Evaluating CORBA Latency and Scalability
Over High-Speed ATM Networks

Aniruddha S. Gokhale and Douglas C. Schmidt
{gokhale,schmidt} @cs.wustl.edu

Department of Computer Science

Washington University
St. Louis, MO 63130*

The paper appeared inthe Proceedings of ICDCS’ 97, May
27-30, 1997 in Batimore, Maryland.

Abstract

Conventional implementations of CORBA communication
middleware incur significant overhead when used for
performance-sensitive applications over high-speed net-
works. As gigabit networks become pervasive, inefficient
middlewarewill force programmers to continue using lower-
level mechanisms to achieve necessary transfer rates and
end-to-end latency. Thisisaseriousproblemfor mission/life-
critical applications(such asreal-timeavionics, process con-
trol systems, and medical imaging).

This paper provides two contributions to the study of
CORBA performance over high-speed networks. First, we
measure the latency of varioustypes and sizes of oneway and
twoway client requests using a pair of widely used i mplemen-
tations of two C++ implementations of CORBA — Orbix 2.1
and VisiBroker 2.0. Second, we use Orbix and VisiBroker
to measure the scalability of CORBA servers in terms of the
number of objects they can support efficiently. These exper-
iments extend our previous work on CORBA performance for
bandwidth-sensitive applications (such as satellite surveil-
lance, medical imaging, and teleconferencing).

Our results show that the latency for CORBA implemen-
tations is relatively high and server scalability is relatively
low. Our latency experiments show that non-optimized in-
ternal buffering and presentation layer conversion over-
head in CORBA implementations can cause substantial de-
lay variance, which is unacceptable in many real-time or
congtrained-latency applications. Likewise, our scalability
experiments reveal that neither Orbix nor VisiBroker can
handle a large number of objectsin a single server process.
The paper concludes by outlining optimizationswe are devel -
oping to overcome the performance limitationswith existing

1This work was supported in part by NSF grant NCR-9628218. Copy-
right 1997 |EEE. Personal use of this materia is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective worksfor resale or redistribution to
serversor lists, or to reuse any copyrighted component of thiswork in other
works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / |EEE Service Center 445 Hoes Lane / PO. Box 1331
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

CORBA implementations.

1 Introduction

Applicationsand servicesfor next-generation distributed sys-
tems must be reliable, flexible, reusable, and capable of
providing scalable, low-latency quality of service to delay-
sensitive applications. In addition, communication software
must allow bandwidth-sensitive applicationsto realize high-
speed data transfers over gigabit networks. Reliability, flex-
ibility, and reusability are essentiad to respond rapidly to
changing application requirements that span a wide range of
mediatypes and access patterns[1].

These requirements motivate the use of the Common Ob-
ject Request Broker Architecture (CORBA) [2]. CORBA is
designed to enhance distributed applications by automating
common networking tasks such as parameter marshaling, ob-
ject location and object activation, as well as providing the
basis for defining higher layer distributed services (such as
naming, events, replication, and transactions) [3].

The success of CORBA in mission-critical distributed com-
puting environments depends heavily on the ability of Object
Request Brokers (ORBS) to provide:

¢ High bandwidth CcORBA implementations must provide
high throughput to bandwidth-sensitiveapplications (such as
medical imaging, satellite surveillance, or teleconferencing
systems);

e Low latency CORBA implementations must support low
latency for delay-sensitive applications (such as real-time
avionics, distributed interactive simulations, and telecom-
munication systems);

e Scalability of endsystems and distributed systems
CORBA implementationsmust scal e effectively asthe number
of objects in endsystems and distributed systems increases.
Scalability is important for large-scale applications (such as
enterprise-wide network management systems), which must
handle a large number of objects on each network node, as
well as a large number of nodes throughout a distributed
computing environment.

High-speed networks (such as ATM and FDDI) now sup-
port quality of service guarantees in terms of bandwidth
and latency. However, as shown in Section 4, conventional
implementations of CORBA incur significant overhead when
used for latency-sensitive applications over high-speed net-
works. If not corrected, this overhead will force developers
to avoid corRBA middleware and continue to use lower-level
tools (such as sockets). Unfortunately, lower-level toolsfail
to provide other key benefits of CORBA such as reliability,
flexibility and reusability, which are crucia to the success
of complex constrained-latency distributed applications [4].
Therefore, it isimperativeto eliminate the sources of CORBA
overhead shown in this paper.

Previous work [5, 6, 7] has focused on the throughput

performance of CORBA implementations that transfer large
amounts of untyped and richly-typed data. This paper ex-
tends earlier work by focusing on latency and scalability.
The research contributions of this paper include the follow-
ing:
e CORBA Latency We measure the performance of two
widely used implementations of CORBA (Orbix 2.1 and Visi-
Broker 2.0) to determine their oneway and twoway latencies
for sendingvarioustypes(suchaschar s,short s,| ongs,
and structs) and sizes (suchas 1, 2, 4, ..., 1,024 units
of each datatype) of client requests using variousinvocation
strategies (such as static invocation and dynamicinvocation).
The results of our latency experiments are described in Sec-
tion 4.

e CORBA Scalability We measure how the number of ob-
jectsin a server affect an ORB’s ability to process client re-
quests efficiently. This paper focuses on the scalability of
CORBA implementationsin endsystem servers (i.e., the num-
ber of objects in a server process), rather than distributed
scalability (i.e., the number of endsystems in a network).
The results of our endsystem scal ability experiments are de-
scribed in Section 4.

Inthepaper, we pinpoint precisely wherethekey sourcesof
latency and scalability overhead exist in conventional imple-
mentations of CORBA. We used two widely available CORBA
implementations (Orbix 2.1 and VisiBroker 2.0) for our ex-
periments. Our findingsindicatethat the latency overhead of
CORBA implementations stem from a variety of sources in-
cluding (1) lack of integrationwith advanced os and network
features, (2) inefficient server demultiplexing techniques, (3)
long chains of intra-oRB function cdls, (4) excessive pre-
sentation layer conversions and data copying, and (5) non-
optimized buffering algorithms used for network reads and
writes.

The paper is organized as follows: Section 2 outlines the
CORBA communication middleware architecture; Section 3
describes our CORBA/ATM testbed and experimental methods;
Section 4 presents the key sources of latency and scalability
overhead in conventiona CORBA implementationsover ATM;
Section 5 describes our research on developing optimiza-
tions that eliminate the performance bottlenecks in existing

in args
operation() OBJECT

IMPLEMENTATIO

CLIENT

out args + return value

A

AN

OBJECT

ADAPTER

Y
Y IDL
SKELETON
DII SIDLS ORB
T INTERFACE

2N

|

Figure 1: Components in the CORBA Distributed Object
Computing Model

CORBA implementations, Section 6 describes related work;
and Section 7 presents concluding remarks.

2 Overview of the CORBA Architec-
ture

CORBA is an open standard for distributed object comput-
ing [2]. Figure 1 illustrates the primary components in the
CORBA architecture. The CORBA standard defines a set of
components that allow client applications to invoke opera-
tions (op) with arguments (ar gs) on object implementa-
tions. CORBA enhances application flexibility since object
implementations can be configured to run localy and/or re-
motely without affecting their implementation or use. The
responsibility of each component in CORBA and itsimplica
tionsfor high-performance distributed computing systemsis
described below:

¢ Object Implementation Thisdefines operationsthat im-
plement a CORBA IDL interface. Object implementations can
be written in avariety of languagesincluding C, C++, Java,
Smadltak, and Ada

e Client Thisis the program entity that invokes an opera-
tion on an object implementation. Accessing the services of
a remote object should be transparent to the caller. 1deally,
it should be as simple as calling a method on an object, i.e.,
obj - >op(ar gs) . The remaining componentsin Figure 1
help to support thislevel of transparency.

¢ Object Request Broker (ORB) When aclient invokes
an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, de-
livering the request to the object, and returning the response
(if any) to the caller.

¢ ORB Interface An ORB isalogicd entity that may be
implemented in various ways (such as one or more processes
or aset of libraries). To decouple applications from imple-
mentation details, the CORBA specification defines an abstract
interface for an OrRB. This interface provides various func-
tions such as converting object references to stringsand vice

versa, and creating argument listsfor requests made through
the dynamic invocation interface (Di) described bel ow.

¢ CORBA IDL Stubsand Skeletons CORBA IDL stubsand
skeletons serve as the “glue” between the client and server
applications, respectively, and the OrRB. Stubs marshal typed
data objects from a high-level application representation to
alow-level packet representation, whereas skel etons demar-
shal the low-level packet representation back into a typed
data object that is meaningful to the application. The trans-
formation between CORBA DL definitionsand the target pro-
gramming language is automated by a CORBA IDL compiler.
The use of a compiler reduces the potentia for inconsisten-
cies between client stubs and server skeletons and increases
opportunitiesfor automated compiler optimizations.

e Dynamiclnvocation Interface(DI1) and Dynamic Skele-
ton Interface (DSI) The DIl dlows a client to access the
underlying request mechanisms provided by an ors. Appli-
cations use the DIl to dynamically issue requests to objects
without requiring IDL interface-specific stubsto be linked in
the process. Unlike IDL stubs (which only allow Rpc-style
twoway and oneway requests), the DIl also allows clientsto
make non-blocking deferred synchronous calls, which sepa
rate send and receive operations.

TheDsl istheserver side’sanaloguetotheclient side’spil.
The DS alowsan ORB to deliver requeststo an object imple-
mentation or ORB bridgethat has no compile-timeknowledge
of thetypeof object itisimplementing. Theclient making the
request need not be aware that the implementation is using
the type-specific IDL skeletons or the dynamic skeletons.

¢ Object Adapter The Object Adapter assists the ORB by
demultiplexing requests to the target object and dispatch-
ing operation upcalls on the object. In addition, the Object
Adapter associates object implementationswith the ors. Ob-
ject Adapters can be specialized to providesupport for certain
object implementation styles (such as 0obB Object Adapters
for persistence, library Object Adapters for non-remote ob-
jects, and real-time Object Adapters[8] for applicationsthat
require QoS guarantees).

Theuseof CORBA as communi cation middlewareenhances
application flexibility and portability by automating many
common devel opment tasks such as object |ocation, parame-
ter marshaling, and object activation. CORBA isan improve-
ment over conventional procedural RPC middleware (such as
OSF DCE and ONC RPC) since it supports object-oriented lan-
guage features (such as encapsulation, interface inheritance,
parameterized types, and exception handling) and more flex-
ible communication mechanisms (such as object references
that support peer-to-peer communication and dynamic in-
vocation capabilities). These features enable complex dis-
tributed and concurrent applications to be developed more
rapidly and correctly.

The primary drawback to using higher-level middleware
like cORBA isits potential for low throughput, high latency,
and lack of scalability over high-speed networks. In general,
existing implementations of CORBA have not been optimized

CLIENT SERVER
STUBS (SII) OR INTERFACE METHOD
DII REQUEST IMPLEMENTATION

MARSHALLING

|

FRAMING, ERROR
CHECKING AND
INTEROPERABILITY

FRAMING, ERROR
CHECKING AND
INTEROPERABILITY

OS LEVEL

N (N (/Y

(N
DEMARSHALLING AND
DEMULTIPLEXING

{ OS LEVEL }

|

O NETWORK O

Figure2: General Path of CORBA Requests

significantly since performance has not generaly been an
issue on low-speed networks. Figure 2 shows the general
path that CORBA implementations use to transmit requests
from client to server for remote operation invocations. In
Section 4.3, we show thecorresponding path for theOrbix 2.1
and VisiBroker 2.0 orBs and precisely pinpoint the sources
of overhead existing along the data path. It is beyond the
scope of thispaper to discuss the limitationswith the CORBA
communication model (see [9] for asynopsis).

3 CORBA/ATM Testbed and Experi-
mental M ethods

This section describes our CORBA/ATM testbed and outlines
our experimental methods.

3.1 Hardware and Softwar e Platforms

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running SunOS 5.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSparc-2 contains two 168 MHz Super sPARC cPUs with
a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP pro-
tocol stack is implemented using the STREAMS communi-
cation framework. Each UltraSparc-2 has 256 Mbytes of
RAM and an ENI-155s-MF ATM adaptor card, which supports

155 Megahits per-sec (Mbps) sONET multimode fiber. The
Maximum Transmission Unit (MTu) on the ENI ATM adaptor
is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. A maximum of 32 Kbytesis alotted per ATM vir-
tual circuit connection for receiving and transmitting frames
(for atotal of 64 K). Thisalowsup to eight switched virtua
connections per card.

3.2 Traffic Generators

Our earlier studies[5, 6, 4, 7] tested bulk data performance
using “flooding models’ that transferred untyped bytestream
data, as well as richly typed data between hosts using sev-
eral implementations of COrRBA and other lower-level mech-
anisms like sockets. On the client-side, these experiments
measured the staticinvocationinterface (Si1) and thedynamic
invocation interface (Di1) provided by the CORBA implemen-
tations. The siI allows a client to invoke a remote method
via static stubs generated by a CORBA IDL compiler, which
is useful when client applications know the interface offered
by the server at compile-time. In contrast, the DIl alows a
client to access the underlying request mechanisms provided
by an orB directly, which is useful when the applicationsdo
not know theinterface offered by the server until run-time.

The experiments conducted for this paper extend our ear-
lier throughput studies by measuring the end-to-end latency
and request demultiplexing overhead that isincurred whenin-
voking various request sizes on arange of objects maintained
by a CORBA server. In addition, we measure CORBA scal abil-
ity by determining the performance impact from increasing
the number of objectsin an endsystem server process.

Traffic for the latency experiment was generated and con-
sumed by the Orbix 2.1 and VisiBroker 2.0 implementations
of TTcp [10] (TTCP is a widey used benchmarking tool to
eva uate the performance of TCP/IP and UDP/IP networks). In
this case, we defined both oneway and twoway CORBA op-
erations. The flow of control is uni-directiona in oneway
operations(i.e., the client need not block until the server exe-
cutes the operation), whereasin twoway operationstheclient
blocks until the operation returns. We measured round-trip
latency using the twoway CORBA operations. Each operation
transfers a sequence of various data types. In addition,
we measured operations that did not use any parameters to
determine “best case” |atency.

The following data types were used for al of the
tests: primitive types (short, char, | ong, octet,
doubl e)andaC++ st r uct composed of al the primitives
(Bi nSt ruct). The corBa implementation transferred the
data types using IDL sequences, which are dynamically-
sized arrays. The IDL definition used in the test is shown in
the Appendix A.

3.3 TTCP Parameter Settings

Earlier studies [11, 12, 13, 4, 7] of transport protocol per-
formance over ATM demonstrate the performance impact of
parameters such as the size of socket queues, data buffer, and

number of target objects on an endsystem (e.g., a server).
Therefore, our TTCP benchmarks systematically varied these
parameters for each type of data as follows:

o Socket queuesize The sender and receiver socket queue
sizesused were 64 K bytes, which isthe maximum on SunOS
5.5. These parameters influence the size of the TCP segment
window, which has been shown [13, 7] to significantly af-
fect corBA-level and TCP-level performance on high-speed
networks.

¢ TCP“No Deay” option Since the request sizes for our
tests are relatively small, the TCP_NODELAY option is set
on the client side. Without the TCP_NODELAY option, the
client’s TCP uses Nagel’s agorithm, which buffers “small”
requests until the preceding small request is acknowledged.
On high-speed networksthe use of Nagel’salgorithm can in-
crease latency unnecessarily. Since this paper focuses on
mesasuring the latency of small requests, we enabled the
TCP_NODELAY optionto send packets immediately.

o Data buffer size For the latency measurements, the
sender transmits parameter units of a specific data type in-
cremented in powers of two, ranging from 1 to 1,024. Thus,
for shorts (which are two bytes long on the SPARCS),
the sender buffers ranged from 2 bytes to 2,048 bytes. In
addition, we also measured the latency of remote method
invocationsthat had no parameters.

o Number of target objects Increasing the number of ob-
jects on the server increases the demultiplexing effort re-
quired to dispatch the incoming request to the appropriate
object. To pinpoint the latency overhead in this demulti-
plexing process, and to evaluate the scaability of CORBA
implementations, our experiments used arange of objects(1,
100, 200, 300, 400, and 500) on the server.

3.4 Profiling Tools

Detailed timing measurements used to compute latency were
madewiththeget hrt i me system cal available on SUnOS
55. This system call uses the SunOS 5.5 high-resolution
timer, which expressestimein nanoseconds froman arbitrary
timein the past. Thetimereturned by get hrti me isvery
accurate since it does not drift.

The profileinformation for the empirical analysis was ob-
tained usingtheQuant i f y performance measurement tool.
Quant i f y analyzes performance bottlenecksand identifies
sections of code that dominate execution time. Unlike tra-
ditional sampling-based profilers (such as the UNIX gpr of
tool), Quant i f y reports results without including its own
overhead. Inaddition, Quant i f y measuresthe overhead of
system callsand third-party librarieswithout requiring access
to source code.

3.5 Invocation Strategies

One source of latency incurred by CORBA implementations
in high-speed networks involves the operation invocation

strategy. This strategy determines whether the requests are
invoked viathe static or dynamic interfaces and whether the
client expectsaresponsefromtheserver. Inour experiments,
we measured the following operation invocation strategies
defined by the CORBA specification:

e Oneway static invocation The client uses the siI stubs
generated by the CORBA IDL compiler for the oneway opera-
tionsdefined inthe iDL interface. For oneway operationsthe
CORBA standard specifies “best-effort” delivery semantics,
i.e., no application-level acknowledgment is passed back to
therequester. IONA and Visigenic both use TCP/IPto trans-
mit oneway operations,

o Twoway staticinvocation Theclient usesthestaticinvo-
cationinterface (si1) stubsfor t woway operations defined in
IDL interfaces. After each t woway operation isinvoked the
client blocks until an acknowledgment is received (i.e., the
operation returns). In our experiments, we defined t woway
operationsto return “voi d,” thereby minimizing the size of
the acknowledgment from the server;

¢ Oneway dynamicinvocation The client uses the DIl to
build a request at run-time and uses the CORBA Request
class to make the requests;

e Twoway dynamic invocation The client uses the dy-
namic invocation interface (bi1) to make the requests, but
blocks until the call returnsfrom the server.

We measured the average latency for 100 client requests
for every 1, 100, 200, 300, 400, and 500 objectson the server.
In every request, weinvoked the same method. We restricted
the number of requests per object to 100 since neither ORB
could handle alarger numbers of requests without crashing.

3.6 Target Object Demultiplexing Strategies

Another source of overhead incurred by CORBA implemen-
tations in high-speed networks involves the time the ORB’s
Object Adapter spends demultiplexing requests to target ob-
jects. The type of demultiplexing strategy used by an ORB
significantly affects its scalability. Scalability is important
for applications like enterprise-wide network management
systems, which must handle agents containing a potentialy
large number of managed objects on each ORB endsystem.

Conventional oRrBs (including Orbix and VisiBroker) de-
multiplex client requests to the appropriate operation of
the target object implementation using the following steps
(shown in Figure 3):

e Steps 1 and 2 The os protocol stack demultiplexes the
incoming client request multipletimes (e.g., through the data
link, network, and transport layers, aswell asthe user/kernel
boundary) to the OrRB’s Object Adapter;

e Steps3 and 4 The Object Adapter uses the addressing
information in the client request to locate the appropriate
target object implementation and associated IDL skeleton;

LAYERED
DEMUXING
5:DEMUX TO
METHOD DL DL
4: DEMUX TO |
SKELETON (OBJECT 1) (OBJECT 2) ooe
[|
3:DEMUX TO I
OBJECT (OBJECT ADAPTER)
2: DEMUX TO
1I/O HANDLE OS KERNEL

0S 1/0 SUBSYSTEM

1: DEMUX THRU
PROTOCOL STACK

NETWORK ADAPTERS

Figure3: Demultiplexing Client Requeststo CORBA Target
Object Implementations

e Step5 ThelDL skeleton locatestheappropriate operation,
demarshals the request buffer into the operation parameters,
and performs the upcall to the operation.

Demultiplexing client requests through al these layersis
expensive, particularly when a large number of operations
appear in an IDL interface and/or a large number of objects
are managed by an ORB.

Our prior work [5, 14] analyzed the impact of various IDL
skel eton demultiplexing techniques (such aslinear search and
direct demultiplexing). However, in many applications the
number of operations defined per-iDL interface is relatively
small and static, compared to the number of potential objects,
which can be quitelarge and dynamic. To evauate the scaa
bility of the cOrRBA implementationsin this paper, therefore,
wevaried thenumber of objectsresidinginthe server process
from 1 to 500, by increments of 100. The server used the
shared activation mode, where al objects on the server are
managed by the same process.

3.7 Request Generation Algorithms

One way to optimize the demultiplexing overhead described
above isto have the Object Adapter cache recently accessed
target objects. Caching is particularly useful if client oper-
ations arrive in “request trains,” where a server receives a
series of requests for the same target object. By caching in-
formation about an object, the server can reducethe overhead
of locating the object for every incoming request.

The COrRBA standard does not mandate the use of caching.
Therefore, ORB implementations are not obliged to support
it. To determine if caching was used (and to measure its
effectiveness), we devised the following two algorithms, Re-
quest Train and Round Robin, to invoke client requests and
calculate average latency:

e Request Train algorithm The Request Train agorithm
generates client requests in a manner that measures the pres-
ence and benefits of orRB Object Adapter caching, asfollows:

const int MAXI TER = 100;

I ong sum = O;
Profile_Tiner timer; // Begin timng.

for (int j = 0; j < numobjects; j++){
for (int i =0; i < MXITER i++) {
/1 Use one of the 2 invocation strategies
/1 to call the send() nmethod on object_#j
/] at the server...
sum += tiner.current_tine ();

}

avg_latency = sum/ (MAXITER * num obj ects);

This agorithm does not change the destination object until
MAXI TER requests are performed. If a server is caching in-
formation about recently accessed objects, the Request Train
algorithm should dlicit different performance characteristics
than the Round Robin a gorithm described next.

¢ Round Robin algorithm The Round Robin agorithm
iterates MAXI TER times, each time invoking the send op-
eration on adifferent object reference (an object reference is
a client-side entity that behaves as a proxy on behalf of the
object residing on the server). The Round Robin agorithm
is defined as follows:

const int MAXI TER = 100;

I ong sum = O;
Profile_Tiner timer; // Begin timng.

for (int i =0; i < MXITER i++){
for (int j =0; j < numobjects; j++) {
/1 Use one of the 2 invocation strategies
/1 to call the send() nmethod on object_#j
/] at the server...
sum += timer.current_time ();
}
}

avg_latency = sum/ (MAXITER * num obj ects);

4 PerformanceResultsfor CORBA La-
tency and Scalability over ATM

This section presents the performance results from our la
tency and scalability experiments. Sections 4.1 and 4.2 de-
scribe the blackbox experiments that measure end-to-end
communication delay from client requester to a range of
server target objects using a variety of types and sizes of
data. Section 4.3 describes a whitebox empirical analysis
using Quant i fy to precisely pinpoint the overheads that
yield these results. Our measurements include the overhead
imposed by all the layers shown in Figure 2.

4.1 Blackbox Resultsfor Parameterless Oper-
ations

In this section, we describe the results for sending parame-
terless operations using the Round Robin and Request Train
invocation strategies.

Latency and scalability of parameterless operations
Figures 4 and 5 depict the average latency for the param-
eterless operations using the Request Train variation of our
request generation algorithm. Likewise, Figures 6 and 7
depict the average latency for invoking parameterless opera-
tions using the Round Robin a gorithm.

These figures revea that the resultsfor the Reguest Train
experiment and the Round-Robin experiment are essentially
identical. Thus, it appears that neither OrRB supports caching
of server objects. Asaresult, theremainder of our testsonly
use the Round Robin a gorithm.

o Twoway latency — The figures illustrate that that the
performance of VisiBroker was relatively constant for
twoway latency. In contrast, Orbix’s latency grew as
the number of objects increased. The rate of increase
was approximately 1.12 times for every 100 additional
objects on the server.

Tracing the CORBA run-time system callsusingt r uss
reveal ed the problemwith Orbix. When Orbix 2.1isrun
over ATM networks, it opensanew TCP connection (and
thusanew socket descriptor) for every object reference.?
This has the following consequences:

— Increased demultiplexing overhead — Opening a
new socket connection for each object reference
degrades latency significantly since the os kernel
must search the socket endpoint tableto determine
which descriptor should receive the data.

— Limited scalability — As the number of objects
grows, all the available descriptors on the client
and server were exhausted. We used the uNix
ul i m t command to increase the number of de-
scriptors to 1,024, which is the maximum sup-
ported per-process on SunOS5.5 without reconfig-
uring thekernd. Thus, we were limitedto approx-
imately 1,000 object references per-server process
on Orbix over ATM.

In contrast, VisiBroker did not create socket descriptors
for every object reference. Instead, a single connec-
tion and socket descriptor were shared by al object
references in the client. Likewise, a single connection
and socket descriptor were shared by dl target object
implementations in the server. This, combined with
its hashing-based demultiplexing scheme for locating
objects and methods, significantly reduces latency. In
addition, we were able to obtain object references for
more than 1,000 objects.

¢ Oneway latency — The figures illustrate that in case of
VisiBroker, the oneway latency remains roughly con-
stant as the number of objects on the server increase.
However, Orbix’s latency grows as the number of ob-
jects increase. Figures 4 and 6 revead an interesting

2Interestingly, when the Orbix client is run over Ethernet it only uses a
single socket on the client, regardless of the number of objectsin the server
process.

10.0

sii 1-way
[] dii 1-way
[sii 2-way

dii 2-way

9.0 -

8.0

70 -

6.0

Latency in msec

0.0

1-obj 100-objs 200-objs 300-objs 400-objs 500-obis
Invocation policy

Figure4: Orbix: Latency for Sending Parameterless Opera-
tion using Request Train Requests

sii 1-way
[] dii 1-way
[sii 2-way

dii 2-way

9.0 -

8.0

70 -
6.0

50 r

Latency in msec

40

3.0 -

20 -

1.0 -

0.0 1-obj 100-objs 200-objs 300-objs 400-objs 500-objs

Invocation policy

Figure 5: VisiBroker: Latency for Sending Parameterless
Operation using Request Train Requests

case with Orbix’s oneway latency. The oneway Sil and
DIl latencies remain dightly less than their correspond-
ing twoway latencies until 200 objects on the server.
Beyond this, the oneway latencies exceed their corre-
sponding twoway latencies. Orbix opens a new TCP
connection (and hence a new socket descriptor) for ev-
ery object reference. Since the oneway cals do not
involve any server response to the client, the client is
ableto send requests without blocking. Asexplainedin
Section 4.3.3, dueto the large number of open TCP con-
nections and inefficient demultiplexing strategies, the
receiver isunableto keep pace with the sender. Asare-
sult the underlying transport protocol (TCP in this case)
is required to invoke flow control techniques to slow
down the sender. As the number of objects increase,
this flow control overhead becomes dominant thereby
increasing oneway latency. In contrast, the twoway la-
tency does not incur thisflow control overhead since the
sender blocks for aresponse after every request.

Figure8 compares thetwoway |atencies obtained for send-
ing parameterless operations for Orbix and VisiBroker with
that of alow-level Cimplementation that uses sockets. The
twoway latency comparison revesals that the VisiBroker and
Orbix versions perform only 50% and 46% as well as the C

9.0
8.0

70 -

Latency in msec

0.0

6.0

sii 1-way
[dii 1-way
[sii 2-way

dii 2-way

200-objs 300-objs 400-objs 500-objs
Invocation policy

Figure 6: Orbix: Latency for Sending Parameterless Opera-
tion using Round Robin Requests

9.0
8.0

7.0 -

Latency in msec

3.0 -

20 r

1.0 -

0.0

6.0

50 -

40

sii 1-way
[] dii 1-way
[sii 2-way

dii 2-way

200-objs 300-objs 400-objs 500-objs
Invocation policy

Figure 7. VisiBroker: Latency for Sending Parameterless
Operation using Round Robin Requests

15

Latency in msec
[l
o
T

e
«

0.0

[] CORBA (Orbix)
CORBA (Visigenic)
TCP/IP (ACE)

Figure 8: Comparison of Twoway Latencies

version, respectively.

411 Summary of Resultsfor ParameterlessOperations

¢ Neither orRB we measured caches recently accessed ob-
ject references in the Object Adapter. As a result, the
latency for the Request Train and Round Robin cases
are nearly equivalent;

e Oneway latencies for VisiBroker remained relatively
constant with increase in the number of objects on the
server. However, the oneway latency for Orbix in-
creases roughly linearly with increase in the number
of objects;

e Oneway latencies for Orbix exceed their corresponding
twoway latencies beyond 200 objectsontheserver. This
is due primarily to the flow control mechanism used by
the underlying transport protocol to sow down the fast
sender;

o Twoway latency for VisiBroker remains relatively con-
stant as the number of objects increases. This is due
primarily to the efficient demultiplexing based on hash-
ing used by VisiBroker. In addition, VisiBroker does
not open anew connection for every object reference;

o Twoway latency for Orbix increaseslinearly at arate of
roughly 1.12 per 100 object increment. As explained
earlier, thisis due primarily to the inefficient demulti-
plexing strategy and an open TCP connection per object
reference;

e Twoway DIl latency in VisiBroker is comparable to its
twoway SlI latency. Thisis due to the ability to reuse
CORBA thereby requiringto create the request only once.
The corBa 2.0 specification does not dictate which of
these semantics is correct, so an implementation isfree
to use either approach.

e Twoway DIl latency in Orbix isroughly 2.6 times that
of itstwoway SlI latency. In Orbix DII, a new request
has to be created per invocation;

e Twoway DIl latency for Orbix is aways grester than
itstwoway SlI latency, whereas for VisiBroker they are
comparable. The reasons is that Orbix cregtes a new
request for every DIl invocation. In contrast, VisiBroker
recycles the request.

4.2 Blackbox Results for Parameter Passing
Operations

Figures 9 through 16 depict the average latency for sending
richly-typed st r uct data and untyped oct et data using
(1) the twoway operation invocation strategies (described in
Section 3.5) and (2) varying the number of server-side objects
(described in Section 3.6). These figures reveal that as the
sender buffer size increases the marshaling and data copying
overhead also grows[5, 6], thereby increasing latency. These
results demonstrate the benefit of using more efficient buffer

150 e

Latency in msec
N
o
o

=——a 100 objects
1.00 200 objects
A— 300 objects
0.50 | ¥—¥ 400 objects
4——%* 500 objects

0
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

Figure 9: Orbix Latency for Sending Octets Using Twoway
Sl

e—e 1 object
=——=a 100 objects
200 objects
4—a 300 objects
¥—¥ 400 objects
#——* 500 objects

Latency in msec
N
o
o

0
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

Figure 10: VisiBroker Latency for Sending Octets Using
Twoway SlI

management techniquesand highly optimized stubsto reduce
the presentation conversion and data copying overhead.

o Twoway latency — Figures 9 through 16 revea that the
twoway latency for Orbix increases as (1) the number of
server objects and (2) the sender buffer sizes increase.
In contrast, for VisiBroker the latency increases only
with the size of sender buffers. Figures 13 through 16
asorevesl that thelatency for the Orbix twoway siI case
at 1,024 data unitsof Bi nSt r uct isamost 1.2 times
that for VisiBroker.

Similarly, the latency for the Orbix twoway DIl case at
1,024 data units of Bi nSt ruct is amost 4.5 times
that for VisiBroker. In addition, the figures revea that
for Orbix, the latency increases as the number of server
objectsincrease. Asshownin 4.3, thisis due primarily
totheinefficient demultiplexingstrategy used by Orbix.
For VisiBroker, the latency remains unaffected as the
number of objectsincreases.

Orbix incurs higher latencies than VisiBroker due to
(2) the additional overhead stemming from the inabil-
ity of Orbix DIl to reuse requests and (2) the presenta
tionlayer overhead of marshaling and demarshaling the

11,00 T — 1500 T T T T T T —
14.00 | q
10.00 q 13.00 | 1
9.00 E 12.00 | p
8.00 1 11.00 1
o 9 10.00 J
] [] o
g 1o £ 9.00F]
£ 6.00 - 1 £ 800 q
> >
2 500}] § 7.00]
2 : 2]
S 400l e—e 1 object] g 600 e—e 1 object
: =—= 100 objects 5.00 =—=a 100 objects 1
3.00 - #—— 200 objects 1 4.00 4—— 200 objects 9
200 | A— 300 objects] 3.00 44— 300 objects]
. ¥——¥ 400 objects 2.00 ¥—¥ 400 objects]
1.00 | #——% 500 objects 4 1.00 #——% 500 objects 1
0.00 0.00
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent Units of Data type sent

Figure11: Orbix Latency for Sending Octets Using Twoway Figure 14: VisiBroker Latency for Sending Structs Using
DIl Twoway SlI

1100 [T T T T T T | 200.0 T T T T T T T
10.00 e&—e 1 object 4
=——a 100 objects
9.00 +——=+ 200 objects 1 150.0
800 | —4 300 objects] a 1
o ¥——¥ 400 objects o
g 7.00 - #——+ 500 objects 1 2
£
£ 6.00 - 1
> £ 1000 | E
g 5001 E 2
S 400l] = o—e 1 object
=——a 100 objects
3.00 - 1 50.0 #——# 200 objects B
200 L] A—a 300 objects
. ¥——¥ 400 objects
1.00 1 #——% 500 objects
0.00 0.0
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent Units of Data type sent

Figure 12: VisiBroker Latency for Sending Octets Using Figure15: Orbix Latency for Sending Structs Using Twoway
Twoway DlII DIl

200.0 T T T T T T T

] e—e 1 object

=——=a 100 objects
+——= 200 objects
] 1500 | A——4 300 objects
1] ¥——¥ 400 objects
#——* 500 objects

100.0 1

Latency in msec

Latency in msec

o—e 1 object
=——a 100 objects 1]
+——= 200 objects b 50.0 - 1
A— 300 objects]
¥——¥ 400 objects
#——% 500 objects

. , 0.0 \
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent Units of Data type sent

Figure13: Orbix Latency for Sending StructsUsing Twoway Figure 16: VisiBroker Latency for Sending Structs Using
Sl Twoway DI

Bi nStruct s. These sources of overhead reduce the
receiver’s performance, thereby triggeringtheflow con-
trol mechanisms of thetransport protocol, whichimpede
the sender’s progress.

[5, 6] precisely pinpoint the marshaling and data copying
overheads when transferring richly-typed data using sii and
DIl. Thelatency for sendingoct et s issignificantly lessthan
that for Bi nSt r uct s due to significantly lower overhead
of presentation layer conversions. Section 4.3 presents our
analysis of the Quant i fy results for sources of overhead
that increase the latency of client request processing.

421 Summary of Latency and Scalability Results for
CORBA Parameter Passing Operations

The following summarizes the latency results for parameter
passing operations described above;

o Latency for both Orbix and VisiBroker increaseslinearly
with the size of the request. Thisisdueto the increased
parameter marshaling overhead;

o VisiBroker exhibits relatively low, constant latency as
thenumber of objectsincrease, duetoitsuse of hashing-
based demultiplexing for objectsand IDL skeletonsat the
receiver. In contrast, Orbix exhibits linear increases in
latency based on the number of server objects and the
number of operationsin an IDL interface. Thisbehavior
stems from Orbix’suse of linear search at the TCP layer
sinceit opensaconnection per object reference. 1naddi-
tion, it also useslinear search for st r i ng comparisons
initsibL skeletons;

e The DIl performs consistently worse than sii (For
twoway Orbix — 3 times for octets, 14 times
for Bi nStruct s; for VisiBroker — comparable for
oct ets, and roughly 4 times for Bi nSt ructs).
Since Orbix does not support reusing the requests, the
DIl latency for Orbix incurs additional overhead. How-
ever, both Orbix and VisiBroker have to populate the
request with parameters. This involves marshaling and
demarshaling the parameters. The marshaling over-
head for Bi nSt r uct s ismore significant than that for
oct et s. Asaresult, thepil latency for Bi nSt ruct s
isworse compared to that of oct et s.

4.3 Whitebox Analysis of Latency and Scala-
bility Over head

Sections 4.1 and 4.2 presented the results of our blackbox
performance experiments. This section presents the results
of our whitebox profiling to illustrate why the two ORBS per-
formed differently. WeanalyzetheQuant i f y reportsonthe
sources of latency and scalability overhead in CORBA imple-
mentations to help explain the variation in the performance
results reported in Section 4.

Figures 17 and 18 show the path a CORBA request takes
through the client and server using the sii stubs generated

10

SENDER RECEIVER

MARSHALING

DEMULTIPLEXING
AND DISPATCHING

_IDL_SEQUENCE _
BinStruct_encodeOp()

EVENT HANDLING

impl_is_ready()
~
)
Interface:

o nu
[EventHandler]
) ING
BinStruct::decodeOp()

CORBA:Re:

l 23%

RECEIVE
MESSAGE

[‘e nd]
)

Casaa)] |(

write()

0S KERNEL

0S KERNEL

Q NETWORK 0

Figure17: Request Path Through Orbix Sender and Receiver
for Sl

by Orbix and VisiBroker iDL compilers, respectively. In
addition, the figures show how these two ORBS implement
the generic request path shown in Figure 2. Percentages at
the side of each figure indicate the contribution to the tota
processing timefor acal tothesendSt r uct Seq method,
which was used to perform the operation for sending se-
guencesof Bi nSt r uct s. The percentagesin thefiguresdo
not add up to 100 since we do not show the entire contribution
of the os and network device overhead.

The DIl request path is similar to the i path, except that
theclients create therequest at run-timerather than using the
SlI stubs generated by the IDL compiler.

4.3.1 Orbix SIl Request Flow Overhead

In Figure 17, the Orbix sender invokes the stub for the
ttcp_sequence: : sendStruct Seq method. The re-
quest traverses through the i nvoke and the send rou-
tines of the CORBA Request class and ends up in the
O bi xChannel class. Atthispoint,itishandled by aspe-
cidizedclass, Or bi xTCPChannel ,which usesthe TCP/IP
protocol for communication.

On the receiver side, the request travels through a series
of dispatcher classes that locate the intended target object
implementation and its associated IDL skeleton. Finaly, the
tt cp_sequence_di spat ch class demultiplexes the in-
coming request to the appropriate target object implementa-
tion and dispatches its sendSt r uct Seq method with the
demarshaled parameters.

On the sender-side, most of the overhead is attributed to
the operating system. The Orbix version usesthewri t e

SENDER RECEIVER

PMCIIOPstream:

EVENT HANDLING

impl_is_ready()
ToDispeih

CORBA::Object

lSG%
PMCIIOPstream
<put(char * PMCStublnfo:
send|

0

memepy()

PMCIIOPstream
)

PMCIIOPstream
writev() RECEIVE

MESSAGE

write()

0S KERNEL

Q NETWORK

Figure 18: Request Path Through VisiBroker Sender and
Receiver for Sl

system call which accounts for 73% of the processing time,
due primarily to TCP/IP protocol processing in the SunOS
kernel. Therest of the overhead is attributableto marshaling
and data copying, which accounts for roughly 25% of the
processing time. On the receiver side, the demarshaling
layer accounts for admost 72% of the overhead, due largely
to the presentation layer conversion overhead incurred while
demarshaling incoming parameters.

432 VisBroker SII Request Flow Overhead

In Figure 18, the VisiBroker sender invokes the
stub for the sendStruct Seq method defined by the
ttcp_sequence class. The request passes through
the send methods of the CORBA:: Obj ect and the
PMCSt ubl nf o classes. Finally, the request passes through
the methods of the PMCI | OPSt r eamclass, which imple-
ments the Internet I nter-ore Protocol (110P)[2]® The lloPim-
plementation writes to the underlying socket descriptor.

On the receiver side, the 110P implementation reads the
packet using methods of the PMCI | OPSt r eamclass, which
passes the request to the basi ¢ object adapter (BoA). TheBOA
demultiplexesthe incoming request by identifying the skele-
ton (sk_ttcp_sequence: : skel et on). The skeleton
identifies the object implementation and makes an upcall to
thesendSt r uct Seq method of thet t cp_sequence.i
implementation class.

On the sender-side, 56% of the overhead isattributed to the
operating system and networking level. The rest of the over-
head is attributable to marshaling and data copying which

3The 110P specifies a standard communication protocol between objects
on different nodesor between heterogeneousoRBs.

11

Comm. | Request Analysis
Entity Train Method Name msec %
Cient No read 112,795 99
Yes r ead 64,075 99
Server No strcnp 2,559 | 21.79
hashTabl e: : 1,852 | 15.77
| ookup
wite 949 8.08
sel ect 768 6.54
hashTabl e: : 600 5.10
hash
Sel ect handl er: : 406 345
processSocket s
r ead 346 2.95
Yes strcnp 2468 | 21.35
hashTabl e: : 1,810 | 15.66
| ookup
wite 960 8.30
sel ect 761 6.59
hashTabl e: : 595 5.14
hash
Sel ect handl er: : 404 3.50
processSocket s
r ead 323 2.79

Table1: Anaysisof Target Object Demultiplexing Overhead
for Orbix

accounts for roughly 42% of the processing time. On the
receiver side, the demarshaling and demultiplexing layer ac-
counts for amost 72% of the processing time. The Visi-
Broker implementation spends most of thereceiver-side pro-
cessing time in demarshaling the parameters. In addition,
the incoming parameters have to travel through long chain
of function calls (shown in Figure 18), which increase the
overhead.

4.3.3 Target Object Demultiplexing Overhead

To evaluate how the COrRBA implementations scale for
endsystem servers, weinstantiated 1, 100, . . ., 500 objectson
theserver. Thefollowing discussion analyzesthe server-side
overhead for demultiplexing client requeststo target objects.
We analyze the performance of the sendNoPar ans _1way
method for 500 objects on the server and 10 iterations. The
sendNoPar ans 1way method ischosen so that thedemul -
tiplexing overhead can be analyzed without being affected
by the demarshaling overhead involved with sending richly-
typed data as shown in Sections 4.3.1 and 4.3.2.

e Orbix demultiplexingoverhead Table 1 depictsthe af-
fect onlatency and scal ability of instanti ating 500 objectsand
invoking 10 requests of thesendNoPar ans _1way method
per object using Orbix. Quant i f y analysisreveds that the
performance of both the Round Robin and the Request Train
case is similar. In both cases, the client spends most of its
time performing network reads.

The server spends~22% of itstimedoing st r cnps used
for linearly searching the operation table to lookup the right
operation, 16% of thetime doing hash tablel ookupsto lookup
theright object and itsskeleton, ~8% of thetimeinwr i t es,
and ~7% of itstimein sel ect . Orbix opens anew socket

Comm. | Request Analysis
Entity Train Method Name msec %
Cient No wite 10,895 | 99.00
Yes wite 10,992 | 99.00
Ser ver No wite 393 | 20.84
~NCTr ansDi ct 138 7.31
~NCd assl nfoDi ct 138 7.31
r ead 83 4.40
NCQut Tbl 73 3.84
NCCl assl nf oDi ct 71 3.75
Yes wite 275 | 15.32
~NCTr ansDi ct 138 7.67
~NCd assl nf oDi ct 138 7.67
r ead 83 461
NCQut Thl 73 4.03
NCCl assl nf oDi ct 71 3.93

Table2: Anaysisof Target Object Demultiplexing Overhead
for VisiBroker

descriptor for every object reference obtained by the client.
Hence, to demultiplex incoming requests, Orbix must use
sel ect to determine which socket descriptor is ready for
reading.

e VisiBroker demultiplexing overhead Table 2 de
picts the affect on latency and scaability of instan-
tisting 500 objects and invoking 10 iterations of the
sendNoPar ans_1way method per object using VisiBro-
ker. The table revels no significant difference between the
Round Robin and Request Train case. TheQuant i f y anal-
ysisfor the VisiBroker version reveal s that the server spends
~15-20% of itstimein network writes, ~5%inr eads, and
~22% time demultiplexing requests. The demultiplexing
process involves reading and managing the internal tables
(~NCTr ansDi ct , NCQut Thl). These internal tables are
used by VisiBroker’shash-based table |ookup strategy to de-
multiplex and dispatch the incoming request to the intended
object.

Comparison of Orbix and VisiBroker demultiplexing
overhead

o VisiBroker opens one socket descriptor for all object
referencesinthe same server process. |n contrast, Orbix
opensanew socket descriptor for every object reference
over ATM networks (described in Section 4.1);

o VisiBroker uses a hashing-based scheme to demultiplex
incoming requests to their target object. In contrast,
although Orbix also uses hashing to identify the object,
adifferent socket isused for each object. Therefore, the
os kernel must search the list of socket descriptors to
identify which one is enabled for reading.

4.4 Additional Impedimentsto CORBA Scal-
ability

In addition to target object demultiplexing overhead, both

versions of CORBA used in our experiments possessed other

12

impedimentsto scalability. In particular, neither worked cor-
rectly when clientsinvoked alarge number of operationson a
large number of target objects accessed viaobject references.

Wewere not ableto measure | atency for more than ~1,000
objects since both CORBA implementations crashed when we
performed alarge number of requests on ~1,000 objects. As
discussed in Section 4.1, Orbix was unable to support more
than ~1,000 objectssinceit opened aseparate TCP connection
and allocated a new socket for each object in the server pro-
cess. Moreover, even though VisiBroker supported ~1,000
objects, it could not support more than 80 requests per object
without crashing when the server had 1,000 objectsi.e., no
morethan atotal of 80,000 requests could be handled by Visi-
Broker (thisappearsto be caused by amemory leak). Clearly,
theselimitationsare not acceptable for mission-critical ORBS.

45 Summary of Performance Experiments

The following summarizes our the results of our findings of
ORB performance over high-speed networks:

e Sender-sideoverhead Much of the sender-side overhead
is in the os calls used to send requests. Removing this
overhead requires the use of optimal buffer manager and
tuning different parameters (such as socket queuelengthsand
flow control strategies) of the underlying transport protocol.

e Receiver-sideoverhead Much of thereceiver-side over-
head occurs from inefficient demultiplexing and presentation
layer conversions (particularly for passing richly-typed data
(e.g., struct s). Eliminating the demultiplexing overhead
requires delayered strategies and fast, flexible message de-
multiplexing [15]. Eliminating the presentation layer over-
head requires optimized stub generators [16, 17] for richly-
typed data.

e Demultiplexing overhead The Orbix demultiplexing
performs worse than VisiBroker demultiplexing since Orbix
uses alinear search strategy based on st r i ng comparisons
for operation demultiplexing. In addition, due to an open
TCP connection for every object reference, Orbix has to use
the operating system sel ect cal to determine the socket
descriptors ready for reading.

e Intra-ORB function calls Existing ORB implementations
suffer from excessive intra-ORB function calls, as shown in
Section 4.3. To minimize intra-ORB function calls requires
sophisticated compiler optimizationssuch asintegrated layer
processing [1].

¢ Dynamicinvocation overhead DIl performance dropsas
thesize of requestsincreases. To minimizethedynamicinvo-
cation overhead requires al owing reuse of requests and min-
imizing the marshaling and data copying overhead involved
with populating the requests with their intended parameters.

in args

CLIENT operation() OBJECT r—
out args + return value IMPLEMENTATIO AR
A OPTIMIZATIONS

ORB QoS
INTERFACE

SKELETON
REAL-TIME
OBJECT
ADAPTER

DATA COPYING
J_ OPTIMIZATIONS
REQUEST
—— DEMUXING AND
DISPATCHING

0S 1/0 SUBSYSTEM
NETWORK ADAPTERS,

NETWORK

-

NETWORK ADAPTERS

OPTIMIZATIONS

PROTOCOL
ENGINE
OPTIMIZATIONS

OS KERNEL
I/OSUBSYSIEIW

0S 1/0 SUBSYSTEM M<——— OpTIMIZATIONS

<—— NETWORK
ADAPTER

OPTIMIZATIONS

Figure 19: Optimizationsfor High-Performance, Real-Time ORBs

5 Optimizationsfor High-Performance
ORBs

The performance results reported in this paper reveal the
capabilitiesand limitationsof conventional ORBs in terms of
latency and scalability. Figure 19 depicts the optimizations
we are employing to eiminate the bottlenecks with existing
ORBSs identified in Section 3. These optimizations are being
integrated into ahigh-performance, real-time orB called TAO
[18, 8].

The research issue we are addressing in TAO is how to
provide end-to-end quality of service guarantees to CORBA-
compliant applications and services. To accomplish this, we
are pursuing an integrated approach that (1) automatically
customizes ORBS to take advantage of advanced features of -
fered by operating systems and networks; (2) optimizes gen-
erated CORBA IDL stubsto minimizemarshaling overhead and
to demulti plex incoming requests efficiently; and (3) employs
advanced compiler techniques (such as program flow anal-
ysis and integrated layer processing) to eliminate excessive
intra-oRrB function cals.

The central focus of our TAO ORB effort is a portable
and feature-rich CORBA kernel that implements the standard
CORBA Internet Inter-Operability Protocol (110P) as shown
in Figure 20. Our 110P kernel is based on a highly opti-
mized implementation of SunSoft’s implementation of the
1op [19]. It supports the flexible configuration of CORBA-
compliant ORBs that can be customized to take advantage
of features offered by the underlying network and operating
systems (such asresource reservation, zero-copy buffer man-
agement, rea -time scheduling mechanisms, multi-threading
capabilities, and high-speed transport protocols), as well as
characteristics of the applications (such as loss tolerance in
multimedia applications).

We are devel oping TAO to overcome the following limita-

13

C
. OBJECT
CLIENT IMPLEMENTATION
B.
DI ORB (_{E
INTERFACE ADAPTER

TYPECODE
INTERPRETER

TYPECODE
INTERPRETER

TypeCode::traverse()

4
[deep_free()J [egc]?)l(};()

TypeCode::traverse()

A
[diﬂlf;o] (deep_freeo]

CDR::
decoder()

CDR::
encoder()

Eieep_copy(ﬂ [] Eieep_copy(ﬂ

Figure 20: TAO IIOP ORB Core

tionswith existing ORBs:

o Lack of integration with advanced OSand Network fea-
tures Existing ORBs (such as Orbix and VisiBroker) do not
fully utilize advanced os and network features. In contrast,
the TAO 110P kernel provides customizable hooksthat enable
the orRB and CORBA applications to utilize these features,
while interoperating seamlessly with 11op-compliant ORBS.

¢ Non-optimal demultiplexing strategies Existing ORBS
utilize inefficient and inflexible demultiplexing strategies
based on layered demultiplexing as explained in Section 4.3
and shown in Figure 21(A). In contrast, TAO utilizes active
delayered demultiplexing and explicit dynamic linking [14]
shown in Figure 21(C), which makes it possibleto adapt and
configure optimal strategies for dispatching client reguests
within ORB endsystems and CORBA bridges.

e Excessive data copying and intra-orB calls Existing
ORBs are not optimized to reduce the overhead of datacopies.
In addition, these ORBs suffer from excessiveintra-ORB func-
tion call overhead as shown in Section 4.3. In contrast,
TAO uses advanced compiler techniques (such as program
flow analysis [20, 21] and integrated layer processing (ILP))
[1] to automatically omit unnecessary data copies between
the corBA infrastructure and applications. In addition, ILP
reduces the overhead of excessive intra-ORB function cals.
Mostimportantly, thisstreamlining can be performed without
requiring modificationsto the standard CORBA specification.

o Inefficient presentation layer conversions Existing
ORBS are not optimized to generate efficient stubs and skele-
tons. As a result, they incur excessive marshaing and de-
marshaling overhead ([5, 6] and this paper in Figures 17
and 18). In contrast, TAO produces and configures multiple
encoding/decoding strategies for CORBA interface definition
language (IDL) descriptions. Each strategy can be config-
ured for different time/space tradeoffs between compiled vs.
interpreted CORBA IDL stubs and skeletons [22], and the ap-
plication’s use of parameters (e.g., pass-without-touching,
read-only, mutable).

¢ Non-optimized buffering algorithms used for network
reads and writes Existing ORBS utilize non-optimized in-
ternal buffersfor writing to and reading from the network, as
shown in Section 4.3. This causes the OrRBs to spend a sig-
nificant amount of time doing reads and writes. In contrast,
TAO utilizes optimal buffer choicesto reduce this overhead;

We are currently implementing TAO within a prototype
real-time os developed a Washington University. This
real-time Os is characterized by features that include (1) a
Resal-Time Upcall (RTu) scheduling mechanism [23], which
achieves end-to-end real-time scheduling and (2) the APIC
[24] atm/host network interface, which providesa zero-copy

14

mechanism that eliminates the excessive data copying over-
head. In addition, the ACE framework [25] is used to im-
plement the TAO ORB. ACE contains flexible, reusable, effi-
cient, and portabl e object-oriented componentsthat automate
common ORB communication tasks involving event demul-
tiplexing, event handler dispatching, connection establish-
ment, routing, dynamic configuration of ORB services, and
concurrency control.

6 Reated Work

Existing research on measuring latency in high performance
networking has focused extensively on enhancements to
TCP/IP. None of the systems described below are explicitly
targeted for the requirements and constraints of communi-
cation middleware like CORBA. In genera, less attention
has been paid to integrating the following topics related to
communication middleware:

e Transport Protocol Performance over ATM Networks
The underlying transport protocol s used by the orRB must be
flexible and possess the necessary hooksto tune different pa-
rameters of the underlying transport protocol. [11, 12, 13]
present results on performance of Tcp/IP (and uDP/IP[11]) on
ATM networks by varying a number of parameters (such as
TCPwindow size, socket queuesize, and user datasize). This
work indicates that in addition to the host architecture and
host network interface, parameters configurable in software
(likeTcp window size, socket queue size, and user data size)
significantly affect Tcp throughput. [11] showsthat ubp per-
formsbetter than TCP over ATM networks, which is attributed
to redundant TCP processing overhead on highly-reliableATm
links. [11] also describes techniques to tune TCP to be aless
bulky protocol so that its performance can be comparable to
uUDP. They aso show that the TCP delay characteristics are
predictable and that it varies with the throughput.

[26] present detailed measurements of various categories
of processing overhead times of TCP/IP and UDP/IP. The
authors conclude that whenever a redlistic distribution of
message sizes is considered, the aggregate costs of non-data
touching overheads (such as network buffer manipulation)
consume a majority of the software processing time (84%
for Tcp and 60% for uDP). The authors show that most
messages sent are short (less than 200 bytes). They clam
that these overheads are hard to eliminate and techniques
such as Integrated Layer Processing can be used to reduce
the overhead. [27] present performance results of the SUNOS
IPC and TCP/IP implementations. They show that increasing
the socket buffer sizes improves the IPC performance. They
al so show that the socket layer overhead ismoresignificant on
thereceiver side. [28] discusses the TCP_NODELAY option,
which alows Tcp to send small packets as soon as possible
to reduce | atency.

Earlier work [7, 5, 6] using untyped data and typed data
in a similar CORBA/ATM testbed as the one in this paper re-
vesl that the low-level C socket version and the C++ socket
wrapper versions of TTCP are roughly equivalent for a given

§ (A) LAYERED DEMUXING, — || e § (B) LAYERED DEMUXING, (C)DE-LAYERED ACTIVE DEMUXING
g8 LINEAR SEARCH g1l § PERFECT HASHING —— — — =
YY) E E YY) 2 — 2
318 (5| || |E
S|l © =]
search(method) ash(method) % % El g |8
IDL 3 &
SKEL 1) (SKEL 5) eee (SKEL N) SKEL 1) (SKEL 2) (SKEL N) il 3 fewe E eoo % PYYY §
— | 3] 3 3
(OBJECT 1) (OBJECT 2) ece E)BJECT 50@ (OBJECT 1) (OBJECT 2) eee |OBJECT 500 E % % g g
LA LA LA R TN
t k
search(object key) hash(method) index(object key)

—(OBJECT ADAPTER)

(OBJECT ADAPTER)

(OBJECT ADAPTER)

Figure 21: Demultiplexing Strategies

socket queue size. Likewise, the performance of Orbix for
sequences of scalar data types is dmost the same as that
reported for untyped data sequences. However, the perfor-
mance of transferring sequences of CORBA st r uct s for 64
K and 8 K socket queue sizes was much worse than those for
the scalars. This overhead arises from the amount of time
the CORBA implementations spend performing presentation
layer conversions and data copying.

The results from this paper reved that latency increases
with increase in number of objects. The variation between
request agorithmsreveal ed that the server-side did not cache
any information. We plan to incorporate caching behavior in
OUrTAO ORB to improve latency.

¢ Presentation Layer and Data Copying Thepresentation
layer isamajor bottleneck in high-performance communica
tion subsystems[1]. Thislayer transformstyped data objects
from higher-level representations to lower-level representa
tions (marshaling) and vice versa (demarshaling). In both
RPC toolkits and CORBA, this transformation process is per-
formed by client-side stubs and server-side skeletonsthat are
generated by interface definition language (IDL) compilers.
IDL compilers trand ate interfaces written in an IDL (such as
Sun RPC XDR [29], DCE NDR, Or CORBA CDR [2]) to other
forms such as anetwork wire format.

Eliminating the overhead of presentation layer conver-
sions requires highly optimized stub compilers (e.g., Uni-
versal Stub Compiler [16]) and the Flick iDL compiler [17].
The generated stub code must make an optimal tradeoff be-
tween compiled code (which is efficient, but large in size)
and interpreted code (which is slow, but compact) [22].

Our earlier results[5, 6] have presented detail ed measure-
ments of presentation layer overhead for transmitting richly-
typed data. Our results for sending st ruct s revea that
with increasing sender buffer sizes, the marshaling overhead
increases, thereby increasing the latency. We plan to de-
sign stub compilersthat will adapt according to the run-time
access characteristics of various data types and operations.

15

The run-time usage of a operation or data type can be used
to dynamically link in either the compiled or an interpreted
version of marshaling code.

e Application Level Framing and Integrated Layer Pro-
cessing on Communication Subsystems Conventional
layered protocol stacks and distributed object middieware
lack the flexibility and efficiency required to meet the quality
of service requirements of diverse applications running over
high-speed networks. One proposed remedy for this prob-
lemisto use Application Level Framing (ALF) [1, 30, 31] and
Integrated Layer Processing (ILP) [1, 32, 33]. ALF ensures
that lower layer protocols deal with data in units specified
by the application. ILP provides the implementor with the
option of performing al data manipulationsin one or two in-
tegrated processing loops, rather than manipul ating the data
sequentially. [34] have shown that athough ILP reduces the
number of memory accesses, it does not reduce the number
of cache misses compared to a carefully designed non-iLP
implementation. A major limitation of ILP described in [34]
isitsapplicability to only non-ordering constrained protocol
functionsand its uses of macros that restrict the protocol im-
plementation from being dynamically adapted to changing
requirements.

As shown by our results, CORBA implementations suffer
from a number of overheads that includes the many layers
of software and large chain of function cals. We plan to
use integrated layer processing to minimize the overhead of
the various software layers. Our plans call for developing a
factory of ILP based i nl i ne functions that are targeted
to perform different functions. Thisway, we can dynamically
link in the required function as the requirements change and
yet have an ILP based implementation.

e Demultiplexing Demultiplexing routes messages be-
tween different levels of functionality in layered commu-
nication protocol stacks. Most conventional communication
models (such as the Internet model or the 1S0/0sl reference
model) requiresome form of multiplexingto support interop-

erability with existing operating systems and protocol stacks.
In addition, conventional CORBA implementationsutilize sev-
era extralevelsof demultiplexing at the application layer to
associate incoming client requestswith the appropriateobj ect
implementation and method (as shown in Figure 3). Layered
multiplexing and demultiplexing is generally disparaged for
high-performance communication systems [35] due to the
additiona overhead incurred at each layer.[15] describes a
fast and flexible message demultiplexing strategy based on
dynamic code generation. [14] evaluates the performance of
alternative demultiplexing strategies for real-time CORBA.

Our resultsfor latency measurements have shownthat with
increasing number of objects, the latency increases. Thisis
partly due to the additional overhead of demultiplexing the
request to the appropriate method of the appropriate object.
We propose to use a delayered demultiplexing architecture
[14] that can select optima demultiplexing strategies based
on compile-time and run-time analysis of CORBA IDL inter-
faces.

7 Concluding Remarks

An important class of applications (such as avionics, dis-
tributed interactive simulation, and telecommunication sys-
tems) require scalable, low latency communication. As
shown in this paper, latency-sensitive applications that uti-
lize many target objects are not yet supported efficiently by
contemporary CORBA implementations due to presentation
layer conversions, data copying, demultiplexing overhead,
and many layers of virtual function calls. On low-speed
networks this overhead is often masked. On high-speed net-
works, this overhead becomes a significant factor limiting
communication performance and ultimately limiting adop-
tion by developers.

The results presented in this paper illustrate that current
implementationsof CORBA do not scale well as the number of
objectsincrease by severa ordersof magnitude. The latency
for Orbix for parameterless operationsincreasesroughly 1.12
timesfor every increase of 100 server objects. In contrast, the
latency for VisiBroker remains unaffected dueto its hashing-
based server-side demultiplexing strategy. However, neither
ORB is capable of handling a large number of reguests for a
large number of objects without crashing.

Latency for sending types data in both ORBS increases
as the size of the data increases. This is attributed to the
additional overhead of presentation layer conversions. We
are currently working towards eliminating presentation layer
overhead by using measurement and principle driven op-
timizations [19]. Our optimizations are based on principles
such as eliminating waste, precomputing and storing to avoid
unnecessary repetitive computation, and optimizing for the
common case.

In general, our latency experiments indicate that CORBA
implementations have not been optimized to support low-
latency quality of service. Therefore, these CORBA imple-
mentations are not yet suited for mission-critical latency-

16

sensitive applications running over high-speed networks.
Likewise, our scalability experiments indicate that current
CORBA implementations have neither been engineered nor
optimized to support large numbers of objects. As a re-
sult, these implementations may not yet be suitable to build
large-scale, performance-sensitive distributed systems and
applications over high-speed networks.

Our goa in precisely pinpointing the sources of over-
head for communication middieware is to develop scal-
able and flexible CORBA implementations that can deliver
gigabit data rates for bandwidth-sensitive applications and
provide low latency guarantees to delay-sensitive applica
tions. We are currently implementing a lightweight OrB
caled TAO that eliminates these overheads. The source
code for the various tests performed in this paper is made
available through the Ace [25] software distribution at
www. cs. wust | . edu/ ~schmi dt/ ACE. htm .

Acknowledgments

We liketo thank 1O0NA and Visigenicfor their help in supply-
ing the corBA implementations used for these tests. Both
companies are currently working to eiminate the latency
overhead and scalability limitations described in this paper.
We expect their forthcoming rel eases to perform much better
over high-speed ATM networks.

References

[1] David D. Clark and David L. Tennenhouse, “Architectural
Considerations for a New Generation of Protocols,” in Pro-
ceedings of the Symposium on Communications Architectures
and Protocols (SGCOMM), Philadelphia, PA, Sept. 1990,
ACM, pp. 200-208.

Object Management Group, The Common Object Request
Broker: Architectureand Specification, 2.0 edition, July 1995.

Object Management Group, CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 edition,
Mar. 1995.

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt,
“Design and Performance of an Object-Oriented Framework
for High-Performance Electronic Medical Imaging,” USENIX
Computing Systems, vol. 9, no. 4, November/December 1996.

Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the
Performance of Communication Middleware on High-Speed
Networks,” in Proceedingsof SGCOMM ’96, Stanford, CA,
August 1996, ACM, pp. 306-317.

Aniruddha Gokhale and Douglas C. Schmidt, “The Perfor-
mance of the CORBA Dynamic Invocation Interface and
Dynamic Skeleton Interface over High-Speed ATM Net-
works,” in Proceedings of GLOBECOM '96, London, Eng-
land, November 1996, |EEE, pp. 50-56.

Douglas C. Schmidt, Timothy H. Harrison, and Ehab Al-
Shaer, “Object-Oriented Components for High-speed Net-
work Programming,” in Proceedings of the 1°" Conference
on Object-Oriented Technologiesand Systems, Monterey, CA,
June 1995, USENIX.

(2]
(3]

[4]

(5]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

Douglas C. Schmidt, David L. Levine, and Timothy H. Har-
rison, “An ORB Endsystem Architecture for Hard Real-Time
Scheduling,” Feb. 1997, Submitted to OMG in response to
RFI ORBOS/96-09-02.

Kenneth Birman and Robbert van Renesse, “RPC Consid-
ered Inadequate,” in Reliable Distributed Computing with the
Isis Toolkit, pp. 68-78. IEEE Computer Society Press, Los
Alamitos, 1994.

USNA, TTCP: a test of TCP and UDP Performance, Dec
1984.

Sudheer Dharnikota, Kurt Maly, and C. M. Overstrest,
“Performance Evaluation of TCP(UDP)/IP over ATM net-
works,” Department of Computer Science, Technical Report
CSTR_94_23, Old Dominion University, September 1994.

Minh DoVan, Louis Humphrey, Geri Cox, and Carl Ravin,
“Initial Experiencewith AsynchronousTransfer Modefor Use
in aMedical Imaging Network,” Journal of Digital Imaging,
vol. 8, no. 1, pp. 4348, February 1995.

K. Modeklev, E. Klovning, and O. Kure, “TCP/IP Behavior
in aHigh-Speed Local ATM Network Environment,” in Pro-
ceedingsof the 19" Conferenceon Local Computer Networks,
Minneapolis, MN, Oct. 1994, |IEEE, pp. 176-185.

Aniruddha Gokhale, Douglas C. Schmidt, and Stan Moyer,
“Evaluating the Performance of Demultiplexing Strategiesfor
Real-time CORBA,” in Submitted to GLOBECOM '97, ,
Phoenix, AZ, November 1997, |IEEE.

Dawson R. Engler and M. Frans Kaashoek, “ DPF: Fast, Flex-
ible Message Demultiplexing using Dynamic Code Genera-
tion,” in Proceedings of ACM SSIGCOMM '96 Conferencein
Computer Communication Review, Stanford University, Cali-
fornia, USA, August 1996, pp. 53-59, ACM Press.

Sean W. O'Malley, Todd A. Proebsting, and Allen B. Montz,
“USC: A Universal Stub Compiler,” in Proceedings of the
Symposium on Communications Architectures and Protocols
(SGCOMM), London, UK, Aug. 1994.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary
Lindstrom, “Flick: A Flexible, Optimizing IDL Compiler,”
in Proceedings of ACM SIGPLAN ’'97 Conference on Pro-
gramming Language Design and Implementation (PLDI), Las
Vegas, NV, June 1997, ACM.

Douglas C. Schmidt, Aniruddha Gokhale, Tim Harrison, and
Guru Parulkar, “ A High-Performance Endsystem Architecture
for Real-time CORBA,” |IEEE Communications Magazine,
vol. 14, no. 2, February 1997.

AniruddhaGokhaleand Douglas C. Schmidt, “ Optimizing the
Performanceof the CORBA Internet Inter-ORB Protocol Over
ATM,” in Submitted for publication (Washington University
Technical Report #WUCS-97-10), February 1997.

Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante, “Auto-
matic Construction of Sparse Data Flow Evaluation Graphs,”
in Conference Record of the Eighteenth Annual ACE Sympo-
sium on Principles of Programming Languages. ACM, Jan-
uary 1991.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck, “Efficiently Computing Static
Single Assignment Form and the Control DependenceGraph,”
in ACM Transactions on Programming Languages and Sys-
tems. ACM, October 1991.

17

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[39]

Phillip Hoschka and Christian Huitema, “Automatic Gener-
ation of Optimized Code for Marshalling Routines,” in IFIP
Conference of Upper Layer Protocols, Architecturesand Ap-
plications ULPAA 94, Barcelona, Spain, 1994, IFIP.

R. Gopalakrishnan and G. Parulkar, “ A Real-time Upcall Fa-
cility for Protocol Processing with QoS Guarantees,” in 15"
Symposium on Operating System Principles (poster session),
Copper Mountain Resort, Boulder, CO, Dec. 1995, ACM.

ZubinD. Dittia, Jr. JeromeR. Cox, and Guru M. Parulkar, “ De-
sign of the APIC: A High Performance ATM Host-Network
Interface Chip,” in IEEE INFOCOM ' 95, Boston, USA, April
1995, |IEEE Computer Society Press, pp. 179-187.

Douglas C. Schmidt and Tatsuya Suda, “An Object-Oriented
Framework for Dynamically Configuring Extensible Dis-
tributed Communication Systems,” |EE/BCSDistributed Sys-
tems Engineering Journal (Special Issue on ConfigurableDis-
tributed Systems), vol. 2, pp. 280—293, December 1994.

Jonathan Kay and Joseph Pasquale, “ The Importance of Non-
Data Touching Processing Overheadsin TCP/IP,” in Proceed-
ings of SGCOMM ' 93, San Francisco, CA, September 1993,
ACM, pp. 259-269.

Christos Papadopoulosand Gurudatta Parulkar, “ Experimen-
tal Evaluation of SUNOS IPC and TCP/IP Protocol Imple-
mentation,” |EEE/ACM Transactions on Networking, vol. 1,
no. 2, pp. 199-216, April 1993.

S. J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarter-
man, The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, 1989.

Sun Microsystems, “XDR: External Data Representation
Standard,” Network I nformation Center RFC 1014, June 1987.

Isabelle Chrisment, “Impact of ALF on Communication Sub-
systems Design and Performance,” in First International
Workshop on High PerformanceProtocol Architectures, HIP-
PARCH '94, Sophia Antipolis, France, December 1994, IN-
RIA France.

Atanu Ghosh, Jon Crowcroft, Michael Fry, and Mark Hand-
ley, “Integrated Layer Video Decoding and Application Layer
Framed Secure Login: General Lessons from Two or Three
Very Different Applications,” in First Inter national Workshop
on High PerformanceProtocol Architectures, HIPPARCH 94,
Sophia Antipolis, France, December 1994, INRIA France.

M. Abbott and L. Peterson, “Increasing Network Through-
put by Integrating Protocol Layers,” ACM Transactions on
Networking, vol. 1, no. 5, October 1993.

Antony Richards, Ranil De Silva, Anne Fladenmuller, Aruna
Seneviratne, and Michael Fry, “The Application of ILP/ALF
to Configurable Protocols,” in First International Workshop
on High PerformanceProtocol Architectures, HIPPARCH ' 94,
Sophia Antipalis, France, December 1994, INRIA France.

Torsten Braun and ChristopheDiot, “ Protocol Implementation
Using Integrated Layer Processnig,” in Proceedings of the
Symposium on Communications Architectures and Protocols
(SGCOMM). ACM, September 1995.

David L. Tennenhouse, “Layered Multiplexing Considered
Harmful,” in Proceedingsof the 1°* International \orkshop
on High-Speed Networks, May 1989.

A IDL Interface

The following CORBA DL interface was used by the Orbix
and VisiBroker CORBA implementations:

struct BinStruct{ short s; char c; long |I;
octet o; double d; };
interface ttcp_sequence

typedef sequence<Bi nStruct> Struct Seq;
typedef sequence<octet> Cct et Seq;

/1 Routines to send sequences of various data types
voi d sendStructSeq_2way (in StructSeq ttcp_seq);
voi d sendCctet Seq_2way (in OctetSeq ttcp_seq);

voi d sendNoPar ans_2way() ;

voi d sendNoPar ans_1way() ;

18

