
Applying Optimization Principle Patterns to Real-time ORBs

Irfan Pyarali, Carlos O’Ryan, Douglas Schmidt, Aniruddha Gokhale�

Nanbor Wang, and Vishal Kachroo
firfan,coryan,schmidt,vishal,nanborg@cs.wustl.edu gokhale@research.bell-labs.com

Washington University Bell Labs, Lucent Technologies
Campus Box 1045 600 Mountain Ave Rm 2A-442

St. Louis, MO 63130y Murray Hill, NJ 07974

This paper will appear in the IEEE Concurrency maga-
zine’s Object-Oriented Systems track, edited by Murthy De-
varakonda, to appear 2000.

Abstract

First-generation CORBA middleware was reasonably suc-
cessful at meeting the demands of applications with best-
effort quality of service (QoS) requirements. Supporting ap-
plications with more stringent QoS requirements poses new
challenges for next-generation real-time CORBA middleware,
however. This paper provides three contributions to the de-
sign and optimization of real-time CORBA middleware. First,
we outline the challenges faced by real-time Object Request
Broker (ORB) implementers, focusing on requirements for effi-
cient, predictable, and scalable concurrency and demultiplex-
ing in CORBA’s ORB Core and Object Adapter components.
Second, we describe how TAO, our real-time CORBA imple-
mentation, addresses these challenges by applying key ORB
optimization principle patterns, which are rules for avoiding
common design and implementation problems that can de-
grade the efficiency, scalability, and predictability of complex
systems. Third, we present the results of benchmarks that eval-
uate the impact of TAO’s patterns and design strategies empir-
ically.

Our results indicate that it is possible to develop highly con-
figurable, adaptable, and standard-compliant ORBs that can
meet the QoS requirements of many real-time applications. A
key contribution of our work is to demonstrate that the abil-
ity of CORBA ORBs to support real-time systems is largely an
implementation detail. In particular, relatively few changes
are required to the standard CORBA reference model and pro-
gramming API to support real-time applications.

�Work done by the author while at Washington University.
yThis work was supported in part by Boeing, NSF grant NCR-9628218,

DARPA contract 9701516, Motorola, Siemens ZT, and Sprint.

1 Introduction

1.1 Overview of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [1]. Fig-
ure 1 illustrates the key components in the CORBA reference
model [2] that collaborate to provide this degree of portabil-
ity, interoperability, and transparency.1 Each component in the

ORB  CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD  INTERFACESTANDARD  INTERFACE STANDARD  LANGUAGE  MAPPINGSTANDARD  LANGUAGE  MAPPING

ORB-ORB-SPECIFIC  INTERFACESPECIFIC  INTERFACE STANDARD  PROTOCOLSTANDARD  PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 1: Key Components in the CORBA 2.x Reference
Model

CORBA reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client. Ide-
ally, a client can access a remote object just like a local object,
i.e., object !operation(args) . Figure 1 shows how
the underlying ORB components described below transmit re-
mote operation requests transparently from client to object.

1This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [2].

1



Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxypattern [3] and pro-
vide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [3] and demarshal the message-level representation
back into typed parameters that are meaningful to an appli-
cation.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [4].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

1.2 Challenges for Real-time CORBA

As described above, CORBA helps to improve the flexibility,
extensibility, maintainability, and reusability of distributed ap-
plications [1]. A growing class of distributed real-time ap-
plications require ORB middleware that provides stringent
quality of service (QoS) support, such as end-to-end prior-
ity preservation, hard upper bounds on latency and jitter, and
bandwidth guarantees [5]. Figure 2 depicts the layers and
components of an ORB endsystem that must be carefully de-
signed and systematically optimized to support end-to-end ap-
plication QoS requirements.

NETWORK

OS  KERNEL

OS  I/O  SUBSYSTEM

NETWORK  INTERFACES

ORB
INTERFACE

ORB
CORE

operation()

IDL
STUBS

OBJECT

ADAPTER

IDL
SKELETON

in  args

out  args + return  value

CLIENT

GIOP

OBJECT
(SERVANT)

CONCURRENCY

MODELS

TRANSPORT

PROTOCOLS

I/O
SUBSYSTEM

NETWORK

ADAPTER

PRESENTATION

LAYER

SCHEDULING,
DEMUXING, &
DISPATCHING

DATA  COPYING

&  MEMORY

ALLOCATION

CONNECTION

MANAGEMENT

OS  KERNEL

OS  I/O  SUBSYSTEM

NETWORK  INTERFACES

OBJ

REF

Figure 2: Real-time Features and Optimizations Necessary to
Meet End-to-end QoS Requirements in ORB Endsystems

The first-generation of ORBs lacked many of the features
and optimizations [6] shown in Figure 2. This situation was
not surprising, of course, since ORB developers focused ini-
tially on refining the OMG specifications and developing core
infrastructure components, such as the basic ORB commu-
nication mechanisms. In contrast, second-generation ORBs,
such as The ACE ORB (TAO) [7], have leveraged the matura-
tions of standards [5, 3], patterns [8], and QoS-enabled frame-
work components [6], to provide end-to-end QoS guarantees
to applications bothvertically(i.e., network interface$ appli-
cation layer) andhorizontally(i.e., end-to-end) by integrating
highly optimized CORBA middleware with OS I/O subsys-
tems, communication protocols, and network interfaces.

Our previous research has examined many dimensions of
high-performance and real-time ORB endsystem design, in-
cluding static and dynamic scheduling, event processing, I/O
subsystem integration, ORB Core architectures [6], systematic
benchmarking of multiple ORBs, and design patterns for ORB
extensibility [8]. This paper focuses on other previously unex-
plored dimensions in the high-performanceand real-time ORB
endsystem design space:Object Adapter and ORB Core opti-
mizations for (1) server-side concurrency, (2) memory man-

2



agement, and (3) CORBA request demultiplexing.
The optimizations used in TAO are guided by a set ofprinci-

ple patterns[9] that we have applied in prior work to optimize
middleware [7] and lower-level networking software, such as
TCP/IP. Optimization principle patterns document rules for
avoiding common design and implementation mistakes that
degrade the performance, scalability, and predictability of
complex systems. The optimization principle patterns we ap-
plied to TAO are shown in Table 1. We applied these optimiza-

Optimization Principle Pattern
1 Optimizing for the common case
2 Eliminating gratuitous waste
3 Shifting computation in time via precomputing
4 Passing hints between layers and components
5 Not being tied to reference models and implementations
6 Replacing inefficient general-purpose operations

with special-purpose ones
7 Leveraging system components by exploiting locality
8 Adding redundant state to minimize computations
9 Using efficient/predictable data structures

Table 1: Optimization Principle Patterns Applied in TAO

tion principle patterns in TAO to address the following ORB
design and implementation challenges:

Optimizing the server-side ORB concurrency model: The
concurrency model used to multi-thread an ORB has a sub-
stantial impact on its performance, predictability, and scal-
ability. However, concurrency models supported in con-
ventional ORBs, such as thread-per-request or queue-based
worker thread pools, incur excessive context switching, syn-
chronization, and data movement overhead [6]. Therefore,
TAO employs a leader/followers thread pool model described
in Section 2.1. This concurrency model requires no heap mem-
ory allocations or locks in the critical path, which is optimal
for many types of real-time applications. This optimization
is based on the principle patterns of optimizing for the com-
mon case, eliminating gratuitous waste, and not being tied to
reference implementations.

Optimizing memory management: ORBs allocate buffers
to send and receive (de)marshaled data. It is important to opti-
mize these allocations since they are a significant source of
dynamic memory management and locking overhead. Sec-
tion 2.2 describes the mechanisms TAO uses to allocate and
manipulate internal parameter (de)marshaling buffers. We il-
lustrate how TAO minimizes fragmentation, data copying, and
locking for many common application use-cases. The princi-
ple patterns of exploiting locality and optimizing for the com-
mon case influence these optimizations.

Optimizing CORBA request demultiplexing: The time an
ORB’s Object Adapter spends demultiplexing requests to tar-
get object implementations,i.e., servants, can constitute a
significant source of ORB overhead for real-time applica-
tions [10]. Section 3 describes how Object Adapter demul-
tiplexing strategies impact the scalability and predictability of
real-time ORBs. This section also illustrates how TAO’s Ob-
ject Adapter optimizations enable constant time request de-
multiplexing in the average- and worst-case,regardlessof the
number of objects or operations configured into an ORB. The
principle patterns that guide our request demultiplexing op-
timizations include precomputing, using specialized routines,
passing hints in protocol headers, adding extra state, and not
being tied to reference models.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the ORB Core architecture of CORBA ORBs
and evaluates the design and performance of ORB Core opti-
mization principle patterns used in TAO; Section 3 outlines the
Portable Object Adapter (POA) architecture of CORBA ORBs
and evaluates the design and performance of POA optimiza-
tion principle patterns used in TAO; and Section 4 provides
concluding remarks.

2 Optimizing the ORB Core for Real-
time Applications

The ORB Core is a standard component in CORBA that is re-
sponsible for connection and memory management, data trans-
fer, endpoint demultiplexing, and concurrency control [2].
An ORB Core is typically implemented as a run-time library
linked into both client and server applications. When a client
invokes an operation on an object, the ORB Core is responsi-
ble for delivering the request to the object and returning a re-
sponse, if any, to the client. For objects that reside remotely, a
CORBA-compliant ORB Core transfers requests via the Gen-
eral Inter-ORB Protocol (GIOP), which is commonly imple-
mented with the Internet Inter-ORB Protocol (IIOP) that runs
atop TCP.

Optimizing an ORB Core to support real-time applications
requires the resolution of many design challenges. This sec-
tion outlines several of the most important challenges and de-
scribes the optimization principle patterns we applied to max-
imize the efficiency, predictability, and scalability of TAO’s
ORB Core. These optimizations include minimizing context
switching, synchronization, and data movement in TAO’s con-
currency model, as well as minimizing dynamic memory allo-
cations and data copies. Additional optimizations for ORB
Core connection management are described in [6].

3



2.1 ORB Core Concurrency Model Optimiza-
tions

Motivation: A common concurrency model used in conven-
tional ORBs is to use aqueue-based worker thread pool. As
shown in Figure 3, the components in this model include a

SERVANTSSERVANTS

ORBORB    CORECORE

1: select()1: select()

II//OO    SUBSYSTEMSUBSYSTEM

5: dispatch upcall()5: dispatch upcall()

2: read()2: read()

3: enqueue()3: enqueue()

4: dequeue()4: dequeue()

II//OO
THREADTHREAD

WORKER  THREADSWORKER  THREADS

REQUESTREQUEST

QUEUEQUEUE

Figure 3: Server Queue-based Worker Thread Pool Concur-
rency Model

designated I/O thread, a request queue, and a pool of worker
threads. The I/O threadselect s (1) on the socket endpoints,
(2) reads new client requests, and (3) inserts them into the
tail of the request queue. A worker thread in the pool dequeues
(4) the next request from the head of the queue and (5) dis-
patches it to a user-defined servant operation via an upcall.

The queue-based worker thread pool model is popular for
several reasons: (1) it bounds the resources dedicated to
threads, (2) it isolates the I/O thread from the concurrency
strategy ultimately used to process the request, (3) it is rela-
tively easy to implement, (4) CORBA server applications can
control thread creation and control via factory patterns [3], and
(5) other concurrency mechanisms, such as thread-per-request
or thread pools with lanes [5], can be implemented using this
basic model.

However, the queue-based worker thread pool model is in-
adequate for many types of real-time systems because it (1)
shares dynamically allocated data buffers between threads,
which works against CPU cache affinity and limits the appli-
cability of other optimizations, such as thread-specific storage
(TSS) memory management described in Section 2.2, (2)in-
creases locking overheaddue to the synchronization required
to pass data between threads, and (3) can result inunbounded
priority inversionssince a FIFO request queue will queue up
all requests at the tail of the queue, irrespective of their prior-
ity.

TAO’s leader/followers thread pool server concurrency
model: To alleviate the drawbacks outlined above, TAO uses
the leader/followersthread pool model shown in Figure 4. In

SERVANTSSERVANTS

ORBORB    CORECORE

SEMAPHORESEMAPHORE

LEADERLEADER FOLLOWERSFOLLOWERS

1: select()1: select()
3: release()3: release()

II//OO    SUBSYSTEMSUBSYSTEM

4: dispatch upcall()4: dispatch upcall()

2: read()2: read()

Figure 4: Leader/Followers Thread Pool Server Concurrency
Model

this model, there is no designated I/O thread. Instead, a pool
of threads is allocated and all threads in the pool take turns
playing the role of the I/O thread. The current leader thread in
the server processselect s (1) on all open client connections.
When a request arrives, the leader thread reads (2) it into an in-
ternal buffer. Once the request is validated, a follower thread
in the pool is released to become the new leader (3) and the
original leader thread dispatches the upcall (4). After the up-
call returns, the original leader thread becomes a follower and
returns to the thread pool. New requests are queued in socket
endpoints until a thread in the pool is available to execute the
requests.

Compared with the queue-based worker thread pool, the
leader/followers thread pool model (1)improves CPU cache
affinity and eliminates dynamic allocation and data buffer
sharing between threadsby reading the request into buffer
space allocated on the stack of the leader or by using TSS
memory allocations, (2)minimizes locking overheadby not
exchanging data between threads, thereby reducing thread
synchronization, and (3)minimizes priority inversionsince
no extra queueing is introduced by the ORB Core. When
combined with real-time I/O subsystems, the leader/follower
thread pool model can significantly reduce sources of non-
determinism in server ORB request processing.

Empirical results: Figure 5 compares the performance of
the leader/follower and queue-based worker thread pool con-
currency models. These benchmarks were conducted using
TAO version 1.0 on a quad-CPU 400 MHz Pentium II Xeon,
with 1 GByte RAM, 512 Kb cache on each CPU, running
Debian Linux release 2.2.5, and g++ version egcs-2.91.66.

4



Our benchmarks measure the total time required by each con-

1 2 3 4
5

6

0

25

50
75

100

0

500

1000

1500

2000

2500

3000

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

Threads

Lo
ad

Figure 5: Performance of Leader/Follower vs. Queue-based
Worker Thread Pool

currency model to process 100,000 CORBA request mes-
sages. We varied the number of threads and the amount of
application-level processing performed for each request. The
results in Figure 5 illustrate the percentage improvement in
performance for the leader/followers thread pool model com-
pared with the queue-based worker thread pool model.

As shown in the figure, the leader/followers concurrency
model outperformed the queue-based approach for all com-
binations of threads and application workload. The largest im-
provement,�2,800%, occurred for a small number of threads
and a small amount of work-per-request. As the number of
threads and the amount of work-per-request increased the per-
centage improvement decreased to�8%. These results illus-
trate that the queue-based worker thread pool model incurs a
higher amount of overhead for memory allocation, locking,
and data movement than the leader/followers model.

Note that on a lightly loaded real-time system, using a small
number of threads will generally yield better throughput than
a higher number of threads. This difference stems from the
higher context switching and locking overhead incurred by
threading. As workloads increase, however, addition threads
may help improve server throughput, particularly when the
server runs on a multi-processor.

2.2 Memory Management Optimizations

Motivation: A key source of overhead and non-determinism
in conventional ORB Core implementations stems from im-
proper management of memory buffers. Memory buffers are
used by CORBA clients to send requests containing marshaled

parameters. Likewise, CORBA servers use memory buffers to
receive requests containing marshaled parameters.

One source of memory management overhead is incurred
by dynamic memory allocation, which is problematic for real-
time ORBs. For instance, dynamic memory can fragment the
global heap, which decreases ORB predictability. Likewise,
locks used to protect a global heap from simultaneous access
by multiple threads can increase synchronization overhead and
incur priority inversion [6].

Another significant source of memory management over-
head involves excessive data copying. For instance, conven-
tional ORBs often resize their internal marshaling buffers mul-
tiple times when encoding large operation parameters. Naive
memory management implementations use a single buffer that
is resized automatically as necessary, which can cause exces-
sive data copying.

TAO’s memory management optimization techniques:
TAO’s memory management strategies leverage its concur-
rency strategies, which minimize thread context switching
overhead and priority inversions by eliminating queueing
within the ORB’s critical path. For example, on the client,
the thread that invokes a remote operation is the same thread
that completes the I/O required to send the request,i.e., no
queueing exists within the ORB. Likewise, on the server, the
thread that reads a request completes the upcall to user code,
also eliminating queueing within the ORB.2 These optimiza-
tions are based on the principle pattern of exploiting locality
and optimizing for the common case.

By avoiding thread context switches and unnecessary
queueing, TAO can benefit from memory management opti-
mizations based onthread-specific storage(TSS). TSS is a
common design pattern [8] for optimizing buffer management
in multi-threaded middleware. This pattern allows multiple
threads to use one logically global access point to retrieve
thread-specific data without incurring locking overhead for
each access, which is an application of the optimization prin-
ciple pattern of avoiding waste. TAO uses this pattern to place
its memory allocators into TSS. Using a thread-specific mem-
ory pool eliminates the need for intra-thread allocator locks,
reduces fragmentation in the allocator, and helps minimize pri-
ority inversion in real-time applications.

In addition, TAO minimizes unnecessary data copying by
keeping a linked list of marshaling buffers. As shown in Fig-
ure 6, operation arguments are marshaled into TSS allocated
buffers. The buffers are linked together to minimize data copy-
ing. Gather-write I/O system calls, such aswritev , can then
write these buffers atomically without requiring multiple OS
calls, unnecessary data allocation, or copying. TAO’s mem-
ory management design also supports special allocators, such

2Any queueing required by the ORB endsystem is performed in the OS
I/O subsystem.

5



Write
Gather

marshal

writev ()
allocate

f

l
e
n

u
fn

b b
u

l
e

n
e
l

f
u
b

operation ( param1  ,  param2 , large_param  )

ORB buffers

IOVEC
TSS Pool

Figure 6: TAO’s Internal Memory Management

as zero-copy schemes that share memory pools between user
processes, the OS kernel, and network interfaces.

Empirical results: Figure 7 compares buffer allocation time
for a CORBA request using thread-specific storage (TSS) al-
locators with that of using a global heap allocator. These

0 200 400 600 800 1000
Iteration

10

20

30

40

50

T
im

e 
(u

se
cs

)

Global Allocator
TSS Allocator

Figure 7: Buffer Allocation Time using TSS and Global Heap
Allocators

experiments were executed on a Pentium II/450 with 256Mb
of RAM, running LynxOS 3.0, which is a real-time OS. The
test program contained a group of ORB buffer (de)allocations
intermingled with a pseudo-random sequence of regular
(de)allocations. This use-case is typical of middleware frame-
works like CORBA, where application code is called from
the framework and vice-versa. Both experiments perform the
same sequence of memory allocation requests, with one exper-
iment using a TSS allocator for the ORB buffers and the other
using a global allocator.

In this experiment, we perform�16 ORB buffer allocations
and�1,000 regular data allocations. The exact series of allo-

cations is not important, as long as both experiments perform
the same number. If there is one series of allocations where
the global heap allocator behaves non-deterministically, it is
not suitable for hard real-time systems.

Our results in Figure 7 illustrate that TAO’s TSS allocators
isolate the ORB from variations in global memory allocation
strategies.3 In addition, this experiment shows how TSS allo-
cators are more efficient than global memory allocators since
they eliminate locking overhead. In general, reducing locking
overhead throughout an ORB is important to support real-time
applications with deterministic QoS requirements [6].

3 Optimizing the POA for Real-time
Applications

3.1 POA Overview

The OMG CORBA specification [2] standardizes several
server-side components in CORBA-compliant ORBs. These
components include the Portable Object Adapter (POA), stan-
dard interfaces for object implementations (i.e., servants), and
refined definitions of skeleton classes for various program-
ming languages, such as Java and C++.

These standard POA features allow application developers
to write more flexible and portable CORBA servers. They also
make it possible to (1) conserve resources by activating ob-
jects on-demand and to (2) generate so-called persistent object
references, which remain valid after the originating server pro-
cess terminates. Server applications can configure these new
features portably usingpoliciesassociated with each POA.

CORBA 2.2 allows server developers to createmultipleOb-
ject Adapters, each with its own set of policies. Although this
is a powerful and flexible programming model, it can incur
significant run-time overhead because it complicates the re-
quest demultiplexing path within a server ORB. This is partic-
ularly problematic for real-time applications since naive Ob-
ject Adapter implementations can substantially increase prior-
ity inversion and non-determinism [10].

Optimizing a POA to support real-time applications requires
the resolution of several design challenges. This section out-
lines these challenges and describes the optimization princi-
ple patterns we applied to maximize the predictability, perfor-
mance, and scalability of TAO’s POA.

3.2 Optimizing POA Demultiplexing

Scalable and predictable POA demultiplexing is important for
many applications that have stringent hard real-time timing

3There is a very small variation in the TSS allocator performance; but the
variation is bounded and thus the strategy is completely predictable.

6



constraints. Below, we outline the steps involved in demul-
tiplexing a client request through a CORBA server and then
qualitatively and quantitatively evaluate alternative demulti-
plexing strategies.

3.2.1 Overview of CORBA Request Demultiplexing

A standard GIOP-compliant client request contains the iden-
tity of its object and operation. An object is identified by an
object key, which is anoctet sequence . An operation is
represented as astring . As shown in Figure 8, the ORB

O
P

E
R

A
T

IO
N
1

O
P

E
R

A
T

IO
N
2

O
P

E
R

A
T

IO
N
K

2: DEMUX  TO

    I/O  HANDLE

...

...

...POA1

OS  I/O  SUBSYSTEM

NETWORK  ADAPTERS

SERVANT 1

5: DEMUX  TO

     SKELETON

6: DISPATCH

     OPERATION

1: DEMUX  THRU

     PROTOCOL  STACK

4: DEMUX  TO

     SERVANT

ORB  COREORB  CORE

ROOT  POA
3: DEMUX  TO

     OBJECT

     ADAPTER

POA2 POAN

SERVANT N

...SKEL 1 SKEL 2 SKEL N

SERVANT 2

OS

KERNEL

LAYER

ORB

LAYER

SERVANT

LAYER

Figure 8: CORBA 2.2 Logical Server Architecture

endsystem must perform the following demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times, starting from the net-
work interface, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket layer),
where the data is passed to the ORB Core in a server process.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. There-
fore, locating the POA that contains the designated servant can
involve a number of demultiplexing steps through the nested
POA hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer

into operation parameters and performs the upcall to code sup-
plied by servant developers to implement the object’s opera-
tion.

The conventional deeply-layered ORB endsystem demulti-
plexing implementation shown in Figure 8 is generally inap-
propriate for high-performance and real-time applications for
the following reasons:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers can be expensive, par-
ticularly when a large number of operations appear in an IDL
interface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for a non-deterministic period of time while
lower priority packets are demultiplexed and dispatched.

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [10] shows that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

The remainder of this section focuses on demultiplexing op-
timizations performed at the ORB layer,i.e., steps 3 through
6.

3.2.2 Overview of Alternative Demultiplexing Strategies

As illustrated in Figure 8, demultiplexing a request to a ser-
vant and dispatching the designated servant operation involves
several steps. Below, we qualitatively outline the most com-
mon demultiplexing strategies used in CORBA ORBs. Sec-
tion 3.2.3 then quantitatively evaluates the strategies that are
appropriate for each layer in the ORB.

Linear search: This strategy searches through a table se-
quentially. If the number of elements in the table is small,
or the application has no stringent QoS requirements, linear
search may be an acceptable demultiplexing strategy. For real-
time applications, however, linear search is undesirable since
it does not scale up efficiently or predictably to a large num-
ber of servants or operations. In this paper, we evaluate linear

7



search only to provide an upper-bound on worst-case perfor-
mance, though some ORBs still use linear search for operation
demultiplexing.

Binary search: Binary search is a more scalable demulti-
plexing strategy than linear search since itsO(lg n) lookup
time is effectively constant for most applications. However,
insertions and deletions can be complicated since data must
be sorted for the binary search algorithm to work correctly.
Therefore, binary search is primarily applicable for ORB op-
eration demultiplexing since all insertions and sorting can be
performed off-line by an IDL compiler. In contrast, using bi-
nary search to demultiplex requests to servants is more prob-
lematic since servants can be inserted or removed dynamically
at run-time.

Dynamic hashing: Many ORBs use dynamic hashing as
their Object Adapter demultiplexing strategy. Dynamic hash-
ing providesO(1) performance for the average case and sup-
ports dynamic insertions more readily than binary search.
However, due to the potential for collisions, its worst-case ex-
ecution time isO(n), which makes it inappropriate for hard
real-time applications that require efficient and predictable
worst-case ORB behavior. Moreover, depending on the hash
algorithm, dynamic hashing may incur a fairly high constant
overhead [10].

Perfect hashing: If the set of operations or servants is
known a priori, dynamic hashing can be improved by pre-
computing a collision-freeperfect hash function. Perfect
Hashing is based on the optimization principle patterns of pre-
computing and using specialized routines. A demultiplexing
strategy based on perfect hashing executes in constant time
and space. This property makes perfect hashing well-suited
for deterministic real-time systems that can be configured stat-
ically [10], i.e., if the number of objects and operations can be
determined off-line.

Active demultiplexing: Although the number and names of
operations can be knowna priori by an IDL compiler, the
number and names of servants are generally more dynamic.
In such cases, it is possible to use the object ID and POA
ID stored in an object key to index directly into a table man-
aged by an Object Adapter. This so-calledactive demultiplex-
ing [10] strategy provides a low-overhead,O(1) lookup tech-
nique that can be used throughout an Object Adapter. Active
demultiplexing uses the optimization principle pattern of not
being tied to reference models and passing hints in headers.

Table 2 summaries the demultiplexing strategies considered
in the implementation of TAO’s POA.

Strategy Search Time Comments

Linear O(n) Simple to implement
Search Does not scale
Binary O(lg n) Additions/deletions
Search are expensive
Dynamic O(1) average case Hashing overhead
Hashing O(n) worst case
Perfect O(1) worst case For static configurations,
Hashing generate collision-free

hashing functions
Active O(1) worst case For system generated
Demuxing keys, add direct indexing

information to keys

Table 2: Summary of POA Demultiplexing Strategies

3.2.3 The Performance of Alternative POA Demultiplex-
ing Strategies

Section 3.2.1 describes the demultiplexing steps a CORBA re-
quest goes through before it is dispatched to a user-supplied
servant method. These demultiplexing steps include finding
the Object Adapter, the servant, and the skeleton code. This
section empirically evaluates the strategies that TAO uses for
each demultiplexing step. The hardware and software config-
uration for this experiment is described in Section 2.1.

POA demultiplexing: An ORB Core must locate the POA
corresponding to an incoming client request. Figure 8 shows
that POAs can be nested arbitrarily. Although nesting pro-
vides a useful way to organize policies and namespaces hierar-
chically, the POA’s nesting semantics complicate demultiplex-
ing compared with the original CORBA Basic Object Adapter
(BOA) demultiplexing [10] specification.

To support ORB server applications that have deeply nested
POA hierarchies, we use active demultiplexing for the POA
demultiplexing phase, as follows:

1. All lookups start at theRootPOA.

2. TheRootPOA maintains aPOA table that points to
all the POAs in the hierarchy.

3. Object keys include an index into thePOA table to
identify the POA where the object was activated. TAO’s
ORB Core uses this index as the active demultiplexing
key.

4. In some cases, the POA name also may be needed,e.g.,
if the POA is activated on-demand. Therefore, the object
reference contains both the name and the index.

We conducted an experiment to measure the effect of in-
creasing the POA nesting level on the time required to lookup
the appropriate POA in which the servant is registered. We

8



used a range of POA depths, 1 through 25. The results are
shown in Figure 9. The experiment was conducted on POAs

1
5

10
15

20
25

0
1
2
3
4
5

L
at

en
cy

(u
s)

POA Depth

Transient
Persistent

Figure 9: Effect of POA Depth on POA Demultiplexing La-
tency

whose object references remain valid across different execu-
tions of a server (persistent) and those that do not (transient).
The results show that using active demultiplexing for POA
demultiplexing provides optimal predictability and scalability
for both the cases, just as it does when used for servant demul-
tiplexing, as described next.

Servant demultiplexing: Once the ORB Core demulti-
plexes a client request to the right POA, this POA demulti-
plexes the request to the correct servant. The following discus-
sion compares the various servant demultiplexing techniques
described in Section 3.2.2. TAO uses the Service Configu-
rator [8], Bridge, and Strategy patterns [3] to defer the con-
figuration of the desired servant demultiplexing strategy until
ORB initialization, which can be performed eitherstatically
at compile-time ordynamicallyat run-time. Figure 10 illus-
trates the class hierarchy of strategies that can be configured
into TAO’s POAs.

To evaluate the scalability of TAO, our experiments used
a range of servants, 1 to 1,000 by increments of 100, in the
server. Figure 11 shows the latency for servant demultiplex-
ing as the number of servants increases. This figure illustrates
that active demultiplexing is a highly predictable, low-latency
servant lookup strategy. In contrast, dynamic hashing incurs
higher constant overhead to compute the hash function. More-
over, its performance degrades gradually as the number of ser-
vants increases and the number of collisions in the hash table
increase. Likewise, linear search does not scale for any re-
alistic system, since its performance degrades rapidly as the
number of servants increase.

Note that we did not implement the perfect hashing strategy
for servant demultiplexing. Although it is possible to knowa

DemuxTable Table_Impl

Linear Search

Binary Search Dynamic Hash Perfect Hash

Active Demux

<<forwards>>

Figure 10: TAO’s Class Hierarchy for POA Active Object Map
Strategies

1 100 200 300 400 500

0

50

100

150

200
L

at
en

cy
 (

u
s)

No. of Objects

Active Demux

Dynamic Demux

Linear Demux

Figure 11: Servant Demultiplexing Latency with Alternative
Search Techniques

priori the set of servants in each POA for highly static systems,
creating perfect hash functions repeatedly during application
development is tedious. We omitted binary search for similar
reasons,i.e., it requires maintaining a sorted active object map
every time an object is activated or deactivated. Moreover,
since the object key is created by a POA, active demultiplex-
ing provides equivalent, or better, performance than perfect
hashing or binary search.

Operation demultiplexing: The final step at the Object
Adapter layer involves demultiplexing a request to the appro-
priate skeleton, which demarshals the request and dispatches
the designated operation upcall in the servant. To measure
operation demultiplexing overhead, our experiments defined
a range of operations, 1 through 50, in the IDL interface.

For ORBs like TAO that target real-time embedded systems,
operation demultiplexing must be efficient, scalable, and pre-

9



dictable. Therefore, we generate efficient operation lookup
using GPERF, which is a freely available perfect hash func-
tion generator we developed to automatically construct perfect
hash functions from user-supplied keyword lists.

Figure 12 illustrates the interaction between the TAO IDL
compiler and GPERF. When perfect hashing, linear search and

SERVER

SKELETON

PERFECT

HASH

FUNCTIONS

SKELETON

CODE

GPERF
CHILD

PROCESS

PARENT

PROCESS
TAO IDL

INTERFACE

OPERATIONS

Figure 12: Integrating TAO’s IDL Compiler and GPERF

binary search operation demultiplexing strategies are selected,
TAO’s IDL compiler invokes GPERF as a co-process to gen-
erate an optimized lookup strategy for operation names in IDL
interfaces.

The lookup key for this phase is the operation name, which
is astring defined by developers in an IDL file. However,
it is not permissible to modify the operationstring name
to include active demultiplexing information. Active demulti-
plexing cannot be used without modifying the GIOP protocol.4

Therefore, TAO uses perfect hashing for operation demulti-
plexing. Perfect hashing is well-suited for this purpose since
all operations names are known at compile time.

Figure 13 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure illustrates that
perfect hashing is extremely predictable and efficient, outper-
forming dynamic hashing and binary search. As expected, lin-
ear search depends on the number and ordering of operations,
which is not only inefficient, but also complicates worst-case
schedulability analysis for real-time applications.

Optimizing servant-based lookups: When a CORBA re-
quest is dispatched by the POA to the servant, the POA uses
the object ID in the request header to find the servant in its
active object map. Section 3.2.3 describes how TAO’s lookup
strategies provide efficient, predictable, and scalable mecha-
nisms to dispatch requests to servants based on object IDs. In
particular, TAO’s active demultiplexing strategy enables con-
stantO(1) lookup in the average- and worst-case, regardless
of the number of servants in a POA’s active object map.

4We are investigating modifications to the GIOP protocol for hard real-
time systems that possess stringent latency and message-footprint require-
ments.

1
10

20
30

40
50

0

5

10

15

20

25

L
at

en
cy

 (
u

s)

No. of Methods

Perfect Hashing

Binary Search

Dynamic Hashing

Linear Search

Figure 13: Operation Demultiplexing Latency with Alterna-
tive Search Techniques

However, certain POA operations and policies require
lookups on active object map to be based on theser-
vant pointer rather than the object ID. For instance, the
this method on the servant can be used with theIM -

PLICIT ACTIVATION POA policy outside the context of re-
quest invocation. This operation allows a servant to be ac-
tivated implicitly if the servant is not already active. If the
servant is already active, it will return the object reference cor-
responding to the servant.

Unfortunately, naive POA’s active object map implementa-
tions incur worst-case performance for servant-based lookups.
Since the primary key is the object ID, servant-based lookups
degenerate into a linear search, even when active demultiplex-
ing is used for the object ID-based lookups. As shown in Fig-
ure 11, linear search becomes prohibitively expensive as the
number of servants in the active object map increase. This
overhead is particularly problematic for real-time applications,
such as avionics mission computing systems, that (1) create a
large number of objects usingthis during their initializa-
tion phase and (2) must reinitialize rapidly to recover from
transient power failures.

To alleviate servant-based lookup bottlenecks, we apply the
principle pattern of adding extra state to the POA in the form of
a reverse-lookupmap that associates each servant with its ob-
ject ID inO(1) average-case time. In TAO, this reverse-lookup
map is used in conjunction with the Active Demultiplexing
map that associates each object ID to its servant. Figure 14
shows the time required to find a servant, with and without
the reverse-lookup map, as the number of servants in a POA
increases.

Servants are allocated from arbitrary memory locations.
Since we have no control over the pointer value format, TAO

10



100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

Time 
(usec)

Number of Servants

With Reverse Lookup
Without Reverse Lookup

Figure 14: Benefits of Adding a Reverse-Lookup Map to the
POA

uses a hash map for the reverse-lookup map. The value of the
servant pointer is used as the hash key. Although hash maps
do not guaranteeO(1) worst-case behavior, they do provide a
significant average-case performance improvement over linear
search.

A reverse-lookup map can be used only with theUNIQUE ID

POA policy since with theMULTIPLE ID POA policy, a servant
may support many object IDs. This constraint is not a short-
coming since servant-based lookups are only required with the
UNIQUE ID policy. One downside of adding a reverse-lookup
map to the POA, however, is the increased overhead of main-
taining an additional table in the POA. For every object acti-
vation and deactivation, two updates are required in the active
object map: (1) to the reverse-lookup map and the (2) to the
active demultiplexing map used for object ID lookups. How-
ever, this additional processing does not affect the critical path
of object ID lookups during run-time.

Summary of TAO’s POA demultiplexing strategies:
Based on the results of our benchmarks described above, Fig-
ure 15 summarizes the demultiplexing strategies that we have
determined to be most appropriate for real-time applications.
Figure 15 shows the use of active demultiplexing for the POA
names, active demultiplexing for the servants, and perfect
hashing for the operation names. Table 3 depicts the time in
microseconds (�s) spent in each activity as a TAO server pro-
cesses a request on the quad-CPU 400 MHz Pentium II Xeon
used for the benchmarks described in Section 2.1.

All of TAO’s optimized demultiplexing strategies described
above are entirely compliant with the CORBA specification.
Thus, no changes are required to the standard POA interfaces

.........

.........POAPOA11

SERVANT SERVANT 11

ORB  COREORB  CORE

ROOT  POA

ACTIVE

DEMUXING

POA2 POAN

SERVANT N

...SKEL 1 SKEL 2 SKEL N

SERVANT 2

ACTIVE

DEMUXING

PERFECT
HASHING

Figure 15: TAO’s Default Demultiplexing Strategies

Demultiplexing Stage Absolute Time (�s)

1. Parsing object key 2
2. POA demux 2
3. Servant demux 3
4. Operation demux 3
5. Parameter demarshal operation dependent
6. User upcall servant dependent
7. Return value marshal operation dependent

Table 3: Time Spent in Each Demultiplexing Step

specified in CORBA specification [2].

4 Concluding Remarks

Developers of real-time systems are increasingly using off-
the-shelf middleware components to lower software lifecy-
cle costs and decrease time-to-market. In contemporary busi-
ness environments, the flexibility offered by CORBA makes
it an attractive middleware architecture. Since CORBA is not
tightly coupled to a particular OS or programming language,
it can be adapted readily to “niche” markets, such as real-time
embedded systems, which are not well covered by other mid-
dleware. In this sense, CORBA has an advantage over other
middleware, such as DCOM or Java RMI, since it can be inte-
grated into a wider range of platforms and languages.

The POA and ORB Core optimizations and performance re-
sults presented in this paper support our contention that the
next-generation of standard CORBA ORBs will be well-suited
for distributed real-time systems that require efficient, scal-
able, and predictable performance. Table 4 summarizes which
TAO optimizations are associated with which principle pat-
terns, as well as emphasizing that all the optimizations are
fully compliant with the standard CORBA specification.

Our primary focus on the TAO project has been to research,
develop, and optimize policies and mechanisms that allow

11



Optimization Principle Patterns Compliant

Concurrency Optimize for common case yes
Avoid gratuitous waste
Not tied to reference models

Memory Exploit Locality yes
management Optimize for common case
Request Precompute, Avoid gratuitous waste yes
demuxing Passing hints in header

Replace general-purpose operations
with optimized special-purpose ones
Not tied to reference models
Adding extra state

Table 4: Degree of CORBA-compliance for Real-time Opti-
mization Principle Patterns

CORBA to support applications with hard real-time require-
ments. In hard real-time systems, the ORB must meet de-
terministic QoS requirements to ensure proper overall sys-
tem functioning. These requirements motivate many of the
optimizations and design strategies presented in this paper.
However, the architectural design and performance optimiza-
tions in TAO’s ORB endsystem are equally applicable to many
other types of real-time applications, such as telecommunica-
tions, network management, and distributed multimedia sys-
tems, which have less stringent QoS requirements.

The C++ source code for TAO and ACE is freely available
at www.cs.wustl.edu/ �schmidt/TAO.html . This
release also contains the ORB benchmarking test suites de-
scribed in this paper.

Acknowledgments

We would like to thanks our COOTS shepherd, Steve Vinoski,
whose comments helped improve this paper. In addition, we
would like to thank the COOTS Program Committee and the
IEEE Concurrency anonymous reviewers for their constructive
suggestions for improving the paper. In addition, Jeff Parsons
provided valuable proof-reading improvements.

References

[1] M. Henning and S. Vinoski,Advanced CORBA Program-
ming With C++. Addison-Wesley Longman, 1999.

[2] Object Management Group,The Common Object Re-
quest Broker: Architecture and Specification, 2.3 ed.,
June 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom,
“Flick: A Flexible, Optimizing IDL Compiler,” inPro-
ceedings of ACM SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation (PLDI),
(Las Vegas, NV), ACM, June 1997.

[5] Object Management Group,Realtime CORBA Joint Re-
vised Submission, OMG Document orbos/99-02-12 ed.,
March 1999.

[6] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and
A. Gokhale, “Software Architectures for Reducing Pri-
ority Inversion and Non-determinism in Real-time Ob-
ject Request Brokers,”Journal of Real-time Systems, To
appear 1999.

[7] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA
IIOP Protocol Engine for Minimal Footprint Multime-
dia Systems,”Journal on Selected Areas in Communi-
cations special issue on Service Enabling Platforms for
Networked Multimedia Systems, vol. 17, Sept. 1999.

[8] D. C. Schmidt and C. Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware,”IEEE Communi-
cations Magazine, vol. 37, April 1999.

[9] Alistair Cockburn, “Prioritizing Forces in Software De-
sign,” in Pattern Languages of Program Design(J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), pp. 319–333,
Reading, MA: Addison-Wesley, 1996.

[10] A. Gokhale and D. C. Schmidt, “Measuring and Optimiz-
ing CORBA Latency and Scalability Over High-speed
Networks,” Transactions on Computing, vol. 47, no. 4,
1998.

12


