
Applying Model-Integrated Computing and DRE Middleware to
High Performance Embedded Computing Applications

Dr. Douglas C. Schmidt� Dr. Aniruddha Gokhale Dr. Christopher D. Gill
schmidt@uci.edu a.gokhale@vanderbilt.edu cdgill@cs.wustl.edu

Dept. of Electrical Institute for Software Dept. of Computer Science
and Computer Engineering Integrated Systems Campus Box 1045

University of California Vanderbilt University Washington University
616E Engineering Tower P O Box 36, Peabody One Brookings Drive

Irvine, CA 92697 Nashville, TN 37203 St. Louis, MO 63130

This paper appeared in the proceedings of the 6th An-
nual Workshop on High-Performance Embedded Computing
(HPEC), September 24–26, Boston, MA.

Areas: (1) Automated tools for embedded system devel-
opment (2) Software architecture, reusability, scalability, and
standards (3) Middleware libraries and application program-
ming interfaces.

1 Introduction
Emerging trends. High performance embedded computing
(HPEC) systems are widely used for sensor-driven, signal and
image processing (SIP) applications with stringent simultane-
ous quality of service (QoS) requirements, such as predictabil-
ity, scalability, high performance, and reliability. Applications
of SIP include the defense domain (e.g., intelligence, surveil-
lance, and reconnaissance (ISR) and electronic warfare) and
medical domain (e.g. real-time image processing for mag-
netic resonance (MR), digital X-ray, and computed tomogra-
phy (CT)). Sensor types include sonar, radar, visible and in-
frared images, signal intelligence and navigation assets, and
ultra-sound or MRI sensors based on CMOS or CCD tech-
nologies.

Due to constraints on weight, power consumption, mem-
ory footprint, and performance, development techniques for
HPEC application software have lagged those used for main-
stream desktop and enterprise software. In particular, HPEC
applications have historically been custom-programmed to im-
plement their required QoS properties, making them expen-
sive to build and maintain. Moreover, they are often so spe-
cialized that they cannot adapt readily to meet new functional
or QoS requirements, hardware/software technology innova-
tions, or market opportunities. To address these problems,
there is growing interest in building HPEC systems using com-
mercial off-the-shelf (COTS) hardware (such as COTS DSPs
and RISC CPUs) and software (such as real-time operating
systems and real-time middleware services).

�Currently on leave as a program manager at DARPA’s Information Ex-
ploitation Office (IXO).

There are, however, a range of COTS choices, including
hardware, such as CPUs, bus standards, communication stan-
dards;real-time operating systems, such as VxWorks, MC/OS,
and various flavors of real-time Linux; andcomponent middle-
ware, such as CORBA CCM, J2EE, and COM+. These myriad
options complicate the task of choosing the right mix of COTS
hardware and software while balancing costs. Moreover, the
high performance demands of SIP applications entails the need
for sophisticated parallel processing techniques supported by
the underlying hardware, OS, and middleware infrastructure.

Promising solution ! Model-Integrated Computing. A
promising way to address the challenges described above is
to applyModel-Integrated Computing(MIC) technologies [1]
to synthesize, assemble, and deploy QoS-enabled component
middleware that is custom-configured automatically for HPEC
applications. MIC is a paradigm for expressing application
functional requirements and QoS constraints at higher levels
of abstraction than is possible with programming languages
like C, C++, or Ada. Popular examples of MIC tools are the
Generic Modeling Environment (GME) [2] and Ptolemy [3],
which are targeted for the real-time and embedded domain.

MIC tools can be applied to analyze different—but
interdependent—characteristics of HPEC application behav-
ior, such as performance, predictability, scalability, and safety.
Tool-specific model interpreters can then translate the models
into the input format expected by analysis tools. Next, these
tools can check whether the requested behavior and proper-
ties are feasible given the constraints. Finally, MIC tools can
synthesize platform-specific code that is optimized for specific
platforms comprising standards-based, yet QoS-enabled com-
ponent middleware, that is custom configured to run on spe-
cific real-time operating systems and hardware.

Several emerging technologies are driving R&D efforts to
integrate the power of standards-based component middleware
and MIC tools to address the needs of HPEC applications:

� MDA. The Object Management Group (OMG) has re-
cently adopted the Model Driven Architecture (MDA) [4].
MDA standardizes the integration of the MIC paradigm with
a variety of component middleware technologies, including
CORBA CCM, J2EE, and COM+.

1



� RT-CORBA. The increasing acceptance of the
platform- and vendor-neutral OMG Real-time CORBA
(RT-CORBA) [5] model into many distributed, real-time,
and embedded (DRE) systems, including avionics mission
computing, software defined radios, radar systems, surface
mount systems, and hot rolling mills. RT-CORBA provides
predictable, efficient, and fine-grained control over system
processing, communication, and memory resources.
� DP-CORBA. The OMG has also recently adopted the

Data Parallel CORBA (DP-CORBA) [6] specification. DP-
CORBA enhances the CORBA model by incorporating proven
patterns from parallel computing. Highly scalable, paral-
lel computation in DP-CORBA is accomplished viaparallel
CORBA objectsthat are responsible for segmenting, reorganiz-
ing, and disseminating the data (such as SIP data) to individual
partsthat perform the complex computations in parallel.

The confluence of these technologies is making it possible
to model the interfaces and semantics of various HPEC appli-
cation and system components via standard middleware, rather
than language-, OS, or hardware-specific features or propri-
etary APIs. The remainder of this abstract describes how we
are applying MDA/MIC to synthesize, assemble, and deploy
HPEC applications based on the RT-CORBA and DP-CORBA
component middleware.

2 Integrating Modeling and Middle-
ware for HPEC Systems

Figure 1 illustrates the relationships between the MDA model,
model-driven synthesis and assembly of application compo-
nents and infrastructure elements, and our supporting com-
ponent middleware infrastructure based on MIC tools and
DP-/RT-CORBA we have developed at Vanderbilt University,
Washington University, St. Louis, and University of Cali-
fornia, Irvine. By virtualizing the relationship between the
components and the component middleware infrastructure, the
model-driven approach allows seamless composition of HPEC
application functionality with the mechanisms to enforce de-
sired application QoS properties.

As noted in Section 1, HPEC systems are strongly affected
by stringent constraints of embedded endsystems. In partic-
ular, thegranularity of resource availability on each endsys-
tem requires that resources be allocated in a coordinated man-
ner across endsystems. DP-CORBA offers such coordination
to achieve high-performance computation by partitioning data
and computing subsets of the data in parallel. This work com-
plements research underway on adaptive small-footprint mid-
dleware for the Boeing open experimentation platform (OEP)
under several DARPA programs. DP-CORBA will also com-
plement research on a QoS-aware CORBA Component Model
for the Boeing OEP under other DARPA programs.

MDA Model
Interpreter &

Code
Synthesizer

UML Model

Server/Peer
Application

Code

Container
Parallel

Real-time
CORBA

Component

Component
Home

Real-time Parallel POA

QoS Property
Adaptor

Client/
Peer

Parallel ORB QoS Interfaces
(Scheduling, Timeliness,

Priority,...)

QoS Policies

R
e

fle
ct

CCM Parallel Component Library

select
components

synthesize &
assemble

Figure 1:Applying MDA/MIC to HPEC Systems

A key difference between DP-CORBA and other canonical
high-performance computing architectures is that DP-CORBA
allows distribution for parallel computation on an object-by-
object basisi.e., disseminates computation to the part objects.
Object-level distribution supports high-performance comput-
ing across the finer granularity of resource clustering expected
in embedded computing environments. QoS-enabled compo-
nent middleware, such as RT-CORBA, amplifies the benefits
of DP-CORBA by virtualizing resource access and controlling
processor, communication, and memory resources end-to-end
across endsystems boundaries.

We are currently integrating DP-CORBA withThe ACE
ORB(TAO), which is our widely used open-source implemen-
tation of RT-CORBA. Our presentation will discuss our ap-
proach and present lessons learned to date on our model-based
synthesis and integration of (1) HPEC application function-
ality, (2) DP-/RT-CORBA component middleware configura-
tions, and (3) data partitioning for parallelization and demon-
strate empirically how this architecture offers a powerful and
novel approach to HPEC computing environments.

References
[1] Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,”IEEE

Computer, vol. 30, no. 4, pp. 110–112, Apr. 1997.

[2] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai, “Composing Domain-Specific Design
Environments,”IEEE Computer, pp. 44–51, Nov. 2001.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems,”International Journal of
Computer Simulation, Special Issue on Simulation Software Development
Component Development Strategies, vol. 4, Apr. 1994.

[4] Object Management Group,Model Driven Architecture (MDA), OMG Document
ormsc/2001-07-01 edition, July 2001.

2



[5] Douglas C. Schmidt and Fred Kuhns, “An Overview of the Real-time CORBA
Specification,”IEEE Computer Magazine, Special Issue on Object-oriented
Real-time Computing, vol. 33, no. 6, June 2000.

[6] Object Management Group,Data Parallel CORBA Specification, ptc/2001-11-09
edition, Nov. 2001.

3


