Applying Optimization Principle Patterns to Real-time ORBs

Irfan Pyarali, Carlos O’Ryan, Douglas Schmidt, Aniruddha Gokhale
Nanbor Wang, and Vishal Kachroo
{irfan,coryan,schmidt,vishal,nang@cs.wustl.edu gokhale@research.bell-labs.com
Washington University Bell Labs, Lucent Technologies
Campus Box 1045 600 Mountain Ave Rm 2A-442
St. Louis, MO 63130 Murray Hill, NJ 07974

This paper will appear in the IEEE Concurrency magd- Introduction
zine's Object-Oriented Systems track, edited by Murthy De-

varakonda, to appear 2000. 1.1 Overview of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
Abstract voke operations on distributed objects without concern for ob-

ject location, programming language, OS platform, commu-
First-generation CORBA middleware was reasonably sugication protocols and interconnects, and hardware [1]. Fig-
cessful at meeting the demands of applications with beaste 1 illustrates the key components in the CORBA reference
effort quality of service (QoS) requirements. Supporting apodel [2] that collaborate to provide this degree of portabil-
plications with more stringent QoS requirements poses nidyy interoperability, and transparentyach component in the
challenges for next-generation real-time CORBA middleware,
however. This paper provides three contributions to the d
sign and optimization of real-time CORBA middleware. First

in args

operation() OBJECT

CLIENT

. . . (SERVANT)
we outline the challenges faced by real-time Object Reque out args + return value T
Broker (ORB) implementers, focusing on requirements for effi-
. . . IDL IDL ¥
cient, predictable, and scalable concurrency and demultipley™ - < ———- D
ing in CORBA’'s ORB Core and Object Adapter component| stuss A‘,’)TETCJR]

Second, we describe how TAO, our real-time CORBA imple=
mentation, addresses these challenges by applying key Og[%}]
optimization principle patterns, which are rules for avoidin
common design and implementation problems that can d
grade the efficiency, scalability, and predictability of comple@ ORB-seciFic INTERFACE () STANDARD PROTOCOL
systems. Third, we present the results of benchmarks that eval-
uate the impact of TAO's patterns and design strategies empilgure 1: Key Components in the CORBA 2.x Reference
ically. Model

Our results indicate that it is possible to develop highly con-
figurable, adaptable, and standard-compliant ORBs that c&$RBA reference model is outlined below:
meet the QoS requirements of many real-time applications. A
key contribution of our work is to demonstrate that the abflient: A client is arole that obtains references to objects
ity of CORBA ORBs to support real-time systems is largely 8Ad invokes operations on them to perform application tasks.
implementation detail. In particular, relatively few Change@bjects can be remote or collocated relative to the client. Ide-
are required to the standard CORBA reference model and pfdly: @ client can access a remote object just like a local object,

STANDARD INTERFACE OSTANDARD LANGUAGE MAPPING

gramming API to support real-time applications. i.e, object —operation(args) - Figure 1 shows how
the underlying ORB components described below transmit re-
“Work done by the author while at Washington University. mote operation requests transparently from client to object.
This work was supported in part by Boeing, NSF grant NCR-9628218, 1This overview only focuses on the CORBA components relevant to this
DARPA contract 9701516, Motorola, Siemens ZT, and Sprint. paper. For a complete synopsis of CORBA'S components see [2].

Object: In CORBA, an object is an instance of an OMd..2 Challenges for Real-time CORBA

Interface Definition Language (IDL) interface. Each object , : .
is identified by anobject referencewhich associates one o s described above, CORBA helps to improve the flexibility,

more paths through which a client can access an object ogfgensmmty, maintainability, and reusability of distributed ap-

server. Anobject ID associates an object with its implemer1[3|!(:a‘:!C)r]S [1]. A gg)éVéng %%‘T‘S of d'?rt]”ttmed 'rgal—tch'a ap- t
tation, called a servant, and is unique within the scope of Rifations require midaieware hat provides stringen

Object Adapter. Over its lifetime, an object has one or maggality of service (QoS) support, such as end-to-end prior-

servants associated with it that implement its interface. ity preservation, hard upper bounds on latency and jitter, and
bandwidth guarantees [5]. Figure 2 depicts the layers and

Servant: This component implements the operations dgomponents of an ORB endsystem that must be carefully de-
fined by an OMG IDL interface. In object-oriented (OO) larsigned and systematically optimized to support end-to-end ap-
guages, such as C++ and Java, servants are implementeg|igation QoS requirements.

ing one or more class instances. In non-OO languages, such

as C, servants are typically implemented using functions ap

struct s. A client never interacts with servants directly, by crie~ operation()
always through objects identified by object references. g DATA COPYING

& MEMORY

ORB Core: When a client invokes an operation on an ob- DL % ALLOCATION

ject, the ORB Core is responsible for delivering the request DL - SKELETON L samung,
. . . . OBJECT — 1T DEMUXING,

to the object and returning a response, if any, to the client. | stss R (—‘ ADAPTER | [T pispitcrinG

An ORB Core is implemented as a run-time library Iinke[4 }} N CONCURRENCY
GIOP r[MODELS

into client and server applications. For objects executing
motely, a CORBA-compliant ORB Core communicates via TRANSPORT
version of the General Inter-ORB Protocol (GIOP), such SEEEEREIAIES (PPN OS5 KERNEL

:’J
Cos o s Y 10

in args

PRESENTATION
— LAYER

PROTOCOLS

the Internet Inter-ORB Protocol (IIOP) that runs atop the T(prsGEE sumworEn
transport protocol. In addition, custom Environment-Speci DE—

ADAPTER

Inter-ORB protocols (ESIOPs) can also be defined. NETWORK

OMG IDL Stubs and Skeletons: IDL stubs and skeletons . o

serve as a “glue” between the client and servants, respectiveigure 2: Real-time Features and Optimizations Necessary to
and the ORB. Stubs implement tReoxy pattern [3] and pro- Meet End-to-end QoS Requirements in ORB Endsystems
vide a strongly-typedstatic invocation interfacgSll) that

marshals application parameters into a common message-levéhe first-generation of ORBs lacked many of the features
representation. Conversely, skeletons implementitepter and optimizations [6] shown in Figure 2. This situation was
pattern [3] and demarshal the message-level representdiinsurprising, of course, since ORB developers focused ini-

back into typed parameters that are meaningful to an apfilly on refining the OMG specifications and developing core
cation. infrastructure components, such as the basic ORB commu-

DL C ierr An IDL i ¢ OMG IDL nication mechanisms. In contrast, second-generation ORBs,
omprier: n compiler transforms such as The ACE ORB (TAO) [7], have leveraged the matura-

definitions into stubs and skeletons that are generated automals o standards [5, 3], patterns [8], and QoS-enabled frame-

ically in an application programming language, such as Cizn: components [6], to provide end-to-end QoS guarantees
or Java. In addition to providing programming language tran '

DL i imi ; “applications bothertically (i.e., network interface+ appli-
parency, compilers eliminate common sources of netwogy;, , layer) andhorizontally(i.e., end-to-end) by integrating

progrgmming errors and provide opportunities for automatg hly optimized CORBA middleware with OS 1/0 subsys-
compiler optimizations [4]. tems, communication protocols, and network interfaces.
Object Adapter: An Object Adapter is a composite compo- Our previous research has examined many dimensions of
nent that associates servants with objects, creates object réfigh-performance and real-time ORB endsystem design, in-
ences, demultiplexes incoming requests to servants, and chlding static and dynamic scheduling, event processing, 1/0
laborates with the IDL skeleton to dispatch the appropriaebsystem integration, ORB Core architectures [6], systematic
operation upcall on a servant. Object Adapters enable OREsichmarking of multiple ORBs, and design patterns for ORB
to support various types of servants that possess similaraxtensibility [8]. This paper focuses on other previously unex-
qguirements. This design results in a smaller and simpler ORBred dimensions in the high-performance and real-time ORB
that can support a wide range of object granularities, lifetimendsystem design spad@bject Adapter and ORB Core opti-
policies, implementation styles, and other properties. mizations for (1) server-side concurrency, (2) memory man-

agement, and (3) CORBA request demultiplexing. Optimizing CORBA request demultiplexing: The time an
The optimizations used in TAO are guided by a seiririci- ORB’s Object Adapter spends demultiplexing requests to tar-
ple patterng9] that we have applied in prior work to optimizeget object implementations,e., servants, can constitute a
middleware [7] and lower-level networking software, such &ignificant source of ORB overhead for real-time applica-
TCP/IP. Optimization principle patterns document rules ftens [10]. Section 3 describes how Object Adapter demul-
avoiding common design and implementation mistakes tiiglexing strategies impact the scalability and predictability of
degrade the performance, scalability, and predictability kfal-time ORBs. This section also illustrates how TAO’s Ob-
complex systems. The optimization principle patterns we dgct Adapter optimizations enable constant time request de-

plied to TAO are shown in Table 1. We applied these optimizaltiplexing in the average- and worst-casggardlessof the
number of objects or operations configured into an ORB. The

Optimization Principle Pattern prir.lcip.le pgtterns that guide our req_uest demulltiplexing_ op-

1 | Optimizing for the common case tImIZ.atIOI’I.S mc_lude precomputing, using specialized routines,
2 | Eliminating gratuitous waste passing hints in protocol headers, adding extra state, and not
3 | Shifting computation in time via precomputing being tied to reference models.
4 | Passing hints between layers and components
5 | Not being tied to reference models and implementatigns ~ The remainder of this paper is organized as follows: Sec-
6 | Replacing inefficient general-purpose operations tion 2 outlines the ORB Core architecture of CORBA ORBs

with special-purpose ones and evaluates the design and performance of ORB Core opti-
7 | Leveraging system components by exploiting locality| mijzation principle patterns used in TAO; Section 3 outlines the
8 | Adding redundant state to minimize computations Portable Object Adapter (POA) architecture of CORBA ORBs
9 | Using efficient/predictable data structures and evaluates the design and performance of POA optimiza-

S o o tion principle patterns used in TAO; and Section 4 provides
Table 1: Optimization Principle Patterns Applied in TAO ¢oncluding remarks.

tion principle patterns in TAO to address the following ORB

design and implementation challenges: L
2 Optimizing the ORB Core for Real-

Optimizing the server-side ORB concurrency model: The time Applications

concurrency model used to multi-thread an ORB has a sub-
stantial impact on its performance, predictability, and scal-
ability. However, concurrency models supported in cohhe ORB Core is a standard componentin CORBA that is re-
ventional ORBs, such as thread-per-request or queue_bmsibleforconnection and memory management, data trans-
worker thread pools, incur excessive context switching, syRl: e€ndpoint demultiplexing, and concurrency control [2].
chronization, and data movement overhead [6]. Therefofé ORB Core is typically implemented as a run-time library
TAO employs a leader/followers thread pool model describlgked into both client and server applications. When a client
in Section 2.1. This concurrency model requires no heap mdfiyokes an operation on an object, the ORB Core is responsi-
ory allocations or locks in the critical path, which is optimd!le for delivering the request to the object and returning a re-
for many types of real-time applications. This optimizatioFPONse, if any, to the client. For objects that reside remotely, a
is based on the principle patterns of optimizing for the cofrfORBA-compliant ORB Core transfers requests via the Gen-

mon case, eliminating gratuitous waste, and not being tiec®f@! Inter-ORB Protocol (GIOP), which is commonly imple-
reference implementations. mented with the Internet Inter-ORB Protocol (110P) that runs

atop TCP.

Optimizing memory management: ORBs allocate buffers Optimizing an ORB Core to support real-time applications
to send and receive (de)marshaled data. It is important to omguires the resolution of many design challenges. This sec-
mize these allocations since they are a significant sourcediof outlines several of the most important challenges and de-
dynamic memory management and locking overhead. Sscribes the optimization principle patterns we applied to max-
tion 2.2 describes the mechanisms TAO uses to allocate anite the efficiency, predictability, and scalability of TAO'’s
manipulate internal parameter (de)marshaling buffers. WeGIRB Core. These optimizations include minimizing context
lustrate how TAO minimizes fragmentation, data copying, asditching, synchronization, and data movementin TAO'’s con-
locking for many common application use-cases. The princisrrency model, as well as minimizing dynamic memory allo-
ple patterns of exploiting locality and optimizing for the coneations and data copies. Additional optimizations for ORB
mon case influence these optimizations. Core connection management are described in [6].

2.1 ORB Core Concurrency Model Optimiza- TAO’s leader/followers thread pool server concurrency
tions model: To alleviate the drawbacks outlined above, TAO uses
theleader/followerghread pool model shown in Figure 4. In
Motivation: A common concurrency model used in conven-

tional ORBs is to use gueue-based worker thread pod\s (SERVANTS]
4

shown in Figure 3, the components in this model include a

(SERVANTS |

5: dispatch upcall()

: dispatch upcall()

ORB CORE
LEADER FOLLOWERS

()'semaPHORE

3: release()

3: enqueue()

REQUEST

I/0 SUBSYSTEM

Figure 4: Leader/Followers Thread Pool Server Concurrency
Model

I/0 SUBSYSTEM

this model, there is no designated I/O thread. Instead, a pool
Figure 3: Server Queue-based Worker Thread Pool Conafrthreads is allocated and all threads in the pool take turns
rency Model playing the role of the I/O thread. The current leader thread in
the server proceselect s (1) on all open clientconnections.

designated 1/0 thread, a request queue, and a pool of worRgien arequestarrives, the leader thread regdsi(to an in-

threads. The I/O threagklect s (1) on the socket endpoints ternal buffer. Once the request is validated, a follower thread

(2) reads new client requests, an@)(inserts them into the in the pool is released to become the new leadga(d the

tail of the request queue. A worker thread in the pool deque@iinal leader thread dispatches the upcdjl (fter the up-

(4) the next request from the head of the queue @)diis- Call returns, the original leader thread becomes a follower and

patches it to a user-defined servant operation via an upcall Féturns to the thread pool. New requests are queued in socket
The queue-based worker thread pool model is popular ghidpoints until a thread in the pool is available to execute the

several reasons: (1) it bounds the resources dedicated€fests: _

threads, (2) it isolates the /O thread from the concurrencycOmpared with the queue-based worker thread pool, the

strategy ultimately used to process the request, (3) it is rdgader/followers thread pool model (ihproves CPU cache

tively easy to implement, (4) CORBA server applications Caﬁ\lifln!ty and eliminates dynamlg allocation and .data buffer

control thread creation and control via factory patterns [3], aRB2iNg between threadsy reading the request into buffer

(5) other concurrency mechanisms, such as thread-per-reqtiR@ge allocated on the stack of the leader or by using TSS

or thread pools with lanes [5], can be implemented using tfgMory allocations, (2jninimizes locking overheadly not
basic model. exchanging data between threads, thereby reducing thread

ﬁ){pchronization, and (3ninimizes priority inversiorsince
extra queueing is introduced by the ORB Core. When
|)nbined with real-time I/O subsystems, the leader/follower

However, the queue-based worker thread pool model is
adequate for many types of real-time systems because it

shares dynamically allocated data buffers between thr,eaﬁ_Irea d pool model can sianificantly reduce Sources of non-
which works against CPU cache affinity and limits the appli- poolr gniti y uce sou
%%termmlsm in server ORB request processing.

cability of other optimizations, such as thread-specific stora
(TSS) memory management described in Section 2.2n¢2) Empirical results: Figure 5 compares the performance of
creases locking overheatlie to the synchronization requiredhe leader/follower and queue-based worker thread pool con-
to pass data between threads, and (3) can resutitbounded currency models. These benchmarks were conducted using
priority inversionssince a FIFO request queue will queue UPAO version 1.0 on a quad-CPU 400 MHz Pentium Il Xeon,
all requests at the tail of the queue, irrespective of their priovith 1 GByte RAM, 512 Kb cache on each CPU, running
ity. Debian Linux release 2.2.5, and g++ version egcs-2.91.66.

Our benchmarks measure the total time required by each qoarameters. Likewise, CORBA servers use memory buffers to
receive requests containing marshaled parameters.

One source of memory management overhead is incurred
by dynamic memory allocation, which is problematic for real-
time ORBs. For instance, dynamic memory can fragment the
global heap, which decreases ORB predictability. Likewise,
locks used to protect a global heap from simultaneous access
by multiple threads can increase synchronization overhead and
incur priority inversion [6].

Another significant source of memory management over-
head involves excessive data copying. For instance, conven-
tional ORBs often resize their internal marshaling buffers mul-
tiple times when encoding large operation parameters. Naive
memory management implementations use a single buffer that
is resized automatically as necessary, which can cause exces-
sive data copying.

Performance Improvement

5 TAO’'s memory management optimization techniques:
TAO’s memory management strategies leverage its concur-
Figure 5: Performance of Leader/Follower vs. Queue-basgflcy strategies, which minimize thread context switching
Worker Thread Pool overhead and priority inversions by eliminating queueing
within the ORB'’s critical path. For example, on the client,
currency model to process 100,000 CORBA request M@se thread that invokes a remote operation is the same thread
sages. We varied the number of threads and the amounfgf completes the 1/0 required to send the requiest,no
application-level processing performed for each request. T{iRsueing exists within the ORB. Likewise, on the server, the
results in Figure 5 illustrate the percentage improvementtiyead that reads a request completes the upcall to user code,
performance for the leader/followers thread pool model cogsq eliminating queueing within the ORBThese optimiza-
pared with the queue-based worker thread pool model. tions are based on the principle pattern of exploiting locality
As shown in the figure, the leader/followers concurrengyd optimizing for the common case.
model outperformed the queue-based approach for all comBy avoiding thread context switches and unnecessary
binations of threads and application workload. The largestigueueing, TAO can benefit from memory management opti-
provement~2,800%, occurred for a small number of threadfiizations based othread-specific storag€TSS). TSS is a
and a small amount of work-per-request. As the number &mmon design pattern [8] for optimizing buffer management
threads and the amount of work-per-request increased the pefulti-threaded middleware. This pattern allows multiple
centage improvement decreased8%. These results illus-threads to use one logically global access point to retrieve
trate that the queue-based worker thread pool model incukf@ad-specific data without incurring locking overhead for
higher amount of overhead for memory allocation, lockingach access, which is an application of the optimization prin-
and data movement than the leader/followers model. ciple pattern of avoiding waste. TAO uses this pattern to place
Note that on a lightly loaded real-time system, using a smad memory allocators into TSS. Using a thread-specific mem-
number of threads will generally yield better throughput thasy pool eliminates the need for intra-thread allocator locks,
a higher number of threads. This difference stems from thluces fragmentation in the allocator, and helps minimize pri-
higher context switching and locking overhead incurred lyity inversion in real-time applications.
threading. As workloads increase, however, addition threadsn addition, TAO minimizes unnecessary data copying by
may help improve server throughput, particularly when th@eping a linked list of marshaling buffers. As shown in Fig-
server runs on a multi-processor. ure 6, operation arguments are marshaled into TSS allocated
buffers. The buffers are linked together to minimize data copy-

. ing. Gather-write 1/0 system calls, suchwistev , can then
2.2 Memory Management Optimizations write these buffers atomically without requiring multiple OS

Motivation: A key source of overhead and non—determinisFﬁ‘"s’ unnecessary dgta allocation, or copying. TAO's mem-
in conventional ORB Core implementations stems from iRy management design also supports special allocators, such

proper manageme.nt of memory buffers. Mem.ory buffers areézany queueing required by the ORB endsystem is performed in the OS
used by CORBA clients to send requests containing marshaledubsystem.

Threads 6

operation ([parami] , | param2),large_param |) cations is not important, as long as both experiments perform
: ST T : the same number. If there is one series of allocations where

marshal A e the global heap allocator behaves non-deterministically, it is
ORB buffers | [] [+ [+— [] not suitable for hard real-time systems.

f g N ‘ 4 Our results in Figure 7 illustrate that TAO’s TSS allocators

wiitey () oy L e Do - isolate the ORB from variations in global memory allocation

Ib|l|b|l|b strategies. In addition, this experiment shows how TSS allo-
Gather |© h ; ¢ : ¢ TSS Pool cators are more efficient than global memory allocators since
Write |~ ovEC they eliminate locking overhead. In general, reducing locking
overhead throughout an ORB is important to support real-time

Figure 6: TAO’s Internal Memory Management applications with deterministic QoS requirements [6].

3 Optimizing the POA for Real-time

as zero-copy schemes that share memory pools between user))
processes, the OS kernel, and network interfaces. Applications

Empirical results: Figure 7 compares buffer allocation tim .
for a CORBA request using thread-specific storage (TSS) I—l POA Overview
locators with that of using a global heap allocator. Thesfe OMG CORBA specification [2] standardizes several
server-side components in CORBA-compliant ORBs. These
components include the Portable Object Adapter (POA), stan-
- Clobal Allocator dard interfaces for object implementations (servants), and
—— TSS Allocator . . .

refined definitions of skeleton classes for various program-
40 -] ming languages, such as Java and C++.

These standard POA features allow application developers
to write more flexible and portable CORBA servers. They also
make it possible to (1) conserve resources by activating ob-
jects on-demand and to (2) generate so-called persistent object
references, which remain valid after the originating server pro-
cess terminates. Server applications can configure these new
20 L] features portably usingoliciesassociated with each POA.

CORBA 2.2 allows server developers to creatgtiple Ob-
ject Adapters, each with its own set of policies. Although this
is a powerful and flexible programming model, it can incur
0 200 200 600 800 1000 Significant run-time overhead because it complicates the re-

Iteration guest demultiplexing path within a server ORB. This is partic-
ularly problematic for real-time applications since naive Ob-
Figure 7: Buffer Allocation Time using TSS and Global Hegjpct Adapter implementations can substantially increase prior-
Allocators ity inversion and non-determinism [10].
,)) Optimizing a POA to support real-time applications requires
experiments were executed on a Pentium 11/450 with 256Mb, yosoution of several design challenges. This section out-
of RAM, running LynxOS 3.0, which is a real-time OS. Th§, o5 these challenges and describes the optimization princi-

test program contained a group of ORB buffer (de)allocati patterns we applied to maximize the predictability, perfor-
intermingled with a pseudo-random sequence of regu Lnce. and scalability of TAO's POA.

(de)allocations. This use-case is typical of middleware frame-
works like CORBA, where application code is called from o))
the framework and vice-versa. Both experiments perform tBe2 Optimizing POA Demultiplexing

same sequence of memory allocation requests, with one exper-

iment using a TSS allocator for the ORB buffers and the oth <Ealable and predictable POA demultiplexing is important for
using a global allocator many applications that have stringent hard real-time timing

In this experiment, we performlG ORB buffer allopations 3There is a very small variation in the TSS allocator performance; but the
and~1,000 regular data allocations. The exact series of allaration is bounded and thus the strategy is completely predictable.

50

Time (usecs)
w
o

10

constraints. Below, we outline the steps involved in demuitto operation parameters and performs the upcall to code sup-
tiplexing a client request through a CORBA server and thphied by servant developers to implement the object’'s opera-
qualitatively and quantitatively evaluate alternative demultion.

plexing strategies. The conventional deeply-layered ORB endsystem demulti-

_ . _ plexing implementation shown in Figure 8 is generally inap-
3.2.1 Overview of CORBA Request Demultiplexing propriate for high-performance and real-time applications for

A standard GIOP-compliant client request contains the idéﬂ(—e following reasons:

tity of its object and operation. An object is identified by aRecreased efficiency: Layered demultiplexing reduces per-

object key, which is amctet sequence . An operation is formance by increasing the number of internal tables that

represented as string . As shown in Figure 8, the ORBmust be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing

= o % c_Iient requests through all these layers can be expe_nsive, par-
E E g ticularly when a large number of operations appear in an IDL
= S| eee | 2| SERvANT interface and/or alarge number of servants are managed by an
e £ £ £| LAyER Object Adapter.
OPERATION Increased priority inversion and non-determinism: Lay-
(SKEL 1) (SKELZJ soe (SKELN) ered demultiplexing can cause priority inversions because
S:DEMUX TO [I 1 servant-level quality of service (QoS) information is inacces-
SKELETON l sible to the lowest-level device drivers and protocol stacks in
(SERVANTIJ (SERVANTZJ soe the 1/0 subsystem of an ORB endsystem. Therefore, an Ob-
4: DEMUX TO ject Adapter may demultiplex packets according to their FIFO

ity packets to wait for a non-deterministic period of time while

SERVANT ! order of arrival. FIFO demultiplexing can cause higher prior-
(POAO (POAZJ -"(POAN]
| . | J

3: DEMUX TO lower priority packets are demultiplexed and dispatched.

CBIEC ({OIOAr K0k) ORB Conventional implementations of CORBA incur significant

ADAPTER () LAYER gemultiplexing overhead. For instance, [10] shows that con-
2: DEMUX TO ventional ORBs spend 17% of the total server time process-

1/O HANDLE) ing demultiplexing requests. Unless this overhead is reduced

KERNEL and demultiplexing is performed predictably, ORBs cannot
LAYER provide uniform, scalable QoS guarantees to real-time appli-
cations.
The remainder of this section focuses on demultiplexing op-
Figure 8: CORBA 2.2 Logical Server Architecture timizations performed at the ORB layé., steps 3 through
6.

1: DEMUX THRU NETWORK ADAPTERS

PROTOCOL STACK

endsystem must perform the following demultiplexing tasks;
y ustp wing uttipiexing 3.2.2 Overview of Alternative Demultiplexing Strategies

Steps 1 and 2: The OS protocol stack demultiplexes the in- il din Fi d ltivlexi

coming client request multiple times, starting from the neftS | ustrat.e n Elgure 8, emu tiplexing a reques; to aser

work interface, through the data link, network, and transpgﬂnt and dispatching the de5|gnat§d servaptoperatlon involves

layers up to the user/kernel boundaeyg, the socket layer), several step's. Bglow, we q.ualltatlvel'y outline the most com-

where the data is passed to the ORB Core in a server proc8an demultiplexing strategies used in CORBA ORBs. Sec-
tion 3.2.3 then quantitatively evaluates the strategies that are

Steps 3, and 4: The ORB Core uses the addressing informappropriate for each layer in the ORB.

tion in the client’s object key to locate the appropriate PO@

and servant. POAs can be organized hierarchically. Thefbo search: This strategy searches through a table se-

fore, locating the POA that contains the designated servant ggﬁzntlally. If the number of elements in the table is small,

involve a number of demultiplexing steps through the nest%fjthe application has no stringent QOS _reqwrements, linear
. search may be an acceptable demultiplexing strategy. For real-
POA hierarchy. . o : . ; .
time applications, however, linear search is undesirable since
Step 5 and 6: The POA uses the operation name to find thiedoes not scale up efficiently or predictably to a large num-

appropriate IDL skeleton, which demarshals the request bufber of servants or operations. In this paper, we evaluate linear

search only to provide an upper-bound on worst-case perfqj-Strategy | Search Time | Comments |

mance, though some ORBs still use linear search for operatifiLinear O(n) Simple to implement
demultiplexing. Search Does not scale
Binary O(lgn) Additions/deletions

Search are expensive
Dynamic | O(1) average cas¢ Hashing overhead
Hashing O(n) worst case
E'erfect O(1) worst case | For static configurations
ashing generate collision-free
hashing functions

Binary search: Binary search is a more scalable demulti-
plexing strategy than linear search since@fgn) lookup

time is effectively constant for most applications. However
insertions and deletions can be complicated since data muls
be sorted for the binary search algorithm to work correctly

Therefore, binary search is primarily applicable for ORB op{ active O(1) worst case | For system generated
eration demultiplexing since all insertions and sorting can b Demuxing keys, add direct indexing
performed off-line by an IDL compiler. In contrast, using bi-ﬁ information to keys

nary search to demultiplex requests to servants is more prob-

lematic since servants can be inserted or removed dynamically Table 2: Summary of POA Demultiplexing Strategies
at run-time.

Dynamic hashing: Many ORBs use dynamic hashing a§.2.3 .TheSPerfor'mance of Alternative POA Demultiplex-
their Object Adapter demultiplexing strategy. Dynamic hash- Ing Strategies

ing providesO(1) performance for the average case and sUglection 3.2.1 describes the demultiplexing steps a CORBA re-
ports dynamic insertions more readily than binary seargjuest goes through before it is dispatched to a user-supplied
However, due to the potential for collisions, its worst-case &grvant method. These demultiplexing steps include finding
ecution time isO(n), which makes it inappropriate for harghe Object Adapter, the servant, and the skeleton code. This
real-time applications that require efficient and predictaligction empirically evaluates the strategies that TAO uses for
worst-case ORB behavior. Moreover, depending on the hagfeh demultiplexing step. The hardware and software config-
algorithm, dynamic hashing may incur a fairly high constapgation for this experiment is described in Section 2.1.

overhead [10]. . .
POA demultiplexing: An ORB Core must locate the POA
. , _.corresponding to an incoming client request. Figure 8 shows
Perfect hashing: If the set of operations or servants i, poas can be nested arbitrarily. Although nesting pro-
known a priori, dynamic hashing can be improved by prQ/"ldesausefulway to organize policies and namespaces hierar-

comp'utin'g a collision-freq)'erf'ect. hash. fqnction Perfect chically, the POA's nesting semantics complicate demultiplex-
Hashing is based on the optimization principle patterns of Plfig compared with the original CORBA Basic Object Adapter
computing and using specialized routines. A demultiplexirq

t

based hashi) QOA) demultiplexing [10] specification.
strategy based on perfect hashing executes in constant k%eo support ORB server applications that have deeply nested

and space. This property makes perfect hashing well-sui A hierarchies, we use active demultiplexing for the POA
for deterministic real-time systems that can be configured S%h\ultiplexing pﬁase as follows:

ically [10], i.e., if the number of objects and operations can be
determined off-line. 1. All lookups start at thootPOA.
, o 2. TheRootPOA maintains aPOA table that points to
Active _demultlplexmg. Althqugh the number and names of all the POAs in the hierarchy.
operations can be knowa priori by an IDL compiler, the) .] .
number and names of servants are generally more dynamis. Object keys include an index into tOA table to
In such cases, it is possible to use the object ID and POA identify the POA where the object was activated. TAO's
ID stored in an object key to index directly into a table man- ORB Core uses this index as the active demultiplexing
aged by an Object Adapter. This so-calbetive demultiplex- key.
ing [10] strategy provides a low-overhedd(1) lookup tech- 4. In some cases, the POA name also may be needgd,
nique that can be used throughout an Object Adapter. Active if the POA is activated on-demand. Therefore, the object
demultiplexing uses the optimization principle pattern of not reference contains both the name and the index.
being tied to reference models and passing hints in headers.
We conducted an experiment to measure the effect of in-
Table 2 summaries the demultiplexing strategies consideoedasing the POA nesting level on the time required to lookup
in the implementation of TAO’s POA. the appropriate POA in which the servant is registered. We

used a range of POA depths, 1 through 25. The results are | DemuxTable | <<forwards>> | Table_impl
shown in Figure 9. The experiment was conducted on POAs Z}

B Transient . ‘ ; ‘
. Linear Search Active Demux
O Persistent

Binary Search Dynamic Hash Perfect Hash

Latency(us)

Figure 10: TAO's Class Hierarchy for POA Active Object Map

10 Strategies
15

20
POA Depth 25

Figure 9: Effect of POA Depth on POA Demultiplexing La-
tency O Active Demux

ODynamic Demux

W Linear Demux

whose object references remain valid across different exe:
tions of a server (persistent) and those that do not (transie!
The results show that using active demultiplexing for PO.
demultiplexing provides optimal predictability and scalabilit
for both the cases, just as it does when used for servant den
tiplexing, as described next.

Latency (us)
= =
s 3

a
o

Servant demultiplexing: Once the ORB Core demulti-
plexes a client request to the right POA, this POA demult 100 Lo
plexes the request to the correct servant. The following disct 300 400
sion compares the various servant demultiplexing technigt No. of Objects
described in Section 3.2.2. TAO uses the Service Confidtigure 11: Servant Demultiplexing Latency with Alternative
rator [8], Bridge, and Strategy patterns [3] to defer the coSearch Techniques

figuration of the desired servant demultiplexing strategy until

ORSB initialization, which can be performed eithsmatically

at compile-time odynamicallyat run-time. Figure 10 illus-

trates the class hierarchy of strategies that can be configtprg r'.the setof servantsin e_ach POA for highly §tatlc SV?‘te”.‘&
into TAO'S POAS. creating perfect hash functions repeatedly during application

. . dgvelopment is tedious. We omitted binary search for similar
To evaluate the scalability of TAO, our experiments use S : L . X
X .~ Ieasonsi.e., it requires maintaining a sorted active object map
a range of servants, 1 to 1,000 by increments of 100, in e . o . .
. . every time an object is activated or deactivated. Moreover,
server. Figure 11 shows the latency for servant demultiplex- . . . i
. i N,) ince the object key is created by a POA, active demultiplex-
ing as the number of servants increases. This figure illustralts . .
. . o . : ING provides equivalent, or better, performance than perfect
that active demultiplexing is a highly predictable, Iow-latencﬁl : .
. . Mashing or binary search.
servant lookup strategy. In contrast, dynamic hashing incurs
higher constant overhead to compute the hash function. Ma@peration demultiplexing: The final step at the Object
over, its performance degrades gradually as the number of selapter layer involves demultiplexing a request to the appro-
vants increases and the number of collisions in the hash tghiate skeleton, which demarshals the request and dispatches
increase. Likewise, linear search does not scale for anyttee designated operation upcall in the servant. To measure
alistic system, since its performance degrades rapidly as diperation demultiplexing overhead, our experiments defined
number of servants increase. a range of operations, 1 through 50, in the IDL interface.
Note that we did not implement the perfect hashing strategyor ORBs like TAO that target real-time embedded systems,

for servant demultiplexing. Although it is possible to knaw operation demultiplexing must be efficient, scalable, and pre-

500

dictable. Therefore, we generate efficient operation lookt

using GPERF, which is a freely available perfect hash fun 25

tion generator we developed to automatically construct perfe

hash functions from user-supplied keyword lists. 20
Figure 12 illustrates the interaction between the TAO IDI

compiler and GPERF. When perfect hashing, linear search &

@ Perfect Hashing

OBinary Search
B Dynamic Hashing

OLinear Search

Latency (us)

TAO IDL, | PARENT SKELETON
PROCESS [600))))

SERVER

INTERFACE
OPERATIONS SKELETON
%0 40

PERFECT No. of Methods 50
CHILD HASH Figure 13: Operation Demultiplexing Latency with Alterna-
GPERF FUN . . .
PROCESS CHOR tive Search Techniques

Figure 12: Integrating TAO’s IDL Compiler and GPERF

10

20

binary search operation demultiplexing strategies are selectediOWever, certain POA operations and policies require
TAO's IDL compiler invokes GPERF as a co-process to geffOkups on active object map to be based on tee-
erate an optimized lookup strategy for operation names in I¥gNt Pointerrather than the object ID. For instance, the
interfaces. _this method on the servant can be used with the
The lookup key for this phase is the operation name, whiRh!C!T-ACTIVATION POA policy outside the context of re-

is astring defined by developers in an IDL file. HowevergueSt invocation. This operation allows a servant to be ac-
it is not permissible to modify the operatigtring name tivated implicitly if the servant is not already active. If the

to include active demultiplexing information. Active demultiServantis already active, it will return the object reference cor-

plexing cannot be used without modifying the GIOP protdcol€SPonding to the servant. , _ _
Therefore, TAO uses perfect hashing for operation demulti-Unfortunately, naive POAs active object map implementa-
plexing. Perfect hashing is well-suited for this purpose sinti@ns incur worst-case performance for servant-based lookups.
all operations names are known at compile time. Since the primary I.<ey is the object ID, servant-.based Iookups

Figure 13 plots operation demultiplexing latency as a fungeg_enerate into a Ilne_:ar search, even when active demyl'up_lex-
tion of the number of operations. This figure illustrates thid iS used for the object ID-based lookups. As shown in Fig-
perfect hashing is extremely predictable and efficient, outpHF€ 11, linear search becomes prohibitively expensive as the
forming dynamic hashing and binary search. As expected, fumber Of servz.;mts in the aCt'Ve_ObJECt map increase. This
ear search depends on the number and ordering of operatiBgrhead is particularly problematic for real-time applications,
which is not only inefficient, but also complicates worst-caS¥ch @s avionics mission computing systems, that (1) create a
schedulability analysis for real-time applications. large number of objects usinghis during their initializa-

tion phase and (2) must reinitialize rapidly to recover from

Optimizing servant-based lookups: When a CORBA re- transient power failures.
quest is dispatched by the POA to the servant, the POA uses alleviate servant-based lookup bottlenecks, we apply the
the object ID in the request header to find the servant in j§gnciple pattern of adding extra state to the POA in the form of
active object mapSection 3.2.3 describes how TAO's lookup reverse-lookupnap that associates each servant with its ob-
strategies provide efficient, predictable, and scalable mecfaat ID in O(1) average-case time. In TAO, this reverse-lookup
nisms to dispatch requests to servants based on object IDsnlip is used in conjunction with the Active Demultiplexing
particular, TAO's active demultiplexing strategy enables cofap that associates each object ID to its servant. Figure 14
stantO(1) lookup in the average- and worst-case, regardlegfows the time required to find a servant, with and without
of the number of servants in a POA's active object map. the reverse-lookup map, as the number of servants in a POA

4We are investigating modifications to the GIOP protocol for hard reellpcreases' . .
time systems that possess stringent latency and message-footprint requi_r§erVants are allocated from arbltr.ary memory locations.
ments. Since we have no control over the pointer value format, TAO

10

SKEL 1 SKEL) [eee | SKELy
PERFECT

B With Reverse Lookup HASHING ® |
B Without R L ook
Al e e (SERVANTl) (SERVANTz) ...(SERVANT N)

ACTIVE o '

I
DEMUXING (PO A 1) (PO Azj coe (POAN)
I I —

Time
(usec)

(ROOT PIOA)
ACTIVE ¢——]
DEMUXING ()

Figure 15: TAO’s Default Demultiplexing Strategies

Demultiplexing Stage | Absolute Time (us) ||

Figure 14: Benefits of Adding a Reverse-Lookup Map to the 1. Parsing object key 2
POA 2. POA demux 2
3. Servant demux 3
4. Operation demux 3
5. Parameter demarsha| operation dependent
uses a hash map for the reverse-lookup map. The value of the 6. User upcall servant dependen
servant pointer is used as the hash key. Although hash maps |7 Return value marsha| operation dependeni

do not guarante®(1) worst-case behavior, they do provide a
significant average-case performance improvementover linear Table 3: Time Spent in Each Demultiplexing Step
search.

A reverse-lookup map can be used only withtheQUE_ID
POA policy since with th&uLTIPLE _ID POA policy, a servant
may support many object IDs. This constraint is not a short-
coming since servant-based lookups are only required with e Concluding Remarks
UNIQUE_ID policy. One downside of adding a reverse-lookup
map to the POA, however, is the increased overhead of mabevelopers of real-time systems are increasingly using off-
taining an additional table in the POA. For every object acthe-shelf middleware components to lower software lifecy-
vation and deactivation, two updates are required in the acii¥e costs and decrease time-to-market. In contemporary busi-
object map: (1) to the reverse-lookup map and the (2) to thess environments, the flexibility offered by CORBA makes
active demultiplexing map used for object ID lookups. Howt an attractive middleware architecture. Since CORBA is not
ever, this additional processing does not affect the critical pﬁ@htly coupled to a particular OS or programming language,
of object ID lookups during run-time. it can be adapted readily to “niche” markets, such as real-time
embedded systems, which are not well covered by other mid-
glgware. In this sense, CORBA has an advantage over other

dleware, such as DCOM or Java RMI, since it can be inte-
ated into a wider range of platforms and languages.

The POA and ORB Core optimizations and performance re-
{ts presented in this paper support our contention that the
t-generation of standard CORBA ORBs will be well-suited
or distributed real-time systems that require efficient, scal-

e, and predictable performance. Table 4 summarizes which
AO optimizations are associated with which principle pat-
terns, as well as emphasizing that all the optimizations are

All of TAO’s optimized demultiplexing strategies describetllly compliant with the standard CORBA specification.
above are entirely compliant with the CORBA specification. Our primary focus on the TAO project has been to research,
Thus, no changes are required to the standard POA interfadegelop, and optimize policies and mechanisms that allow

specified in CORBA specification [2].

Summary of TAO’s POA demultiplexing strategies:
Based on the results of our benchmarks described above,
ure 15 summarizes the demultiplexing strategies that we hi
determined to be most appropriate for real-time applicatim%
Figure 15 shows the use of active demultiplexing for the POA
names, active demultiplexing for the servants, and perfée
hashing for the operation names. Table 3 depicts the tim
microsecondsys) spent in each activity as a TAO server pr
cesses a request on the quad-CPU 400 MHz Pentium Il X
used for the benchmarks described in Section 2.1.

11

Optimization | Principle Patterns | Compliant || [4]
Concurrency | Optimize for common case yes
Avoid gratuitous waste

Not tied to reference models

Memory Exploit Locality yes
management | Optimize for common case

Request Precompute, Avoid gratuitous waste yes
demuxing Passing hints in header [5]

Replace general-purpose operatio
with optimized special-purpose on€
Not tied to reference models

Adding extra state [6]

n n

Table 4: Degree of CORBA-compliance for Real-time Opti-
mization Principle Patterns

CORBA to support applications with hard real-time requirer
ments. In hard real-time systems, the ORB must meet de-
terministic QoS requirements to ensure proper overall sys-
tem functioning. These requirements motivate many of the
optimizations and design strategies presented in this paper.
However, the architectural design and performance optimiza-
tions in TAO’s ORB endsystem are equally applicable to manf8]
other types of real-time applications, such as telecommunica-
tions, network management, and distributed multimedia sys-
tems, which have less stringent QoS requirements.

The C++ source code for TAO and ACE is freely available[g]
at www.cs.wustl.edu/ ~schmidt/TAO.html . This
release also contains the ORB benchmarking test suites de-
scribed in this paper.

[10]
Acknowledgments

We would like to thanks our COOTS shepherd, Steve Vinoski,

whose comments helped improve this paper. In addition, we
would like to thank the COOTS Program Committee and the

IEEE Concurrency anonymous reviewers for their constructive
suggestions for improving the paper. In addition, Jeff Parsons
provided valuable proof-reading improvements.

References

[1] M. Henningand S. Vinoskifhdvanced CORBA Program-
ming With C++ Addison-Wesley Longman, 1999.

[2] Object Management Groughe Common Object Re-
quest Broker: Architecture and Specificatjch3 ed.,
June 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides;
sign Patterns: Elements of Reusable Object-Oriented
Software Reading, MA: Addison-Wesley, 1995.

12

E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom,
“Flick: A Flexible, Optimizing IDL Compiler,” inPro-
ceedings of ACM SIGPLAN '97 Conference on Program-
ming Language Design and Implementation (PLDI)
(Las Vegas, NV), ACM, June 1997.

Object Management GrouRealtime CORBA Joint Re-
vised SubmissigrOMG Document orbos/99-02-12 ed.,
March 1999.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and
A. Gokhale, “Software Architectures for Reducing Pri-
ority Inversion and Non-determinism in Real-time Ob-
ject Request BrokersJournal of Real-time Systemgo
appear 1999.

] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA

IIOP Protocol Engine for Minimal Footprint Multime-
dia Systems,Journal on Selected Areas in Communi-
cations special issue on Service Enabling Platforms for
Networked Multimedia Systepwl. 17, Sept. 1999.

D. C. Schmidt and C. Cleeland, “Applying Patterns to
Develop Extensible ORB Middleward EEE Communi-
cations Magazingvol. 37, April 1999.

Alistair Cockburn, “Prioritizing Forces in Software De-
sign,” in Pattern Languages of Program Desigd. O.
Coplien, J. Vlissides, and N. Kerth, eds.), pp. 319-333,
Reading, MA: Addison-Wesley, 1996.

A. Gokhale and D. C. Schmidt, “Measuring and Optimiz-
ing CORBA Latency and Scalability Over High-speed
Networks,” Transactions on Computingol. 47, no. 4,
1998.

