
Scalable High-Performance Event Filtering
for Dynamic Multi-point Applications

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University

St. Louis, MO 63130, (314) 935-7538

This paper appeared in the 1st International Workshop
on High Performance Protocol Architectures, held in Sophia
Antipolis, France, December 15-16, 1994.

Abstract

High-performance event filtering reduces the large volume of
event traffic processed by dynamic multi-point applications in
high-speed networks. We are developing an object-oriented
(OO) framework for event filtering based on CORBA, which
is an emerging standard for open distributed object comput-
ing. The OO framework supports the automated generation,
optimization, and configuration of event filters in distributed
systems. This paper outlines the key characteristics of dy-
namic multi-point applications, reviews related work, and
describes the features provided by our event filtering frame-
work.

1 Introduction

The demand for high-performance event filtering to support
dynamic multi-point (DMP) applications is increasingly. Ex-
amples of DMP applications include satellite telemetry pro-
cessing systems, fault management in large-scale network
management systems, real-time market data analysis sys-
tems, on-line news services, and distributed agents in mobile
personal communication systems.

The work described in this paper is motivated by the high-
performance event filtering requirements in several next-
generation distributed communication systems. Event fil-
tering is used in these systems to improve the performance of
DMP applications such as satellite telemetry processing and
automated fault management. The issues and requirements
involved in designing and implementing filtering for other
DMP applications (such as real-time market data analysis
systems) are very similar.

The structure of a typical DMP application is shown in
Figure 1. These applications typically exhibit the following
characteristics:

�A high volume of event messages are generated continu-
ously in real-time by one or more suppliers: In commu-
nication systems, these events originate from suppliers (such

EVENT FLOW

SUPPLIER

SUPPLIER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

CONSUMER

Figure 1: General Structure of a Dynamic Multi-point Ap-
plication

1

as satellites), as well as from traps generated by managed
objects (such as gateways and earth terminals).

� The message formats of events are potentially complex:
Message formats contain both header fields (e.g., timestamps,
source/destination addresses, routing ids, priority levels) and
data payload (e.g., vectors of telemetry measurand values).

� Zero or more consumers subscribe to a subset of the
total events generated by the supplier(s): Unlike tradi-
tional static multi-point applications (such as teleconferenc-
ing), each generated event may be received by a different
subset of consumers, depending on consumer subscriptions
and message contents. Filtering based upon message content
may involve complex demultiplexing requires.

� Event consumers reside on hosts that are geographi-
cally distant from event suppliers: Moreover, consumers
and suppliers are often separated by very high-latency
communication links ,such as low-earth-orbit (LEO) and
geosynchronous-orbit satellites, that exhibit high variation
in delay.

� Events may have different priorities and consumers
may need to receive events in priority order: This char-
acteristic implies that some form of priority scheduling may
be necessary to meet stringent DMP application performance
requirements (e.g., the automated event correlation in fault
management subsystems).

� Consumers may add, delete, or modify their subscrip-
tions dynamically: Thus, low setup/removal latency may
be necessary to achieve the high levels of dynamism required
to monitor, detect, and recover from resource failures that oc-
cur during system operation.

DMP applications are multi-point since any event that
matches a subscription is delivered to the corresponding con-
sumer. Likewise, DMP applications are dynamic since (1)
each event potentially may be delivered to a different sub-
set of consumers and (2) consumers are capable of updating
their subscriptions at run-time in response to changes in their
environment. In contrast, conventional multi-point applica-
tions (such as teleconferencing) generally exhibit much less
dynamism. For instance, once a consumer has joined a multi-
point group in an ATM switch, all data sent by a supplier is
received by all other consumers who are members of the
group [1].

Since consumers in DMP applications do not subscribe
to every event, aggregate system performance may be en-
hanced significantly via event filtering. Event filtering is a
data reduction mechanism that eliminates unnecessary net-
work traffic and unnecessary processing at consumer endsys-
tems. In addition, filtering is used to demultiplex and classify
events, which supports network monitoring and automated
fault management.

Events may be filtered based on characteristics such as
event type, event value, event generation time, event fre-
quency, and event state changes. An event filter may contain

relational operators, which enables arbitrarily complex fil-
ter expressions to be composed. To improve performance
and flexibility, it may be necessary to install filters at var-
ious locations (such as event sources, destinations, and/or
intermediate nodes) throughout a distributed system.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines and evaluates related research on event fil-
tering; Section 3 describes the optimization techniques we
are developing to support scalable, high-performance event
filtering for DMP applications; and Section 4 presents con-
cluding remarks.

2 Research Background

2.1 Related Work

Work on event filtering spans a number of domains, including
distributedsystems [2, 3], network management and network
monitoring[4, 5, 6, 7, 8], user-level communication protocols
[9, 10, 11, 12], and active databases [13, 14, 15]. This section
outlines relevant related work on event filtering and evaluates
this work in terms of its support for the characteristics of DMP
applications outlined in Section 1.

2.1.1 Distributed Systems

� Isis News: Isis [3] supports event filtering in its Reliable
Distributed Objects (RDO) News service [2]. In Isis RDO
News, filtering is performed at the destinations since all con-
sumers in a process group receive all events sent by suppliers.
Consumer filtering is limited to matching on character strings
“keywords.” Depending on the available network bandwidth
and endsystem processing capacity, the RDO News filtering
architecture may not scale to accommodate a large numbers
of consumers that possess complex filtering requirements.

2.1.2 Network Management

� HP OpenView: HP OpenView [4] provides an imple-
mentation of the ISO OSI event report management services
[7]. HP OpenView filtering allows Event Forwarding Dis-
criminators (EFDs) to be installed on remote agents in a
network. An EFD contains an expression that filters events
based on their type, value, generation time, and/or frequency.
EFD filter expressions are described using GDMO, which is
a schema for defining managed objects in a network. Open-
View’s implementation of OSI EFDs is inadequate for high-
performance event filtering. It suffers from a highly inef-
ficient process architecture that requires 4 context switches
and 3 interprocess communication exchanges to receive, fil-
ter, and deliver each event end-to-end.

2.1.3 Packet Filters and Packet Classifiers

The majority of related experimental research has focused
upon various types of packet filters (also known as packet
classifiers [12]). Packet filters were developed originally to

2

support efficient demultiplexing for user-level implementa-
tions of network protocols [9]. In addition, they have been
used to monitor traffic unobtrusively on promiscuous-mode
networks [6, 5, 8].

The CMU/Stanford Packet Filter (CSPF) [9] and the
Berkeley Packet Filter (BPF) [10] are two influential first-
generation packet filter tools. Second-generation tools (such
as the Mach Packet Filter (MPF) [11] and the PathFinder
packet classifier [12]) enhance the scalability of first-
generation tools by enabling the composition of multiple
filters.

� CSPF and BPF: CSPF is a stack-based packet filter that
operates on binary instructions (e.g., pop and push). CSPF
uses boolean expressions, along with a tree model, to config-
ure its filtering engine. BPF extends and enhances CSPF to
overcome certain performance limitations with CSPF. BPF
uses a register-based execution model and and acyclic con-
trol graph, instead of CSPF’s stack-based language and tree
graph, respectively. In addition, BPF extends CSPF by han-
dling packet fragmentation, delivery of out-of-order frag-
ments, and variable-length headers.

Both CSPF and BPF maintain a list of configured packet
filters (the list maybe reorganized dynamically to move fre-
quently accessed filters to the front of the list). This approach
works well if there are relatively few packet filters, or if only a
small number of consumers are active simultaneously. When
there are hundreds of filters and/or hundreds of consumers,
however, this approach does not scale up since the time re-
quired to filter packets grows linearly with the number of
filters.

� MPF: The Mach Packet Filter (MPF) is designed to
support user-level implementations [16] of layered protocol
stacks (such as TCP/IP). In this context, composing multiple
packet filters helps to reduce demultiplexing overhead. Of-
ten, packets destined for separate connections on an endsys-
tem contain a common prefix, followed by variation at a
single point in the packet. For example, active TCP connec-
tions on an endsystem will have many IP header and TCP
header fields in common (such as source and destination IP
addresses). In this case, the only demultiplexing field that
varies among arriving packets is the TCP destination port
number. Thus, MPF associates a hash table with this field to
demultiplex packets to different endpoints efficiently.

The MPF composition technique assumes the existence of
a common prefix across protocol headers. This assumption
enables low latency setup and removal of composite packet
filters. However, this particular optimization strategy does
not generalize to compose more complex filters.

� PathFinder: The PathFinder tool described in [12]
presents a more general technique for coalescing filters with
common prefixes. PathFinder is a packet classifier that com-
bines software and hardware techniques to optimize the com-
position of complex filtering patterns. The software portion
of PathFinder builds a directed-acyclic graph (DAG) inter-
preter based upon patterns specified by a user-defined declar-

ative syntax. The PathFinder interpreter matches fields of
incoming packets using information stored in the DAG.

PathFinder uses several novel features to support high-
performance packet classification. For example, it adap-
tively reorders the DAG when pattern matches a composite
pattern. This reordering process synthesizes and caches a
new customized representation that reduces the number of
comparisons for subsequent packets matching the pattern. In
addition,PathFinder also offloads a portion of the packet clas-
sification logic into hardware, which may run on a network
adapter board.

One limitation with PathFinder is the relatively high la-
tency required to setup/remove patterns from the DAG (since
the DAG must be searched from the root to the leaves when
inserting/deleting a new pattern). In addition, the software
implementation of the DAG uses an interpreter, rather than
a compiler, which precludes several performance optimiza-
tions described in Section 3.2.1.

2.2 Evaluation of Related Work for DMP Ap-
plications

Most of the widely available systems described above fo-
cus on packet filtering techniques for communication pro-
tocol stacks. This section describes several key differ-
ences between the environment and requirements of emerg-
ing dynamic multi-point (DMP) applications and the protocol
stacks supported by conventional packet filters.

2.2.1 Message Formats and Filter Programming Nota-
tions

Packet filters were originally designed to operate on protocol
headers ranging from the transport layer to the data-link layer
(e.g., TCP/IP over Ethernet or ATM). These headers contain
simple data types that have remained fairly stable over time.
Therefore, packet filter techniques have been optimized to
work well for relatively simple message formats that consist
primarily of fixed-length fields containing integral values.
In addition, filters are often programmed using “assembly-
language” syntax that supports low-level features such as
bitwise masking (which is necessary to extract bit-fields used
by protocol designers to minimize network bandwidth at the
expense of addition parsing overhead).

In contrast, the data formats of DMP event messages are of-
ten more complex and more diverse than the protocol headers
supported by traditional packet filters. For example, filtering
telemetry event messages involves comparing floating point
numbers, variable-length arrays, and complex nested struc-
tures. Moreover, these message formats tend to evolve and
change much more quickly than traditional protocol headers.
Therefore, DMP applications typically require more flexi-
ble, higher-level notations to define message formats and to
program filter expression logic.

3

2.2.2 Event Filtering Criteria

Packet filters typically support “stateless” filtering criteria
based on simple equality and relational comparisons (such as
matching the value of a field in a packet against a particular
value). In general, support for “state-based” comparisons in
traditional packet filters has been ad hoc, focusing primarily
on filtering IP packet fragments [11, 12].

In contrast, DMP applications often require state-based
filtering. For example, most satellite telemetry filtering is
based upon changes of state (such as a telemetry measurand
exceeding an aperture constraint by a specified threshold).
Other state-based filtering criteria is based on frequency and
time (such as detecting a particular error condition occurring
x times over a certain period).

2.2.3 Scalability

Conventional packet filter tools [2, 9, 10, 11, 12] do not pro-
vide direct support for filtering other than at the destinations.
This architecture is not scalable across large-scale DMP ap-
plications, where a large number of suppliers and consumers
may exist. Real-time market data analysis systems used
by Wall Street brokerage firms are an example of DMP ap-
plication that require a high degree of scalability. These
applications may be required to filter events for hundreds or
thousands of geographically remote traders managing diverse
portfolios in real-time.

2.2.4 Dynamism

Many DMP applications require the ability to dynamically
add, delete, or update consumer subscriptions rapidly in re-
sponse to changes in external conditions. For instance, the
automated network fault management correlation systems in-
stall new filters in response to alarms triggered by managed
objects in a high-speed network [15]. In general, conven-
tional packet filtering tools do not provide comprehensive
support for this degree of dynamism. PathFinder [12] does
support the configuration of a secondary filter when a related
primary filter matches (this is used to handle IP fragments).
However, the functionality of the secondary filter is deter-
mined when the pattern is originally configured.

2.2.5 Priority Scheduling

DMP consumers may subscribe for events that have different
levels of priority. For instance, consumers may require cer-
tain events (such as critical faults and recovery procedures),
to be reported within specific time constraints. This time
limit may be negotiated during subscription time [17]. In
conventional packet filters, incoming packets are buffered in
FIFO order at the end of device driver input queues, regard-
less of packet priority. However, to support real-time event
filtering for DMP applications, queueing and filtering must
be scheduled based upon the priority of an event.

2.2.6 Protection Domain

Existing packet filter implementations are based on inter-
preters. This is due largely to the kernel-resident environment
of traditional packet filters. To reduce security and reliabil-
ity risks, most operating systems do not provide convenient
ways of compiling and dynamically linking filter code into
an OS kernel. In contrast, DMP applications generally run
in user-space rather than in an OS kernel. Therefore, opti-
mization techniques (such as compilation, explicit dynamic
linking, and parallelism) are often more feasible.

3 Optimization Techniques for High-
performance Event Filtering

We are developing an object-oriented event filtering frame-
work that is designed to satisfy the requirements of DMP
applications discussed in Section 2.2. The framework is
based on OMG CORBA [18] and OMG common object ser-
vices [19], which are emerging standards for open distributed
object computing.

This section outlines work in progress on the framework,
which currently consists of research prototypes. When com-
plete, the framework will support the generation, optimiza-
tion, and flexible configuration of high-performance, scal-
able, and extensible event filtering mechanisms using the
techniques described below.

3.1 Event Filter Generation

To simplify and automate the description, processing, and
optimization of event filters, the following high-level filter
schema notation and declarative filter expression language
are being developed.

3.1.1 Event Schema Notation

A schema is used to define the fields in an event. In our
system, event schemas are described using a superset of
the OMG CORBA interface definition language (IDL) [18].
CORBA IDL provides a simplified form of the C++ type
system, but is not a full-fledged programming language.

CORBA IDL is similar in functionality to standard data
definition languages such as ASN.1 and XDR. It provides
support for basic types (such as long, short, char, and dou-
ble), as well as composite types (such as fixed-length ar-
rays, bounded and unbounded sequences, and discriminated
unions). We are extending CORBA IDL to support packed
bit-fields to support existing packet formats (such as TCP and
IP headers).

The following interface illustrates the CORBA IDL syntax
used to define the schema for events in a distributed logging
service [20]:

// IDL schema definition
interface Logger
{

4

// Types of logging messages.
enum Log_Priority {

LOG_DEBUG, // Debugging messages
LOG_WARNING, // Warning messages
LOG_ERROR, // Errors
LOG_EMERG // A panic condition

};

// Format of the logging record.
struct Log_Record {

Log_Priority type;
long length;
long time;
long app_id;
sequence msg_data<char>;

};
};

The framework IDL compiler automatically translates this
interface into an intermediate representation that may be in-
terpreted directed or translated and optimized into a more
efficient execution format (discussed in Section 3.2.1).

3.1.2 Filter Expression Language

This language enables the declaration of filter expressions.
Filter expressions may contain relational operators, which
enables the composition of arbitrarily complex filter expres-
sions.

A filter generation compiler is used to transform a filter
expression into executable code. By using a declarative lan-
guage, the compiler will automatically detect inconsistencies
between event schemas and filter expressions. This relieves
a DMP application developer from focusing on low-level
details of filter formats. In addition, the filter generation
compiler may automate various filtering optimizations (such
as the various techniques for composing filters described in
Section 3.2.1).

The filter expression language enables filtering based upon
stateless criteria (such as event type, event value, event gen-
eration time), as well as criteria that must retain state (such
as event frequency and event state changes). The expres-
sion language is a superset of C++ expressions. The key-
word this refers to the currently active message. Com-
parisons involving message history state are indicated by
using the “{ }” operator. This operator may contain a
range of values that refer to the previous messages (e.g.,
this->field{0..9} refers to the value of a field in the
current and through the previous 9 messages).

Several short examples illustrating the use of the filter ex-
pression language are shown below. The fields accessed in
the filter expressions correspond to the Logger IDL inter-
face defined in Section 3.1.1.

// This filter matches if 10 consecutive
// error messages are sent from an
// application with an id of 2001.
"this->app_id == 2001
&& this->type{0..9} == Logger::LOG_ERROR"

// This filter matches if the absolute value

// of the length between two consecutive
// messages from application 2010 differ
// by more than 100 bytes.
"this->app_id == 2010
&& abs (this->length{0} -

this->length{1}) > 100"

// This filter matches if the time stamp
// of the message is between noon and 1
// pm.
"this->time >= 12:00:00
&& this->time <= 13:00:00"

3.2 Event Filter Optimizations

The OO framework supports two general types of optimiza-
tions for DMP applications: filteringoptimizationsand trans-
mission optimizations. Filtering optimizations are designed
to reduce the time required to determine the subset of con-
sumers that have subscribed to receive an event message.
Transmission optimizations are responsible for delivering a
message with minimal overhead once the subset of consumers
has been identified. Several filtering and transmission opti-
mizations being investigated for the framework are described
below.

3.2.1 Filtering Optimizations

We are currently investigatinga number of optimization tech-
niques to enable scalable filtering of DMP application events.
Three promising techniques discussed below include paral-
lel processing of composite filters, trie-based filter composi-
tion, and context-free grammar-based filter composition us-
ing “skip-ahead parsing.” Existing work has investigated
several of these optimization techniques in the context of
communication protocols [21] and packet filtering [12, 22].
However, there appears to be no comprehensive comparative
study investigatingall three techniques in the context of DMP
applications.

� Parallel processing of composite filters: We are us-
ing shared memory multiprocessors (e.g., a 20-CPU SPAR-
Ccenter 2000) to improve event filtering performance. In
this approach, one or more filter expressions registered by a
consumer are associated with each processing element (PE).
When a message arrives it is stored in shared memory acces-
sible to the PEs. Each PE then compares its collection of filter
expressions against the relevant fields in the message. Mes-
sages that match filter expressions are subsequently delivered
to the appropriate consumers.

An advantage of using parallelism is the relative ease
of configuring and reconfiguring event filters in response
to dynamically changing consumer subscriptions. A more
challenging issue involves selecting the process architecture
to use as the basis for parallelization. Task-based process
architectures (which bind the PEs together with different
filtering tasks or service layers) perform poorly on shared
memory multiprocessors. Message-based process architec-
tures (which bind the PEs with the individual messages or

5

connections to consumers) generally perform much better
[21]. However, empirical tests are necessary to determine
the circumstances under which types of message-based pro-
cess architectures (e.g., Connectional Parallelism or Message
Parallelism) provide the highest performance.

One limitation with the current generation of parallel pro-
cessing platforms is the cost of delivering each message to all
PEs attached to the shared memory. A fairly high cost is gen-
erally incurred when accessing shared memory on standard
I/O buses [23].

� Trie-based Filter Composition: We are also exploring
optimization techniques that compose multiple filter expres-
sions together using dynamic trie-based data structures. This
trie-based approach is a generalization of the DAG-based
techniques presented in [12]. Every node in the trie im-
plements a particular type of branching mechanism. The
branching mechanism selected at a node employs a lookup
function (such as a hashing function, a binary search, or a
series of inlined relational expression comparisons). During
trie construction, the appropriate type of lookup function is
selected based upon the type and the range of data values in
a node.

For tries that contain a large amount of common prefixes,
this technique reduces the number of operations required to
process M messages of size L through N event filters from
O(M �L�N) toO(M �L). This represents a substantial
performance improvement when N becomes large (which is
often the case for DMP applications containing hundreds or
thousands of consumers).

� Context-free Grammar-based Filter Composition: A
related optimization involves the use of automated compiler
parsing and code generation techniques. In this approach,
a finite automaton is created by combining a set of context
free grammars that describe the composite filter expressions.
A novel technique known as “skip-ahead parsing” [22] is
used to eliminate unnecessary access to data fields within
a message. An advantage of this approach is that the gen-
erated code may be optimized using compiler optimization
techniques.

One drawback to using compilation is the relatively high
latency required to compile and install, modify, or delete an
event filter. OS support for explicit dynamic linking [24]
helps to reduce this overhead to some extent.

Preliminary experiments on prototypes of our OO frame-
work indicate that the appropriate choice of filtering opti-
mization is affected significantly by the degree of dynamism
required by a DMP application. Applications that toler-
ate high installation latency (such as SV telemetry pro-
cessing, whose filtering constraints are generally fixed at
initialization-time) benefit from the performance improve-
ments from compiler-based optimizations. Conversely, ap-
plications that require frequent interactive updates (such as
fault management applications initiated by network adminis-
trators) benefit from the parallel-based or trie-based schemes
due to their lower (re)configuration latency.

CONSUMER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

SUPPLIER

ROUTER/

SWITCH

FILTERS

FILTERS

FILTERS

FILTERS

Figure 2: Decentralized Event Filtering

3.2.2 Transmission Optimizations

Applying the composite event filters to a message produces a
multicast set that contains the address(es) of the consumer(s)
for each message. Once this multicast address set is de-
termined, additional transmission optimizations may be per-
formed. The goal is to minimize the number of network pack-
ets used to deliver event messages to consumers. These op-
timizations take advantage of lower-level networking mech-
anisms (such as reliable transport multicast and ATM switch
multicast) to minimize network traffic. For instance, ATM
switch multicast uses port recycling and range-copying op-
timizations [1] to reduce the amount of copying necessary
to multicast messages through an ATM switch. In turn, this
helps to reduce unnecessary network traffic and avoid exces-
sive event processing at endsystems.

3.3 Event Filter Configuration

Our OO event filtering framework is designed to allow the
flexible configuration of filters at various locations (such
as event sources, destinations, and/or intermediate nodes)
throughout a distributed system. This leads to several types
of event filtering architectures illustrated in Figures 2, 3, and
4. This section discusses the advantages and disadvantages
of each architecture.

�Decentralized Event Filtering: In certain DMP environ-
ments, it is beneficial to decentralize event filtering by per-
forming it on consumer hosts (shown in Figure 2). This con-
figuration is appropriate when the following pre-conditions
exist:

6

CONSUMER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

SUPPLIER

EVENT

SERVER

ROUTER/

SWITCH

FILTERS

Figure 3: Centralized Event Filtering

� the consumer hosts are powerful workstation platforms;

� a high-speed network is available to connect the suppli-
ers to the consumer hosts;

� consumers subscribe to most events;

� event filters are relatively complex.

When these conditions exist it may become more efficient to
perform filtering in the consumer endsystems.

Centralized Event Filtering: In other DMP environments,
it is beneficial to centralize the event filtering at a single event
server (shown in Figure 3). This configuration is appropriate
when the following conditions exist:

� an event server is installed on a high-performance plat-
form (such as a multi-processor);

� the consumer hosts are run on less powerful platforms
(such as inexpensive PCs);

� a relatively low-bandwidth (or highly congested) net-
work connects the event server to the consumer hosts;

� consumers subscribe to a relatively limited subset of
events;

� the complexity and number of event filters subscribed
to by consumers does not produce a major processing
bottleneck at the event server.

When these conditions exist, the network and the consumer
hosts at the edges of the network are typically the processing
bottleneck, rather than the event server. Therefore, a central-
ized event filtering architecture helps to off-load work from
the network and the consumer hosts.

Distributed Event Filtering: More complex event filter-
ing scenarios are also possible (shown in Figure 4). For

SUPPLIER

CONSUMER

SUPPLIER

EVENT

SERVER

CONSUMER

CONSUMER CONSUMER

EVENT

SERVER

CONSUMER

CONSUMER

ROUTER/

SWITCH

ROUTER/

SWITCH

FILTERS

FILTERS

Figure 4: Distributed Event Filtering

example, network topology in complex systems may inter-
connect suppliers, event servers, and consumers that span
multiple routers and switches, across local-area networks, as
well as wide-area networks.

Conventional techniques [25, 26] for configuring flexible
software systems possess performance limitations since they
install distributed application services by spawning heavy-
weight processes and connecting these processes via heavy-
weight IPC mechanisms (such as pipes and sockets). In
contrast, our OO framework supports flexible lightweight
(re)configuration mechanisms based upon explicit dynamic
linking and lightweight processes (threads) [24].

4 Concluding Remarks

This paper describes research being conducted at Washington
University on optimizations for high-performance event fil-
tering. Efficient event filtering is crucial to reduce the large
volume of event traffic processed by dynamic multi-point
(DMP) applications (such as satellite telemetry processing
and automated detection and recovery). Unlike related work,
our optimizations are targeted for the requirements of DMP
applications. Existing frameworks for event filtering (such as
Isis, HP OpenView, DCE, CORBA, and packet filters) do not
adequately address the usability, extensibility, performance,
and scalability requirements of DMP applications.

To improve usability and extensibility we are developing
an object-oriented framework for event filtering based on
CORBA [18, 19]. The framework supports the automated
generation and optimization of filter expressions based on
the CORBA interface definition language (IDL). By selecting
CORBA, we plan to leverage off emerging distributed object

7

development environments [27] and open system protocol
specification techniques [28].

To improve DMP application performance and scalabil-
ity, we are exploring optimization techniques to reduce event
filtering overhead. These techniques employ parallel pro-
cessing, dynamic trie-based search structures, and compiler
technology based on context-free grammars to reduce the
time required to filter messages exchanged by DMP applica-
tions in a distributed system.

Acknowledgements

Portions of the research on optimizations for event filtering
are being conducted in conjunction with George Varghese
and Ron Cytron at Washington University.

References
[1] J. Turner, “An optimal nonblocking multicast virtual circut

switch,” in Proceedingsof the Conference on Computer Com-
munications (INFOCOM), pp. 298–305, June 1994.

[2] Isis Distributed Systems, Inc., Marlboro, MA, Isis Users’s
Guide: Reliable Distributed Objects for C++, April 1994.

[3] K. Birman and R. van Renesse, Reliable Distributed Com-
puting with the Isis Toolkit. Los Alamitos: IEEE Computer
Society Press, 1994.

[4] K. S. Klemba, “Openview’s Architectural Models,” in Pro-
ceedings of the 1st International Symposium on Integrated
Network Management (B. Meandzija and J. Westcott, eds.),
pp. 565–572, IFIP, 1989.

[5] R. T. Braden, “A Pseudo-machine for Packet Monitoring and
Statistics,” in Proceedings of the Symposium on Communi-
cations Architectures and Protocols (SIGCOMM), (Stanford,
CA), ACM, August 1988.

[6] Sun Microsystems, Inc., Mountain View,CA, NIT(4P); SunOS
4.1.1 Reference Manual, Part number: 800-5480-10 ed., Oc-
tober 1990.

[7] I. O. for Standardization, “Information Processing Systems -
Open Systems Interconnection - Part 5: Event Report Man-
agement Function,” Tech. Rep. ISO/IEC DIS 10164-5, ISO.

[8] J. C. Mogul, “Efficient Use of Workstations for Passive Moni-
toring of Local Area Networks,” in Proceedingsof the Sympo-
sium on Communications Architectures and Protocols (SIG-
COMM), (Philadelphia, PA), ACM, Sept. 1990.

[9] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The Packet
Filter: an Efficient Mechanism for User-level Network Code,”
in Proceedings of the 11th Symposium on Operating System
Principles (SOSP), November 1987.

[10] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” in Proceedings
of the Winter USENIX Conference, (San Diego, CA), pp. 259–
270, Jan. 1993.

[11] M. Yuhara, B. Bershad, C. Maeda, and E. Moss, “Efficient
Packet Demultiplexing for Multiple Endpoints and Large Mes-
sages,” in Proceedings of the Winter Usenix Conference, Jan-
uary 1994.

[12] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L.
Peterson, “Pathfinder: A pattern-based packet classifier,” in

Proceedings of the 1st Symposium on Operating System De-
sign and Implementation, USENIX Association, November
1994.

[13] N. Gehani, H. V. Jagadish, and O. Shmueli, “Compose: A
System for Composite Event Specification and Detection,” in
Book chapter in Advanced Database Concepts and Research
Issues (N. R. Adam and B. Bhargava, eds.), Lecture Notes in
Computer Science, Springer Verlag, 1994.

[14] S. Gatziu and K. R. Dittrich, “Detecting Composite Events in
Active Database Systems Using Petri Nets,” in Proceedings
of the 4th International Workshop on Research Issues in Data
Engineering: Active Database Systems, IEEE, February 1994.

[15] O. Wolfson, S. Sengupta, and Y. Yemini, “Managing Commu-
nication Networks by Monitoring Databases,” IEEE Transac-
tions on Software Engineering, vol. 17, pp. 944–952, Sept.
1991.

[16] C. Maeda and B. Bershad, “Protocol Service Decomposition
for High-Performance Networking,” in Proceedings of the
14th Symposium on Operating System Principles, (Asheville,
North Carolina), ACM, December 1993.

[17] S. F. Wu and G. E. Kaiser, “On Hard Real-Time Management
Information,” in Proceedings of the 1st International Work-
shop on System Managment, (Los Angeles, CA), IEEE, Apr.
1993.

[18] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[19] Object Management Group, Common Object Services Speci-
fication, Volume 1, 94-1-1 ed., 1994.

[20] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[21] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), pp. 624–633, IEEE, April 1995.

[22] M. Jayaram, R. K. Cytron, D. C. Schmidt, and G. Vargh-
ese, “Efficient Demultiplexing of Network Packets by Auto-
matic Parsing,” in Submitted to the ACM SIGPLAN’95 Confer-
ence on Programming Language Design and Implementation,
ACM, 1994.

[23] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson,
“Network subsystem design,” IEEE Network (Special Issue
on End-System Support for High Speed Networks), vol. 7,
July 1993.

[24] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[25] J. Magee, N. Dulay, and J. Kramer, “A Constructive Devel-
opment Environment for Parallel and Distributed Programs,”
in Proceedings of the 2nd International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 1–14, IEEE,
Mar. 1994.

[26] J. M. Purtilo, “The Polylith Software Toolbus,” ACM Trans-
actions on Programming Languages and Systems, To appear
1994.

[27] C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

8

[28] D. Lea and J. Marlowe, “PSL: Protocols and Pragmatics for
Open Systems,” Tech. Rep. 94-0369, Object Management
Group, September 1994.

9

