
ADAPTIVE

A Flexible and Adaptive Transport System Architecture to Support Lightweight
Protocols for Multimedia Applications on High-Performance Networks

Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda
Department of Information and Computer Science
University of California, Irvine, California 927171

Abstract

Transport systems integrate operating system services such
as memory and process management together with commu-
nication protocols that utilize these OS services to support
distributed applications running on local and wide area net-
works. Existing transport systems do not customize their
services to meet the quality-of-service requirements of dis-
tributed applications. This often forces developers into the
procrustean framework offered by transport systems and pro-
tocols that were designed before the advent of multime-
dia applications and high-performance networks. Flexible
and adaptive transport systems, on the other hand, dynam-
ically configure lightweight protocols that meet application
requirements more precisely.

This paper describes a high-performance transport system
architecture called ADAPTIVE, “A Dynamically Assembled
Protocol Transformation, Integration, and Validation Envi-
ronment.” We are developing ADAPTIVE to support multi-
media applications running on high-performance networks.
ADAPTIVE is a transformational system that provides poli-
cies and mechanisms to automatically specify and synthesize
a flexible, lightweight, and adaptive transport system con-
figuration. In addition, it provides a controlled prototyping
environment for monitoring, analyzing, and experimenting
with the performance effects of alternative transport system
designs and implementations.

1 Introduction

The performance of distributed applications such as remote
terminal access, network file servers, distributed databases,
bulk data transfer, computer imaging, tele-conferencing,
full-motion video, scientific computation and visualization is
influenced by both network factors and transport system fac-
tors. Several key network factors include channel speed, bit-
error rate, and congestion levels at the intermediate switch-
ing nodes. Transport system factors include both proto-
col processing activities (such as connection management,
transmission control, and reliability management) and gen-
eral operating system hardware and software factors (such as

1An earlier version of this paper appeared in the proceedings of the first
symposium on High-Performance Distributed Computing in Syracuse, New
York, September 1992.

memory latency, CPU speed, interrupt and context switch-
ing overhead, process architecture, and message buffering).
Application performance bottlenecks are shifting from the
network factors to the transport system factors due to (1)
advances in fiber optics and VLSI technology that have in-
creased network channel speed by several orders of magni-
tude and (2) the increased diversity and dynamism in appli-
cation requirements and network characteristics.

To handle these changes, transport systems must become
more flexible, lightweight, and adaptive [1]. However, ex-
isting transport systems typically offer only a small number
of “monolithic” protocols. Moreover, these protocols do not
adequately meet the communication requirements of next-
generation distributed applications [2]. We are developing
the ADAPTIVE system to provide a flexible architecture for
developing and experimenting with lightweight and adaptive
transport system protocols.

The paper is organized as follows: Section 2 describes
the research background, Section 3 introduces the ADAP-
TIVE system, Section 4 outlines ADAPTIVE’s architectural
design, and Section 5 summarizes the paper and describes
our future work.

2 Background

This section defines three important research problems in-
volving transport systems, describes how existing systems do
not adequately solve these problems, and compares ADAP-
TIVE with other related work.

2.1 Research Problems

Our research is investigating solutions to the following three
problems involving transport systems:

(A) The Throughput Preservation Problem: As noted
by [3, 4], only a limited amount of the available band-
width in high-performance networks is being delivered to
applications. This situation results both from poorly lay-
ered architectures [5] and from transport system overhead
such as memory-to-memory copying and process manage-
ment operations like process/context switching and schedul-
ing. Moreover, this overhead is not decreasing as rapidly
as the network channel-speed is increasing, due in part to

Transport Service Class Example Applications Average Burst Delay Jitter Order Loss Priority Multi-
Thruput Factor Sens Sens Sens Tolerance Delivery cast

Interactive Voice Conversation low low high high low high no no
Isochronous Tele-Conferencing mod mod high high low mod yes yes
Distributional Full-Motion Video (comp) high high high mod low mod yes yes
Isochronous Full-Motion Video (raw) very-high low high high low mod yes yes
Real-Time Non-Isochronous Manufacturing Control mod mod high var high low yes yes

File Transfer mod low low N/D high none no no
Non-Real-Time TELNET very-low high high low high none yes no
Non-Isochronous On-Line Transaction Processing low high high low var none no no

Remote File Service low high high low var none no yes

Table 1: Application Transport Service Classes (TSC)

the widespread use of traditional transport system infrastruc-
tures such as UNIX, which are ill-suited for asynchronous,
interrupt-driven network communication. Transport system
overhead also affects other network characteristics such as
delay and jitter.

(B) The Application and Network Diversity and Dy-
namism Problem: Another challenge facing transport sys-
tem developers and researchers is how to effectively sup-
port the diverse quality-of-service requirements of next-
generation distributed multimedia applications (we will refer
to these as simply “application requirements” from now on)
running over diverse, high-performance networks.

Multimedia Applications: Multimedia application re-
quirements are more demanding and dynamic than those
found in traditional applications like remote terminal access,
file transfer, and electronic mail. For example, multimedia
applications involve combinations of quality-of-service re-
quirements such as extremely high throughput (full-motion
video), strict real-time delivery (manufacturing control sys-
tems), low latency (on-line transaction processing), low de-
lay jitter (voice conversation), capabilities for multicast (col-
laborative work activities) and broadcast (distributed name
resolution), high-reliability (transfer of medical images),
temporal synchronization (tele-conferencing), and some de-
gree of loss tolerance (hierarchically-coded video).

Multimedia applications also impose different network
traffic patterns. For instance, some applications generate
highly bursty traffic (variable bit-rate video), some generate
continuous traffic (constant bit-rate video), and others gener-
ate short, interactive, “request-response” traffic (network file
systems using remote procedure calls (RPC)). In addition,
application requirements may change dynamically during a
session (e.g.,a tele-conferencing application may switch be-
tween unicast and multicast as participants join and leave the
conversation). Table 1 illustrates the diversity of transport
requirements for several representative classes of distributed
applications [6].

High-Performance Networks: Network diversity in-
volves both the static architecture and dynamic state of the
underlying network. A diverse collection of networks now
exists, possessing differences indiameter(LANs, MANs,
and WANs), channel speeds(4/16 Mbps Token Ring, 10
Mbps Ethernet, 100 Mbps FDDI, and 155/622 Mbps ATM),
channel bit-error rate(approximately10�4 for copper and
10
�9 for fiber), network type(datagram, virtual circuit,

multicast, and broadcast),media access control scheme
(CSMA/CD, token passing, and switch based),maximum
transmission unit(48 bytes for ATM and DQDB cells,
1,500 bytes for Ethernet packets, 4,500 bytes for an FDDI
frame, and 9,188 bytes for SMDS) andnetwork services
(synchronous, asynchronous, and isochronous delivery and
bounded-delay guarantees).

Moreover, given the large installed network base, many
applications will continue to interoperate across several en-
vironments in the foreseeable future. These environments in-
clude (1) low-utilization, low-latency LANs (e.g.,Ethernet),
(2) congestion-prone, high latency WANs (e.g., the current
Internet), and (3) high-bandwidth, high latency WANs (e.g.,
ATM-based B-ISDN public access networks) [2]. Handling
this diversity and dynamism requires determining appro-
priate end-to-end congestion and error protection schemes.
These schemes must effectively utilize the high bandwidth
channels and adapt quickly to dynamically changing network
conditions such as congestion or routing updates.

(C) The Communication Software Development Com-
plexity Problem: Communication software has tradition-
ally been difficult to develop, due to the complexity of trying
to simultaneously maximize performance, functionality, cor-
rectness, extensibility, and portability across heterogeneous
operating environments. This heterogeneity is reflected in
complex software architectures that must support diverse ap-
plications written in diverse languages, communicating via
diverse transport systems running on diverse computer ar-
chitectures, which interoperate over diverse internetworked
environments. To effectively support this heterogeneity, it is
increasingly important to structure communication software
using modular designs that enhance maintainability, flexibil-
ity, and efficiency. In particular, complicated communication
software increases the difficulty of migrating selected trans-
port system operations into more efficient VLSI hardware
implementations.

2.2 Inadequacy of Existing Transport System
Solutions

Existing transport systems do not provide effective solutions
for all three problems described above. This section de-
scribes several reasons for the inadequacy of existing sys-
tems.

(A) High Transport System Overhead: Effectively sup-
porting application requirements involves suitable perfor-
mance and services from both the network and the transport
system. However, most general-purpose operating systems
do not provide adequate support for transport system activi-
ties such as real-time process scheduling, interrupt handling
and context switching, message buffer management, layer-
to-layer flow control, and multiplexing and demultiplexing
[7]. Moreover, many protocol suites are implemented with
improperly layered process architectures that increase proto-
col processing overhead [8].

Due to this overhead, the bandwidth available in a high-
performance network is reduced by 1 to 2 orders of magni-
tude by the time it is actually delivered to applications [4].
Moreover, this throughput preservation problem persists de-
spite an increase in CPU speeds. There are several explana-
tions for this behavior: (1) networks have increased by 5 or
6 orders of magnitude (from kbps to Gbps), whereas CPU
speeds have only increased by 2 or 3 orders of magnitude
(from 1 MIP up to 100 MIPS) [3], (2) existing transport sys-
tems are written largely in software, (3) network host inter-
faces typically generate interrupts for every transmitted and
received packet, leading to increased CPU context/process
switching overhead [3, 9], and (4) despite increasing to-
tal MIPS, RISC architectures often penalize interrupt-driven
network communication by exhibiting high context/process
switching overhead. This overhead results from the cost of
flushing instruction and data caches and pipelines, as well as
from storing and retrieving register windows and invalidat-
ing translation-lookaside buffers.

(B) Inflexible and Non-Adaptive Transport System Ar-
chitectures: Existing transport systems are also unable to
meet the diverse and dynamic demands of applications and
networks since they typically provide only a fixed, statically
configured suite of protocol services [2]. For instance, most
general-purpose protocols are not capable of dynamically
tailoring their services to take advantage of specific appli-
cation requirements or network characteristics [10]. More-
over, communication software tends to be inflexible and dif-
ficult to modify [2], and is often tightly coupled to a partic-
ular transport system environment such as TCP/IP on BSD
UNIX [7, 11]. All these factors increase the difficulty of
maintaining, extending, and adapting the software to support
the increased diversity in networks and applications.

For example, it is difficult to select an existing transport
system configuration that is neither toooverweightnor too
underweightto satisfy the QoS requirements. An example of
an overweight configuration is one where a protocol (such as
TP4) provides retransmission support for loss-tolerant, con-
strained latency applications such as interactive voice. In this
case the extra mechanisms required to provide retransmis-
sion simply slow down the protocol processing. An exam-
ple of an underweight configuration is one where a protocol
(such as TCP) does not provide a service (such as reliable
multicast support) for applications that require it (such as in-
teractive teleconferencing applications).

To illustrate the range in the design space, transport sys-
tems are distinguished below by how they adapt their con-

figurations in response to dynamically changing application
requirements and network characteristics:

� Static Transport Systems: are completely configured
at operating system boot time. In this case, the transport sys-
tem often provides protocol support based only upon gen-
eral usage assumptions such asunreliable datagram service
(e.g.,UDP) versusreliable byte stream service(e.g.,TCP).
Many well-known transport systems belong to this category
[12, 13, 14, 15, 16].

� Dynamic Transport Systems: postpone complete
configuration until either connection establishment time or
during data transfer. In both cases, these transport systems
may be configured by negotiating with (1) local and remote
hosts and (2) intermediate switching nodes in the network.
This negotiation process customizes transport system ses-
sions to account for the application requirements and the
available host and network resources. These resources in-
clude available buffer space, CPU load, available commu-
nication ports and virtual circuits, and network congestion
level.

Only a handful of transport systems provide any support
for configuration of their protocol suites at connection estab-
lishment time [2, 17, 18]. Furthermore, this support typically
involves activities on only the local hosts,i.e., network and
remote host characteristics and conditions are typically not
considered during the configuration process.

An even more dynamic approach permits reconfiguration
during the data-transfer phase, thereby accommodating dy-
namic changes in application requirements, transport system
resources, and network characteristics. Very few transport
systems provide support for adaptive reconfiguration, and
those that do are experimental research projects [6, 19].

Given the increasing diversity of application requirements
and network characteristics (combined with the fact that both
may change dynamically), it appears that dynamically con-
figured transport systems may support a wider range of ap-
plication/network pairings more effectively than statically
configured systems. Therefore, we are designing ADAP-
TIVE’s architecture to support transport systems that exe-
cute lightweight and adaptive communication protocols that
are configured flexibly.

(C) No Explicit Support for Multimedia Applications
and High-Performance Networks: Many popular trans-
port systems were designed and implemented before the new
generation of multimedia applications and high-performance
networks became widely available. For example, the BSD
4.3 UNIX TCP/IP implementation was originally designed
for traditional data applications that required 100 percent
error-free transmission over low-bandwidth, high-error net-
work links such as ARPANET.

Therefore, TCP/IP (and in many cases the ISO TP[0-4]
transport protocols) may prove inadequate for modern mul-
timedia applications, since they do not incorporate (1) effi-
cient control formats,2 (2) fast connection establishment, (3)

2For example, neither TCP nor TP4 place their checksum in the packet
trailer, thereby precluding simultaneous transmission and checksum compu-
tation [20]. Moreover, many fields in the TCP header are not word-aligned

multicast support, (4) security, (5) synchronized multimedia
streams or (6) quality-of-service parameters such as priori-
tized real-time guarantees involving bounded delay/jitter and
application-selectable levels of loss-tolerance [1, 21]. More-
over, most existing transport systems do not export multi-
media services like isochronous and synchronous delivery
guarantees from the underlying network to the application.

In addition, standard protocol suites were designed for
low-speed, unreliable, congestion-prone datagram networks,
rather than high-speed, congestion-controlled virtual-circuit
networks such as ATM [22]. For example, the TCP/IP suite
does not provide (1) explicit access control (although TCP’s
slow startand multiplicative decreasealgorithms are used
to simulate access control), (2) rate control and selective
retransmission to handle congestion, or (3) long-delay link
support such as large flow-control windows, non-wrapping
sequence numbers, and precise round-trip timer calculations.
Although extensions to TCP and IP have been proposed that
address these limitations [23], these proposals are not yet
been integrated into the base standards requirements.

2.3 Related Work

A growing number of projects address high-performance
transport systems that are constructed out of flexible compo-
nents that support lightweight and adaptive protocols. In ad-
dition to the research described in this section, other projects
focusing on various aspects of flexible, lightweight, and
adaptive transport systems and protocols include [3, 18, 20,
21, 24, 25, 26, 27]. The ADAPTIVE system is influenced
by the Programmable Network Prototyping System (PNPS)
[28], thex-kernel/Avoca projects [2, 7], the Function-based
Communication SubSystem (F-CSS) [6], and the Multi-
Stream Protocol (MSP) [19]. PNPS is an environment for
prototyping and experimenting with hardware implementa-
tions of MAC-layer protocols. ADAPTIVE, on the other
hand, focuses on prototyping and experimenting with soft-
ware architectures for middle- and higher-layer protocols.

The x-kernel is a communications-oriented environment
that supports protocol development and experimentation. It
provides a “protocol backplane” consisting of uniform in-
terfaces for reusable, “medium-granularity” communication
service components such as message handling, multiplex-
ing and demultiplexing, and event management. Protocol
interrelationships are described and implemented via modu-
lar, highly-layered protocol graphs composed from virtual-
and micro-protocols. Whereas thex-kernel focuses on OS
support for medium-grain protocol activities, ADAPTIVE
supports finer-grain protocol session functionality such as
connection management, reliability management, and end-
to-end transmission control.

Avoca uses thex-kernel as a run-time environment to sup-
port middle-layer protocol implementation and experimenta-
tion. Its primary emphasis is on flexible implementations of
protocols like RPC, UDP, and TCP, which support traditional
data applications running on traditional networks. ADAP-

and the option formats are not fixed-sized, which increases header parsing
overhead.

TIVE, on the other hand, focuses on flexible and adaptive
transport systems that support multimedia applications run-
ning on high-performance networks.

The Function-based Communication SubSystem (F-CSS)
is a transport system architecture that supports dynamic re-
configuration of protocol stacks based on explicitly-specified
application requirements. F-CSS utilizes a special-purpose
environment based upon transputers, whereas ADAPTIVE
resides in a general-purpose OS.

The Multi-Stream Protocol (MSP) is a “feature-rich”
transport protocol designed to execute on parallel proces-
sors. In addition, MSP permits protocol configurations to
change their mechanisms “on-the-fly” without loss of data
(e.g.,switching the retransmission scheme fromgo-back-n
to selective repeatwithin an active connection). Like thex-
kernel, MSP focuses more on mechanisms (e.g., howto im-
plement the changes on-the-fly) rather than on policies that
orchestrate the mechanisms (e.g., whento make the changes
andwhatchanges should occur). ADAPTIVE, on the other
hand, focuses on both policies and mechanisms (as described
in Section 3).

3 Overview of the ADAPTIVE Sys-
tem

ADAPTIVE is “A Dynamically Assembled Protocol Trans-
formation, Integration, and Validation Environment.” It is
used to specify, configure, experiment with, analyze, and im-
prove alternative transport system designs and implementa-
tions. In particular, we are developing ADAPTIVE to help
ameliorate the inadequacies of existing systems described in
Section 2.2 above. This section briefly describes the flexible
and adaptive aspects of ADAPTIVE.

ADAPTIVE provides services that flexibly configure and
reconfigure lightweight and adaptive transport systemses-
sions. Its flexibility is derived from a repository of reusable
mechanisms used to synthesize sessions that are customized
to adapt to application requirements and network character-
istics. These mechanisms include buffer and event managers,
connection management, transmission control, and reliabil-
ity management. A flexible transport system architectural
design is essential for supporting prototyping, experimenta-
tion, and diversity.

Experience indicates that it is very difficult to specify
one protocol that is optimal for all application/transport sys-
tem/network combinations [29]. Therefore, instead of devel-
oping a single highly-complex, all-encompassing protocol,
ADAPTIVE provides a transport system architecture that
permits fine-grain selection and configuration of precisely
specified protocol mechanisms [2].

ADAPTIVE also supports run-time adaptive reconfigura-
tion that adapts to feedback from changes in applications re-
quirements, transport system resources, and network char-
acteristics. Adaptivity is important since applications and
networks are dynamically changing entities, which are not
necessarily served most effectively by static solutions. Sec-
tion 4 describes the ADAPTIVE architecture in detail.

ADAPTIVE is distinguished by its flexible architecture
that supports (A) application and network diversity and dy-
namism, (B) reduction in transport system overhead, (C)
dual focus on both policies and mechanisms, and (D)
feedback-guided monitoring and measurement. The follow-
ing paragraphs discuss these points in detail:

(A) Support for Both Multimedia Application Require-
ments and Network Characteristics: ADAPTIVE con-
figures transport system sessions based upon the network
characteristics and the QoS requirements of applications.
Other related work on transport systems typically empha-
sizeseither diverse application requirements [6, 25, 30]or
network characteristics [3, 19]. Moreover, existing imple-
mentations of transport systems tend to focus more on (1)
traditional data applications such as bulk text file transfer
and/or (2) traditional local area network environments such
as Ethernet or Token Ring.

(B) Reduction in Transport System Overhead: A large
body of research exists on both network protocols (see [31]
for a survey) and the transport systems that support them (see
[8] for our survey). Techniques for reducing transport system
overhead involve various combinations of the following:

1. Utilize faster hardware for CPUs, busses, network con-
trollers, and memory hierarchies.

2. Implement selected functions (e.g., checksum calcu-
lations, message buffering, and demultiplexing) in
special-purpose hardware.

3. Migrate some or all of the protocol processing activi-
ties to “off-board” processors [9, 20, 32] to reduce CPU
interrupts and operating system context/process switch-
ing on the host computer.

4. Implement existing protocols more efficiently by (1)
shortening the instruction paths executed for each
packet and (2) improving the implementation of stan-
dard transport system support services such as message
management and demultiplexing [10, 11, 33].

5. Design new lightweight and adaptive protocols that are
tailored for high-speed, low error, and low delay net-
work environments [19, 20, 34, 35, 36].

6. Develop alternative transport system architectures
based on (a) vertical process architectures [7, 37], (b)
parallel processing of protocol functions [3, 4, 19], (c)
flexible protocol stacks that require fewer layers and/or
are dynamically assembled [6, 25, 26, 30], and (d) mod-
ular and extensible transport system software that sup-
ports these flexible protocol stacks [2, 18, 38].

The ADAPTIVE architecture we are developing extends
prior research on flexible transport system architectures. In
particular, ADAPTIVE employs techniques from categories
4 (efficient implementations), 5 (lightweight and adaptive
protocol designs), and 6 (alternative transport system archi-
tectures), with particular emphasis on flexible and modular
software.

(C) Focus on Both Policies and Mechanisms: Related
work on transport systems typically focuses on providing in-
frastructuremechanisms(e.g., buffering, acknowledgment,

retransmission, and timer schemes) that dictatehow to con-
figure and reconfigure the transport system. For example,
[19] describes several adaptive mechanisms that support “on-
the-fly” protocol reconfigurations. However, most existing
research places less emphasis on thepolicies that deter-
minewhento adaptively reconfigure transport system mech-
anisms andwhat mechanisms the subsequent reconfigura-
tions should contain. Conversely, related work that does
address policies [6, 25, 30] is less specific with respect to
the mechanisms that actually enforce these policies. For
example, adequately supporting QoS requirements such as
bounded delay and jitter involves complicated interactions
between the network and the transport systems on both local
and remote hosts.

The ADAPTIVE transport system architecture, on the
other hand, specifically addresses both policies and mecha-
nisms. The following two examples illustrate the distinction
between policies and mechanisms:
� Transport system policies may switch a session’s re-

transmission mechanism fromgo-back-ntoselective re-
peatin the event that (1) the application’s requirements
change from multicast to unicast or (2) the congestion
in the network increases beyond a specified threshold
(resulting in greater packet loss due to queue overflows
at intermediate switching nodes) [1, 3]. Note that it may
be feasible to restore thego-back-nscheme when con-
gestion subsides, thereby reducing buffering require-
ments at the receiver(s).

� The transport system may also contain policies
that cause the reliability management mechanism to
switch from “retransmission-based” to “forward error
correction-based” when the round-trip delay time in-
creases beyond some threshold (e.g., when a route
switches from a terrestrial link to a satellite link).

Note that in each of these cases, it is as important to under-
stand the policies that dictatewhen to switch mechanisms
andwhat to switch them to, as it is to knowhow to imple-
ment the mechanisms efficiently.

(D) Support for Controlled, Empirical Experimentation
via Performance Monitoring and Measurement: It is
difficult to empirically evaluate the advantages and disad-
vantages of different transport system designs without (1) a
controlled implementation environment and (2) systematic
methods for monitoring and measuring distributed applica-
tion performance [10]. However, most transport systems are
designed for performance rather than for experimentation.
This makes it difficult to replace selected mechanisms (e.g.,
acknowledgment or retransmission schemes) and measure
the performance impact precisely. The ADAPTIVE proto-
col development process, on the other hand, explicitly em-
ploys measurement as part of its iterative, feedback-driven
methodology, which consists of: (1) transport system ses-
sion specification and configuration, (2) experimentation, (3)
analysis of the results, and (4) using feedback from (3) to re-
fine (1).

Monitoring and measuring the performance of different
transport system configurations provides feedback on the
consequences of selecting between alternative policies and

U
N
I
T
E
S

TKO

M
A
N
T
T
S

Network
Interface

Application MANTTS-API

UNITES Interface (UI)

UNITES Metric Data (UMD)

MANTTS-TSI

MANTTS-NMI

ACD

SCS

TMC

TSA
Notification

Remote
MANTTS

Data

TSA Data

NSE

UMD

UMD

UMD

UMD

UMD

UMD

Network

UI

UI

UI

A
pp

lic
at

io
n

D
at

a

A
pp

lic
at

io
n

D
at

a

A
D
A
P
T
I
V
E

Host Operating System

other hosts

Figure 1: ADAPTIVE Architecture

mechanisms [28]. In addition, certain metric information
(e.g.,packet loss and round-trip delay, CPU load, and mem-
ory utilization) may be used at run-time to determinewhen
to reconfigure the transport system mechanisms. Other met-
rics for monitoring and measuring transport systems include
throughput, response time, jitter, connection establishment
time, and number of packet retransmissions [39]. Section 4.3
describes measurement issues in greater detail.

4 Design of the ADAPTIVE System

This section describes the architecture of the ADAPTIVE
system and examines its major subsystems in detail. As
shown by the shaded rectangles in Figure 1, ADAPTIVE’s
three main subsystems are:

� MANTTS (“Map Applications and Networks To Trans-
port Systems”): MANTTS is responsible for choosing the
appropriate set of policies and mechanisms to meet an appli-
cation’s quality-of-service (QoS) requirements (quality-of-
service requirements involve both “qualitative” and “quan-
titative” factors). MANTTS negotiates with remote hosts
and intermediate switching nodes, taking into account the
dynamically changing network environment. It transforms
the QoS requirements into a specification of the policies and
mechanisms that comprise a transport system session config-
uration. Section 4.1 further describes MANTTS.

� TKO (“Transport Kernel Objects”): TKO synthesizes
a customized lightweight transport system session configura-
tion composed of reusable components selected from apro-
tocol mechanisms repository. TKO instantiates these mech-

anisms to form an executable session object representation
that guides the actions of an interpreter that performs pro-
tocol processing activities on PDUs flowing throughout the
transport system. Section 4.2 further describes TKO.

� UNITES (“UNIform Transport Evaluation Subsys-
tem”): UNITES supports network traffic monitoring, met-
ric selection/collection/analysis/presentation, and perfor-
mance measurement. In addition to enabling meaning-
ful comparisons between different session configurations,
UNITES provides feedback that assists MANTTS and TKO
in determining when and how to dynamically alter certain
mechanisms in a session. Section 4.3 further describes
UNITES.

ADAPTIVE’s architecture is decomposed into these three
subsystems to facilitate the development of fine-grain, “plug-
compatible” components that precisely meet the communi-
cation requirements of distributed applications. The follow-
ing sections describe each ADAPTIVE subsystem in detail.
Details of the interface to the native transport/operating sys-
tem are excluded for clarity.

4.1 MANTTS

MANTTS (“Map Applications and Networks To Transport
Systems”) manages various resources (e.g.,message buffers,
control blocks for open sessions, and available communi-
cation ports) and services (e.g., protocol mechanisms pro-
viding session configuration and reconfiguration support)
on ADAPTIVE host systems and intermediate switching
nodes. For instance, MANTTS coordinates multiple re-

lated communication sessions (e.g.,determining the schedul-
ing priorities of synchronized multimedia streams), guides
the “requirement-driven” transformation process that synthe-
sizes transport system session configurations, and monitors
the network to detect and respond to dynamic changes in
traffic conditions.

MANTTS is involved in several phases of communication
including: (1) the connection negotiation and configuration
phase (where it coordinates the initial session configuration),
(2) the data transfer phase (where it coordinates the reconfig-
uration process), and (3) the connection termination phase
(where it releases resources and recalculates transport sys-
tem load information). The activities undertaken during each
phase are discussed below.

4.1.1 The Connection Negotiation and Configuration
Phase

MANTTS is responsible for interactively negotiating the re-
quested QoS requirements when an application initiates a
connection. Negotiation occurs between the local and re-
mote application and MANTTS entities, as well as the inter-
mediate switching nodes. The negotiation phase determines
the QoS that the transport system is capable of providing at
the current time. Negotiation may be necessary if the QoS
requested by the application is not available. However, nego-
tiation need not determine anoptimalconfiguration, as long
as it produces one that meets the application’s requirements
(which may have a range of tolerance). If the negotiation
is satisfactory to the participating applications and transport
systems, the local and remote session configurations are in-
stantiated (as described in Stage III below). If the negotia-
tion/transformation is unsuccessful, on the other hand, (e.g.,
due to resource limitations or network partitioning), there are
two alternatives: (1) refuse the connection and (2) allow the
application to re-negotiate at a lower quality of service.

In general, the negotiation process is based upon factors
like the current network state and traffic volume, interme-
diate switching node queue lengths, host processing loads,
and services available at the remote hosts. Local and remote
MANTTS entities negotiate three basic categories: (1) pa-
rameters (e.g.,buffer space, initial window advertisements
and scaling factors [40], segment size and maximum trans-
mission unit (MTU) size, priorities for message delivery and
scheduling, and timer settings for delayed acknowledgments
and retransmissions), (2) mechanisms (e.g.,reliability man-
agement and transmission management mechanisms), and
(3) representations (e.g.,fixed-size vs. variable-sized buffer
management).

As shown in Figure 2, MANTTS configures a transport
system session on behalf of the application via the following
three-stage transformation process:

� Stage I: MANTTS transforms the QoS requirements
into an appropriate set of policies known as aTrans-
port Service Class(TSC) (TSCs are described further
below).

� Stage II: MANTTS then transforms the TSC into a
Session Configuration Specification(SCS). The SCS is

a “blueprint” that specifies a set of protocol mecha-
nisms that implement the selected TSC policies. The
SCS is based upon information regarding static and dy-
namic network characteristics, along with information
obtained from negotiating with remote application and
MANTTS entities and intermediate switching nodes.

� Stage III: The mechanisms specified by the SCS
are automatically synthesized by theTransport Ker-
nel Objects(TKO) subsystem. TKO dynamically com-
poses and instantiates customized session configura-
tions. When executed on incoming and outgoing PDUs,
these configurations are designed to deliver the re-
quested communication service to applications.

The remainder of this section describes each stage of the
transformation process in greater detail.

Stage I – Transport Service Class Selection: During
the first transformation stage, MANTTS selects atrans-
port service class(TSC) that corresponds to the application-
specified communication requirements. As shown in Table 1,
TSCs represent general classes of application requirements
such as interactive isochronous traffic (e.g., voice conver-
sation), distributional isochronous traffic (e.g., full-motion
HDTV), non-isochronous real-time traffic (e.g.,robotics and
manufacturing control), and non-isochronous, non-real-time
traffic (e.g.,file transfer, remote login, and RPC) [6]. Each
TSC embodies a set of related policy decisions that satisfy
the application’s QoS requests.

Applications may explicitly select a TSC to help simplify
the subsequent transport system session configuration pro-
cess. TSCs embody a set of default parameters, mecha-
nisms, and/or representations, thereby requiring the negotia-
tion of only a subset of these entities. Simplifying and reduc-
ing the configuration delay is important, since the benefits
of a dynamically configured architecture are reduced if the
configuration and/or reconfiguration process is overly time-
consuming.

The MANTTS Application Programmatic Interface
(MANTTS-API) provides the user interface for the ADAP-
TIVE system. For example, when an application initi-
ates a connection it passesapplication communication de-
scriptor (ACD) via the MANTTS-API. As shown in Ta-
ble 2, ACDs specify several types of information including
the remote session participant address(es), qualitative and
quantitative quality-of-service parameters, and metric col-
lection and reconfiguration requests. Multiple remote ad-
dresses are necessary if multicast service is requested. Par-
ticipant addresses indicate certain characteristics of interme-
diate switching nodes and remote end systems such as avail-
able bandwidth, MTU, latency, and bit error rates. Knowl-
edge of these characteristics enables MANTTS to determine
more appropriate policies and mechanisms. Duration is an
important quantitative QoS parameter for digital continuous
media (DCM) sessions [41]. It is an essential configuration
parameter for ADAPTIVE, since it is not generally useful to
dynamically reconfigure sessions that have very low dura-
tion.

Stage II – Session Configuration Specification: During
the second stage of configuration, MANTTS transforms the

TKOTK_ChecksumA,
TK_Selective_Repeat
TK_Block_Rate_Control

CBR Video, VBR Video,
Terminal IO, Voice,
Bulk Data Transfer

Error Detection,
Error Recovery,

Transmission Control

Address(es), Sequencing ,
Datum Size, Delay,
Throughput, Jitter, Reliability

MTU Size, Latency,
BER, Packet Loss Rate

MANTTS

Transport System
Configuration
Specification

(TSCS)

Transport
Service
Class
(TSC)

Transport
Kernel
Object

Instantiation

MANTTS-TSI

MANTTS-NMI

MANTTS-API

Application
Communication

Descriptor
(ACD)

Network
Characteristic

Descriptor
(NCD)

Application

Network
Interface

Figure 2: MANTTS Transformation Model

Parameter Name Description Example Specifiers

Remote Session Specifies� addresses of remote end-systems
Participant Address(es) that comprise the communication association.
Quantitative Specifies the performance criteria Peak and average throughput, minimum and maximum latency and jitter
QoS Parameters requested by the application. error-rate probabilities, duration, etc.
Qualitative Specifies the functionality of behavior Sequenced/non-sequenced delivery, duplicate sensitivity, explicit/implicit
QoS Parameters requested by the application. connection management, (byte/packet/block)-based transmission and acknowledgment.
Transport Service Actions to perform when changes occur in <condition, action> pairs that indicate the actions to perform when certain
Adjustment (TSA) local or remote hosts or the network. conditions are true.
Transport Measurement Specifies performance metrics to collect Parameter selection, sampling rate, presentation format, etc.
Component (TMC) for this particular communication session.

Table 2: The ADAPTIVE Communication Descriptor Format

selected TSC into a corresponding session configuration
specification (SCS). The resulting SCS represents a set of
protocol mechanisms that implement the policies embod-
ied in the TSC. MANTTS produces the SCS by reconcil-
ing the TSC with the network characteristics associated with
the indicated remote addresses. Anetwork state descrip-
tor maintained by the MANTTS Network Monitor Interface
(MANTTS-NMI) samples, records, and estimates the cur-
rent state of dynamic network characteristics.

The initial configuration of a transport system session in
an ADAPTIVE host may choose between one of two alter-
natives:

1. Implicit Negotiation: MANTTS supports implicit
connection management, where configuration information is
piggybacked along with the application’s first PDU. This
is useful for latency-sensitive applications (e.g., “request-
response”-style network file servers) that must not incur any
QoS negotiation delay. To support implicit negotiation, re-
mote MANTTS entities must supply reasonable values for
default configurations.

Longer-duration applications may also choose implicit ne-
gotiation, since eliminating the multiple round-trip “hand-
shake” overhead is beneficial for sessions running over long-
delay links [1]. If necessary, it is possible to reconfigure an
active session dynamically at a later point, using the renego-
tiation mechanisms described in Section 4.1.2 below.

2. Explicit Negotiation: When an application requests
either explicit connection management and/or peer-to-peer
negotiation, the initiating local MANTTS entity uses an out-
of-band signaling channel to exchange and negotiate config-
uration parameters with remote MANTTS entities. Out-of-
band signaling helps to optimize the main data transfer path,
since this path does not interpret packets containing control
information [31].

Figure 3 illustrates the separate control and data paths used
by signaling and data units during the negotiation process
and subsequent data transfer. The additional time spent ne-
gotiating QoS should improve the overall performance for
longer-duration, high-bandwidth connections, since the re-
sulting configurations more accurately reflect the application
requirements and network characteristics [31]. Moreover,
the negotiation process may be combined with explicit con-
nection management that occurs during the initial 2-way or
3-way handshake. This allows local configuration activities
to proceed in parallel with remote negotiation activities.

Stage III – Transport System Synthesis: In the third
stage of configuration, MANTTS submits the session con-
figuration specification (SCS) to theTransport Kernel Ob-
ject (TKO) subsystem via the MANTTS Transport System
Interface (MANTTS-TSI). TKO transforms the SCS into a
transport system session configuration, which is customized
for the particular applications and networks involved. This

Application Data

MANTTS Configuration/Negotiation Signaling

NETWORK

TKO

M
A
N
T
T
S

Network
Subsystem

Application MANTTS
API

MANTTS
TSI

MANTTS
NMI

U
N
I
T
E
S

UNITES Interface (UI)

HOST OS A

UI

UI

UI

U
N
I
T
E
S

MANTTS
API

MANTTS
TSI

MANTTS
NMI

M
A
N
T
T
S

UNITES Interface (UI)

Network
Subsystem

Application

HOST OS B

UI

UI

UI

TKO

A
D
A
P
T
I
V
E

A
D
A
P
T
I
V
E

Figure 3: Connection Configuration

final transformation stage involves (1) synthesizing the spec-
ified protocol mechanisms (e.g.,buffer management, trans-
mission control, and reliability management) from the TKO
class repository, (2) instantiating an executable representa-
tion that is used by a protocol interpreter to invoke opera-
tions on PDUs in the appropriate order, and (3) instrumenting
the dynamically synthesized mechanisms using the UNITES
measurement facilities to satisfy the application’s metric col-
lection requests. Instrumentation is based on both applica-
tion requests and global UNITES metric collection requests.
Section 4.2 describes the TKO subsystem in detail; Sec-
tion 4.3 describes the UNITES subsystem in detail.

4.1.2 Data Transfer and Reconfiguration Phase

The ADAPTIVE architecture adapts to dynamic changes in
application requirements and network characteristics by ex-
plicitly and/or implicitly reconfiguring transport system ses-
sions. The reconfiguration process is similar to the initial
configuration process, and may involve decreasing or in-
creasing the QoS.

Explicit reconfiguration is initiated by a local or remote
application request such as changing from unicast to multi-
cast communication or requesting a higher or lower quality
of service. Remote MANTTS entities are notified if a new
SCS must be generated to satisfy the request, and the cor-
responding transport system session configurations are up-
dated. Explicit reconfiguration requests are sent via the same
out-of-band signaling channel used for connection negotia-
tion.

MANTTS automatically detects situations where implicit
reconfiguration is necessary. These situations typically occur
when parameters monitored by MANTTS exceed thresholds
specified by transport system policies. For example, local
or remote MANTTS entities may initiate renegotiation in
response to increases or decreases in buffer space, round-
trip delay, or changes in processor load. Similarly, changes
in network conditions may be detected by the MANTTS
Network Monitor. These conditions include intermediate
switching node failure, lower throughput due to increased
network congestion, or routing changes. For example, if a

long-duration connection switches to a high-delay path (e.g.,
if intermediate node failures cause routes to change from a
terrestrial link to a satellite link), it may become necessary to
reconfigure certain mechanisms such as the retransmission
scheme or window scaling options.

During reconfiguration, one of the following actions oc-
curs:

� Adjust the TSC: change the Transport Service Class
to provide a QoS that is more suitable to the new conditions
(e.g.,benefitting an application that has changed video cod-
ing schemes and now requires isochronous service). This
change potentially generates a completely new or partially
modified SCS.

� Adjust the SCS: replace or adjust one or more param-
eters or mechanisms used by the transport system to compen-
sate for the indicated change (e.g., increase the inter-PDU
gap used by the rate control mechanism in response to per-
ceived network congestion). In this case, no change occurs
in the corresponding TSC.

� Application-Specific: notify the application when
changes occur in operating conditions (e.g.,a reduction in re-
ceiver’s buffer space) via acall-backmechanism that allows
it to react appropriately (e.g.,begin transmitting data using
an application-specific compression or component coding
scheme).

4.1.3 Connection Termination Phase

There are several different types of connection termination
semantics supported by ADAPTIVE, including graceful (i.e.,
no loss of buffered data) and non-graceful (i.e.,potential loss
of buffered data). In addition to shutting down the commu-
nication channel, the termination phase provides an opportu-
nity for MANTTS to release allocated resources and recal-
culate transport system load information. Both explicit and
implicit connection termination is supported.

4.2 TKO

The TKO (“Transport Kernel Objects”) subsystem provides
a modular and extensible framework for configuring and re-
configuring transport systems sessions. Modularity enhances
transport system flexibility by providing uniform interfaces
for “plug-compatible” protocol and session processing com-
ponents. Extensibility enhances transport system adaptivity
by permitting the addition of new and/or alternative services
at run-time. Flexibility and adaptivity, in turn, help support
the diversity and dynamism of applications and networks.

As shown in Figure 4, the TKO subsystem consists of
the two distinct levels of abstraction described below: (1)
TKO protocol architectureand (2) TKOsession architec-
ture. Each level performs a well-defined set of services for
the transport system. TKO is implemented in C++ since (1)
C++ integrates context information together with operations
to support object-oriented design and programming and (2)
C++ directly supports flexibility and adaptivity via inheri-
tance and dynamic binding. Inheritance is a particularly use-

TKO Manager Abstract Base Classes

TKO Manager Concrete Derived Classes

TKO Manager Composite Components

Bit-Error
Detection

Selective
ACK

M
A
N
T
T
S

Selective
Repeat

Ignore
Damaged

PDUs

Go
Back

N

Error
Recovery

MANTTS
TSI

Connection Management
Mechanism Family

Transmission Management
Mechanism Family

Implicit
Timer
Based

Explicit
Hand
Shake

Sliding
Window

Stop
and
Wait

U
N
I
T
E
S

Application

U I

Network Subsystem

TKO

TK_Context

Rate
Based
Control

MANTTS-API

MANTTS-NMI

U I

U I

Error
Detection

Error
Reporting

Gap/Duplicate
Detection

Selective
NACK

Cumulative
ACK

Periodic
Transmission

Based

Remote Context Management
Mechanism Family

Reliability Management
Mechanism Family

A
pp

lic
at

io
n

D
at

a

Forward
Error

Correct

Figure 4: TKO Protocol and Session Architectures

ful technique for maximizing sharing, reuse, and extensibil-
ity of TKO components.

4.2.1 TKO OS Protocol Architecture:

The TKO protocol architecture is a repository of “medium-
granularity” C++ classes that insulate the transport sys-
tem from the underlying operating system environment.
The ADAPTIVE TKO protocol architecture design is in-
fluenced by thex-kernel [7] and Conduit [18] communi-
cation systems. The TKO protocol architecture classes
provide uniform interfaces for accessing protocol support
services such as timers, message buffering, and protocol
graph operations that insert, delete, and/or alter protocol ob-
jects. There are four fundamental TKO protocol architecture
classes: TKOEvent , TKOMessage , TKOProtocol
andTKOSession :

� TKOEvent : Many protocols must respond to tem-
poral events such as retransmission timer expiration
or periodic update requests [42]. TheTKOEvent
class provides event management operations such as
TKOEvent::schedule , TKOEvent::expire , and
TKOEvent::cancel . TKOEvent objects schedule
themselves to expire one or more times (i.e., they are “one-
shot” or periodic), they may be cancelled, and they are trig-
gered to expire asynchronously by the operating system’s
timer facility.

� TKOMessage : Performance measurements indicate
that memory-to-memory copying is a significant source of
transport system overhead [43]. Therefore, some form
of buffer management is required to avoid unnecessary

copying when (1) moving messages between protocol lay-
ers and (2) when adding or deleting message headers
and trailers. TheTKOMessage class provides uniform
interfaces for services that create, copy, prepend, and
split messages.TKOMessage objects are logically di-
vided into two distinct regions: theheaderand thedata.
The data region efficiently supports “lazy copying” op-
erations, as well as handling message fragmentation and
reassembly. Likewise, the header region allows opera-
tions that efficiently prepend header information onto a
message (TKOMessage::push) and later strip it off
(TKOMessage::pop).

� TKOProtocol : Conventional protocol suites are spec-
ified as a hierarchy of layers, where each layer performs
well-defined services for layers above it, while making use
of services from layers below it. TheTKOProtocol class
provides uniform interfaces for protocol objects used to com-
pose protocol suites like TCP/IP, OSI, and XNS. The service
interface forTKOProtocol objects provides (1) manage-
ment operations for manipulating “protocol graphs” (which
express the relationships between various protocol objects)
and (2) operations that create, destroy, and demultiplex
and multiplex messages toTKOSession objects. Each
TKOProtocol object contains 0 or moreTKOSession
objects.

� TKOSession : The TKOSession class forms the
junction between the TKO protocol architecture and TKO
session architecture services (as shown in Figure 4).
TKOSession objects encapsulate certain context informa-
tion (e.g., local and remote addresses) needed to correctly
and efficiently process a session’s incoming and outgoing
messages. Associated with this context information are oper-

ations used for (1) sending and receivingTKOMessage ob-
jects that flow throughTKOSession objects, (2) dynamic
session attachment (i.e.,allocating and linking together new
sessions to form session graphs), and (3) dispatching sys-
tem calls that store and/or retrieve session control informa-
tion (e.g.,determining host and peer network addresses or
determining the MTU for a given network interface).

These four fundamental classes provide the infrastructure
that supports the TKO session architecture services de-
scribed below.

4.2.2 TKO Session Architecture

Like the TKO protocol architecture, the TKO session archi-
tecture is designed as a repository of reusable C++ trans-
port system mechanisms. However, each component in
the TKO session architecture repository encapsulates “finer-
grain” mechanisms associated with session activities such as
connection management, transmission control, and reliabil-
ity management. The remainder of this section describes the
organization of the primary TKO session architecture com-
ponents, explains how transport system sessions are synthe-
sized and discusses several performance optimization tech-
niques.

To support flexible configuration and reconfiguration,
TKO session architecture is organized as a collection of C++
inheritance hierarchies. As shown in Figure 5, these in-
heritance hierarchies are “rooted” atabstract base classes
that provide uniform interfaces for session activities. Spe-
cialized instances of these mechanisms are derived from
an appropriate abstract base class and combined to form
complete session configurations. TwoTKOSA compo-
nents,TKOContext and TKOSynthesizer , manage
and maintain these mechanisms as described below:

� TKO Context: Figure 4 depicts how each
TKOSession object points to one or moreTKOContext
objects that are customized for the associated application’s
QoS requirements. As shown in Figure 5,TKOContext
objects possess several different types of components that (1)
provide functions to perform certain session activities (e.g.,
connection management, reliability management, and trans-
mission management) and (2) maintain context information
(e.g.,round-trip time estimates, sequence numbers, or flow
control window advertisements) necessary to support these
functions. This encapsulation of context and functions facil-
itates rapid prototyping and incremental protocol develop-
ment.

EachTKOContext object contains a table of pointers to
C++ abstract base classes that define the session’s behavior.
Table entries point to objects that are eitherconcrete derived
subclassesor composite components. Complete session ob-
jects are synthesized bycomposingand instantiatingcon-
crete derived subclasses and composite components that are
appropriate for the specified application requirements and
network characteristics.

Concrete derived subclasses are formed by selectively in-
heriting certain context information and functions from ex-
isting abstract base classes. These subclasses “specialize”

TKO Manager Abstract Base Classes

TKO Manager Concrete Derived Classes

TKO Manager Composite Components

Bit-Error
Detection

Selective
ACK

M
A
N
T
T
S

Selective
Repeat

Ignore
Damaged

PDUs

Go
Back

N

Error
Recovery

MANTTS
TSI

Connection Management
Mechanism Family

Transmission Management
Mechanism Family

Implicit
Timer
Based

Explicit
Hand
Shake

Sliding
Window

Stop
and
Wait

U
N
I
T
E
S

Application

U I

Network Subsystem

TKO

TK_Context

Rate
Based
Control

MANTTS-API

MANTTS-NMI

U I

U I

Error
Detection

Error
Reporting

Gap/Duplicate
Detection

Selective
NACK

Cumulative
ACK

Periodic
Transmission

Based

Remote Context Management
Mechanism Family

Reliability Management
Mechanism Family

A
pp

lic
at

io
n

D
at

a

Forward
Error

Correct

Figure 5: TKO Context

basic session
mechanisms (e.g.,Sliding Window is derived from the
abstract base classTransmission Management). Like-
wise, composite components manage objects of several re-
lated subcomponents that interoperate in well-defined ways.
For example, theReliability Management compos-
ite component in Figure 5 performs error detection, error re-
porting, and error recovery. Composite components are ef-
ficiently replaced and recombined in their entirety, thereby
minimizing run-time overhead.

� TKO Synthesizer: TheTKOSynthesizer is respon-
sible for overseeing the configuration and reconfiguration
of TKOContext objects. As shown in Figure 5, the
synthesizer receives the session configuration specification
(SCS) from the MANTTS-TSI and transforms it into an ef-
ficient, lightweightTKOContext session instantiation. A
TKOSynthesizer is also responsible for instrumenting
and monitoring the transport system session resources spec-
ified in Transport Measurement Component.

TheTKOSynthesizer permits fine-grain, per-session
control over its associatedTKOContext bindings by in-
stantiating entries in theTKOContext table at either
configuration-time or run-time. In the latter case, the
TKOSynthesizer coordinates dynamic session recon-
figuration by re-instantiating the updated session mecha-
nism(s). For instance, each class object provides a means for
replacing itself with a different class object via thesegue
mechanism supplied in all abstract base classes.Segue sup-
ports reconfiguration by permitting certain class object bind-
ings to change dynamically. This approach differs from the
BSD 4.3 UNIX network architecture, where protocol oper-
ators are statically bound to session control blocks through
pointers to C functions. In the BSD scheme, all sessions as-
sociated with a particular protocol object use the same bind-
ings, which are fixed at link-time and do not change.

TKO

Network
Subsystem

Application UNITES
API

UNITES
TSI

UNITES
NMI

UNITES Interface (UI)

UNITES
API

UNITES
TSI

UNITES
NMI

M
A
N
T
T
S

UNITES Interface (UI)

HOST A

Network
Subsystem

Application

HOST B

MI

MI

MI

MI

MI

MI

TKO

U
N
I
T
E
S

M
A
N
T
T
S

U
N
I
T
E
S

UNITES
METRIC

REPOSITORY

NETWORK

Figure 6: UNITES Architecture

TKO session architecture flexibility is supported by the
C++ “virtual function” dynamic binding mechanism [44].
Although dynamic binding enhancesflexibility (and thereby
facilitatesprototypingandexperimentation), it increases pro-
cessing overhead somewhat due to the extra level of indi-
rection required to dispatch C++ virtual functions. To re-
duce this overhead, TKO employs a technique known as
customization[45], which generates non-dynamically bound
configurations for circumstances where performance is more
important than flexibility. Customization incurs a time-
space tradeoff, however, since inline expansion of many cus-
tomized kernel objects may lead to excessive “code bloat”
(see [46] for a discussion of a similar problem with the Syn-
thesis Kernel).

In addition, the TKO session architecture maintains a
cache of customized “TKOTemplates ” that further op-
timize the instantiation process.TKOTemplates pro-
vide default transport system session configurations for com-
monly requested SCSs. These templates reduce the com-
plexity and duration of the connection negotiation phase.
There are two general types ofTKOTemplates :

1. Static Templatesare guaranteed not to change. This al-
lows more efficient implementation, since the mecha-
nisms may be completely customized (e.g., inline ex-
panded rather than dynamically dispatched). Static tem-
plates are also used to implement backward compatibil-
ity with existing protocols like TCP.

2. Reconfigurable Templatesmay change at some point
during the communication session. Although this ap-
proach is generally more flexible, it is also less efficient
since additional indirection is required (though not as
much as is needed by a dynamically synthesized con-
figuration).

If a pre-assembledTKOTemplate does not exist to match
an SCS request, TKO session architecture is responsible for
dynamically synthesizing one [46].

4.3 UNITES

The UNITES (“Uniform Transport and Evaluation Subsys-
tem”) subsystem facilitates transport system protocol exper-
imentation by coordinatingmetric specification, metric col-
lection, metric analysis, andmetric presentation. A funda-
mental goal of ADAPTIVE is to provide a framework that
supports controlled hypothesis testing of different transport
system session configurations. For example, we are cur-
rently experimenting with alternative protocol design config-
urations to determine those that best serve particular pairings
of multimedia application requirements and underlying net-
work characteristics. Information collected by the UNITES
metrics quantifies trade-offs and interactions among differ-
ent configurations, thereby providing meaningful design and
implementation evaluations.

UNITES metrics are divided into two classes:blackbox
andwhitebox. These classes differ depending on whether or
not the metric collection mechanisms require internal instru-
mentation of transport system session configurations. Both
blackbox and whitebox metrics assist the tuning of transport
system configurations by quantifying the performance con-
sequences of certain design and implementations decisions.

Blackbox metrics are collected without knowledge of in-
ternal implementation details. They include throughput (de-
fined as the number of packets transmitted per second) and
latency (defined as the packet round-trip time for interactive
traffic). Whitebox metrics, on the other hand, require in-
ternal instrumentation of the session configurations. These
metrics include connection establishment and termination la-
tency, number of packet (re)transmissions, the number of in-
structions required to execute a protocol function, interrupt
and scheduling overhead, the degree of jitter (defined as the
variance in

the delay), and packet loss. Collecting white-box metrics
is very difficult without a development and testing environ-
ment like ADAPTIVE that supports controlled experimenta-
tion.

As illustrated in Figure 6, the UNITES Metric Reposi-
tory stores the collected metric information in a database. A
repository is necessary when many active connections are in-
strumented and monitored, since too much data is generated
to collect and process in real-time [28]. Users can access this
information in various ways, including interactive graphic
displays or standard network management protocols such as
SNMP or CMIP. This metric data is presented in either a
systemwide, per-host, or per-connection manner. UNITES
monitors transport system sessions in two primary ways:

1. Application programs use the Transport Measurement
Component parameter in the ADAPTIVE Communica-
tion Descriptor to indicate metrics they want UNITES
to collect. The TKO subsystem then selectively instru-
ments the synthesized configurations and the metrics
are automatically collected by UNITES at run-time.

2. To support experimentation, metrics also may be re-
quested using either a graphics-based or language-
based interface. Sjodinet al.’s work is an example of
a language-based approach [39]. They define a speci-
fication language that indicates what measurements to

collect and what traffic to generate. Figure 6 shows a
graphical interface for specifying certain metrics to col-
lect on a per-host basis.

5 Summary

Adequately supporting next-generation multimedia applica-
tions necessitates transport systems that tailor their services
to precisely meet the communication requirements of both
applications and high-performance networks. ADAPTIVE
is a flexible and adaptive transport system architecture de-
signed to provide these services.

ADAPTIVE provides (1) support for application and net-
work diversity and dynamism, (2) reduction in transport sys-
tem overhead, (3) focus on both policies and mechanisms,
and (4) feedback-guided monitoring and measurement. In
particular, ADAPTIVE’s flexible software architecture fa-
cilitates an “experimentation-based” protocol development
methodology. ADAPTIVE enables precise measurement
of application and network performance changes that result
from selectively modifying certain transport system mecha-
nisms (e.g.,measuring the effect of switching fromimplicit
to explicit connection management or fromselective repeat
to go-back-nretransmission).

We are currently designing and implementing a prototype
implementation of ADAPTIVE. This prototype is written in
C++, and is hosted on both thex-kernel and System V release
4 STREAMS. We are using the prototype to experiment with
different transport system configurations that support multi-
media applications (e.g.,network voice and video) running
on several different networks (e.g.,Ethernet, Tree Network
[47], DQDB, and FDDI).

Acknowledgments

We would like to thank Hung Huang, Unmesh Rathi, and
Girish Kotmire for their help in designing the ADAPTIVE
system and for proof-reading earlier drafts of this paper.

References
[1] T. F. L. Porta and M. Schwartz, “Architectures, Features, and

Implementation of High-Speed Transport Protocols,”IEEE
Network Magazine, pp. 14–22, May 1991.

[2] S. W. O’Malley and L. L. Peterson, “A Dynamic Network Ar-
chitecture,”ACM Transactions on Computer Systems, vol. 10,
pp. 110–143, May 1992.

[3] Z. Haas, “A Protocol Structure for High-Speed Communi-
cation Over Broadband ISDN,”IEEE Network Magazine,
pp. 64–70, January 1991.

[4] M. Zitterbart, “High-Speed Protocol Implementations Based
on a Multiprocessor-Architecture,” inProceedings of the 1st
International Workshop on High-Speed Networks, pp. 151–
163, May 1989.

[5] J. Crowcroft, I. Wakeman, Z. Wang, and D. Sirovica, “Is Lay-
ering Harmful?,”IEEE Network Magazine, January 1992.

[6] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for Flex-
ible High-Performance Communication Subsystems,” Tech.
Rep. TC 17801 (78023), IBM Research Division, February
1992.

[7] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Ar-
chitecture for Implementing Network Protocols,”IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[8] D. C. Schmidt and T. Suda, “Transport System Architecture
Services for High-Performance Communications Systems,”
IEEE Journal on Selected Areas in Communication, vol. 11,
pp. 489–506, May 1993.

[9] H. Kanakia and D. R. Cheriton, “The VMP Network Adapter
Board (NAB): High-Performance Network Communication
for Multiprocessors,” inProceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMM),
(Stanford, CA), pp. 175–187, ACM, Aug. 1988.

[10] R. W. Watson and S. A. Mamrak, “Gaining Efficiency in
Transport Services by Appropriate Design and Implemen-
tation Choices,”ACM Transactions on Computer Systems,
vol. 5, pp. 97–120, May 1987.

[11] D. D. Clark, “Modularity and Efficiency in Protocol Imple-
mentation,”Network Information Center RFC 817, pp. 1–26,
July 1982.

[12] S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman,The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[13] D. R. Cheriton, “The V Distributed System,”Communications
of the ACM, vol. 31, March 1988.

[14] R. V. Renesse, H. V. Staveren, and A. S. Tanenbaum, “Perfor-
mance of the Amoeba Distributed Operating System,”Soft-
ware – Practice and Experience, vol. 19, pp. 223–234, March
1989.

[15] M. N. Group, “Network Server Design,” Tech. Rep. CMS-CS-
89-31, Carnegie Mellon University, August 1989.

[16] B. B. Welch, “The Sprite Remote Procedure Call System,”
Tech. Rep. UCB/CSD 86/302, Computer Science Division
(EECS), University of California, Berkeley, CA 94720, June
1986.

[17] UNIX Software Operations,UNIX System V Release 4 Pro-
grammer’s Guide: STREAMS. Prentice Hall, 1990.

[18] J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the2nd USENIX C++ Conference,
pp. 191–203, USENIX Association, April 1990.

[19] T. F. L. Porta and M. Schwartz, “Design, Verification, and
Analysis of a High Speed Protocol Parallel Implementation
Architecture,” in Proceedings of the First IEEE Workshop
on the Architecture and Implementation of High Performance
Communication Subsystems, Feb. 1992.

[20] G. Chesson, “XTP/PE Design Considerations,” inProceed-
ings of the 1st International Workshop on High-Speed Net-
works, May 1989.

[21] D. R. Cheriton, “VMTP: Versatile Message Transaction Pro-
tocol Specification,”Network Information Center RFC 1045,
pp. 1–123, Feb. 1988.

[22] D. F. Box, D. C. Schmidt, and T. Suda, “Alternative Ap-
proaches to ATM/Internet Interoperation,” (Tucson, Arizona),
pp. 1–5, IEEE, 1992.

[23] V. Jacobson, R. Braden, and L. Zhang, “TCP Extensions for
High-Speed Paths,”Network Information Center RFC 1185,
pp. 1–21, October 1990.

[24] G. Blair, G. Coulson, F. Garcia, D. Hutchinson, and
D. Shepherd, “Towards New Transport Services to Support
Distributed Multimedia Applications,” in4th IEEE Com-
Soc International Workshop on Multimedia Communications,
(Monterey, California), pp. 250–259, IEEE, 1992.

[25] T. Plagemann, B. Plattner, M. Vogt, and T. Walter, “A Model
for Dynamic Configuration of Light-Weight Protocols,” in
IEEE Third Workshop on Future Trends of Distributed Sys-
tems, pp. 1–9, IEEE, 1992.

[26] B. Heinrichs, “Versatile Protocol Processing for Multimedia
Communications,” in4th IEEE ComSoc International Work-
shop on Multimedia Communications, (Monterey, California),
pp. 160–169, IEEE, 1992.

[27] G. Parulkar and J. Turner, “Towards a Framework for High
Speed Communication in a Heterogeneous Networking Envi-
ronment,”IEEE Network, March 1990.

[28] R. C. Albert Li, A. Fawaz, S. Sachs, P. Varaiya, and J. Wal-
rand, “The Programmable Network Prototyping System,”
IEEE Computer, vol. 22, pp. 67–76, May 1989.

[29] L. Peterson and S. O’Malley, “TCP Extensions Considered
Harmful,” Network Information Center RFC 1263, pp. 1–19,
1991.

[30] C. Tschudin, “Flexible Protocol Stacks,” inProceedings of
the Symposium on Communications Architectures and Proto-
cols (SIGCOMM), (Zurich Switzerland), pp. 197–205, ACM,
Sept. 1991.

[31] W. Doeringer, D. Dykeman, M. Kaiserswerth, B. Meister,
H. Rudin, and R. Williamson, “A Survey of Light-Weight
Transport Protocols for High-Speed Networks,”IEEE Trans-
actions on Communication, vol. 38, pp. 2025–2039, Novem-
ber 1990.

[32] E. C. Cooper, P. A. Steenkiste, R. D. Sansom, and B. D. Zill,
“Protocol Implementation on the Nectar Communication Pro-
cessor,” inProceedings of the Symposium on Communications
Architectures and Protocols (SIGCOMM), (Philadelphia, PA),
pp. 135–144, ACM, Sept. 1990.

[33] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An
Analysis of TCP Processing Overhead,”IEEE Communica-
tions Magazine, vol. 27, pp. 23–29, June 1989.

[34] D. D. Clark, M. L. Lambert, and L. Zhang, “NETBLT: A Bulk
Data Transfer Protocol,”Network Information Center RFC
998, pp. 1–21, Mar. 1987.

[35] R. W. Watson, “The Delta-t Transport Protocol: Features and
Experience,” inProceedings of the 1st International Work-
shop on High-Speed Networks, May 1989.

[36] D. R. Cheriton and C. L. Williamson, “VMTP as the Trans-
port Layer for High-Performance Distributed Systems,”IEEE
Communications Magazine, vol. 27, pp. 37–44, June 1989.

[37] J. Jain, M. Schwartz, and T. Bashkow, “Transport Protocol
Processing at GBPS Rates,” inProceedings of the Sympo-
sium on Communications Architectures and Protocols (SIG-
COMM), (Philadelphia, PA), pp. 188–199, ACM, Sept. 1990.

[38] D. D. Clark, “The Structuring of Systems Using Upcalls,”
in Proceedings of the10th Symposium on Operating System
Principles, (Shark Is., WA), 1985.

[39] P. Gunningberg, M. Bjorkman, E. Nordmark, S. Pink,
P. Sjodin, and J.-E. Stromquist, “Application Protocols and
Performance Benchmarks,”IEEE Communications Maga-
zine, vol. 27, pp. 30–36, June 1989.

[40] V. Jacobson and R. Braden, “TCP Extensions for Long-Delay
Paths,”Network Information Center RFC 1072, pp. 1–16, Oct.
1988.

[41] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, K. R. Fall, J. S.
Kay, V. P. Kompella, S. R. McMullan, and D. Ranganathan,
“Network and Operating System Support for Multimedia Ap-
plications,” Tech. Rep. CS-91-186, University of California,
San Diego, 1990.

[42] A. N. Netravali, W. D. Roome, and K. Sabnani, “Design and
Implementation of a High Speed Transport Protocol,”IEEE
Transactions on Communications, 1990.

[43] D. D. Clark and D. L. Tennenhouse, “Architectural Consid-
erations for a New Generation of Protocols,” inProceedings
of the Symposium on Communications Architectures and Pro-
tocols (SIGCOMM), (Philadelphia, PA), pp. 200–208, ACM,
Sept. 1990.

[44] Bjarne Stroustrup and Margret Ellis,The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

[45] C. Chambers and D. Ungar, “Customization: optimizing
compiler technology for SELF (a dynamically-typed object-
oriented language),” inProc. SIGPLAN, ACM, 1989.

[46] C. Pu, H. Massalin, and J. Ioannidis, “The Synthesis kernel,”
Computing Systems, vol. 1, pp. 11–32, Winter 1988.

[47] H. K. Huang, T. Suda, and Y. Noguchi, “LAN With Collision
Avoidance: Switch Implementation and Simulation Study,”
in Proceedings of the 15th Conference on Local Computer
Networks, 1990.

