
Skoll: Distributed Continuous Quality Assurance

A. Memon, A. Porter, C. Yilmaz, and A. Nagarajan D. Schmidt and B. Natarajan
University of Maryland, College Park Vanderbilt University

Abstract
Quality assurance (QA) tasks, such as testing, profiling,

and performance evaluation, have historically been done
in-house on developer-generated workloads and regression
suites. Since this approach is inadequate for many systems,
tools and processes are being developed to improve soft-
ware quality by increasing user participation in the QA pro-
cess. A limitation of these approaches is that they focus on
isolated mechanisms, not on the coordination and control
policies and tools needed to make the global QA process ef-
ficient, effective, and scalable. To address these issues, we
have initiated the Skoll project, which is developing and val-
idating novel software QA processes and tools that leverage
the extensive computing resources of worldwide user com-
munities in a distributed, continuous manner to significantly
and rapidly improve software quality. This paper provides
several contributions to the study of distributed continuous
QA. First, it illustrates the structure and functionality of
a generic around-the-world, around-the-clock QA process
and describes several sophisticated tools that support this
process. Second, it describes several QA scenarios built
using these tools and process. Finally, it presents a feasibil-
ity study applying these scenarios to a 1MLOC+ software
package called ACE+TAO. While much work remains to be
done, the study suggests that the Skoll process and tools
effectively manage and control distributed, continuous QA
processes. Using Skoll we rapidly identified problems that
had taken the ACE+TAO developers substantially longer to
find and several of which had previously not been found.
Moreover, automatic analysis of QA task results often pro-
vided developers information that quickly led them to the
root cause of the problems.

1. Introduction

Emerging trends and challenges. Software quality assur-
ance (QA) tasks are typically performed in-house by devel-
opers, on developer platforms, using developer-generated
input workloads. One benefit of in-house QA is that pro-
grams can be analyzed at a fine level of detail since QA
teams have extensive knowledge of, and unrestricted ac-
cess to, the software. The shortcomings of in-house QA
efforts, however, are well-known and severe, including (1)
increased QA cost and schedule and (2) misleading results

when the test-cases, input workload, software version and
platform at the developer’s site differ from those in the
field. These problems are magnified in performance-intens-
ive software, such as that found in high-performance com-
puting systems, distributed real-time and embedded sys-
tems and the accompanying systems software (e.g., oper-
ating systems, middleware, and language processing tools).
This is because this software is increasingly subject to the
following trends:
� Demand for user-specific customization. Since
performance-intensive software pushes the limits of tech-
nology, it must be optimized for particular run-time contexts
and application requirements. One-size-fits-all software so-
lutions often have unacceptable performance.
� Severe cost and time-to-market pressures. Global com-
petition and market deregulation are shrinking budgets for
the development and QA of software in-house. In partic-
ular, customers are often unwilling to pay for customized
software. The result is that limited resources are avail-
able for the development and QA of highly customizable
performance-intensive software.
� Distributed and evolution-oriented development pro-
cesses. Today’s development processes are distributed
across geographical locations, time zones, and business or-
ganizations. This is done to reduce cycle time by having
developers work simultaneously, with minimal direct inter-
developer coordination. But it can also increase software
churn rates, which in turn increases the need to detect, di-
agnose, and fix faulty changes quickly. The same is true for
evolution-oriented processes, where many small increments
are routinely added to the base system.

These three trends present new challenges to developers.
One major new challenge is the explosion of the software
configuration space. To support customizations demanded
by users, performance-intensive software must run on many
hardware and OS platforms and typically have many op-
tions to configure the system at compile- and/or run-time.
For example, web servers (e.g., Apache), object request bro-
kers (e.g., TAO), and databases (e.g., Oracle) have dozen or
hundreds of options. While this flexibility promotes cus-
tomization, it creates many potential system configurations,
each of which deserves extensive QA.

When increasing configuration space is coupled with
shrinking software development resources, it becomes in-

1

feasible to handle all QA in-house. For instance, developers
may not have access to all the hardware, OS, and compiler
platforms on which their software will run. In this envi-
ronment developers are forced to release software with con-
figurations that have not been subjected to extensive QA.
Moreover, the combination of an enormous configuration
space and tight development constraints mean that develop-
ers must make design and optimization decisions without
precise knowledge of the consequences in fielded systems.
Solution approach: distributed continuous QA. To ad-
dress these challenges, we are conducting a collaborative
research project called Skoll. Skoll is a general, continu-
ous, feedback-driven process, supported by automated tools
to carry out around-the-world, around-the-clock QA. Our
approach divides QA processes into multiple subtasks that
are intelligently distributed to client machines around the
world, executed by them, and their results returned to cen-
tral collection sites where they are fused together to com-
plete the overall QA process.

Creating Skoll presented challenges for which we have
created the following novel solutions, many of which are
demonstrated in the feasibility studies of Section 4:� Modeling the QA subtask configuration space: We for-
mally model aspects of the QA subtasks and underlying
software that will be varied under control of the distributed
process. This includes not only process and software con-
figuration parameters, but also constraints among them. To
do this, we developed a general representation with con-
figuration options, option settings, and inter-option con-
straints. We also developed the notion of temporary inter-
option constraints to help us reduce configuration space size
artificially in certain situations.� Exploring the configuration space: The configuration
space of a QA process for a performance-intensive infras-
tructure system can be quite large. Even with a large pool
of user-supplied resources, brute-force approaches may be
infeasible or simply undesirable. Consequently, we devel-
oped techniques to explore/search the configuration space.
We developed a general search strategy based on uniform
sampling of the configuration space and supplemented it
with customized adaptation strategies to allow goal-driven
process adaptation.� Feedback: As subtasks are scheduled and executed in
parallel at several sites, feedback (subtask results) is col-
lected. QA processes can analyze this feedback and modify
their behavior based on it. We have developed techniques
for automatically characterizing such feedback, visualizing
it, and adapting the QA process.� Resource availability: Since QA subtasks are assigned
to remote machines, volunteered by end users, we cannot
know when resources will be available. Moreover, some
volunteers may wish to maintain some control of how their
resources will be used; for example limiting which version
of a system can undergo QA on their resources. In such

cases, it is impossible to pre-compute QA subtask sched-
ules. Therefore, we have developed scheduling techniques
that adapt based on a variety of factors including resource
availability.� Process execution framework: We developed a new pro-
cess, called the Skoll process, that provides a flexible frame-
work to integrate the above mentioned QA techniques and
tools.
Paper organization. In the rest of the paper, we present in
more detail, the Skoll process and infrastructure, QA pro-
cesses built using Skoll, a feasibility study applying Skoll
to the QA of two large software projects, and since Skoll
is a new and evolving project, discuss directions for future
work.

2. Related Work

In this section we briefly discuss some current efforts in
the area of distributed QA assurance and describe their ma-
jor limitations on which Skoll tries to improve.

Online crash reporting systems, such as the Netscape
Quality Feedback Agent and Microsoft XP Error Report-
ing, gather system state whenever a system crashes. This
simplifies user participation in QA by automating problem
reporting. Several other with distributed in-the-field tech-
niques [7, 2, 8, 6] have been developed as well. Each of
these approaches however has a very limited scope, per-
forming only a very small fraction of typical QA activities.

Many well-known projects, such as GNU GCC, CPAN,
Mozilla, VTK (The Visualization Toolkit), and ACE+TAO,
distribute test suites that end-users run to evaluate installa-
tion success. Users can, but quite often don’t, return the test
results to the developers. One limitation of this approach
is that the process is undocumented. Developers have no
record of what was tested or how it was tested or what the
results were. We believe that a great deal of useful informa-
tion is lost this way.

Auto-build scoreboards are distributed testing tools that
allow software to be built/tested at multiple internal/external
sites on various platforms (e.g., hardware, operating sys-
tems, and compilers). The Mozilla and ACE+TAO projects
use these systems to track build results across various plat-
forms. Bugs are reported via the Bugzilla issue tracking
system, which provides inter-bug dependency recording,
advanced reporting capabilities, extensive configurability,
and integration with automated software configuration man-
agement systems, such as CVS. While these systems help
with documenting the QA process, the decision of what to
test is left to end users. Unless developers can control at
least some aspects of the QA process, important gaps and
inefficiencies creep in.

The VTK project uses an auto-build scoreboard system
called Dart [1]. Dart supports a continuous build and test

2

process that can start whenever repository checkins occur.
Users install a Dart client on their platform and use this
client to automatically check out software from a remote
repository, build it, execute the tests, and submit the results
to the Dart server. One major limitation of this system is
that the underlying QA process is hardwired. Other QA pro-
cesses or other implementations of the build and test process
are not supported easily. Once started, the process doesn’t
change. It cannot exploit incoming results nor avoid newly
discovered problems, which leads to wasted resources and
lost improvement opportunities.

Although existing distributed QA approaches help to im-
prove the quality and performance of software, they have
significant limitations. Many of these systems have limited
scope – e.g., they can be used only when software crashes.
General QA support needs to be much broader. Another
problem is that many of these systems fail to document the
QA activities that have been performed. It is therefore usu-
ally impossible to determine the full extent of (or gaps in)
the QA process.These systems give developers little or no
control over the QA process. Typically users decide (often
by default) what aspects of the system they will examine; so
some configurations are evaluated multiple times, others not
at all. Finally, these approaches do not automatically adapt
to or learn from the test results obtained by other users. The
result is an opaque, inefficient, and ad hoc QA processes.

3. The Skoll Project

To address the shortcomings of current QA approaches,
the Skoll project is developing and empirically evaluating
processes, methods, and support tools for distributed, con-
tinuous QA. For our research, a distributed continuous QA
process is one in which software quality and performance
are improved – iteratively, opportunistically, and efficiently
– around-the-clock in multiple, geographically distributed
locations. To support such processes, we have implemented
a general set of components and services that we call the
Skoll infrastructure. We used this infrastructure to proto-
type some distributed, continuous QA processes for highly
configurable, software program families. We have also eval-
uated this approach on a large-scale software project.

At a high level, Skoll processes resemble certain tradi-
tional distributed computations. General tasks are decom-
posed into many subtasks. Subtasks are then allocated to
computing nodes, where they are executed. As subtasks
run, control logic may dynamically steer the global com-
putation for reasons of performance and correctness.

In Skoll, tasks are QA activities, such as testing, cap-
turing usage patterns, and measuring system performance.
They are broken down into subtasks, which perform part of
the overall task. For example, a subtask might test a subset
of system functions, monitor a subgroup of users, or mea-

sure performance under one particular workload character-
ization. The subtasks in one feasibility study in Section 4
do functional testing for a single, specific system config-
uration. The global process, by executing the right set of
subtasks, does functional testing that “covers” the space of
system configurations.

In Skoll, computing nodes are machines volunteered
by end users. These nodes request work from a server
when they decide they are available. Ultimately, we en-
vision Skoll processes involving geographically decentral-
ized computing pools made up of thousands of machines
provided by users, developers, and companies around the
world. This environment will allow large amounts of QA to
be performed at fielded sites using fielded resources, giving
developers unprecedented access to user resources, environ-
ments, and usage patterns.

Skoll’s default behavior is to allocate subtasks upon re-
quest. No effort is made to optimize or adapt the global pro-
cess based on subtask results. When more dynamic behav-
ior is desired, process designers must write programs called
“adaptation strategies.” These programs monitor the global
process state, analyze it, and modify how Skoll makes fu-
ture subtask assignments. Here the goal is to steer the global
process in a way that improves process performance (where
improvement criteria are application specific).

The remainder of this section describes the components,
services and interactions within the Skoll infrastructure and
provides a sample scenario showing how they can be used
to implement Skoll processes.

3.1. The Skoll Infrastructure

Skoll processes are based on a client/server model,
in which clients request job configurations (QA subtask
scripts) from a server that determines which subtask to al-
locate, bundles up all necessary scripts and artifacts, and
sends them to the client. To realize such a process how-
ever involves numerous decisions, e.g.; how tasks will be
decomposed into subtasks; on what basis and in what or-
der subtasks will they be allocated, how will they be imple-
mented so they run on a very wide set of client platforms;
how will results be merged together and interpreted, if and
how should the process adapt to incoming results, and how
will the results of the overall process be summarized and
communicated to software developers. To support these is-
sues we have developed several components and services
for use by Skoll process designers.
Configuration Space Model. A cornerstone of our ap-
proach is a formal model of a QA process’ configuration
space. The model captures all valid configurations for QA
subtasks. This information is used in planning the global
QA process, for adapting the process dynamically, and to
aid in interpreting results.

3

Option Settings Interpretation
COMPILER

�
gcc2.96, SUNCC5 1 � compiler

AMI
�

1 = Yes, 0 = No � Enable Feature
CORBA MSG

�
1 = Yes, 0 = No � Enable Feature

run(T)
�

1 = True, 0 = False � Test T runnable
ORBCollocation

�
global, per-orb, NO � runtime control

Constraints
AMI = 1 � CORBA MSG = 1
run(Multiple/run test.pl) = 1 � (Compiler = SUNCC5 1)

Table 1. Some Options and Constraints.

In our model, subtasks are generic processes parameter-
ized by configuration options. Configuration options cap-
ture information (1) that will be varied under process con-
trol or (2) that is needed by the software to build and execute
properly. Such options are application specific, but could
include workload parameters, operating system, library im-
plementations, compiler flags, run-time optimization con-
trols, etc. Currently, each option must take its value from a
discrete number of settings.

Defining a subtask then involves mapping each option to
one of its allowable settings. We call this mapping a con-
figuration and represent it as a set �����
	���
�	�� , ��������
���� , ����� ,
��������
������ , where each � � is a configuration option and
��
is its value, drawn from the allowable settings of � � .

In practice not all configurations make sense (e.g., fea-
ture X not supported on operating system Y). We therefore
allow inter-option constraints that limit the setting of one
option based on the setting of another. We represent con-
straints as (! �#" !%$), meaning “if predicate ! � evaluates
to &('*)�+ , then predicate ! $ must evaluate to &('*)�+ .” A
predicate !-, can be of the form . , /-. , .10#2 , .43 2 , or sim-
ply � �65
 � , where . , 2 are predicates, � � is an option and

 � is one of its allowable values. A valid configuration is a
configuration that violates no inter-option constraints.

Table 1 presents some sample options and constraints
taken from the feasibility studies in Section 4. The sample
options refer to things like the end user’s compiler (COM-
PILER); whether to compile in certain features (AMI, CO-
RBA MSG); whether certain test cases are runnable in a
given configuration (run(T)), and at what level to set a
run-time optimization (ORBCollocation). One sample con-
straint shows that AMI support requires the presence of
CORBA messaging services. The other shows that a test
can only run on a platform that uses the SUN CC compiler
version 5.1.
Intelligent Steering Agent. A distinguishing feature of
Skoll is its use of an intelligent steering agent (ISA) to con-
trol the global QA process. The ISA controls the global
process by deciding which valid configuration to allocate
to each incoming Skoll client request. Once the valid con-
figuration is chosen, the ISA packages the corresponding

QA subtask implementation, consisting of the application
code, configuration parameters, build instructions, and QA-
specific code (e.g., regression/performance tests) associated
with a software project. This package is called a job config-
uration.

Skoll’s formal configuration model lets us cast config-
uration selection and implementation as a planning prob-
lem. This problem requires automated constraint solving,
scheduling, and learning. Consequently, we implemented
the ISA using planning technology.

Given an initial state, a goal state, a set of operators
(specified in terms of parameterized preconditions and ef-
fects on variables), and a set of objects, the ISA planner
(currently Blackbox [5]) returns a set of actions (or com-
mands) with ordering constraints that achieve the goal. In
Skoll, the initial state is the base subtask configuration. The
base subtask configuration includes any option settings that
the ISA must not modify (e.g., the client machine’s OS).
The goal state describes the desired configuration, consis-
tent with the option settings specified by the end user. The
operators encode all the constraints, including those result-
ing from previously run subtasks. The output is the job con-
figuration.

For many planning problems, a single plan is sufficient.
For Skoll, however, we need to generate many or even all
acceptable plans (i.e., subtask implementations). We there-
fore modified the Blackbox planner so that it can iteratively
generate all acceptable plans. We also added a parameter
to the ISA by which each acceptable plan is generated ex-
actly once (random selection without replacement) or zero
or more times (random selection with replacement).

Going back to our sample options in Table 1, if the
process designer wants to ensure that all software config-
urations compile cleanly, he/she would use a configuration
model without the test case- or runtime-specific options and
would instruct the ISA to generate plans using the random
selection without replacement strategy (each valid config-
uration is generated exactly once). If on the other hand
the task were to capture performance measures on a wide
variety of user machines, then the process designer might
use all available options and have the ISA use the random
selection with replacement strategy (which could generate
specific valid configurations more than once).
Adaptation Strategies As QA subtasks are performed,
their results are returned to the ISA. By default, the ISA ig-
nores these results. Often, however, we want to learn from
incoming results. For example, when some configurations
prove to be faulty, why not refocus resources on other unex-
plored parts of the configuration space. When such dynamic
behavior is desired, process designers develop customized
adaptation strategies, that monitor the global process state,
analyze it, and use the information to modify future subtask
assignments in ways that improve process performance.

In Skoll, adaptation strategies are independent programs

4

Figure 1. Nearest neighbor strategy.

executed by the Skoll server when subtask results arrive.
This loosely couples Skoll and the adaptation strategies and
allows us to develop, add, and remove adaptation strategies
at will. As they must process subtask results, adaptation
strategies must be tailored for each QA process. Next we
describe three general adaptation strategies used in later fea-
sibility studies. Other strategies are discussed in Section 5.

� Nearest neighbor: Suppose a test reports a configura-
tion in which test cases are failing. Developers might want
to quickly identify other similar configurations that pass or
fail. The nearest neighbor strategy is designed to generate
such configurations. For example, suppose that a test on a
configuration space with three binary options fails in con-
figuration �879�:7;�<7=� . The nearest neighbor search strategy
marks that configuration as failed and records its failure in-
formation. It then schedules for immediate testing all valid
configurations that differ from the failed one in the value
of exactly one option: �?>��<7;�:7;� , �@7;��>A�:7;� and �879�:7;��>B� , i.e.,
all distance one neighbors. This process continues recur-
sively. Figure 1 depicts the nearest neighbor strategy on a
configuration space taken from our feasibility study. Nodes
represent valid configurations; edges connect distance one
neighbors. The dotted ellipse encircles configurations that
failed for the same reason. The arrow indicates an initial
failing node. Once it fails, its neighbors are tested; they fail
so their neighbors are tested and so on. The process stops
when nodes outside the ellipse are tested (since they will
pass or fail for a different reason). As we show in the feasi-
bility study, this approach quickly identifies whether similar
configurations pass or fail. This information is then used by
the automatic characterization service described later in this
section.

� Temporary constraints: Suppose that a software in-
correctly fails to build whenever configuration options AMI
= 0 and CORBA MSG = 1. Developers, however, are
unable to fix the bug immediately. Therefore, we may
want prevent further selection of job configurations with
these parameters until the problem is fixed. This adapta-
tion strategy therefore would insert temporary constraints,

such as CORBA MSG = 1 " AMI = 1 into the configura-
tion model. This excludes configurations with the offending
option settings from further exploration. Once the problem
that prompted the temporary constraints has been fixed, the
constraints are removed, thus allowing normal ISA execu-
tion. In fact, as we mention in our feasibility study (Sec-
tion 4.2), we found these temporary constraints could be
used to spawn new Skoll processes that test patches only on
the previously failing configurations.� Terminate/modify subtasks: Suppose a test program
is run at many user sites, failing continuously. At some
point, continuing to run that test program provides little new
information. Time and resources might be better spent run-
ning some previously unexecuted test program. This adap-
tation strategy monitors for such situations and, depending
on how it is implemented, can modify subtask characteris-
tics or even terminate the global process.
Automatic characterization of subtask results. Since QA
processes can unfold over long periods of time, we often
want to interpret subtask results incrementally. This is use-
ful both for adapting the process and for providing develop-
ers with feedback. Given the amount and complexity of the
data, this process must be automated.

To this end we have included implementations of Clas-
sification Tree Analysis (CTA) [3] in the Skoll infrastruc-
ture. CTA approaches are based on algorithms that take a
set of objects, C � , each of which is described by a set of
features, D�� $, and a class assignment,
E� . Typically, class
assignments are binary and categorical (e.g., pass or fail,
yes or no), but approaches exist for multi-valued categori-
cal, integer, and real valued class assignments. CTA’s out-
put is a tree-based model that predicts object class assign-
ment based on the values of a subset of object features.
Nodes contain predicates; when the predicate is true the
right branch is followed; otherwise the left. Note the other
approaches (beyond the scope of this paper) such as regres-
sion modeling, pattern recognition, neural networks, each
with their own strengths and weaknesses, could be used in-
stead of CTA.

We used CTA in our feasibility studies, for example, to
determine which configuration option and their specific set-
tings best explained observed test case failures. Figure 2
shows a classification tree model that characterizes 3 dif-
ferent compilation failures and 1 success condition for the
results of 89 different configurations. The figure shows,
among other things, that compilation fails with error mes-
sage “ERR-1”, whenever CORBA MSG is disabled and
AMI is enabled. It is also possible and often preferable to
model different failure classes individually.
Visualization. To help developers organize and visual-
ize large amounts of process results, we employ web-
based scoreboards that use XML to display job configu-
ration results. The server scoreboard manager provides a
web-based query form allowing developers to browse Skoll

5

OK
 ERR-2

ERR-3

CORBA_MSG = 0

POLLER = 0

CALLBACK = 0

OK

ERR-1

AMI = 0

Figure 2. Sample classification tree

databases for the results of particular job configurations.
Subtask Execution. This section presents several services
aimed at implementing QA subtasks that will run on client
machines.

End users register with the Skoll server registration man-
ager via a web-based registration form, characterizing their
client platforms. This information is used by the ISA when
it selects and generates job configurations to tailor generic
subtask implementation code. For example, some tailoring
is for client-specific issues such as operating system type or
compiler; some for task-specific issues such as identifying
the location of the project’s CVS server.

After a registration form has been submitted, the server
registration manager returns a unique ID and configuration
template to the end user. The configuration template con-
tains any user-specific information that may not be modi-
fied by the ISA when generating job configurations. The
template can be modified by end users who wish to restrict
which job configurations they will accept from the Skoll
server.

The end user also receives a Skoll client which period-
ically or on-demand requests job configurations from the
server. The server responds with a job configuration that
has been customized by the ISA using the techniques de-
scribed in Section 3.1.

For each job configuration, the Skoll client logs its ac-
tivities. When QA subtasks complete, the log files are sent
to the Skoll server, where they are stored and processed by
adaptation strategies.

3.2. Skoll in Action

At a high level, the Skoll process runs as follows:
1. Developers create the configuration model and adapta-
tion strategies. The ISA automatically translates the model
into planning operators. Developers create the generic QA
subtask code that will be specialized when creating actual
job configurations.
2. A user requests Skoll client software via the registration
process described earlier. The user receives the Skoll client
and a configuration template. If users wish to temporarily
change configuration settings or constrain specific options
they do so by modifying the configuration template.

3. The client periodically (or on-demand) requests a job
configuration from a server.
4. The server queries its databases and the user-provided
configuration template to determine which configuration
option settings are fixed for that user and which must be
set by the ISA. It then packages this information as a plan-
ning goal and queries the ISA. The ISA generates a plan,
creates the job configuration and returns it to the client.
5. The client invokes the job configuration and returns the
results to the server.
6. The server examines these results and invokes all adap-
tation strategies, which update the ISA operators to adapt
the global process. Currently, adaptation strategies can
make use of built-in statistical analyses that help develop-
ers quickly identify large subspaces in which QA subtasks
have failed (or performed poorly).
7. Periodically and when prompted by developers the server
prepares a virtual scoreboard, which summarizes subtask
results and the current state of the overall process.

4. Feasibility Study

The Skoll project’s goals are ambitious. To help achieve
them, we conducted a large feasibility study using the
ACE+TAO projects. ACE + TAO are large middleware
projects for performance-intensive distributed software ap-
plications. ACE [9] implements core concurrency and dis-
tribution services. TAO is a CORBA ORB built on top of
ACE [10].

We chose these projects for several reasons. First,
they share the key characteristics common to performance-
intensive infrastructure software. They have a 1MLOC+
source code base and substantial test code. ACE+TAO run
on dozens of OS and compiler platforms and are highly con-
figurable, with hundreds of options supporting a wide vari-
ety of program families. ACE+TAO are maintained by a
geographically distributed core team of F 140 developers.
Their code base is dynamically changing and growing with
400+ CVS repository commits per week on the avg. Cur-
rently, the ACE+TAO developers run the regression tests
continuously on 100+ workstations and servers at a dozen
sites around the world. The interval between build/test runs
ranges from 3 hours on quad-CPU Linux machines to 12-18
hours on less powerful machines.

The second reason is that, like many performance in-
tensive infrastructure systems, ACE+TAO developers can-
not test all possible platform and OS combinations be-
cause there simply are not enough people, OS/compiler,
platforms, CPU cycles, or disk space to run the hundreds
of ACE+TAO regression tests in a timely manner. More-
over, since ACE+TAO are designed for ease of subset-
ting, several hundred orthogonal features/options can be
enabled/disabled for application-specific use-cases. Thus,

6

number of possible configurations is far beyond the re-
sources of the core ACE+TAO development team.

We conjecture the Skoll infrastructure is easy to use and
can implement a variety of QA processes. We also con-
jecture that our prototype Skoll QA process is superior to
ACE+TAO’s ad hoc QA processes as it (1) automatically
manages and coordinates the QA process, (2) detects prob-
lems more quickly on the average, and (3) automatically
characterizes subtask results, directing developers to poten-
tial causes of a given problem. This section describes a fea-
sibility study that addresses these conjectures. We focus on
several scenarios, testing ACE+TAO for different purposes
across its numerous configurations. We used three QA task
scenarios applied to a specific version of ACE+TAO: (1)
checking for clean compilation, (2) testing with default run-
time options, and (3) testing with configurable runtime op-
tions. In addition, we enabled automatic characterization to
give ACE+TAO developers concise descriptions of failing
subspaces. As we identified problems with the ACE+TAO,
we time-stamped them and recorded pertinent information.
This allowed us to qualitatively compare Skoll’s perfor-
mance to that of ACE+TAO’s ad hoc process.

We installed Skoll clients and one Skoll server across
10+ workstations distributed throughout computer science
labs at the University of Maryland. All Skoll clients ran
Linux 2.4.9-3 and used gcc 2.96 as their compiler. We used
TAO v1.2.3 with ACE v5.2.3 as the subject software.

4.1. Setting up the Skoll Infrastructure

We implemented all the components of the Skoll infras-
tructure described in Section 3.1.
Configuration model: We developed configuration mod-
els for each scenario. The Skoll system automatically trans-
lated the models into the ISA’s planning language.
ISA: We configured the ISA as a stand-alone process run-
ning the Blackbox planner and using random sampling
without replacement.
Adaptation strategies: We implemented the nearest neigh-
bor, temporary constraints, and terminate/modify subtasks
adaptation strategies. We used temporary constraints and
terminate/modify subtasks adaptation in each scenario, but
used nearest neighbor only when the valid subtask configu-
ration space was considered large. In practice, process de-
signers determine the criteria for deciding when a configu-
ration space is large or small.
Automatic Characterization: We developed scripts that
prepare subtask results and feed them into the CTA algo-
rithms. We also wrote scripts that used the classification
tree models as input to visualizations.
Subtask execution: We developed portable Perl scripts to
be run by Skoll clients. These scripts request new QA job
configurations, receive, parse, and execute the jobs, and re-
turn results to the server. We also developed web regis-

tration forms and Skoll client software. Skoll clients are
initialized with the registration information, but this infor-
mation is rechecked on the client machine before sending
a job request. We developed MySQL database schemas to
manage user data and test results.

4.2. Study 1: Clean Compilation

ACE+TAO allow many features to be compiled in or out
of the system. Features are often left out, for example, to re-
duce memory footprint in embedded systems. The QA task
for this study was to determine whether each ACE+TAO
feature combination compiled without error. This is im-
portant for systems distributed in source code form, since
any valid feature combination should compile. Unexpected
build failures not only frustrate users, but also waste a lot
of time. In fact, compiling the 1MLOC+ took us roughly 4
hours on a 933 MHz Pentium III with 400 Mbytes of RAM.
Configuration model. The feature interaction model for
ACE+TAO is undocumented, so we built our initial con-
figuration model bottom-up. First, we analyzed the source
and interviewed several senior ACE+TAO developers. We
selected a subset of 17 binary-valued compile-time options
that controls build time inclusion of various CORBA fea-
tures. We also identified 35 inter-option constraints. One
constraint is (AMI = 1 " MIN CORBA = 0). This means
that asynchronous method invocation (AMI) is not sup-
ported by the minimal CORBA implementation. This con-
figuration space has over 82,000 valid configurations.
Study execution. Because the configuration was large, we
used the nearest neighbor adaptation strategy. We also con-
figured the ISA to use random sampling replacement with-
out replacement since we felt that one observation per valid
configuration was sufficient.

After testing F 500 configurations, the terminate/modify
adaptation strategy signaled that every configuration had
failed to compile. We terminated the process and discussed
the results with ACE + TAO developers. The problem lay
in 7 options providing fine-grained control over CORBA
messaging policies. It turned out that the code had been
modified and moved to another library and developers (and
users) failed to establish if these options still worked.

Based on this feedback ACE+TAO developers chose to
control these policies at link-time, not at compile time. We
therefore refined our configuration model by removing the
options and corresponding constraints. Since these options
appeared in many constraints – and because the remaining
constraints are tightly coupled (e.g., were of the form (A=1
" B=1) and (B=1 " C=1)) – removing them simplified the
configuration model considerably. As a result, the configu-
ration model contained 10 options and 7 constraints, yield-
ing only 89 valid configurations. Of course, this was just a
small subset of the total, so the actual configuration is much
larger than 89.

7

We then continued the study using the new configura-
tion model and removing the nearest neighbor adaptation
strategy (since now we could easily build all valid config-
urations). Of the 89 valid configurations only 29 compiled
without errors. For the 60 configurations that did not build,
automatic characterization helped to clarify the conditions
in which they failed.
Results and observations. Beyond identifying failures, in
several cases, automatic characterization provided concise,
statistically significant descriptions of the failing configura-
tion subspace. Below we describe the failure, present the
automatically generated characterization, and discuss the
action taken by ACE+TAO developers.

The ACE+TAO build failed at line 630 in
userorbconf.h (32 configurations) whenever AMI = 1
and CORBA MSG = 0. ACE+TAO developers determined
that the constraint AMI = 1 " CORBA MSG = 1 was
missing from the model. Therefore, we refined the model
by adding this constraint.

The ACE+TAO build also failed line 38 in Asynch_
Reply_Dispatcher.h (8 configurations) whenever
CALLBACK = 0 and POLLER = 1. Since this configura-
tion should be legal, this was determined to be a previously
undiscovered bug. Until the bug could be fixed, we tem-
porarily added a new constraint POLLER = 1 " CALL-
BACK = 1.

The ACE+TAO build failed at line 137 in RT_
ORBInitializer.cpp (20 configurations) whenever
CORBA MSG = 0. The problem was due to a #include
statement, missing because it was conditionally included
(via a #define block) only when CORBA MSG = 1.
Lessons learned. We found that even ACE+TAO develop-
ers do not completely understand the configuration model
for their very complex system. In fact, they provided us
with both erroneous and missing model constraints. Model
building is therefore an iterative process. Using Skoll we
quickly identified coding errors (some previously undiscov-
ered) that prevented the software from compiling in cer-
tain configurations. We learned that the temporary con-
straints and terminate/modify subtasks adaptation strategies
performed well, directing the global process towards useful
activities, rather than wasting effort on configurations that
would surely fail without providing any new information.

ACE+TAO developers also told us that automatic char-
acterization was useful to them because it greatly narrowed
down the issues they had to examine in tracking down the
root cause of the failure. We also learned that as fixes
to problems were proposed, we could easily test them by
spawning a new Skoll process based on the previously in-
serted temporary constraints. That is, the new Skoll process
tested the patched software only for those configuration that
had failed previously.

Before moving on to the next study we fixed those errors
we could. We worked around the more complex ones by

leaving the appropriate temporary constraints in the second
study’s configuration model.

4.3. Study 2: Testing with Default Runtime Options

The QA task for the second study was to determine
whether each configuration would run the ACE+TAO re-
gression tests without error with the system’s default run-
time options. This activity is important for systems that
distribute tests to run at installation time because it is in-
tended to give the user confidence that he or she has cor-
rectly installed the system. To perform this task, users com-
pile ACE+TAO, compile the tests, and execute the tests. On
our machines this took around 8 hours: about 4 hours to
compile ACE+TAO, about 3.5 hours to compile all tests,
and 30 minutes to execute them.
Configuration model. In this study we used 96 ACE+TAO
tests, each containing its own test oracle and reporting suc-
cess or failure on exit. These tests are often intended to
run in limited situations, so we extended the configuration
space, adding test-specific options. We also added some op-
tions capturing low-level system information, indicating the
use of static or dynamic libraries, whether multithreading
support is enabled, etc. This last step isn’t strictly necessary
since all clients were running Linux machines with the sys-
tem software. We did it just to gain experience in modifying
the configuration model.

The new test-specific options contain one option per test.
They indicate whether that test is runnable in the configu-
ration represented by the compile time options. For con-
venience, we named these options G@H�IJ�K& � � . We also de-
fined constraints over these options. For example, some
tests should run only on configurations with more than the
Minimum CORBA features. So for all such tests, & � , we
added a constraint G@H IJ�L& � � = 1 " MIN CORBA = 0. This
prevents us from running tests that are bound to fail. By de-
fault, we assume that all test are runnable unless constrained
to be otherwise.
Study execution. After making these changes, the space
had 14 compile time options with 13 constraints and 96
test-specific options with an additional 120 constraints. We
again configured the ISA for random sampling without re-
placement. We do not use the Nearest Neighbor adaptation
strategy since we only tested the 29 configurations that built
in Study 1. In this study, automatic characterization is done
separately for each test and error message combination, but
is based only on the settings of the compile time-options.
Results and observations. Overall, we compiled 2,077
individual tests. Of these 98 did not compile, 1,979 did.
Of these, 152 failed, while 1,827 passed. This process
took F 52 hours of computer time. As in the first study
we now describe some of the failures we uncovered, the
automatically-generated failure characterizations, and the
action taken by ACE+TAO developers.

8

In several cases, tests failed for the same reason on
the same configurations. For example, test compilation
failed at line 596 of ami_testC.h for 7 tests, each when
(CORBA MSG = 1 and POLLER = 0 and CALLBACK
= 0). This was a previously undiscovered bug. It turned
out that certain files within TAO implementing CORBA
Messaging incorrectly assumed that at least one of the
POLLER or CALLBACK options would always be set to
1. ACE+TAO developers also noticed that the failure man-
ifested itself no matter what the setting of the AMI was.
This was a second previously undiscovered problem be-
cause these tests should not have been runnable when AMI
= 0. Consequently, there was a missing testing constraint,
which we then included in the test constraint set.

The test MT_Timeout/run_test.pl failed in 14 of
29 configurations with an error message indicating response
timeout. No statistically significant model could be found.
This suggests that the error report might be covering mul-
tiple underlying failures, that the failure(s) manifests them-
selves intermittently, or that some other factor, not related
to configuration options, is causing the problem. It appears
that particular problem appears intermittently and is related
to inconsistent timer behavior on certain OS/hardware plat-
form combinations.
Lessons learned. We easily extended and refined the initial
configuration model to create more complex QA processes.
We again were able to carry out a sophisticated QA pro-
cess across networked user sites on a continuous basis. In
this case, we exhaustively explored the configuration space
in less than a day and quickly flagged numerous real prob-
lems with ACE+TAO. Some of these problems had not been
found with ACE+TAO’s ad hoc QA processes.

We also learned several things about automatic problem
characterization. In particular, the generated models can be
unreliable. We use notions of statistical significance to help
indicate weak models, but more investigation is necessary.
Also, the tree models we use may not be reliable when fail-
ures are non-deterministic and the ISA has been configured
to generate only a single observation per valid configura-
tion. In the presence of potentially non-deterministic fail-
ures, therefore, it may desirable to configure the ISA for
random selection with replacement.

4.4. Study 3: Testing with Configurable Options

The QA task for the third study was to determine whether
each configuration would run the ACE+TAO regression
tests without error over all settings of the system’s runtime
options. This is important for building confidence in the
system’s correctness. To do this users compile ACE+TAO,
compile the tests, set the appropriate runtime options, and
execute the tests. For us, each task would have taken about
8 hours.
Configuration model. To examine ACE+TAO’s behavior

under differing runtime conditions, we modified the config-
uration model to reflect 6 multi-valued (non-binary) runtime
configuration options. These options set up to 648 different
combinations of CORBA runtime policies: when to flush
cached connections, what concurrency strategies the ORB
should support, etc. Since these runtime options are inde-
pendent, we did not add any new constraints.

After making these changes, the compile-time option
space had 14 options and 13 constraints, there were 96
test-specific options with an additional 120 constraints, and
there were 6 runtime options with no new constraints.
Study execution. The configuration space for this study
had 18,792 valid configurations. At roughly 30 minutes per
test suite, the entire process involved around 9,400 hours of
computer time. Given the large number of configurations,
we used the nearest neighbor adaptation strategy.
Results and observations. One observation is that several
tests failed in this study even though they had not failed in
Study 2 (when running tests with default runtime options).
Some even failed on every single configuration (including
the default configuration tested earlier), despite not failing
in Study 2! In the latter case, the problems were often
caused by bugs in option setting and processing code. In
the former case, the problems were often in feature-specific
code. ACE+TAO developers were intrigued by these find-
ings because they rely heavily on testing by users at instal-
lation time, not just to verify proper installation, but to pro-
vide feedback on system correctness.

Another group of tests had particularly interesting
failure patterns. Three of these tests failed between
2,500 and 4,400 times. In each case automatic char-
acterization showed that the failures occurred when
ORBCollocation= NO. No other option influenced fail-
ure manifestation. In fact, it turned out that this setting was
in effect over 99% of the time when Tests Big_Twoways/
run_test.pl, Param_Test/run_test.pl, or MT_
BiDir/run_test.pl failed.

TAO’s ORBCollocation option controls the condi-
tions under which the ORB should treat objects as being
co-located. The NO setting means that objects are never
co-located. When objects are not co-located they talk to
each other via the network. When they are co-located, they
can communicate directly. The fact that these tests worked
when objects communicated directly, but failed when they
talked over the network clearly suggested a problem related
to message passing. In fact, the source of the problem was
a bug in their routines for marshalling/unmarshalling object
references.
Lessons learned. We learned several things from Study 3.
First, we confirmed that our general approach could scale
well to larger configuration spaces. We also reconfirmed
one of our key conjectures: that data from the distributed
QA process can be analyzed and automatically character-
ized to provide useful information to developers. We also

9

saw how the Skoll process gives better coverage of the con-
figuration space than does the process used by ACE+TAO
(and, by inference, many other projects).

We also note that our Nearest Neighbor adaptation strat-
egy explores configurations until it finds no more failing
configurations. In cases where a large subspace is fail-
ing a lot of work will be done (e.g., as described above
in roughly 5,000 out of a total 20,000 configurations,
ORBCollocation = NO and the test failed). Looking
back at the data it’s clear that we could have made stopped
the search much earlier and still correctly identified the
problem. We intend to explore this issue in the future.

5. Summary

This paper presents the Skoll project, a process and
infrastructure for implementing feedback-driven processes
that leverage worldwide user community resources to im-
prove software quality. It also presents an initial feasibility
study, applying Skoll to ACE+TAO – two large scale sys-
tems containing over 1MLOC. The study provides valuable
insight into Skoll’s current benefits and limitations.

Using Skoll, we iteratively modeled complex subtask
configuration spaces, developed large scale QA processes,
and executed them on multiple clients. As a result, we found
real bugs in ACE+TAO, some of which had not been iden-
tified previously. ACE+TAO developers also reported that
Skoll’s automatic failure characterization greatly simplified
tracking down the root causes of certain failures.

Skoll is a research project, so the feasibility study also
helps direct future work. Our future work focuses on more
experimentation, refining the infrastructure and extending
functionality.� We will continue to work with ACE+TAO project and
are replicating our study using the dozen test sites and hun-
dreds of machines provided by the core ACE+TAO develop-
ers in two continents. We ultimately plan to involve a broad
segment of the ACE+TAO worldwide user community to
establish a large-scale distributed continuous QA test-bed.
Skoll is being used to help refactor ACE to shrink its mem-
ory footprint and increase its performance. We have devel-
oped new QA subtasks to measure ACE’s footprint and per-
formance at every check-in across different configurations
while ensuring correctness via testing.� We are enriching Skoll configuration models. We will
add hierarchical models, not just the flat option spaces cur-
rently supported. We are incorporating priorities in the
model so that different parts of the configuration space can
be explored with different frequencies. We are also looking
at how to incorporate real-valued option settings into con-
figuration model.� We are enhancing the ISA to allow planning based on
cost models and probabilistic information, e.g., if historical

data suggests that users with certain platforms send requests
at certain rates, it can take this information in account when
allocating job configurations. We are also exploring higher
level planners to simultaneously plan for multiple QA pro-
cesses (not just one at a time as the ISA does now).� We are investigating new adaptation strategies apply-
ing Design of Experiment (DOE) theory to subtask selec-
tion. The objective of DOE is to select a minimal set of
input values (experimental design) that still allows one to
determine which combinations of dependent variables (op-
tions and settings) significantly affect the independent vari-
ables (e.g., test failures, performance degradation). For ex-
ample, suppose, we have 10 options with 4 possible settings
each. Exhaustive testing of this space requires M 	ON (P 1M)
configurations to be tested some DOE approaches that re-
strict themselves to 2-way effects require only 25 configu-
rations [4]. These approaches will be modified to compute
schedules online as the QA process executes.

References

[1] public.kitware.com. http://public.kitware.com.
[2] J. Bowring, A. Orso, and M. J. Harrold. Monitoring de-

ployed software using software tomography. In Proceedings
of the 2002 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, pages 2–
9. ACM Press, 2002.

[3] L. Breiman, J. Freidman, R. Olshen, and C. Stone. Classi-
fication and Regression Trees. Wadsworth, Monterey, CA,
1984.

[4] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Col-
bourn. Constructing test suites for interaction testing. In
Proceedings of the 25th international conference on Soft-
ware engineering, pages 38–48, 2003.

[5] H. Kautz and B. Selman. Unifying SAT-based and graph-
based planning. In J. Minker, editor, Workshop on Logic-
Based Artificial Intelligence, Washington, DC, June 14–16,
1999, College Park, Maryland, 1999. Computer Science De-
partment, University of Maryland.

[6] B. Liblit, A. Aiken, and A. X. Zheng. Distributed program
sampling. In Proceedings of PLDI’03, San Diego, Califor-
nia, June 2003.

[7] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma
system: continuous evolution of software after deployment.
In Proceedings of the international symposium on Software
testing and analysis, pages 65–69. ACM Press, 2002.

[8] C. Pavlopoulou and M. Young. Residual test coverage mon-
itoring. In Proceedings of the 21st international conference
on Software engineering, pages 277–284. IEEE Computer
Society Press, 1999.

[9] D. Schmidt and S. Huston. C++ Network Programming:
Resolving Complexity with ACE and Patterns. Addison-
Wesley, 2001.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee. The De-
sign and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

10

