], although thefhe meta-programming mechanisms described in this ar-
use of scripting languages can degrade performance relativide are becoming commonplace in DOC middleware. In

compiled applications. CORBA, for example, ORBs are responsible for transmitting
client operation invocations to target objects and returning
4.3 Portability their replies (if any). When a client invokes an operation, it

interacts with a stub meta-object directly or through a smart
If an application must run on multiple ORB implementasroxy. The stub works in conjunction with transport-protocol
tions, portability is an important criteria when selecting metaeta-objects controlled by a pluggable protocol framework to
programming mechanisms. The meta-programming mechacess and/or transform (as in the case of a CORBA bridge),
nisms described in this article can be grouped into the theeelient operation invocation into a request message and trans-

general portability categories shown in Table 1 mit it to a server. On the server’s request processing path var-
ious meta-objects, such as interceptors and servant managers,

Standardization | Features can then access and/or perform inverse transformations on the
Level operation invocation message and dispatch the message to its

Standardized | DII/DSI, interface repositories, servant man- seryvant. An invocation result is returned in a similar fashion in
agers, and bridges have been defined in thethe reverse direction

CORBA specification for many years. They . N .
should therefore work with any CORBA- The growing availability and use of meta-programming

conformant ORB. The portable intercep- Mechanisms is helping to increase the flexibility and adapt-
tor [15] and CCM container [6] specifications ability of DOC middleware and applications. The meta-
have being adopted recently and many ORBsprogramming mechanisms described in this article are
should support these features soon. all implemented in the TAO open-source CORBA ORB,

Standardization | The extensible transport framework [16] IS |\ hich can be downloaded fromww.cs.wustl.edu/$\
underway in the process of being standardized by the

y
s

OMG. At the present time, however, ma sim$schmidt/TAO.html . Our experience using TAO on
ORBs provide proprietary implementations many commercial and research projects indicates that im-
of this feature. provements in flexibility and adaptability can occur without

Non-standard | Smart proxies are not currently part of the significant performance degradation if developers select their
CORBA standard. However, many ORBS meta-programming mechanisms carefully.
ﬁir;\gii Zgrg;;ﬂ;?;n?f smart proxy mechg- Future challenges confronting researchers and developers
involve identifying the appropriate patterns, protocols, and ar-
Table 1: Meta-programming Mechanism Portability phitectures that can be applied to dg\pmiciesfor.configur-
ing and controlling meta-programming mechanisms robustly
and efficiently. Another important theme underlying future
meta-programming efforts isdaptive and reflective middle-
5 Concluding Remarks ware[14]. Adaptive middleware is software whose functional
and/or QoS-related properties can be modified either:

DOC middleware has been applied successfully to many dos statically, e.g, to reduce footprint, leverage capabilities
mains. Its primary benefits are: that exist in specific platforms, enable functional subset-
e Shielding developers from distributed computing and ting, and minimize hardware/software infrastructure de-
communication challenges, such as security, partial fail- pendencies; or
ure, and end-to-end QoS-enabled resource management; Dynamically e.g, in response to changes in environmen-
and tal conditions or requirements, such as changing com-
¢ Allowing applications to invoke operations on target ob- ponent interconnection topologies; component failure or
jects efficiently without concern for their location, pro- degradation; changing power-levels; changing CPU de-
gramming language, OS platform, communication proto- mands; changing network bandwidth and latencies; and
cols and interconnects, and hardware [4]. changing priority, security, and dependability needs.

Historically, however, many DOC middleware solutions hawreflective middleware goes a step further to permit automated
tightly coupled interfaces and implementations. This coupliegamination of the capabilities it offers, and then permits auto-
makes it hard to adapt middleware and applications to changeged adjustment to optimize those capabilities [12, 13]. Re-

10

flective middleware supports a more advanced form of ad@®] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
tive behavior, in that the necessary adaptations can be per- port for Quality of Service for CORBA ObjectsTheory and
formed autonomously (or semi-autonomously) based on dy- Practice of Object Systemeol. 3, no. 1, pp. 1-20, 1997.

namic conditions within the system, in the system’s enviroli3]
ment, or in the policies defined by system users. Such auto-
matic adaptations must clearly be performed carefully to en-
sure that distributed optimizations retain distributed system
stability and converge rapidly.

Acknowledgements

We thank Jeff McNiel, Philippe Merle, Jerry Odenwelder, a
the anonymous reviewers for comments that helped impr

this article. In addition, we thank John Zinky for the initial

discussions that motivated us to write this article.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmdpattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume New York, NY: Wiley & Sons,
2000.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995.

Object Management Groufthe Common Object Request Bro-
ker: Architecture and Specificatip@.4 ed., Oct. 2000.

M. Henning and S. VinoskiAdvanced CORBA Programming
With C++. Addison-Wesley Longman, 1999.

P. Merle, C. Gransart, and J.-M. Geib, “Generic Tools: A New
Way to Use CORBA,” inWorkshop on CORBA: Implementa-
tion, Use and Evaluation at ECOOP '9{Jyvéskyd, Finland),
June 1997.

BEA Systems,et al, CORBA Component Model Joint Re-
vised Submissio®bject Management Group, OMG Document
orbos/99-07-01 ed., July 1999.

C. O'Ryan, F. Kuhns, D. C. Schmidt, and J. Parsons, “Applying
Patterns to Develop a Pluggable Protocols Framework for ORB
Middleware,” in Design Patterns in Communicatioffs. Ris-

ing, ed.), Cambridge University Press, 2000.

D. Ritchie, “A Stream Input—Output SystenAT&T Bell Labs
Technical Journalvol. 63, pp. 311-324, Oct. 1984.

G. Kiczales, “Aspect-Oriented Programming,” Rroceedings
of the 11th European Conference on Object-Oriented Program-
ming, June 1997.

C. Zimmermann, “Metalevels, MOPs and What the Fuzz is
All About,” in Advances in Object-Oriented Metalevel Archi-
tectures and Reflectiof€. Zimmermann, ed.), pp. 3—24, Boca
Raton, FL: CRC Press, 1996.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture — A System of
Patterns Wiley and Sons, 1996.

11

[14]

[15]
1t

[17]

F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes,
and R. Campbell, “Monitoring, Security, and Dynamic Config-
uration with the dynamicTAO Reflective ORB,” Proceedings

of the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

N. Wang, D. C. Schmidt, M. Kircher, and K. Parameswaran,
“Adaptive and Reflective Middleware for QoS-Enabled CCM
Applications,” IEEE Distributed Systems Onlipgol. 2, July
2001.

Object Management Groujnterceptors FTF Final Published
Draft, OMG Document ptc/00-04-05 ed., April 2000.

Object Management Grouggxtensible Transport Framework
for Real-Time CORBA, Request for Propos@bject Manage-
ment Group, OMG Document orbos/2000-09-12 ed., Feb. 2000.

J. P. Morgenthal, “Microsoft COM+ Will
Challenge Application Server Market.”
www.microsoft.com/com/wpaper/complus-appserv.asp, 1999.

