
Evaluating CORBA Latency and Scalability
Over High-Speed ATM Networks

Aniruddha S. Gokhale and Douglas C. Schmidt
fgokhale,schmidtg@cs.wustl.edu

Department of Computer Science

Washington University
St. Louis, MO 631301

The paper appeared in the Proceedings of ICDCS ’97, May
27-30, 1997 in Baltimore, Maryland.

Abstract

Conventional implementations of CORBA communication
middleware incur significant overhead when used for
performance-sensitive applications over high-speed net-
works. As gigabit networks become pervasive, inefficient
middleware will force programmers to continue using lower-
level mechanisms to achieve necessary transfer rates and
end-to-end latency. This is a serious problem for mission/life-
critical applications(such as real-time avionics, process con-
trol systems, and medical imaging).

This paper provides two contributions to the study of
CORBA performance over high-speed networks. First, we
measure the latency of various types and sizes of oneway and
twoway client requests using a pair of widely used implemen-
tations of two C++ implementations of CORBA – Orbix 2.1
and VisiBroker 2.0. Second, we use Orbix and VisiBroker
to measure the scalability of CORBA servers in terms of the
number of objects they can support efficiently. These exper-
iments extend our previous work on CORBA performance for
bandwidth-sensitive applications (such as satellite surveil-
lance, medical imaging, and teleconferencing).

Our results show that the latency for CORBA implemen-
tations is relatively high and server scalability is relatively
low. Our latency experiments show that non-optimized in-
ternal buffering and presentation layer conversion over-
head in CORBA implementations can cause substantial de-
lay variance, which is unacceptable in many real-time or
constrained-latency applications. Likewise, our scalability
experiments reveal that neither Orbix nor VisiBroker can
handle a large number of objects in a single server process.
The paper concludes by outliningoptimizationswe are devel-
oping to overcome the performance limitations with existing

1This work was supported in part by NSF grant NCR-9628218. Copy-
right 1997 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center 445 Hoes Lane / P.O. Box 1331
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

CORBA implementations.

1 Introduction

Applications and services for next-generation distributed sys-
tems must be reliable, flexible, reusable, and capable of
providing scalable, low-latency quality of service to delay-
sensitive applications. In addition, communication software
must allow bandwidth-sensitive applications to realize high-
speed data transfers over gigabit networks. Reliability, flex-
ibility, and reusability are essential to respond rapidly to
changing application requirements that span a wide range of
media types and access patterns [1].

These requirements motivate the use of the Common Ob-
ject Request Broker Architecture (CORBA) [2]. CORBA is
designed to enhance distributed applications by automating
common networking tasks such as parameter marshaling, ob-
ject location and object activation, as well as providing the
basis for defining higher layer distributed services (such as
naming, events, replication, and transactions) [3].

The success of CORBA in mission-critical distributed com-
puting environments depends heavily on the ability of Object
Request Brokers (ORBs) to provide:

� High bandwidth CORBA implementations must provide
high throughput to bandwidth-sensitive applications (such as
medical imaging, satellite surveillance, or teleconferencing
systems);

� Low latency CORBA implementations must support low
latency for delay-sensitive applications (such as real-time
avionics, distributed interactive simulations, and telecom-
munication systems);

� Scalability of endsystems and distributed systems
CORBA implementations must scale effectively as the number
of objects in endsystems and distributed systems increases.
Scalability is important for large-scale applications (such as
enterprise-wide network management systems), which must
handle a large number of objects on each network node, as
well as a large number of nodes throughout a distributed
computing environment.

1

High-speed networks (such as ATM and FDDI) now sup-
port quality of service guarantees in terms of bandwidth
and latency. However, as shown in Section 4, conventional
implementations of CORBA incur significant overhead when
used for latency-sensitive applications over high-speed net-
works. If not corrected, this overhead will force developers
to avoid CORBA middleware and continue to use lower-level
tools (such as sockets). Unfortunately, lower-level tools fail
to provide other key benefits of CORBA such as reliability,
flexibility and reusability, which are crucial to the success
of complex constrained-latency distributed applications [4].
Therefore, it is imperative to eliminate the sources of CORBA

overhead shown in this paper.
Previous work [5, 6, 7] has focused on the throughput

performance of CORBA implementations that transfer large
amounts of untyped and richly-typed data. This paper ex-
tends earlier work by focusing on latency and scalability.
The research contributions of this paper include the follow-
ing:

� CORBA Latency We measure the performance of two
widely used implementations of CORBA (Orbix 2.1 and Visi-
Broker 2.0) to determine their oneway and twoway latencies
for sending various types (such as chars, shorts, longs,
and structs) and sizes (such as 1, 2, 4, : : : , 1,024 units
of each data type) of client requests using various invocation
strategies (such as static invocation and dynamic invocation).
The results of our latency experiments are described in Sec-
tion 4.

� CORBA Scalability We measure how the number of ob-
jects in a server affect an ORB’s ability to process client re-
quests efficiently. This paper focuses on the scalability of
CORBA implementations in endsystem servers (i.e., the num-
ber of objects in a server process), rather than distributed
scalability (i.e., the number of endsystems in a network).
The results of our endsystem scalability experiments are de-
scribed in Section 4.

In the paper, we pinpoint precisely where the key sources of
latency and scalability overhead exist in conventional imple-
mentations of CORBA. We used two widely available CORBA

implementations (Orbix 2.1 and VisiBroker 2.0) for our ex-
periments. Our findings indicate that the latency overhead of
CORBA implementations stem from a variety of sources in-
cluding (1) lack of integration with advanced OS and network
features, (2) inefficient server demultiplexing techniques, (3)
long chains of intra-ORB function calls, (4) excessive pre-
sentation layer conversions and data copying, and (5) non-
optimized buffering algorithms used for network reads and
writes.

The paper is organized as follows: Section 2 outlines the
CORBA communication middleware architecture; Section 3
describes our CORBA/ATM testbed and experimental methods;
Section 4 presents the key sources of latency and scalability
overhead in conventional CORBA implementations over ATM;
Section 5 describes our research on developing optimiza-
tions that eliminate the performance bottlenecks in existing

DII ORB
INTERFACE

ORB
CORE

operation()

IDL
STUBS

OBJECT

ADAPTER

IDL
SKELETON

DSI

in args

out args + return value

OBJECT

IMPLEMENTATION
CLIENT

GIOP/IIOP

Figure 1: Components in the CORBA Distributed Object
Computing Model

CORBA implementations; Section 6 describes related work;
and Section 7 presents concluding remarks.

2 Overview of the CORBA Architec-
ture

CORBA is an open standard for distributed object comput-
ing [2]. Figure 1 illustrates the primary components in the
CORBA architecture. The CORBA standard defines a set of
components that allow client applications to invoke opera-
tions (op) with arguments (args) on object implementa-
tions. CORBA enhances application flexibility since object
implementations can be configured to run locally and/or re-
motely without affecting their implementation or use. The
responsibility of each component in CORBA and its implica-
tions for high-performance distributed computing systems is
described below:

�Object Implementation This defines operations that im-
plement a CORBA IDL interface. Object implementations can
be written in a variety of languages including C, C++, Java,
Smalltalk, and Ada.

� Client This is the program entity that invokes an opera-
tion on an object implementation. Accessing the services of
a remote object should be transparent to the caller. Ideally,
it should be as simple as calling a method on an object, i.e.,
obj->op(args). The remaining components in Figure 1
help to support this level of transparency.

� Object Request Broker (ORB) When a client invokes
an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, de-
livering the request to the object, and returning the response
(if any) to the caller.

� ORB Interface An ORB is a logical entity that may be
implemented in various ways (such as one or more processes
or a set of libraries). To decouple applications from imple-
mentation details, the CORBA specification defines an abstract
interface for an ORB. This interface provides various func-
tions such as converting object references to strings and vice

2

versa, and creating argument lists for requests made through
the dynamic invocation interface (DII) described below.

�CORBA IDL Stubs and Skeletons CORBA IDL stubs and
skeletons serve as the “glue” between the client and server
applications, respectively, and the ORB. Stubs marshal typed
data objects from a high-level application representation to
a low-level packet representation, whereas skeletons demar-
shal the low-level packet representation back into a typed
data object that is meaningful to the application. The trans-
formation between CORBA IDL definitions and the target pro-
gramming language is automated by a CORBA IDL compiler.
The use of a compiler reduces the potential for inconsisten-
cies between client stubs and server skeletons and increases
opportunities for automated compiler optimizations.

�Dynamic Invocation Interface (DII) and Dynamic Skele-
ton Interface (DSI) The DII allows a client to access the
underlying request mechanisms provided by an ORB. Appli-
cations use the DII to dynamically issue requests to objects
without requiring IDL interface-specific stubs to be linked in
the process. Unlike IDL stubs (which only allow RPC-style
twoway and oneway requests), the DII also allows clients to
make non-blocking deferred synchronous calls, which sepa-
rate send and receive operations.

The DSI is the server side’s analogue to the client side’s DII.
The DSI allows an ORB to deliver requests to an object imple-
mentation or ORB bridge that has no compile-time knowledge
of the type of object it is implementing. The client making the
request need not be aware that the implementation is using
the type-specific IDL skeletons or the dynamic skeletons.

� Object Adapter The Object Adapter assists the ORB by
demultiplexing requests to the target object and dispatch-
ing operation upcalls on the object. In addition, the Object
Adapter associates object implementations with the ORB. Ob-
ject Adapters can be specialized to provide support for certain
object implementation styles (such as OODB Object Adapters
for persistence, library Object Adapters for non-remote ob-
jects, and real-time Object Adapters [8] for applications that
require QoS guarantees).

The use of CORBA as communication middleware enhances
application flexibility and portability by automating many
common development tasks such as object location, parame-
ter marshaling, and object activation. CORBA is an improve-
ment over conventional procedural RPC middleware (such as
OSF DCE and ONC RPC) since it supports object-oriented lan-
guage features (such as encapsulation, interface inheritance,
parameterized types, and exception handling) and more flex-
ible communication mechanisms (such as object references
that support peer-to-peer communication and dynamic in-
vocation capabilities). These features enable complex dis-
tributed and concurrent applications to be developed more
rapidly and correctly.

The primary drawback to using higher-level middleware
like CORBA is its potential for low throughput, high latency,
and lack of scalability over high-speed networks. In general,
existing implementations of CORBA have not been optimized

STUBS STUBS ((SIISII)) OR OR

DII REQUESTDII REQUEST

CLIENTCLIENT SERVERSERVER

FRAMINGFRAMING,, ERROR ERROR

CHECKING ANDCHECKING AND

INTEROPERABILITYINTEROPERABILITY

MARSHALLINGMARSHALLING

OS LEVELOS LEVEL

INTERFACE METHODINTERFACE METHOD

IMPLEMENTATIONIMPLEMENTATION

FRAMINGFRAMING,, ERROR ERROR

CHECKING ANDCHECKING AND

INTEROPERABILITYINTEROPERABILITY

DEMARSHALLING ANDDEMARSHALLING AND

DEMULTIPLEXINGDEMULTIPLEXING

OS LEVELOS LEVEL

NETWORKNETWORK

Figure 2: General Path of CORBA Requests

significantly since performance has not generally been an
issue on low-speed networks. Figure 2 shows the general
path that CORBA implementations use to transmit requests
from client to server for remote operation invocations. In
Section 4.3, we show the corresponding path for the Orbix 2.1
and VisiBroker 2.0 ORBs and precisely pinpoint the sources
of overhead existing along the data path. It is beyond the
scope of this paper to discuss the limitations with the CORBA

communication model (see [9] for a synopsis).

3 CORBA/ATM Testbed and Experi-
mental Methods

This section describes our CORBA/ATM testbed and outlines
our experimental methods.

3.1 Hardware and Software Platforms

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running SunOS 5.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSparc-2 contains two 168 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP pro-
tocol stack is implemented using the STREAMS communi-
cation framework. Each UltraSparc-2 has 256 Mbytes of
RAM and an ENI-155s-MF ATM adaptor card, which supports

3

155 Megabits per-sec (Mbps) SONET multimode fiber. The
Maximum Transmission Unit (MTU) on the ENI ATM adaptor
is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. A maximum of 32 Kbytes is allotted per ATM vir-
tual circuit connection for receiving and transmitting frames
(for a total of 64 K). This allows up to eight switched virtual
connections per card.

3.2 Traffic Generators

Our earlier studies [5, 6, 4, 7] tested bulk data performance
using “flooding models” that transferred untyped bytestream
data, as well as richly typed data between hosts using sev-
eral implementations of CORBA and other lower-level mech-
anisms like sockets. On the client-side, these experiments
measured the static invocation interface (SII) and the dynamic
invocation interface (DII) provided by the CORBA implemen-
tations. The SII allows a client to invoke a remote method
via static stubs generated by a CORBA IDL compiler, which
is useful when client applications know the interface offered
by the server at compile-time. In contrast, the DII allows a
client to access the underlying request mechanisms provided
by an ORB directly, which is useful when the applications do
not know the interface offered by the server until run-time.

The experiments conducted for this paper extend our ear-
lier throughput studies by measuring the end-to-end latency
and request demultiplexing overhead that is incurred when in-
voking various request sizes on a range of objects maintained
by a CORBA server. In addition, we measure CORBA scalabil-
ity by determining the performance impact from increasing
the number of objects in an endsystem server process.

Traffic for the latency experiment was generated and con-
sumed by the Orbix 2.1 and VisiBroker 2.0 implementations
of TTCP [10] (TTCP is a widely used benchmarking tool to
evaluate the performance of TCP/IP and UDP/IP networks). In
this case, we defined both oneway and twoway CORBA op-
erations. The flow of control is uni-directional in oneway
operations (i.e., the client need not block until the server exe-
cutes the operation), whereas in twoway operations the client
blocks until the operation returns. We measured round-trip
latency using the twoway CORBA operations. Each operation
transfers a sequence of various data types. In addition,
we measured operations that did not use any parameters to
determine “best case” latency.

The following data types were used for all of the
tests: primitive types (short, char, long, octet,
double) and a C++ struct composed of all the primitives
(BinStruct). The CORBA implementation transferred the
data types using IDL sequences, which are dynamically-
sized arrays. The IDL definition used in the test is shown in
the Appendix A.

3.3 TTCP Parameter Settings

Earlier studies [11, 12, 13, 4, 7] of transport protocol per-
formance over ATM demonstrate the performance impact of
parameters such as the size of socket queues, data buffer, and

number of target objects on an endsystem (e.g., a server).
Therefore, our TTCP benchmarks systematically varied these
parameters for each type of data as follows:

� Socket queue size The sender and receiver socket queue
sizes used were 64 K bytes, which is the maximum on SunOS
5.5. These parameters influence the size of the TCP segment
window, which has been shown [13, 7] to significantly af-
fect CORBA-level and TCP-level performance on high-speed
networks.

� TCP “No Delay” option Since the request sizes for our
tests are relatively small, the TCP NODELAY option is set
on the client side. Without the TCP NODELAY option, the
client’s TCP uses Nagel’s algorithm, which buffers “small”
requests until the preceding small request is acknowledged.
On high-speed networks the use of Nagel’s algorithm can in-
crease latency unnecessarily. Since this paper focuses on
measuring the latency of small requests, we enabled the
TCP NODELAY option to send packets immediately.

� Data buffer size For the latency measurements, the
sender transmits parameter units of a specific data type in-
cremented in powers of two, ranging from 1 to 1,024. Thus,
for shorts (which are two bytes long on the SPARCs),
the sender buffers ranged from 2 bytes to 2,048 bytes. In
addition, we also measured the latency of remote method
invocations that had no parameters.

� Number of target objects Increasing the number of ob-
jects on the server increases the demultiplexing effort re-
quired to dispatch the incoming request to the appropriate
object. To pinpoint the latency overhead in this demulti-
plexing process, and to evaluate the scalability of CORBA

implementations, our experiments used a range of objects (1,
100, 200, 300, 400, and 500) on the server.

3.4 Profiling Tools

Detailed timing measurements used to compute latency were
made with the gethrtime system call available on SunOS
5.5. This system call uses the SunOS 5.5 high-resolution
timer, which expresses time in nanoseconds from an arbitrary
time in the past. The time returned by gethrtime is very
accurate since it does not drift.

The profile information for the empirical analysis was ob-
tained using theQuantify performance measurement tool.
Quantify analyzes performance bottlenecks and identifies
sections of code that dominate execution time. Unlike tra-
ditional sampling-based profilers (such as the UNIX gprof
tool), Quantify reports results without including its own
overhead. In addition,Quantifymeasures the overhead of
system calls and third-partylibraries without requiringaccess
to source code.

3.5 Invocation Strategies

One source of latency incurred by CORBA implementations
in high-speed networks involves the operation invocation

4

strategy. This strategy determines whether the requests are
invoked via the static or dynamic interfaces and whether the
client expects a response from the server. In our experiments,
we measured the following operation invocation strategies
defined by the CORBA specification:

� Oneway static invocation The client uses the SII stubs
generated by the CORBA IDL compiler for the oneway opera-
tions defined in the IDL interface. For oneway operations the
CORBA standard specifies “best-effort” delivery semantics,
i.e., no application-level acknowledgment is passed back to
the requester. IONA and Visigenic both use TCP/IP to trans-
mit oneway operations;

�Twoway static invocation The client uses the static invo-
cation interface (SII) stubs for twoway operations defined in
IDL interfaces. After each twoway operation is invoked the
client blocks until an acknowledgment is received (i.e., the
operation returns). In our experiments, we defined twoway
operations to return “void,” thereby minimizing the size of
the acknowledgment from the server;

� Oneway dynamic invocation The client uses the DII to
build a request at run-time and uses the CORBA Request
class to make the requests;

� Twoway dynamic invocation The client uses the dy-
namic invocation interface (DII) to make the requests, but
blocks until the call returns from the server.

We measured the average latency for 100 client requests
for every 1, 100, 200, 300, 400, and 500 objects on the server.
In every request, we invoked the same method. We restricted
the number of requests per object to 100 since neither ORB

could handle a larger numbers of requests without crashing.

3.6 Target Object Demultiplexing Strategies

Another source of overhead incurred by CORBA implemen-
tations in high-speed networks involves the time the ORB’s
Object Adapter spends demultiplexing requests to target ob-
jects. The type of demultiplexing strategy used by an ORB

significantly affects its scalability. Scalability is important
for applications like enterprise-wide network management
systems, which must handle agents containing a potentially
large number of managed objects on each ORB endsystem.

Conventional ORBs (including Orbix and VisiBroker) de-
multiplex client requests to the appropriate operation of
the target object implementation using the following steps
(shown in Figure 3):

� Steps 1 and 2 The OS protocol stack demultiplexes the
incoming client request multiple times (e.g., through the data
link, network, and transport layers, as well as the user/kernel
boundary) to the ORB’s Object Adapter;

� Steps 3 and 4 The Object Adapter uses the addressing
information in the client request to locate the appropriate
target object implementation and associated IDL skeleton;

2:2: DEMUX TO DEMUX TO

 I/OI/O HANDLE HANDLE

M
E

T
H

O
D

M
E

T
H

O
D
KK

M
E

T
H

O
D

M
E

T
H

O
D
22

.........

M
E

T
H

O
D

M
E

T
H

O
D
11

.........

.........IDLIDL

SKEL SKEL 11
IDLIDL

SKEL SKEL 22
IDLIDL

SKEL SKEL MM

OBJECT ADAPTER

ORB COREORB CORE

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OBJECT OBJECT 11 OBJECT OBJECT 22 OBJECT OBJECT NN

4:4: DEMUX TO DEMUX TO

 SKELETON SKELETON

5:5: DEMUX TO DEMUX TO

 METHOD METHOD

1:1: DEMUX THRU DEMUX THRU

 PROTOCOL STACK PROTOCOL STACK

3:3: DEMUX TO DEMUX TO

 OBJECT OBJECT

LAYERED

DEMUXING

Figure 3: Demultiplexing Client Requests to CORBA Target
Object Implementations

� Step 5 The IDL skeleton locates the appropriate operation,
demarshals the request buffer into the operation parameters,
and performs the upcall to the operation.

Demultiplexing client requests through all these layers is
expensive, particularly when a large number of operations
appear in an IDL interface and/or a large number of objects
are managed by an ORB.

Our prior work [5, 14] analyzed the impact of various IDL

skeleton demultiplexing techniques (such as linear search and
direct demultiplexing). However, in many applications the
number of operations defined per-IDL interface is relatively
small and static, compared to the number of potential objects,
which can be quite large and dynamic. To evaluate the scala-
bility of the CORBA implementations in this paper, therefore,
we varied the number of objects residing in the server process
from 1 to 500, by increments of 100. The server used the
shared activation mode, where all objects on the server are
managed by the same process.

3.7 Request Generation Algorithms

One way to optimize the demultiplexing overhead described
above is to have the Object Adapter cache recently accessed
target objects. Caching is particularly useful if client oper-
ations arrive in “request trains,” where a server receives a
series of requests for the same target object. By caching in-
formation about an object, the server can reduce the overhead
of locating the object for every incoming request.

The CORBA standard does not mandate the use of caching.
Therefore, ORB implementations are not obliged to support
it. To determine if caching was used (and to measure its
effectiveness), we devised the following two algorithms, Re-
quest Train and Round Robin, to invoke client requests and
calculate average latency:

5

� Request Train algorithm The Request Train algorithm
generates client requests in a manner that measures the pres-
ence and benefits of ORB Object Adapter caching, as follows:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int j = 0; j < num_objects; j++){
for (int i = 0; i < MAXITER; i++) {

// Use one of the 2 invocation strategies
// to call the send() method on object_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_objects);

This algorithm does not change the destination object until
MAXITER requests are performed. If a server is caching in-
formation about recently accessed objects, the Request Train
algorithm should elicit different performance characteristics
than the Round Robin algorithm described next.

� Round Robin algorithm The Round Robin algorithm
iterates MAXITER times, each time invoking the send op-
eration on a different object reference (an object reference is
a client-side entity that behaves as a proxy on behalf of the
object residing on the server). The Round Robin algorithm
is defined as follows:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < MAXITER; i++){
for (int j = 0; j < num_objects; j++) {

// Use one of the 2 invocation strategies
// to call the send() method on object_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_objects);

4 Performance Results for CORBA La-
tency and Scalability over ATM

This section presents the performance results from our la-
tency and scalability experiments. Sections 4.1 and 4.2 de-
scribe the blackbox experiments that measure end-to-end
communication delay from client requester to a range of
server target objects using a variety of types and sizes of
data. Section 4.3 describes a whitebox empirical analysis
using Quantify to precisely pinpoint the overheads that
yield these results. Our measurements include the overhead
imposed by all the layers shown in Figure 2.

4.1 Blackbox Results for Parameterless Oper-
ations

In this section, we describe the results for sending parame-
terless operations using the Round Robin and Request Train
invocation strategies.

Latency and scalability of parameterless operations
Figures 4 and 5 depict the average latency for the param-
eterless operations using the Request Train variation of our
request generation algorithm. Likewise, Figures 6 and 7
depict the average latency for invoking parameterless opera-
tions using the Round Robin algorithm.

These figures reveal that the results for the Request Train
experiment and the Round-Robin experiment are essentially
identical. Thus, it appears that neither ORB supports caching
of server objects. As a result, the remainder of our tests only
use the Round Robin algorithm.

� Twoway latency – The figures illustrate that that the
performance of VisiBroker was relatively constant for
twoway latency. In contrast, Orbix’s latency grew as
the number of objects increased. The rate of increase
was approximately 1.12 times for every 100 additional
objects on the server.

Tracing the CORBA run-time system calls using truss
revealed the problem with Orbix. When Orbix 2.1 is run
over ATM networks, it opens a new TCP connection (and
thus a new socket descriptor) for every object reference.2

This has the following consequences:

– Increased demultiplexing overhead – Opening a
new socket connection for each object reference
degrades latency significantly since the OS kernel
must search the socket endpoint table to determine
which descriptor should receive the data.

– Limited scalability – As the number of objects
grows, all the available descriptors on the client
and server were exhausted. We used the UNIX

ulimit command to increase the number of de-
scriptors to 1,024, which is the maximum sup-
ported per-process on SunOS 5.5 without reconfig-
uring the kernel. Thus, we were limited to approx-
imately 1,000 object references per-server process
on Orbix over ATM.

In contrast, VisiBroker did not create socket descriptors
for every object reference. Instead, a single connec-
tion and socket descriptor were shared by all object
references in the client. Likewise, a single connection
and socket descriptor were shared by all target object
implementations in the server. This, combined with
its hashing-based demultiplexing scheme for locating
objects and methods, significantly reduces latency. In
addition, we were able to obtain object references for
more than 1,000 objects.

� Oneway latency – The figures illustrate that in case of
VisiBroker, the oneway latency remains roughly con-
stant as the number of objects on the server increase.
However, Orbix’s latency grows as the number of ob-
jects increase. Figures 4 and 6 reveal an interesting

2Interestingly, when the Orbix client is run over Ethernet it only uses a
single socket on the client, regardless of the number of objects in the server
process.

6

1−obj 100−objs 200−objs 300−objs 400−objs 500−objs
Invocation policy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

La
te

nc
y

in
 m

se
c

sii 1−way

dii 1−way

sii 2−way

dii 2−way

Figure 4: Orbix: Latency for Sending Parameterless Opera-
tion using Request Train Requests

1−obj 100−objs 200−objs 300−objs 400−objs 500−objs
Invocation policy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

La
te

nc
y

in
 m

se
c

sii 1−way

dii 1−way

sii 2−way

dii 2−way

Figure 5: VisiBroker: Latency for Sending Parameterless
Operation using Request Train Requests

case with Orbix’s oneway latency. The oneway SII and
DII latencies remain slightly less than their correspond-
ing twoway latencies until 200 objects on the server.
Beyond this, the oneway latencies exceed their corre-
sponding twoway latencies. Orbix opens a new TCP

connection (and hence a new socket descriptor) for ev-
ery object reference. Since the oneway calls do not
involve any server response to the client, the client is
able to send requests without blocking. As explained in
Section 4.3.3, due to the large number of open TCP con-
nections and inefficient demultiplexing strategies, the
receiver is unable to keep pace with the sender. As a re-
sult the underlying transport protocol (TCP in this case)
is required to invoke flow control techniques to slow
down the sender. As the number of objects increase,
this flow control overhead becomes dominant thereby
increasing oneway latency. In contrast, the twoway la-
tency does not incur this flow control overhead since the
sender blocks for a response after every request.

Figure 8 compares the twoway latencies obtained for send-
ing parameterless operations for Orbix and VisiBroker with
that of a low-level C implementation that uses sockets. The
twoway latency comparison reveals that the VisiBroker and
Orbix versions perform only 50% and 46% as well as the C

1−obj 100−objs 200−objs 300−objs 400−objs 500−objs
Invocation policy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

La
te

nc
y

in
 m

se
c

sii 1−way

dii 1−way

sii 2−way

dii 2−way

Figure 6: Orbix: Latency for Sending Parameterless Opera-
tion using Round Robin Requests

1−obj 100−objs 200−objs 300−objs 400−objs 500−objs
Invocation policy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

La
te

nc
y

in
 m

se
c

sii 1−way

dii 1−way

sii 2−way

dii 2−way

Figure 7: VisiBroker: Latency for Sending Parameterless
Operation using Round Robin Requests

0.0

0.5

1.0

1.5

La
te

nc
y

in
 m

se
c

CORBA (Orbix)
CORBA (Visigenic)
TCP/IP (ACE)

Figure 8: Comparison of Twoway Latencies

7

version, respectively.

4.1.1 Summary of Results for Parameterless Operations

� Neither ORB we measured caches recently accessed ob-
ject references in the Object Adapter. As a result, the
latency for the Request Train and Round Robin cases
are nearly equivalent;

� Oneway latencies for VisiBroker remained relatively
constant with increase in the number of objects on the
server. However, the oneway latency for Orbix in-
creases roughly linearly with increase in the number
of objects;

� Oneway latencies for Orbix exceed their corresponding
twoway latencies beyond 200 objects on the server. This
is due primarily to the flow control mechanism used by
the underlying transport protocol to slow down the fast
sender;

� Twoway latency for VisiBroker remains relatively con-
stant as the number of objects increases. This is due
primarily to the efficient demultiplexing based on hash-
ing used by VisiBroker. In addition, VisiBroker does
not open a new connection for every object reference;

� Twoway latency for Orbix increases linearly at a rate of
roughly 1.12 per 100 object increment. As explained
earlier, this is due primarily to the inefficient demulti-
plexing strategy and an open TCP connection per object
reference;

� Twoway DII latency in VisiBroker is comparable to its
twoway SII latency. This is due to the ability to reuse
CORBA thereby requiring to create the request only once.
The CORBA 2.0 specification does not dictate which of
these semantics is correct, so an implementation is free
to use either approach.

� Twoway DII latency in Orbix is roughly 2.6 times that
of its twoway SII latency. In Orbix DII, a new request
has to be created per invocation;

� Twoway DII latency for Orbix is always greater than
its twoway SII latency, whereas for VisiBroker they are
comparable. The reasons is that Orbix creates a new
request for every DII invocation. In contrast, VisiBroker
recycles the request.

4.2 Blackbox Results for Parameter Passing
Operations

Figures 9 through 16 depict the average latency for sending
richly-typed struct data and untyped octet data using
(1) the twoway operation invocation strategies (described in
Section 3.5) and (2) varying the number of server-side objects
(described in Section 3.6). These figures reveal that as the
sender buffer size increases the marshaling and data copying
overhead also grows [5, 6], thereby increasing latency. These
results demonstrate the benefit of using more efficient buffer

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 9: Orbix Latency for Sending Octets Using Twoway
SII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 10: VisiBroker Latency for Sending Octets Using
Twoway SII

management techniques and highlyoptimized stubs to reduce
the presentation conversion and data copying overhead.

� Twoway latency – Figures 9 through 16 reveal that the
twoway latency for Orbix increases as (1) the number of
server objects and (2) the sender buffer sizes increase.
In contrast, for VisiBroker the latency increases only
with the size of sender buffers. Figures 13 through 16
also reveal that the latency for the Orbix twoway SII case
at 1,024 data units of BinStruct is almost 1.2 times
that for VisiBroker.

Similarly, the latency for the Orbix twoway DII case at
1,024 data units of BinStruct is almost 4.5 times
that for VisiBroker. In addition, the figures reveal that
for Orbix, the latency increases as the number of server
objects increase. As shown in 4.3, this is due primarily
to the inefficient demultiplexingstrategy used by Orbix.
For VisiBroker, the latency remains unaffected as the
number of objects increases.

Orbix incurs higher latencies than VisiBroker due to
(1) the additional overhead stemming from the inabil-
ity of Orbix DII to reuse requests and (2) the presenta-
tion layer overhead of marshaling and demarshaling the

8

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 11: Orbix Latency for Sending Octets Using Twoway
DII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 12: VisiBroker Latency for Sending Octets Using
Twoway DII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 13: Orbix Latency for Sending Structs Using Twoway
SII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 14: VisiBroker Latency for Sending Structs Using
Twoway SII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.0

50.0

100.0

150.0

200.0

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 15: Orbix Latency for Sending Structs Using Twoway
DII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.0

50.0

100.0

150.0

200.0

La
te

nc
y

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 16: VisiBroker Latency for Sending Structs Using
Twoway DII

9

BinStructs. These sources of overhead reduce the
receiver’s performance, thereby triggering the flow con-
trol mechanisms of the transport protocol, which impede
the sender’s progress.

[5, 6] precisely pinpoint the marshaling and data copying
overheads when transferring richly-typed data using SII and
DII. The latency for sendingoctets is significantly less than
that for BinStructs due to significantly lower overhead
of presentation layer conversions. Section 4.3 presents our
analysis of the Quantify results for sources of overhead
that increase the latency of client request processing.

4.2.1 Summary of Latency and Scalability Results for
CORBA Parameter Passing Operations

The following summarizes the latency results for parameter
passing operations described above:

� Latency for both Orbix and VisiBroker increases linearly
with the size of the request. This is due to the increased
parameter marshaling overhead;

� VisiBroker exhibits relatively low, constant latency as
the number of objects increase, due to its use of hashing-
based demultiplexing for objects and IDL skeletons at the
receiver. In contrast, Orbix exhibits linear increases in
latency based on the number of server objects and the
number of operations in an IDL interface. This behavior
stems from Orbix’s use of linear search at the TCP layer
since it opens a connection per object reference. In addi-
tion, it also uses linear search for string comparisons
in its IDL skeletons;

� The DII performs consistently worse than SII (For
twoway Orbix – 3 times for octets, 14 times
for BinStructs; for VisiBroker – comparable for
octets, and roughly 4 times for BinStructs).
Since Orbix does not support reusing the requests, the
DII latency for Orbix incurs additional overhead. How-
ever, both Orbix and VisiBroker have to populate the
request with parameters. This involves marshaling and
demarshaling the parameters. The marshaling over-
head for BinStructs is more significant than that for
octets. As a result, the DII latency for BinStructs
is worse compared to that of octets.

4.3 Whitebox Analysis of Latency and Scala-
bility Overhead

Sections 4.1 and 4.2 presented the results of our blackbox
performance experiments. This section presents the results
of our whitebox profiling to illustrate why the two ORBs per-
formed differently. We analyze theQuantify reports on the
sources of latency and scalability overhead in CORBA imple-
mentations to help explain the variation in the performance
results reported in Section 4.

Figures 17 and 18 show the path a CORBA request takes
through the client and server using the SII stubs generated

EVENT HANDLINGEVENT HANDLING

CORBA::BOA::
processEvents()

FRRInterface::

processNextEvent()

EventHandler::
processNextEvent()

23%23%

selectHandler::
processOneEvent()

OrbixTCPChannel::
receiveBuffer()

OrbixProtocol::
incomingMessage()

RECEIVERECEIVE

MESSAGEMESSAGE

DEMULTIPLEXINGDEMULTIPLEXING

AND DISPATCHINGAND DISPATCHING

ttcp_sequence_dispatch::
dispatch()

FRRInterface::

dispatch()

NullCoder::
codeDouble()
codeLong()
codeShort()
codeOctet()
codeChar()
decodeLongArray()

BinStruct::decodeOp()

CORBA::Request::

operator>>(double)
operator>>(long)
operator>>(short)
operator>>(char)
extractOctet(uchar)
decodeLongArray()

memcpy()

DEMARSHALINGDEMARSHALING

_IDL_SEQUENCE_BinStruct::
decodeOp()

Channel::
processIncomingMessage()

72%72%

RECEIVER

25%25%

SENDER

CORBA::Request::
invoke()

_IDL_SEQUENCE_
BinStruct_encodeOp()

sendStructSequence()

OrbixTCPChannel::

transmitBuffer()

CORBA::Request::send()

FRFInterface::send()

73%73%NullCoder::
codeDouble()
codeLong()
codeShort()
codeOctet()
codeChar()
codeLongArray()

CORBA::Request::

operator<<(double)
operator<<(long)
operator<<(short)
operator<<(char)
insertOctet(uchar)
encodeLongArray

memcpy()

MARSHALING

OS KERNELOS KERNEL OS KERNELOS KERNEL

read()

NETWORKNETWORK

write()

BinStruct::encodeOp()

selectHandle::
processSockets()

OrbixChannel::
readMsg()

ContextClassS::
continueDispatch()

impl_is_ready()

OrbixChannel::
sendMsg()

Figure 17: Request Path Through Orbix Sender and Receiver
for SII

by Orbix and VisiBroker IDL compilers, respectively. In
addition, the figures show how these two ORBs implement
the generic request path shown in Figure 2. Percentages at
the side of each figure indicate the contribution to the total
processing time for a call to the sendStructSeq method,
which was used to perform the operation for sending se-
quences of BinStructs. The percentages in the figures do
not add up to 100 since we do not show the entire contribution
of the OS and network device overhead.

The DII request path is similar to the SII path, except that
the clients create the request at run-time rather than using the
SII stubs generated by the IDL compiler.

4.3.1 Orbix SII Request Flow Overhead

In Figure 17, the Orbix sender invokes the stub for the
ttcp sequence::sendStructSeq method. The re-
quest traverses through the invoke and the send rou-
tines of the CORBA Request class and ends up in the
OrbixChannel class. At this point, it is handled by a spe-
cialized class, OrbixTCPChannel, which uses the TCP/IP
protocol for communication.

On the receiver side, the request travels through a series
of dispatcher classes that locate the intended target object
implementation and its associated IDL skeleton. Finally, the
ttcp sequence dispatch class demultiplexes the in-
coming request to the appropriate target object implementa-
tion and dispatches its sendStructSeq method with the
demarshaled parameters.

On the sender-side, most of the overhead is attributed to
the operating system. The Orbix version uses the write

10

24%24%

PMCBOAClient::
processMessage

memcpy()

RECEIVERSENDER

42%

memcpy()

MARSHALING

operator<<(NCostream&,
structSequence&)

PMCIIOPstream
::writev()

56%56%

OS KERNELOS KERNEL OS KERNELOS KERNEL

read()

NETWORKNETWORK

write()

operator<<(NCostream&,
BinStruct&)

PMCIIOPstream
::sendMessage()

PMCStubInfo::
send()

PMCIIOPstream
::put(char *)

PMCIIOPstream::
operator<<(double)
operator<<(long)
operator<<(short)
operator<<(char)
operator<<(uchar)

sendStructSequence()

CORBA::Object

::_send()

PMCIIOPstream::

operator>>(double)
operator>>(long)
operator>>(short)
operator>>(char)
operator>>(uchar)

operator>>(NCistream&,
BinStruct&)

PMCIIOPStream::put()

RECEIVE

MESSAGE

PMCIIOPstream
::receiveMessage()

PMCIIOPstream
::_read()

EVENT HANDLINGEVENT HANDLING

DEMARSHALINGDEMARSHALING

operator>>(NCistream&,
ttcp_sequence::StructSeq&)

72%72%

impl_is_ready()

dpDispatcher::
dispatch()

dpDispatcher::

notify()

PMCBOAClient
::inputReady()

DEMULTIPLEXINGDEMULTIPLEXING

AND DISPATCHINGAND DISPATCHING

_sk_ttcp_sequence

::sendStructSeq()

PMCSkelInfo

::execute()

PMCBOAClient

::request()

Figure 18: Request Path Through VisiBroker Sender and
Receiver for SII

system call which accounts for 73% of the processing time,
due primarily to TCP/IP protocol processing in the SunOS
kernel. The rest of the overhead is attributable to marshaling
and data copying, which accounts for roughly 25% of the
processing time. On the receiver side, the demarshaling
layer accounts for almost 72% of the overhead, due largely
to the presentation layer conversion overhead incurred while
demarshaling incoming parameters.

4.3.2 VisiBroker SII Request Flow Overhead

In Figure 18, the VisiBroker sender invokes the
stub for the sendStructSeq method defined by the
ttcp sequence class. The request passes through
the send methods of the CORBA::Object and the
PMCStubInfo classes. Finally, the request passes through
the methods of the PMCIIOPStream class, which imple-
ments the Internet Inter-ORB Protocol (IIOP)[2]3 The IIOP im-
plementation writes to the underlying socket descriptor.

On the receiver side, the IIOP implementation reads the
packet using methods of thePMCIIOPStream class, which
passes the request to the basic object adapter (BOA). The BOA

demultiplexes the incoming request by identifying the skele-
ton (sk ttcp sequence::skeleton). The skeleton
identifies the object implementation and makes an upcall to
the sendStructSeq method of the ttcp sequence i
implementation class.

On the sender-side, 56% of the overhead is attributed to the
operating system and networking level. The rest of the over-
head is attributable to marshaling and data copying which

3The IIOP specifies a standard communication protocol between objects
on different nodes or between heterogeneous ORBs.

Comm. Request Analysis
Entity Train Method Name msec %
Client No read 112,795 99

Yes read 64,075 99
Server No strcmp 2,559 21.79

hashTable:: 1,852 15.77
lookup
write 949 8.08
select 768 6.54
hashTable:: 600 5.10
hash
Selecthandler:: 406 3.45
processSockets
read 346 2.95

Yes strcmp 2,468 21.35
hashTable:: 1,810 15.66
lookup
write 960 8.30
select 761 6.59
hashTable:: 595 5.14
hash
Selecthandler:: 404 3.50
processSockets
read 323 2.79

Table 1: Analysis of Target Object Demultiplexing Overhead
for Orbix

accounts for roughly 42% of the processing time. On the
receiver side, the demarshaling and demultiplexing layer ac-
counts for almost 72% of the processing time. The Visi-
Broker implementation spends most of the receiver-side pro-
cessing time in demarshaling the parameters. In addition,
the incoming parameters have to travel through long chain
of function calls (shown in Figure 18), which increase the
overhead.

4.3.3 Target Object Demultiplexing Overhead

To evaluate how the CORBA implementations scale for
endsystem servers, we instantiated 1, 100, : : : , 500 objects on
the server. The following discussion analyzes the server-side
overhead for demultiplexing client requests to target objects.
We analyze the performance of the sendNoParams 1way
method for 500 objects on the server and 10 iterations. The
sendNoParams 1waymethod is chosen so that the demul-
tiplexing overhead can be analyzed without being affected
by the demarshaling overhead involved with sending richly-
typed data as shown in Sections 4.3.1 and 4.3.2.

� Orbix demultiplexing overhead Table 1 depicts the af-
fect on latency and scalability of instantiating500 objects and
invoking 10 requests of thesendNoParams 1waymethod
per object using Orbix. Quantify analysis reveals that the
performance of both the Round Robin and the Request Train
case is similar. In both cases, the client spends most of its
time performing network reads.

The server spends�22% of its time doing strcmps used
for linearly searching the operation table to lookup the right
operation, 16% of the time doing hash table lookups to lookup
the right object and its skeleton,�8% of the time inwrites,
and �7% of its time in select. Orbix opens a new socket

11

Comm. Request Analysis
Entity Train Method Name msec %
Client No write 10,895 99.00

Yes write 10,992 99.00
Server No write 393 20.84

�NCTransDict 138 7.31
�NCClassInfoDict 138 7.31
read 83 4.40
NCOutTbl 73 3.84
NCClassInfoDict 71 3.75

Yes write 275 15.32
�NCTransDict 138 7.67
�NCClassInfoDict 138 7.67
read 83 4.61
NCOutTbl 73 4.03
NCClassInfoDict 71 3.93

Table 2: Analysis of Target Object DemultiplexingOverhead
for VisiBroker

descriptor for every object reference obtained by the client.
Hence, to demultiplex incoming requests, Orbix must use
select to determine which socket descriptor is ready for
reading.

� VisiBroker demultiplexing overhead Table 2 de-
picts the affect on latency and scalability of instan-
tiating 500 objects and invoking 10 iterations of the
sendNoParams 1way method per object using VisiBro-
ker. The table revels no significant difference between the
Round Robin and Request Train case. The Quantify anal-
ysis for the VisiBroker version reveals that the server spends
�15-20% of its time in network writes,�5% in reads, and
�22% time demultiplexing requests. The demultiplexing
process involves reading and managing the internal tables
(�NCTransDict, NCOutTbl). These internal tables are
used by VisiBroker’s hash-based table lookup strategy to de-
multiplex and dispatch the incoming request to the intended
object.

Comparison of Orbix and VisiBroker demultiplexing
overhead

� VisiBroker opens one socket descriptor for all object
references in the same server process. In contrast, Orbix
opens a new socket descriptor for every object reference
over ATM networks (described in Section 4.1);

� VisiBroker uses a hashing-based scheme to demultiplex
incoming requests to their target object. In contrast,
although Orbix also uses hashing to identify the object,
a different socket is used for each object. Therefore, the
OS kernel must search the list of socket descriptors to
identify which one is enabled for reading.

4.4 Additional Impediments to CORBA Scal-
ability

In addition to target object demultiplexing overhead, both
versions of CORBA used in our experiments possessed other

impediments to scalability. In particular, neither worked cor-
rectly when clients invoked a large number of operations on a
large number of target objects accessed via object references.

We were not able to measure latency for more than�1,000
objects since both CORBA implementations crashed when we
performed a large number of requests on�1,000 objects. As
discussed in Section 4.1, Orbix was unable to support more
than�1,000 objects since it opened a separate TCP connection
and allocated a new socket for each object in the server pro-
cess. Moreover, even though VisiBroker supported �1,000
objects, it could not support more than 80 requests per object
without crashing when the server had 1,000 objects i.e., no
more than a total of 80,000 requests could be handled by Visi-
Broker (this appears to be caused by a memory leak). Clearly,
these limitationsare not acceptable for mission-critical ORBS.

4.5 Summary of Performance Experiments

The following summarizes our the results of our findings of
ORB performance over high-speed networks:

� Sender-side overhead Much of the sender-side overhead
is in the OS calls used to send requests. Removing this
overhead requires the use of optimal buffer manager and
tuningdifferent parameters (such as socket queue lengths and
flow control strategies) of the underlying transport protocol.

�Receiver-side overhead Much of the receiver-side over-
head occurs from inefficient demultiplexing and presentation
layer conversions (particularly for passing richly-typed data
(e.g., structs). Eliminating the demultiplexing overhead
requires delayered strategies and fast, flexible message de-
multiplexing [15]. Eliminating the presentation layer over-
head requires optimized stub generators [16, 17] for richly-
typed data.

� Demultiplexing overhead The Orbix demultiplexing
performs worse than VisiBroker demultiplexing since Orbix
uses a linear search strategy based on string comparisons
for operation demultiplexing. In addition, due to an open
TCP connection for every object reference, Orbix has to use
the operating system select call to determine the socket
descriptors ready for reading.

� Intra-ORB function calls Existing ORB implementations
suffer from excessive intra-ORB function calls, as shown in
Section 4.3. To minimize intra-ORB function calls requires
sophisticated compiler optimizations such as integrated layer
processing [1].

�Dynamic invocation overhead DII performance drops as
the size of requests increases. To minimize the dynamic invo-
cation overhead requires allowing reuse of requests and min-
imizing the marshaling and data copying overhead involved
with populating the requests with their intended parameters.

12

NETWORKNETWORK

ORBORB QQOOSS
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

RIDLRIDL
STUBSSTUBS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

RIDLRIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

OBJECTOBJECT

IMPLEMENTATIONIMPLEMENTATION
CLIENTCLIENT

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

RIOPRIOP PROTOCOL

ENGINE

OPTIMIZATIONS

I/O SUBSYSTEM

OPTIMIZATIONS

NETWORK

ADAPTER

OPTIMIZATIONS

REQUEST

DEMUXING AND

DISPATCHING

OPTIMIZATIONS

DATA COPYING

OPTIMIZATIONS

PRESENTATION

LAYER

OPTIMIZATIONS

Figure 19: Optimizations for High-Performance, Real-Time ORBs

5 Optimizations for High-Performance
ORBs

The performance results reported in this paper reveal the
capabilities and limitations of conventional ORBs in terms of
latency and scalability. Figure 19 depicts the optimizations
we are employing to eliminate the bottlenecks with existing
ORBs identified in Section 3. These optimizations are being
integrated into a high-performance, real-time ORB called TAO

[18, 8].

The research issue we are addressing in TAO is how to
provide end-to-end quality of service guarantees to CORBA-
compliant applications and services. To accomplish this, we
are pursuing an integrated approach that (1) automatically
customizes ORBs to take advantage of advanced features of-
fered by operating systems and networks; (2) optimizes gen-
erated CORBA IDL stubs to minimize marshaling overhead and
to demultiplex incoming requests efficiently; and (3) employs
advanced compiler techniques (such as program flow anal-
ysis and integrated layer processing) to eliminate excessive
intra-ORB function calls.

The central focus of our TAO ORB effort is a portable
and feature-rich CORBA kernel that implements the standard
CORBA Internet Inter-Operability Protocol (IIOP) as shown
in Figure 20. Our IIOP kernel is based on a highly opti-
mized implementation of SunSoft’s implementation of the
IIOP [19]. It supports the flexible configuration of CORBA-
compliant ORBs that can be customized to take advantage
of features offered by the underlying network and operating
systems (such as resource reservation, zero-copy buffer man-
agement, real-time scheduling mechanisms, multi-threading
capabilities, and high-speed transport protocols), as well as
characteristics of the applications (such as loss tolerance in
multimedia applications).

We are developing TAO to overcome the following limita-

DIIDII ORBORB
INTERFACEINTERFACE

operation()operation()

IDLIDL
STUBSSTUBS OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON DSIDSI

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

ORB COREORB CORE

OBJECTOBJECT
IMPLEMENTATIONIMPLEMENTATION

RECEIVERRECEIVER

 TYPECODE

INTERPRETER

TypeCode::traverse()

 CDR::
encoder()

visit()

deep_free()

 CDR::
decoder()

deep_copy()

SENDERSENDER

 TYPECODE

INTERPRETER

TypeCode::traverse()

 deep_free()

visit()

CDR::
decoder()

 deep_copy()
CDR::

encoder()

REQUESTREQUEST

RESPONSERESPONSE

Figure 20: TAO IIOP ORB Core

13

tions with existing ORBs:

�Lack of integration with advanced OS and Network fea-
tures Existing ORBs (such as Orbix and VisiBroker) do not
fully utilize advanced OS and network features. In contrast,
the TAO IIOP kernel provides customizable hooks that enable
the ORB and CORBA applications to utilize these features,
while interoperating seamlessly with IIOP-compliant ORBs.

� Non-optimal demultiplexing strategies Existing ORBs
utilize inefficient and inflexible demultiplexing strategies
based on layered demultiplexing as explained in Section 4.3
and shown in Figure 21(A). In contrast, TAO utilizes active
delayered demultiplexing and explicit dynamic linking [14]
shown in Figure 21(C), which makes it possible to adapt and
configure optimal strategies for dispatching client requests
within ORB endsystems and CORBA bridges.

� Excessive data copying and intra-ORB calls Existing
ORBs are not optimized to reduce the overhead of data copies.
In addition, these ORBs suffer from excessive intra-ORB func-
tion call overhead as shown in Section 4.3. In contrast,
TAO uses advanced compiler techniques (such as program
flow analysis [20, 21] and integrated layer processing (ILP))
[1] to automatically omit unnecessary data copies between
the CORBA infrastructure and applications. In addition, ILP

reduces the overhead of excessive intra-ORB function calls.
Most importantly, this streamlining can be performed without
requiring modifications to the standard CORBA specification.

� Inefficient presentation layer conversions Existing
ORBs are not optimized to generate efficient stubs and skele-
tons. As a result, they incur excessive marshaling and de-
marshaling overhead ([5, 6] and this paper in Figures 17
and 18). In contrast, TAO produces and configures multiple
encoding/decoding strategies for CORBA interface definition
language (IDL) descriptions. Each strategy can be config-
ured for different time/space tradeoffs between compiled vs.
interpreted CORBA IDL stubs and skeletons [22], and the ap-
plication’s use of parameters (e.g., pass-without-touching,
read-only, mutable).

� Non-optimized buffering algorithms used for network
reads and writes Existing ORBS utilize non-optimized in-
ternal buffers for writing to and reading from the network, as
shown in Section 4.3. This causes the ORBs to spend a sig-
nificant amount of time doing reads and writes. In contrast,
TAO utilizes optimal buffer choices to reduce this overhead;

We are currently implementing TAO within a prototype
real-time OS developed at Washington University. This
real-time OS is characterized by features that include (1) a
Real-Time Upcall (RTU) scheduling mechanism [23], which
achieves end-to-end real-time scheduling and (2) the APIC

[24] ATM/host network interface, which provides a zero-copy

mechanism that eliminates the excessive data copying over-
head. In addition, the ACE framework [25] is used to im-
plement the TAO ORB. ACE contains flexible, reusable, effi-
cient, and portable object-oriented components that automate
common ORB communication tasks involving event demul-
tiplexing, event handler dispatching, connection establish-
ment, routing, dynamic configuration of ORB services, and
concurrency control.

6 Related Work

Existing research on measuring latency in high performance
networking has focused extensively on enhancements to
TCP/IP. None of the systems described below are explicitly
targeted for the requirements and constraints of communi-
cation middleware like CORBA. In general, less attention
has been paid to integrating the following topics related to
communication middleware:

� Transport Protocol Performance over ATM Networks
The underlying transport protocols used by the ORB must be
flexible and possess the necessary hooks to tune different pa-
rameters of the underlying transport protocol. [11, 12, 13]
present results on performance of TCP/IP (and UDP/IP [11]) on
ATM networks by varying a number of parameters (such as
TCP window size, socket queue size, and user data size). This
work indicates that in addition to the host architecture and
host network interface, parameters configurable in software
(like TCP window size, socket queue size, and user data size)
significantly affect TCP throughput. [11] shows that UDP per-
forms better than TCP over ATM networks, which is attributed
to redundant TCP processing overhead on highly-reliableATM

links. [11] also describes techniques to tune TCP to be a less
bulky protocol so that its performance can be comparable to
UDP. They also show that the TCP delay characteristics are
predictable and that it varies with the throughput.

[26] present detailed measurements of various categories
of processing overhead times of TCP/IP and UDP/IP. The
authors conclude that whenever a realistic distribution of
message sizes is considered, the aggregate costs of non-data
touching overheads (such as network buffer manipulation)
consume a majority of the software processing time (84%
for TCP and 60% for UDP). The authors show that most
messages sent are short (less than 200 bytes). They claim
that these overheads are hard to eliminate and techniques
such as Integrated Layer Processing can be used to reduce
the overhead. [27] present performance results of the SUNOS

IPC and TCP/IP implementations. They show that increasing
the socket buffer sizes improves the IPC performance. They
also show that the socket layer overhead is more significant on
the receiver side. [28] discusses the TCP NODELAY option,
which allows TCP to send small packets as soon as possible
to reduce latency.

Earlier work [7, 5, 6] using untyped data and typed data
in a similar CORBA/ATM testbed as the one in this paper re-
veal that the low-level C socket version and the C++ socket
wrapper versions of TTCP are roughly equivalent for a given

14

.........

.........IDLIDL

SKEL SKEL 22

OBJECT ADAPTER

OBJECT OBJECT 500500

(A)(A) LAYERED DEMUXING LAYERED DEMUXING,,
LINEAR SEARCHLINEAR SEARCH

OBJECT OBJECT 11 OBJECT OBJECT 22

IDLIDL

SKEL SKEL 11

M
E

T
H

O
D

M
E

T
H

O
D

10
0

10
0

M
E

T
H

O
D

M
E

T
H

O
D
22

.........

M
E

T
H

O
D

M
E

T
H

O
D
11

IDLIDL

SKEL NSKEL N
.........

O
B

J
E

C
T

O
B

J
E

C
T
5
0
0
::

5
0
0
::

M
E

T
H

O
D

M
E

T
H

O
D

1
0
0

1
0
0

O
B

J
E

C
T

O
B

J
E

C
T
5
0
0
::

5
0
0
::

M
E

T
H

O
D

M
E

T
H

O
D

11

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

1
0
0

1
0
0

O
B

J
E

C
T

O
B

J
E

C
T
1:

:
1:

:M
E

T
H

O
D

M
E

T
H

O
D

22

O
B

J
E

C
T

O
B

J
E

C
T
1:

:
1:

:M
E

T
H

O
D

M
E

T
H

O
D

11

OBJECT ADAPTER

.........

.........IDLIDL

SKEL SKEL 22

OBJECT ADAPTER

OBJECT OBJECT 500500

(B) LAYERED DEMUXING,
PERFECT HASHING

OBJECT OBJECT 11 OBJECT OBJECT 22

M
E

T
H

O
D

M
E

T
H

O
D

10
0

10
0

M
E

T
H

O
D

M
E

T
H

O
D
22

.........

M
E

T
H

O
D

M
E

T
H

O
D
11

IDLIDL

SKEL NSKEL N

search(object key)

hash(method)

IDLIDL

SKEL SKEL 11

(C) DE-LAYERED ACTIVE DEMUXING

index(object key)hash(method)

search(method)

Figure 21: Demultiplexing Strategies

socket queue size. Likewise, the performance of Orbix for
sequences of scalar data types is almost the same as that
reported for untyped data sequences. However, the perfor-
mance of transferring sequences of CORBA structs for 64
K and 8 K socket queue sizes was much worse than those for
the scalars. This overhead arises from the amount of time
the CORBA implementations spend performing presentation
layer conversions and data copying.

The results from this paper reveal that latency increases
with increase in number of objects. The variation between
request algorithms revealed that the server-side did not cache
any information. We plan to incorporate caching behavior in
ourTAO ORB to improve latency.

�Presentation Layer and Data Copying The presentation
layer is a major bottleneck in high-performance communica-
tion subsystems [1]. This layer transforms typed data objects
from higher-level representations to lower-level representa-
tions (marshaling) and vice versa (demarshaling). In both
RPC toolkits and CORBA, this transformation process is per-
formed by client-side stubs and server-side skeletons that are
generated by interface definition language (IDL) compilers.
IDL compilers translate interfaces written in an IDL (such as
Sun RPC XDR [29], DCE NDR, or CORBA CDR [2]) to other
forms such as a network wire format.

Eliminating the overhead of presentation layer conver-
sions requires highly optimized stub compilers (e.g., Uni-
versal Stub Compiler [16]) and the Flick IDL compiler [17].
The generated stub code must make an optimal tradeoff be-
tween compiled code (which is efficient, but large in size)
and interpreted code (which is slow, but compact) [22].

Our earlier results [5, 6] have presented detailed measure-
ments of presentation layer overhead for transmitting richly-
typed data. Our results for sending structs reveal that
with increasing sender buffer sizes, the marshaling overhead
increases, thereby increasing the latency. We plan to de-
sign stub compilers that will adapt according to the run-time
access characteristics of various data types and operations.

The run-time usage of a operation or data type can be used
to dynamically link in either the compiled or an interpreted
version of marshaling code.

� Application Level Framing and Integrated Layer Pro-
cessing on Communication Subsystems Conventional
layered protocol stacks and distributed object middleware
lack the flexibility and efficiency required to meet the quality
of service requirements of diverse applications running over
high-speed networks. One proposed remedy for this prob-
lem is to use Application Level Framing (ALF) [1, 30, 31] and
Integrated Layer Processing (ILP) [1, 32, 33]. ALF ensures
that lower layer protocols deal with data in units specified
by the application. ILP provides the implementor with the
option of performing all data manipulations in one or two in-
tegrated processing loops, rather than manipulating the data
sequentially. [34] have shown that although ILP reduces the
number of memory accesses, it does not reduce the number
of cache misses compared to a carefully designed non-ILP

implementation. A major limitation of ILP described in [34]
is its applicability to only non-ordering constrained protocol
functions and its uses of macros that restrict the protocol im-
plementation from being dynamically adapted to changing
requirements.

As shown by our results, CORBA implementations suffer
from a number of overheads that includes the many layers
of software and large chain of function calls. We plan to
use integrated layer processing to minimize the overhead of
the various software layers. Our plans call for developing a
factory of ILP based inline functions that are targeted
to perform different functions. This way, we can dynamically
link in the required function as the requirements change and
yet have an ILP based implementation.

� Demultiplexing Demultiplexing routes messages be-
tween different levels of functionality in layered commu-
nication protocol stacks. Most conventional communication
models (such as the Internet model or the ISO/OSI reference
model) require some form of multiplexing to support interop-

15

erability with existing operating systems and protocol stacks.
In addition,conventional CORBA implementations utilize sev-
eral extra levels of demultiplexing at the application layer to
associate incoming client requests with the appropriate object
implementation and method (as shown in Figure 3). Layered
multiplexing and demultiplexing is generally disparaged for
high-performance communication systems [35] due to the
additional overhead incurred at each layer.[15] describes a
fast and flexible message demultiplexing strategy based on
dynamic code generation. [14] evaluates the performance of
alternative demultiplexing strategies for real-time CORBA.

Our results for latency measurements have shown that with
increasing number of objects, the latency increases. This is
partly due to the additional overhead of demultiplexing the
request to the appropriate method of the appropriate object.
We propose to use a delayered demultiplexing architecture
[14] that can select optimal demultiplexing strategies based
on compile-time and run-time analysis of CORBA IDL inter-
faces.

7 Concluding Remarks

An important class of applications (such as avionics, dis-
tributed interactive simulation, and telecommunication sys-
tems) require scalable, low latency communication. As
shown in this paper, latency-sensitive applications that uti-
lize many target objects are not yet supported efficiently by
contemporary CORBA implementations due to presentation
layer conversions, data copying, demultiplexing overhead,
and many layers of virtual function calls. On low-speed
networks this overhead is often masked. On high-speed net-
works, this overhead becomes a significant factor limiting
communication performance and ultimately limiting adop-
tion by developers.

The results presented in this paper illustrate that current
implementations of CORBA do not scale well as the number of
objects increase by several orders of magnitude. The latency
for Orbix for parameterless operations increases roughly 1.12
times for every increase of 100 server objects. In contrast, the
latency for VisiBroker remains unaffected due to its hashing-
based server-side demultiplexing strategy. However, neither
ORB is capable of handling a large number of requests for a
large number of objects without crashing.

Latency for sending types data in both ORBS increases
as the size of the data increases. This is attributed to the
additional overhead of presentation layer conversions. We
are currently working towards eliminating presentation layer
overhead by using measurement and principle driven op-
timizations [19]. Our optimizations are based on principles
such as eliminating waste, precomputing and storing to avoid
unnecessary repetitive computation, and optimizing for the
common case.

In general, our latency experiments indicate that CORBA

implementations have not been optimized to support low-
latency quality of service. Therefore, these CORBA imple-
mentations are not yet suited for mission-critical latency-

sensitive applications running over high-speed networks.
Likewise, our scalability experiments indicate that current
CORBA implementations have neither been engineered nor
optimized to support large numbers of objects. As a re-
sult, these implementations may not yet be suitable to build
large-scale, performance-sensitive distributed systems and
applications over high-speed networks.

Our goal in precisely pinpointing the sources of over-
head for communication middleware is to develop scal-
able and flexible CORBA implementations that can deliver
gigabit data rates for bandwidth-sensitive applications and
provide low latency guarantees to delay-sensitive applica-
tions. We are currently implementing a lightweight ORB

called TAO that eliminates these overheads. The source
code for the various tests performed in this paper is made
available through the ACE [25] software distribution at
www.cs.wustl.edu/�schmidt/ACE.html.

Acknowledgments

We like to thank IONA and Visigenic for their help in supply-
ing the CORBA implementations used for these tests. Both
companies are currently working to eliminate the latency
overhead and scalability limitations described in this paper.
We expect their forthcoming releases to perform much better
over high-speed ATM networks.

References
[1] David D. Clark and David L. Tennenhouse, “Architectural

Considerations for a New Generation of Protocols,” in Pro-
ceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM), Philadelphia, PA, Sept. 1990,
ACM, pp. 200–208.

[2] Object Management Group, The Common Object Request
Broker: Architectureand Specification, 2.0 edition, July 1995.

[3] Object Management Group, CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 edition,
Mar. 1995.

[4] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt,
“Design and Performance of an Object-Oriented Framework
for High-Performance Electronic Medical Imaging,” USENIX
Computing Systems, vol. 9, no. 4, November/December 1996.

[5] Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the
Performance of Communication Middleware on High-Speed
Networks,” in Proceedings of SIGCOMM ’96, Stanford, CA,
August 1996, ACM, pp. 306–317.

[6] Aniruddha Gokhale and Douglas C. Schmidt, “The Perfor-
mance of the CORBA Dynamic Invocation Interface and
Dynamic Skeleton Interface over High-Speed ATM Net-
works,” in Proceedings of GLOBECOM ’96, London, Eng-
land, November 1996, IEEE, pp. 50–56.

[7] Douglas C. Schmidt, Timothy H. Harrison, and Ehab Al-
Shaer, “Object-Oriented Components for High-speed Net-
work Programming,” in Proceedings of the 1st Conference
on Object-Oriented Technologiesand Systems, Monterey, CA,
June 1995, USENIX.

16

[8] Douglas C. Schmidt, David L. Levine, and Timothy H. Har-
rison, “An ORB Endsystem Architecture for Hard Real-Time
Scheduling,” Feb. 1997, Submitted to OMG in response to
RFI ORBOS/96-09-02.

[9] Kenneth Birman and Robbert van Renesse, “RPC Consid-
ered Inadequate,” in Reliable Distributed Computing with the
Isis Toolkit, pp. 68–78. IEEE Computer Society Press, Los
Alamitos, 1994.

[10] USNA, TTCP: a test of TCP and UDP Performance, Dec
1984.

[11] Sudheer Dharnikota, Kurt Maly, and C. M. Overstreet,
“Performance Evaluation of TCP(UDP)/IP over ATM net-
works,” Department of Computer Science, Technical Report
CSTR 94 23, Old Dominion University, September 1994.

[12] Minh DoVan, Louis Humphrey, Geri Cox, and Carl Ravin,
“Initial Experiencewith AsynchronousTransfer Mode for Use
in a Medical Imaging Network,” Journal of Digital Imaging,
vol. 8, no. 1, pp. 43–48, February 1995.

[13] K. Modeklev, E. Klovning, and O. Kure, “TCP/IP Behavior
in a High-Speed Local ATM Network Environment,” in Pro-
ceedings of the 19thConference on Local Computer Networks,
Minneapolis, MN, Oct. 1994, IEEE, pp. 176–185.

[14] Aniruddha Gokhale, Douglas C. Schmidt, and Stan Moyer,
“Evaluating the Performance of Demultiplexing Strategies for
Real-time CORBA,” in Submitted to GLOBECOM ’97, ,
Phoenix, AZ, November 1997, IEEE.

[15] Dawson R. Engler and M. Frans Kaashoek, “DPF: Fast, Flex-
ible Message Demultiplexing using Dynamic Code Genera-
tion,” in Proceedings of ACM SIGCOMM ’96 Conference in
Computer Communication Review, Stanford University, Cali-
fornia, USA, August 1996, pp. 53–59, ACM Press.

[16] Sean W. O’Malley, Todd A. Proebsting, and Allen B. Montz,
“USC: A Universal Stub Compiler,” in Proceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM), London, UK, Aug. 1994.

[17] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary
Lindstrom, “Flick: A Flexible, Optimizing IDL Compiler,”
in Proceedings of ACM SIGPLAN ’97 Conference on Pro-
gramming Language Design and Implementation (PLDI), Las
Vegas, NV, June 1997, ACM.

[18] Douglas C. Schmidt, Aniruddha Gokhale, Tim Harrison, and
Guru Parulkar, “A High-Performance EndsystemArchitecture
for Real-time CORBA,” IEEE Communications Magazine,
vol. 14, no. 2, February 1997.

[19] Aniruddha Gokhale and Douglas C. Schmidt, “Optimizing the
Performance of the CORBA Internet Inter-ORB Protocol Over
ATM,” in Submitted for publication (Washington University
Technical Report #WUCS-97-10), February 1997.

[20] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante, “Auto-
matic Construction of Sparse Data Flow Evaluation Graphs,”
in Conference Record of the Eighteenth Annual ACE Sympo-
sium on Principles of Programming Languages. ACM, Jan-
uary 1991.

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck, “Efficiently Computing Static
Single AssignmentForm and the Control DependenceGraph,”
in ACM Transactions on Programming Languages and Sys-
tems. ACM, October 1991.

[22] Phillip Hoschka and Christian Huitema, “Automatic Gener-
ation of Optimized Code for Marshalling Routines,” in IFIP
Conference of Upper Layer Protocols, Architectures and Ap-
plications ULPAA’94, Barcelona, Spain, 1994, IFIP.

[23] R. Gopalakrishnan and G. Parulkar, “A Real-time Upcall Fa-
cility for Protocol Processing with QoS Guarantees,” in 15th

Symposium on Operating System Principles (poster session),
Copper Mountain Resort, Boulder, CO, Dec. 1995, ACM.

[24] Zubin D. Dittia, Jr. Jerome R. Cox, and Guru M. Parulkar, “De-
sign of the APIC: A High Performance ATM Host-Network
Interface Chip,” in IEEE INFOCOM ’95, Boston, USA, April
1995, IEEE Computer Society Press, pp. 179–187.

[25] Douglas C. Schmidt and Tatsuya Suda, “An Object-Oriented
Framework for Dynamically Configuring Extensible Dis-
tributed Communication Systems,” IEE/BCS Distributed Sys-
tems Engineering Journal (Special Issue on Configurable Dis-
tributed Systems), vol. 2, pp. 280–293, December 1994.

[26] Jonathan Kay and Joseph Pasquale, “The Importance of Non-
Data Touching Processing Overheads in TCP/IP,” in Proceed-
ings of SIGCOMM ’93, San Francisco, CA, September 1993,
ACM, pp. 259–269.

[27] Christos Papadopoulos and Gurudatta Parulkar, “Experimen-
tal Evaluation of SUNOS IPC and TCP/IP Protocol Imple-
mentation,” IEEE/ACM Transactions on Networking, vol. 1,
no. 2, pp. 199–216, April 1993.

[28] S. J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarter-
man, The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, 1989.

[29] Sun Microsystems, “XDR: External Data Representation
Standard,” Network Information Center RFC 1014, June 1987.

[30] Isabelle Chrisment, “Impact of ALF on Communication Sub-
systems Design and Performance,” in First International
Workshop on High Performance Protocol Architectures, HIP-
PARCH ’94, Sophia Antipolis, France, December 1994, IN-
RIA France.

[31] Atanu Ghosh, Jon Crowcroft, Michael Fry, and Mark Hand-
ley, “Integrated Layer Video Decoding and Application Layer
Framed Secure Login: General Lessons from Two or Three
Very Different Applications,” in First International Workshop
on High Performance Protocol Architectures,HIPPARCH ’94,
Sophia Antipolis, France, December 1994, INRIA France.

[32] M. Abbott and L. Peterson, “Increasing Network Through-
put by Integrating Protocol Layers,” ACM Transactions on
Networking, vol. 1, no. 5, October 1993.

[33] Antony Richards, Ranil De Silva, Anne Fladenmuller, Aruna
Seneviratne, and Michael Fry, “The Application of ILP/ALF
to Configurable Protocols,” in First International Workshop
on High Performance Protocol Architectures,HIPPARCH ’94,
Sophia Antipolis, France, December 1994, INRIA France.

[34] Torsten Braun and Christophe Diot, “Protocol Implementation
Using Integrated Layer Processnig,” in Proceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM). ACM, September 1995.

[35] David L. Tennenhouse, “Layered Multiplexing Considered
Harmful,” in Proceedings of the 1st International Workshop
on High-Speed Networks, May 1989.

17

A IDL Interface

The following CORBA IDL interface was used by the Orbix
and VisiBroker CORBA implementations:

struct BinStruct{ short s; char c; long l;
octet o; double d; };

interface ttcp_sequence
{
typedef sequence<BinStruct> StructSeq;
typedef sequence<octet> OctetSeq;

// Routines to send sequences of various data types
void sendStructSeq_2way (in StructSeq ttcp_seq);
void sendOctetSeq_2way (in OctetSeq ttcp_seq);
void sendNoParams_2way();
void sendNoParams_1way();

};

18

