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Abstract

The Internet Inter-ORB Protocol (IIOP) enables heteroge-
neous CORBA-compliant Object Request Brokers (ORBs) to
interoperate over TCP/IP networks. IIOP uses the Com-
mon Data Representation (CDR) transfer syntax to map
OMG Interface Definition Language (IDL) data types into
a portable network format. Due to the excessive marshal-
ing/demarshaling overhead, data copying, and high-levels of
function call overhead, conventional IIOP implementations
yield relatively poor performance over high-speed networks.
To meet the demands of emerging distributed multimedia ap-
plications, however, CORBA-compliant ORBs must support
interoperable and highly efficient IIOP implementations.

This paper provides two contributions to the study and de-
sign of efficient IIOP implementations. First, we pinpoint
the key sources of overhead in the SunSoft IIOP implementa-
tion, which is a publically available implementation of IIOP
written in C++, and measure its performance for trans-
ferring richly-typed data over a high-speed ATM network.
Second, we demonstrate the empirical benefits of systemati-
cally optimizing SunSoft IIOP by optimizing for the common
case; eliminating gratuitous waste; replacing general pur-
pose methods with specialized, efficient ones; precomputing
values; storing redundant state to speed up expensive oper-
ations; passing information between layers; and optimizing
for better processor cache performance.

The results of optimizing SunSoft IIOP improved its per-
formance substantially for all data types. The resulting
IIOP implementation is competitive with existing commer-
cial ORBs using CORBA’s static invocation interface and 2
to 4.5 times (depending on the data type) faster than com-
mercial ORBs using the dynamic skeleton interface. We have
integrated the optimized IIOP implementation into TAO,
which is a CORBA ORB targeted for real-time systems.

1This work was supported in part by NSF grant NCR-9628218.

1 Motivation

An increasingly important class of distributed applications
require high bandwidth and low latency. These applications
include telecommunication systems (e.g.,call processing and
switching), avionics control systems (e.g.,operational flight
programs for fighter aircraft), multimedia (e.g., video-on-
demand and teleconferencing), and simulations (e.g.,battle
readiness planning). In addition to meeting stringent per-
formance and predictability requirements, these applications
must be flexible and reusable.

The Common Object Request Broker Architecture
(CORBA) is a distributed object computing middleware
standard defined by the Object Management Group (OMG)
[21]. CORBA is intended to support the production of flexi-
ble and reusable distributed services and applications. Many
implementations of CORBA are now available.

The CORBA 2.0 specification requires Object Request
Brokers (ORBs) to support a standard interoperability pro-
tocol. The CORBA specification defines an abstract interop-
erability protocol known as the General Inter-ORB Protocol
(GIOP). Specialized mappings of GIOP can be defined for
particular transport protocols. One such mapping is called
the Internet Inter-ORB Protocol (IIOP), which is the stan-
dard GIOP mapping IIOP is the standard for interoperability
for distributed object computing over TCP/IP.

[9, 10, 11] show that the performance of conventional
CORBA middleware implementations is relatively poor
compared to lower-level implementations using sockets
and C/C++ since the ORBs incur a significant amount of
data copying, marshaling, demarshaling, and demultiplexing
overhead. These results, however, focused entirely on the
communication performance betweenhomogeneousORBs.
They do not measure the run-time costs of interoperability
between heterogeneous ORBs. In addition, earlier work on
measuring CORBA performance did not present the results
of optimizations to reduce key sources of ORB overhead.

In this paper, we measure the performance of SunSoft
IIOP using a CORBA/ATM testbed environment similar to
[9, 10, 11]. SunSoft IIOP is a freely available implementa-
tion of theiiop protocol. We measure the performance of
SunSoft IIOP and precisely pinpoint its performance over-
heads. In addition, we describe the results of systemati-



cally applying sevenprinciple-driven optimizations [26]
that substantially improve the performance of SunSoft IIOP.
These optimizations include:optimizing for the common
case; eliminating gratuitous waste; replacing general pur-
pose methods with specialized, efficient ones; precomputing
values, if possible; storing redundant state to speed up ex-
pensive operations; passing information between layers; and
optimizing for the processor cache.

The results of applying these optimization principles
to SunSoft IIOP improved its performance 1.9 times for
doubles , 3.3 times forlongs , 4 times forshorts , 5
times forchars/octets , and 6.7 times for richly-typed
structs over ATM networks. Our optimized version of
SunSoft IIOP is now comparable to existing commercial
ORBs [9, 10, 11] using the static invocation interface (SII)
and around 2 to 4.5 times (depending on the data type) faster
than commercial ORBs using the dynamic skeleton interface
(DSI).

The optimizations and the resulting speedups reported in
this paper are essential for CORBA to be adopted as the
standard for implementing high-bandwidth, low-latency dis-
tributed applications. The protocol optimizations described
in this paper are based on a set of principles that have been
used to improve the performance of communication proto-
cols described in Section 4. These principles can be applied
to improve the performance of other ORB implementations
and distributed object computing middleware.

This paper is organized as follows. Section 2 describes
the CORBA reference model, the GIOP/IIOP interoperabil-
ity protocols, and the SunSoft IIOP implementation; Sec-
tion 3 presents the results of our performance optimiza-
tions of SunSoft IIOP over a high-speed ATM network; Sec-
tion 4 compares our research with related work; and Sec-
tion 5 provides concluding remarks. The Appendices de-
scribe CORBA IIOP in greater depth and present a detailed
view of SunSoft IIOP’s protocol engine structure and run-
time functionality.

2 Background

2.1 Overview of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for:

� Object location: CORBA objects can be located locally
with the client or remotely on a server, without affecting their
implementation or use;

� Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, and Smalltalk, among
others.

� OS platform: CORBA runs on many OS platforms, in-
cluding Win32, UNIX, MVS, and real-time embedded sys-
tems like VxWorks, Chorus, and LynxOS.

� Communication protocols and interconnects: The
communication protocols and interconnects that CORBA
can run on include TCP/IP, IPX/SPX, FDDI, ATM, Ether-
net, Fast Ethernet, and embedded system backplanes.

� Hardware: CORBA shields applications from differ-
ences in hardware such as RISC vs. CISC instruction sets.

The components in the CORBA reference model shown in
Figure 1 provide the transparency described above.
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Figure 1: Components in the CORBA Reference Model

The components in CORBA include the following:

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented us-
ing one or more objects. A servant is identified by itsobject
reference, which uniquely identifies the servant in a server
process.

Client: This program entity performs application tasks by
obtaining object references to servants and invoking opera-
tions on the servants. Servants can be remote or co-located
relative to the client. Ideally, accessing a remote servant
should be as simple as calling an operation on a local object,
i.e., object->operation(args) . Figure 1 shows the
components that ORBs use to transmit requests transparently
from client to servant for remote operation invocations.

ORB Core: When a client invokes an operation on a ser-
vant, the ORB Core is responsible for delivering the request
to the servant and returning a response, if any, to the client.
For servants executing remotely, a CORBA-compliant [21]
ORB Core communicates via the General Inter-ORB Pro-
tocol (GIOP) and the Internet Inter-ORB Protocol (IIOP),
which runs atop the TCP transport protocol. An ORB Core is
typically implemented as a run-time library linked into client
and server applications.



ORB Interface: An ORB is a logical entity that may be
implemented in various ways,e.g., one or more processes or
a set of libraries. To decouple applications from implemen-
tation details, the CORBA specification defines an abstract
interface for an ORB. This ORB interface provides stan-
dard operations that convert object references to strings and
back. The ORB interface also creates argument lists for re-
quests made through the dynamic invocation interface (DII)
described below.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as the “glue” between the client and servants, respec-
tively, and the ORB. Stubs provide a strongly-typed,static
invocation interface (SII) that marshals application data into
a common packet-level representation. Conversely, skele-
tons demarshal the packet-level representation back into
typed data that is meaningful to an application. An IDL com-
piler automatically transforms OMG IDL definitions into an
application programming language like C++ or Java. IDL
compilers eliminate common sources of network program-
ming errors and provide opportunities for automated com-
piler optimizations [7].

Dynamic Invocation Interface (DII): The DII allows a
client to access the underlying request transport mechanisms
provided by the ORB Core. The DII is useful when an ap-
plication has no compile-time knowledge of the interface it
is accessing. The DII also allows clients to makedeferred
synchronouscalls, which decouple the request and response
portions of twoway operations to avoid blocking the client
until the servant responds. In contrast, SII stubs only sup-
port twoway (i.e., request/response) and oneway (i.e., request
only) operations.

Dynamic Skeleton Interface (DSI): The DSI is the
server’s analogue to the client’s DII. The DSI allows an ORB
to deliver requests to a servant that has no compile-time
knowledge of the IDL interface it is implementing. Clients
making requests need not know whether the server ORB uses
static skeletons or dynamic skeletons.

Object Adapter: An Object Adapter associates a ser-
vant with an ORB, demultiplexes incoming requests to
the servant, and dispatches the appropriate operation up-
call on that servant. While current CORBA implementa-
tions are typically limited to a single Object Adapter per
ORB, recent CORBA portability enhancements [22] define
the Portable Object Adapter (POA), which supports multiple
nested POAs per ORB.

2.2 Overview of CORBA GIOP and IIOP

The CORBA General Inter-ORB Protocol (GIOP) defines an
interoperability protocol between heterogeneous ORBs. The
GIOP protocol provides an abstract protocol specification
that can be mapped onto conventional connection-oriented
transport protocols. An ORB is GIOP-compatible if it can
send and receive GIOP messages.

The GIOP specification consists of the following ele-
ments:

A Common Data Representation (CDR) definition: The
GIOP specification defines the CDR transfer syntax. CDR
maps OMG IDL types from the native host format into a
low-level bi-canonicalrepresentation, which supports both
little-endian and big-endian formats. CDR encoded mes-
sages are used to transmit CORBA requests and server re-
sponses across a network. All OMG IDL data types are mar-
shaled using the CDR syntax into anencapsulation, which is
an octet stream that holds marshaled data.

GIOP message formats: The GIOP specification defines
seven types of messages that send requests, receive replies,
locate objects, and manage communication channels.

GIOP transport assumptions: The GIOP specification
describes the type of transport protocols that can carry GIOP
messages. In addition, the GIOP specification defines a con-
nection management protocol and a set of constraints for
message ordering.

The most common concrete mapping of GIOP onto the
TCP/IP transport protocol is known as the Internet Inter-
ORB Protocol (IIOP). The GIOP and IIOP specifications are
described further in [21] and Appendix A. The remainder of
this section presents an overview of the SunSoft IIOP refer-
ence implementation and outlines its primary components.

2.3 Overview of SunSoft IIOP

2.3.1 CORBA Features Supported by SunSoft IIOP

SunSoft IIOP is a freely available2 implementation of an
ORB Core that comprises an implementation of the IIOP
version 1.0 protocol. SunSoft IIOP is written in C++ and
provides many features of a CORBA ORB, except for an
IDL compiler, an interface repository, and a complete Object
Adapter. Therefore, users must manually generate the stubs,
skeletons, and demultiplexing code that integrates with the
C++ components provided by SunSoft IIOP.

On the client-side, SunSoft IIOP provides astatic invoca-
tion interface(SII) and adynamic invocation interface(DII).
The SII is used by the client-side stubs. Since SunSoft IIOP
does not provide an IDL compiler, client stubs using the SII
API must be generated manually.

The DII is used by applications that have no compile-
time knowledge of the interface they are calling. Thus, the
DII allows applications to create CORBA requests at run-
time. Requests are created and parameters marshaled using
e.g. Request , NVList , NamedValue , andTypeCode ,
which are pseudo-objectinterfaces defined by CORBA.
Pseudo-objects are entities that are neither CORBA prim-
itive types nor constructed types. Operations on pseudo-
object references cannot be invoked using the DII mecha-
nism since the interface repository does not keep any infor-
mation about them. In addition, only some pseudo-objects,

2Seeftp://ftp.omg.org/pub/interop/ for the source code.



such asTypeCode s, can be transferred as parameters to
methods of an interface.

SunSoft IIOP supports dynamic skeletons via the dy-
namic skeleton interface (DSI). The DSI is used by appli-
cations (such as ORB bridges [21]) that have no compile-
time knowledge of the interfaces they implement. Therefore,
the DSI mechanism parses incoming requests, unmarshals
their parameters, and demultiplexes requests to the appropri-
ate object implementations.

Servers that use the SunSoft DSI mechanism must pro-
vide it with TypeCode information that is used to in-
terpret incoming requests and demarshal the parameters.
TypeCode s are CORBA pseudo-objects that describe the
format and layout of primitive and constructed IDL data
types in the incoming request stream.

2.3.2 The Sunsoft IIOP Component Architecture

The components in SunSoft IIOP are shown in Figure 2.
The TypeCode marshaling/demarshaling protocol engine
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Figure 2: Components in the SunSoft IIOP Implementation

is the primary component of SunSoft IIOP. SunSoft IIOP’s
protocol engine uses an interpretive marshaling scheme that
encodes or decodes parameter data by identifying their
TypeCode s at run-time using thekind field of each
TypeCode object. A TypeCode is a pseudo-object that
maintains an internal representation of the OMG IDL type
information for each data type as it is marshaled and trans-
mitted over a network.

The motivation for using an interpreter in SunSoft
IIOP is to reduce the space utilization of the marshal-

ing/demarshaling engine. Minimizing the ORB’s memory
footprint is important for embedded systems, such as PDAs
and avionics systems. SunSoft IIOP requires less than 100
Kbytes on a real-time operating system like VxWorks. ORBs
with small memory footprints can also be useful for general-
purpose computing systems since this allows the protocol in-
terpreter to fit entirely within a processor cache.

Each component of the SunSoft IIOP architecture is out-
lined below:

The TypeCode::traverse method: The SunSoft IIOP in-
terpreter is implemented within thetraverse method
of the TypeCode class. All marshaling and demarshal-
ing of parameters is performed interpretively by travers-
ing the data structure according to the layout of the
TypeCode /Request tuple passed totraverse . This
method is passed a pointer to avisit method (described
below), which interprets CORBA requests based on their
TypeCode layout. The request part of the tuple contains
the data that was passed by an application on the client-side
or received from the OS protocol stack on the server-side.

The visit method: TheTypeCode interpreter invokes the
visit method to marshal or demarshal the data associated
with theTypeCode it is currently interpreting. Thevisit
method is a pointer that containing the address of one of the
four methods described below:

� The CDR::encoder method: Theencoder method
of the CDRclass converts application data types from their
native host representation into the CDR representation that
transmits CORBA requests over a network.

� The CDR::decoder method: Thedecoder method
of theCDRclass is the inverse of theencoder method. It
converts request values from the incoming CDR stream into
the native host representation.

� The deepcopy method: The deep copy method
is used by the SunSoft DII mechanism to allocate stor-
age and marshal parameters into the CDR stream using the
TypeCode interpreter.

� The deepfree method: The deep free method is
used by the SunSoft DSI server to free allocated memory
after incoming data has been demarshaled and passed to a
server application.

The utility methods: SunSoft IIOP provides several meth-
ods that perform various utility tasks, including:

� The calc nestedsizeand alignment method: This
method calculates the size and alignment of the fields com-
prising an IDLstruct .

� The struct traverse method: TheTypeCode inter-
preter uses this method to recursively traverse the fields in an
IDL struct .

Appendix C examines the run-time behavior of SunSoft
IIOP by tracing the path taken by requests that transmit the
sequence of BinStruct s shown below:



// BinStruct is 32 bytes (including padding).
struct BinStruct
{

short s; char c; long l;
octet o; double d; octet pad[8]

};

// Richly typed data.
interface ttcp_throughput
{

typedef sequence<BinStruct> StructSeq;
// similarly for the rest of the types

// Methods to send various data type sequences.
oneway void sendStructSeq (in StructSeq ts);
// similarly for rest of the types

};

3 Experimental Results of CORBA
IIOP over ATM

3.1 CORBA/ATM Testbed Environment

3.1.1 Hardware and Software Platforms

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running SunOS 5.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSparc-2 contains two 168 MHz Super SPARC CPUs
with a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP
protocol stack is implemented using the STREAMS commu-
nication framework. Each UltraSparc-2 has 256 Mbytes of
RAM and an ENI-155s-MF ATM adaptor card, which sup-
ports 155 Megabits per-sec (Mbps) SONET multimode fiber.
The Maximum Transmission Unit (MTU) on the ENI ATM
adaptor is 9,180 bytes. Each ENI card has 512 Kbytes of
on-board memory. A maximum of 32 Kbytes is allotted per
ATM virtual circuit connection for receiving and transmit-
ting frames (for a total of 64 K). This allows up to eight
switched virtual connections per card. The CORBA/ATM
hardware platform is shown in Figure 3.

3.1.2 Traffic Generator for Throughput Measurements

Traffic for the experiments was generated and consumed by
an extended version of the widely availablettcp [25] pro-
tocol benchmarking tool. We extendedttcp for use with
SunSoft IIOP. We hand-crafted the stubs and skeletons for
the different methods defined in the interface. Our hand-
crafted client-side stubs use SunSoft IIOP’s SII API,i.e., the
do call method. On the server-side, the Object Adaptor
uses a callback method supplied by thettcp server appli-
cation to dispatch incoming requests and their parameters to
the target object.

Ourttcp tool measures end-to-end data transfer through-
put in Mbps from a transmitter process to a remote receiver
process across an ATM network. The flow of user data for
each version ofttcp is uni-directional, with the transmit-
ter flooding the receiver with a user-specified number of data
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Figure 3: Hardware for the CORBA/ATM Testbed

buffers. Various sender and receiver parameters may be se-
lected at run-time. These parameters include the number of
data buffers transmitted, the size of data buffers, and the type
of data in the buffers. In all our experiments the underlying
socket queue sizes were enlarged to 64 Kbytes (which is the
maximum supported on SunOS 5.5.1).

The following data types were used for all the tests:
primitive types (short , char , long , octet , double )
and a C++ struct composed of all the primitives
(BinStruct ). The size of theBinStruct is 32
bytes. SunSoft IIOP transferred the data types using IDL
sequences , which are dynamically-sized arrays. The IDL
declaration is shown in Appendix B. The sender-side trans-
mitted data buffer sizes of a specific data type incremented in
powers of two, ranging from 1 Kbytes to 128 Kbytes. These
buffers were repeatedly sent until a total of 64 Mbytes of data
was transmitted.

3.1.3 Profiling Tools

The profile information for the empirical analysis was ob-
tained using theQuantify [16] performance measurement
tool. Quantify analyzes performance bottlenecks and
identifies sections of code that dominate execution time. Un-
like traditional sampling-based profilers (such as the UNIX
gprof tool), Quantify reports results without including
its own overhead. In addition,Quantify measures the
overhead of system calls and third-party libraries without re-
quiring access to source code.

All data is recorded in terms of machine instruction cycles
and converted to elapsed times according to the clock rate of
the machine. The collected data reflect the cost of the orig-
inal program’s instructions and automatically exclude any
Quantify counting overhead.

Additional information on the run-time behavior of the
code such as system calls made, their return values, signals,



number of bytes written to the network interface, and num-
ber of bytes read from the network interface are obtained
using the UNIXtruss utility, which traces the system calls
made by an application.truss was used to observe the re-
turn values of system calls such aswrite andread , which
indicates the number of times that buffers were written and
read from the network.

3.2 Performance Results and Benefits of Opti-
mization Principles

3.2.1 Methodology

CORBA implementations like SunSoft IIOP are representa-
tive of complex communication software. Optimizing such
software is hard, particularly since seemingly minor “mis-
takes,” such as excessive data copying or dynamic allocation,
can reduce performance significantly [9]. Therefore, devel-
oping high performance and predictable ORBs requires an it-
erative, multi-step process. The first step involves measuring
the performance of the system and pinpointing the sources
of overhead. The second step involves a careful analysis of
these sources of overhead and application of optimizations
to remove them.

This section describes the optimizations we applied to
SunSoft IIOP to improve its throughput performance over
ATM networks. First, we show the performance of the orig-
inal SunSoft IIOP for the IDL data types defined in Ap-
pendix B. Next, we useQuantify to illustrate the key
sources of overhead in SunSoft IIOP. Finally, we describe
the benefits applying optimization principles to improve the
performance of SunSoft IIOP.

The optimizations described in this section are based on
seven core principles for implementing protocols efficiently.
[26] describes a collection of optimization principles in de-
tail and illustrates how they have been applied in existing
protocol implementations,e.g.,TCP/IP. This paper focuses
on the principles in Table1 that we applied systematically to
improve the performance of SunSoft IIOP. We focused on

Number Principle
1 Optimizing for the common case
2 Eliminating gratuitous waste
3 Replacing inefficient general-purpose

methods with efficient special-purpose ones
4 Precomputing values, if possible
5 Storing redundant state to speed

up expensive operations
6 Passing information between layers
7 Optimizing for the processor cache

Table 1: Summary of Principles for Efficient Protocol Imple-
mentations

these principles since we found them strategic to improve
SunSoft IIOP performance. When describing our optimiza-
tions, we refer to these principles and explain how their use is
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Figure 4: Throughput for the Original SunSoft IIOP Imple-
mentation

justified. Thus, we describe ameasurement-based, principle-
drivenmethodology to improve the performance of SunSoft
IIOP.

The SunSoft IIOP optimizations were performed in the
following three steps, corresponding to the principles from
Table 1:

1. Aggressive inlining to optimize for the common case:
which is discussed in Section 3.2.3;

2. Precomputing, adding redundant state, passing in-
formation through layers, eliminating gratuitous waste,
and specializing generic methods: which is discussed in
Section 3.2.4;

3. Optimizing for the processor cache: which is dis-
cussed in Section 3.2.5.

The order in which we applied the principles was based on
the most significant sources of overhead identified empiri-
cally at that step and the principle(s) that most effectively
reduced the overhead. For each step, we describe the princi-
ples and specific optimization techniques that were applied
to reduce the overhead remaining from previous steps. After
each step, we show the improved throughput measurements
for selected data types. In addition, we compare the through-
put obtained in the previous steps with that obtained in the
current step.

The comparisons focus on data types that exhibited
the widest range of performance,i.e., double and
BinStruct . As shown below, the first optimization step
does not significantly improve performance. However, this
step is necessary since it reveals the actual sources of over-
head, which are then alleviated by the optimizations in sub-
sequent steps.



93.33

2.69

1.92

1.55

write

put_longlong

CDR::encoder

TypeCode::traverse

88.65

2.99 1.57

1.73 1.33

write

get_long

calc_nested_size_and_alignment

CDR::encoder

TypeCode::traverse

Analysis for double s Analysis forBinStruct s
Figure 5: Sender-side Overhead in the Original IIOP Implementation

23.80
15.10

14.22

10.51

7.32

 23.81 

Typecode::traverse

CDR::get_longlong

deep_free

CDR::decoder

read

TypeCode::kind

27.65

18.3111.94

8.22

8.20

5.12
5.04 2.68

CDR::get_long

calc_nested_size_and_
alignment
struct_traverse

CDR::decoder

TypeCode::traverse

deep_free

CDR::skip_string

CDR::get_byte

Analysis for double s Analysis forBinStruct s
Figure 6: Receiver-side Overhead in the Original IIOP Implementation

3.2.2 Performance of the Original IIOP Implementa-
tion

Sender-side performance: Figure 4 illustrates the sender-
side throughput obtained by sending 64 Mbytes of various
data types for buffer sizes ranging from 1 Kbytes to 128
Kbytes (incremented by powers of two). The figure com-
pares SunSoft IIOP with a hand-optimized baseline imple-
mentation that uses TCP/IP and sockets. These results indi-
cate that different data types achieved substantially different
levels of throughput.

The highest ORB throughput results from sending
doubles , whereasBinStructs displayed the worst be-
havior. This variation in behavior stems from the marshaling
and demarshaling overhead for different data types. In ad-
dition, the use of the interpretive marshaling/demarshaling
engine in SunSoft IIOP incurs a large number of recursive
method calls.

Detailed analysis usingQuantify reveals that the sender
spends�90% of its run-time performingwrite system
calls to the network. This overhead stems from the transport
protocol flow control enforced by the receiving side, which

cannot keep pace with the sender due to excessive presenta-
tion layer overhead.

Receiver-side performance: TheQuantify analysis for
the receiver-side are shown in Figure 6. The receiver-side
results3 for sending primitive data types indicate that most
of the run-time costs are incurred by the following methods:

1. The TypeCode interpreter: i.e., the traverse
method in classTypeCode .

2. The CDR methods that retrieve the value from the
incoming data: e.g.,get long andget short .

3. The deepfree() method: which deallocates memory.

4. The CDR::decoder() method: The receiver spends
a significant amount of time traversing theBinStruct
TypeCode (struct traverse ) and calculating the size
and alignment of each member in thestruct .

As noted above, the receiver’s run-time costs adversely affect
the sender by increasing the time required to performwrite
system calls to the network due to flow control.

3Throughput measurements from the receiver-side were nearly identical
to the sender measurements and are not presented here.



The remainder of this section describes the various op-
timization principles we applied to SunSoft IIOP, as well
as the motivations and consequences of applying these op-
timizations.

Figures 6 illustrate the receiver is the principal perfor-
mance bottleneck. Therefore, our initial set of optimizations
are designed to improve receiver performance. Likewise,
since the receiver is the bottleneck, we show theQuantify
profile measurements only for it.

3.2.3 Optimization Step 1: Inlining to Optimize for the
Common Case

Problem: high invocation overhead for small, frequently
called methods: This subsection describes an optimiza-
tion to improve the performance of IIOP receivers. We
applied Principle 1 from Table 1, whichoptimizes for the
common case. Figure 6 illustrates that the appropriateget
method of the CDR class must be invoked to retrieve the data
from the incoming stream into a local copy. For instance, de-
pending on the data type, methods likeCDR::get long or
CDR::get longlong are called millions of times to de-
code the 64 Mbytes of data. Since theseget methods are
invoked quite frequently they are prime targets for our first
optimization step.

Solution: inline method calls: Our solution to reduce in-
vocation overhead for small, frequently called methods was
to inline these methods. Initially, we used the C++inline
language feature.

Problem: lack of C++ compiler support for aggressive
inlining: Our intermediateQuantify results after inlin-
ing reveal that supplying theinline keyword to the com-
piler does not always work since the compiler occasionally
ignores this “hint.” Likewise, inlining some methods may
cause others to become “uninlined.”

Solution: replace inline methods with preprocessor
macros: To ensure inlining for all small, frequently
called methods, we employ a more aggressive inlining
strategy. This strategyforcibly inlined methods like
ptr align binary (which aligns a pointer at the spec-
ified byte alignment) using preprocessor macros instead of
as C++inline methods.

In addition, the Sun C++ compiler did not inline cer-
tain methods, such asskip string andget longlong ,
due to their length. For instance, the code in method
get longlong swaps 16 bytes in a manually un-rolled
loop if the arriving data was in a different byte order. This in-
creases the size of the code, which caused the C++ compiler
to ignore theinline keyword.

To workaround the compiler design, we defined a helper
method that performs the byte swapping. This helper method
is invoked only if byte swapping is necessary. This decreases
the size of the code so that the compiler selected the method
for inlining. For our experiments, this optimization was valid
since we were transferring data between UltraSPARC ma-
chines with the same byte order.
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Figure 7: Throughput After Applying the First Optimization
(inlining)

Optimization results: The throughput measurements after
aggressive inlining are shown in Figure 7. Figures 8 and 9 il-
lustrate the effect of inlining on the throughput ofdoubles
andBinStructs . Figures 8 and 9 also compare the new
results with the original results. After aggressive inlining,
the new throughput results indicate only a marginal (i.e., 4%)
increase in performance. Figures 11 and 2 show profiling
measurements for the sender and receiver, respectively. As
before, the analysis of overhead for the sender-side reveals
that most run-time overhead stems fromwrite calls to the
network.

Figure 10 illustrates the effect of aggressive inlining on
the throughput ofdoubles andBinStructs . After ag-
gressive inlining, the new throughput results indicate only a
marginal (i.e., 4%) increase in performance. Figure 2 shows
profiling measurements for the receiver. The analysis of
overhead for the sender-side reveals that, as before, most run-
time overhead stems fromwrite calls to the network.

The receiver-sideQuantify profile output reveals that
aggressive inlining does force operations to be inlined. How-
ever, this inlining increases the code size for other meth-
ods such asstruct traverse , CDR::decoder , and
calc nested size and alignment , thereby increas-
ing their run-time costs. As shown in Figures 39 and 40,
these methods are called a large number of times (indicated
in Figure 2).

Certain SunSoft IIOP methods such asCDR::decoder
and TypeCode::traverse are large and general-
purpose. Inlining the small methods described above causes
further “code bloat” for these methods. Thus, when they call
each other recursively a large number of times, very high
method call overhead results. In addition, due to their large
size, it is unlikely that code for both these methods can be
resident in the processor cache at the same time, which ex-
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Figure 8: Throughput Comparison for Doubles After Apply-
ing the First Optimization (inlining)
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Figure 9: Throughput Comparison for Structs After Apply-
ing the First Optimization (inlining)
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Figure 10: Throughput Comparison for Doubles and Structs
After Applying the First Optimization (inlining)

Data Type Analysis
Method Name msec Called %

double CDR::decoder 3,402 8,393,237 35.11
TypeCode::traverse 2,598 1,539 26.82
deep free 1,648 8,389,633 17.01
TypeCode::kind 799 8,389,120 8.25

BinStruct calc nested size... 29,741 29,367,801 29.69
struct traverse 24,840 4,194,303 24.80
CDR::decoder 14,641 33,554,437 14.62
TypeCode::traverse 7,032 6,292,481 7.02
TypeCode::param count 4,020 4,195,846 4.01
deep free 6,492 14,681,089 4.97

Table 2: Receiver-side Overhead After Applying the First
Optimization (aggressive inlining)

plains why inlining does not result in significant performance
improvement.

In summary, although our first optimization step did not
improve performance dramatically, it helped to reveal the ac-
tual sources of overhead in the code, as explained in Section
3.2.4.

3.2.4 Optimization Step 2: Precomputing, Adding
Redundant State, Passing Information Through
Layers, Eliminating Gratuitous Waste, and Spe-
cializing Generic Methods

Problem: too many method calls: The aggressive in-
lining optimization in Section 3.2.3 did not cause substan-
tial improvement in performance due to processor cache ef-
fects. Figure 2 reveals that for sendingstructs , the high
cost methods arecalc nested size and alignment ,
CDR::decoder , andstruct traverse . These meth-
ods are invoked a substantial number of times (29,367,801,
33,554,437, and 4,194,303 times, respectively) to process in-
coming requests.

To see why these methods were invoked so fre-
quently, we analyzed the calls tostruct traverse .
The TypeCode interpreter invokedstruct traverse



92.40

4.92 2.03

write

CDR::encoder

Typecode::traverse

85.29

3.40 3.00

3.59 write

calc_nested_size_and_
alignment
CDR::encoder

struct_traverse

Analysis for double s Analysis forBinStruct s

Figure 11: Sender-side Overhead After Applying the First Optimization (aggressive inlining)

2,097,152 times for data transmissions of 64 Mbytes in
sequences of 32-byteBinstruct s. In addition, the
TypeCode interpreter calculated the size ofBinStruct
(using thecalc nested size and alignment func-
tion), which calledstruct traverse internally for every
BinStruct . This accounted for an additional 2,097,152
calls.

Although inlining did not improve performance sub-
stantially, it helped to answer a key performance ques-
tion: why were these high cost methods invoked so fre-
quently? Based on our detail analysis of the SunSoft
IIOP implementation (shown in Figure 40 and in the ex-
planation in Section 2.3), we recognized that to demarshal
an incomingsequence of BinStructs , the receiver’s
TypeCode interpreter methodTypeCode::traverse
must traverse each of its members using the method
struct traverse . As each member is traversed,
the calc nested size and alignment method de-
termines the member’s size and alignment requirements.
Each call to thecalc nested size and alignment
method can invoke theCDR::decoder method, which
may invoke thetraverse method.

Close scrutiny of the CORBA request datapath shown in
Figure 40 reveals that thestruct traverse method cal-
culates the size and alignment requirements every time it is
invoked. As shown above, this yields a substantial number
of method calls for large amounts of data.

Several solutions to remedy this problem are outlined be-
low:

Solution 1: reduce gratuitous waste by precomputing
values and storing additional state: The first solution is
based on the following two observations. First, for incom-
ing sequences , the TypeCode of each element is con-
stant. Second, eachBinStruct in the IDL sequence
has the same fixed size. These observations enabled us
to pinpoint a key source ofgratuitous waste(Principle
2 from Table 1). In this case, the gratuitous waste in-
volves recalculating the size and alignment requirements
of each element of thesequence . In our experiments,

the methodscalc nested size and alignment and
struct traverse are expensive. Therefore, it is crucial
to optimize them.

To eliminate this gratuitous waste, we canprecompute
(Principle 4) the size and alignment requirements of each
member and store them usingadditional state(Principle 5)
to speed up expensive operations. We store this additional
state as private data members of the SunSift’sTypeCode
class. Thus, theTypeCode for BinStruct will calculate
the size and alignmentonceand store these in the private
data members. Every time the interpreter wants to traverse
BinStruct , it uses theTypeCode for BinStruct that
has already precomputed its size and alignment. Note that
our additional state does not affect the IIOP protocol since
this state is stored locally in theTypeCode interpreter and
is not passed across the network.

Solution 2: convert generic methods into special-purpose,
efficient ones: To further reduce method call overhead,
and to decrease the potential for processor cache misses,
we moved thestruct traverse logic for handling
struct s into the traverse method. In addition, we
introduced theencoder , decoder , deep copy , and
deep free logic into the traverse method. This op-
timization illustrates an application of Principle 3 (Convert
generic methods into special-purpose, efficient ones).

We chose to keep thetraverse method generic, yet
make it efficient since we want our demarshaling engine to
remain in the cache. However, this scheme may not result
in the best cache hit performance for machine architectures
with small caches since thetraverse method is exces-
sively large. Section 3.2.5 describes optimizations we used
to improve processor cache performance.

Problem: expensive no-ops for memory deallocation:
Figure 2 reveals that the overhead of thedeep free
method remains significant for primitive data types. This
method is similar to thedecoder method that traverses
the TypeCode and deallocates dynamic memory. For in-
stance, thedeep free method has the same type signature



0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
shorts
longs
chars/octets
doubles
structs

Figure 12: Throughput After Applying the Second Opti-
mization (precomputation and eliminating waste)

as thedecoder method. Therefore, it can use the recur-
sive traverse method to navigate the data structure and
deallocate memory.

Careful analysis of thedeep free method indicates
that memory must be freed for constructed data structures
(such as IDLsequences andstructs ). In contrast, for
sequences of primitive types, thedeep free method
simply deallocates the buffer containing thesequence .

Instead of limiting itself to this simple logic, however, the
deep free method usestraverse to find the element
type that comprises the IDLsequence . Then, for the en-
tire length of thesequence , it invokes thedeep free
method with the element’sTypeCode . The deep free
method immediately determines that this is a primitive type
and returns. However, this traversal process is wasteful since
it creates a large number of “no-op” method calls.

Solution: eliminate gratuitous waste: To optimize the
no-op memory deallocations, we changed the deletion strat-
egy for sequences so that the element’sTypeCode is
checkedfirst. If it is a primitive type, the traversal is not
done and memory is deallocated directly.

Optimization results: The throughput measurements
recorded after incorporating these optimizations are shown
in Figure 12. Figures 13 and 14 illustrate the benefits of the
optimizations from step 2 by comparing the throughput ob-
tained fordoubles andBinStructs , respectively, with
results from previous optimization steps.

Figure 15 illustrates the benefits of the optimizations from
step 2 by comparing the throughput obtained fordoubles
andBinStructs , respectively, with those from the previ-
ous optimization steps. These results indicate that the sec-
ond optimization step improves the performance of the orig-
inal IIOP implementation substantially. The performance of
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Figure 13: Throughput Comparison for Doubles After Ap-
plying the Second Optimization (precomputation and elimi-
nating waste)
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Figure 14: Throughput Comparison for Structs After Apply-
ing the Second Optimization (precomputation and eliminat-
ing waste)
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Figure 15: Throughput Comparison for Doubles and Structs
After Applying the Second Optimization (precomputation
and eliminating waste)

double s increased by a factor of 1.9,long s by a factory of
3.3,short s by a factor of 4,chars andoctets by a fac-
tor of 5, andBinStruct s by a factor of 6.7. The maximum
throughput of 115 Mbps obtained for sendingdoubles is
comparable to the baseline TCP/IP performance.

Figures 17 and 17 depict the profiling measurements for
the receiver (the sender continues to spends most of its exe-
cution time performing networkwrite calls). The receiver
methods accounting for most execution time fordoubles
include traverse , decoder , and deep free . For
BinStructs , the run-time costs of thetraverse
method in the receiver increases significantly compared to
the previous optimization steps. This is due primarily to
the inclusion of thestruct traverse , encoder , and
decoder logic. Although the run-time costs of the inter-
preter increased, the overall performance improved since the
number of calls to functions other than itself decreased. As a
result, this design improved processor cache affinity, which
yielded better performance. In addition, due to precom-
putation,calc nested size and alignment method
need not be called repeatedly.

Figures 16 and 3 illustrate the remaining high cost sender-
side and receiver-side methods, respectively. The tables in-
dicate that for primitive types, the cost of writing to the net-
work and reading from the network becomes the primary
source of run-time costs. This result represents a substantial
improvement and illustrates that the marshaling overhead of
IIOP need not be a limiting factor in ORB performance.

For BinStructs , the TypeCode interpreter still re-
mains the dominant factor – accounting for over 90% of
the receiver-side run-time costs. To further reduce the over-
head of the interpreter, we are applying more sophisticated
compiler-based optimizations, such as using flow analysis to
identify dependencies in the code. Having dealt with the de-
pendencies, it would be possible to obtain an optimal ILP

Data Type Analysis
Method Name msec Called %

double read 3,413 4,665 54.93
TypeCode::traverse 2,747 1,539 44.21

BinStruct TypeCode::traverse 27,976 4,195,331 91.94
TypeCode:: 1,151 4,201,475 3.78
typecode param

Table 3: Receiver-side Overhead After Applying the Second
Optimization (getting rid of waste and precomputation)
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Figure 17: Receiver-side Overhead for Doubles After Ap-
plying the Second Optimizations

(Integrated Layer Processing) [5] implementation of the in-
terpreter. An ILP-based implementation can reduce the ex-
cessive data manipulation operations, which is essential to
optimize RISC architectures.

Another technique to improve overall marshaling perfor-
mance is to use a hybrid scheme [15] in which frequently
transferred data types can be marshaled using fast, but large
compiled stubs. In contrast, an interpretive scheme can be
used to marshal data types that are seldom transferred. This
hybrid scheme tries to achieve an optimal time and space
tradeoff by using fast, but large compiled stubs as well as a
slow, but compact interpreter.
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3.2.5 Optimization Steps 3 and 4: Optimizating for Pro-
cessor Caches

[19] describes several techniques to improve protocol la-
tency. One of the primary areas to be considered for improv-
ing protocol performance is to improve the processor cache
effectiveness. Hence, the optimizations described in this sec-
tion are aimed at improving processor cache affinity, thereby
improving performance.

Problem: Very large, monolithic interpreter: Section
3.2.4 describes optimizations based on precomputation,
eliminating waste, and specializing generic methods. These
optimizations yield an efficient, albeit excessively large,
TypeCode interpreter. The efficiency stems from the fact
that the monolithic structure results in low function call over-
head. Recursive function calls are affordable since the pro-
cessor cache is already loaded with the instructions for the
same function. However, for machine architectures with
smaller cache sizes, it may be desirable to have smaller func-
tions.

Solution: Split large functions into smaller ones and out-
lining: This section describes optimizations we used to im-
prove processor cache affinity for SunSoft IIOP. Our opti-
mizations are based on two principles described below:

1. Splitting large, monolithic functions into small, mod-
ular functions: In our case, theTypeCode interpreter
traverse method is the prime target for this optimiza-
tion. As described earlier in Section 3.2.4, the logic for
encoder , decoder , struct traverse , deep free ,
and deep copy is merged into the interpreter, which in-
creases its code size. The primary purpose of merging these
methods is to reduce excessive function call overhead.

To improve processor cache affinity, however, it is desir-
able to have both smaller functions and minimal function call
overhead. We accomplish this by splitting the interpreter into
smaller functions that are targeted for specific tasks. These
include functions that can encode or decode individual data
types. This is in contrast to a generic encoder or decoder
that can marshal any OMG IDL data type. Thus, to decode

a sequence , the receiver uses thedecode sequence
method of theCDRclass and to decode astruct , it uses
thedecode struct method.

It is possible to split thedecode sequence method
further to support highly specialized methods (e.g.,
decode sequence long to decode asequence of
long s). We are currently working on providing optimiza-
tions at this level of granularity.

This optimization principle is similar to Principle 3 from
Table 1, which replaces general-purpose methods with effi-
cient special-purpose ones. In the present case, however, the
large, monolithic interpreter is replaced by special-purpose
methods for encoding and decoding.

2. Using “outlining” to optimize for the frequently exe-
cuted case: Outlining [19] is used to remove gaps that are
introduced in the processor cache as a result of branch in-
structions arising from error handling code. Processor cache
gaps are undesirable because they waste memory bandwidth
and introduce useless no-op instructions in the cache.

The purpose of outlining is to move error handling code,
which is rarely executed, to the end of the function. This
enables frequently executed code to remain in contiguous
memory locations, thereby preventing unnecessary jumps
and hence increasing cache affinity by virtue of spatial lo-
cality.

Spatial locality is a property whereby data closely associ-
ated with currently referenced data are likely to be referenced
soon. According to the 90-10 locality principle, a program
executes 90% of its instructions in 10% of its code. If that
10% of the code demonstrates spatial locality, we can derive
substantial cache affinity, which improves performance. In-
creased spatial locality can be achieved by using outlining,
which reduces the number of gaps in the processor cache.

Outlining is a technique based on Principles 1 and 7 from
Table 1, which optimize for the expected case and optimize
for the processor cache, respectively.

The optimizations described in this section were applied
in two steps. Since theQuantify analysis in the previ-
ous steps revealed the receiver as the source of overhead, we
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Figure 19: Throughput Comparison for Doubles and Structs
After Applying Cache Optimization
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ing Optimizations for Cache

optimized the receiver side to gain greater processor cache
effectiveness. However, the resultingQuantify analysis
for BinStructs revealed that the sender-side which was
write bound after the optimizations in step 2, spends a sub-
stantial amount of time (88%) in the interpreter. Hence we
applied the similar optimizations for the cache for the sender
side. Specifically, the sender-side processor cache optimiza-
tions involve splitting the interpreter into smaller, specialized
functions that can encode different OMG IDL data types.

Figure 19 illustrates the benefits of the optimizations
for the cache by comparing the throughput obtained for
doubles andBinStructs , respectively, with those from
the previous optimization steps.

Figures 22 and 23 illustrate the remaining high cost
receiver-side methods. TheQuantify analysis indicates
that for primitive types, the cost of writing to the network and
reading from the network becomes the primary contributor
to the run-time costs. This represents a substantial improve-
ment and illustrates that the marshaling overhead of IIOP
need not be a limiting factor in ORB performance. In addi-
tion, for BinStruct s, the sender-side which spent most of
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Figure 21: Sender-side Overhead for Structs After Applying
Optimizations for Cache
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Figure 22: Receiver-side Overhead for Doubles After Ap-
plying Optimizations for Cache
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Figure 24: Throughput After Applying the Third Optimiza-
tion (receiver-side processor cache optimization)

its time in the interpreter after step 3, becomeswrite bound
once again. The receiver-side analysis is comparable to that
after step 3.

Optimization Step 3: Receiver-side optimizations: Fig-
ures 16 and 3 reveal that the sender is largelywrite bound.
In contrast, the receiver spends most of its time in the inter-
preter. Therefore, it is appropriate to optimize the receiver-
side code first to improve processor cache performance.

The throughput measurements recorded after incorporat-
ing these optimizations are shown in Figure 24. Figures 25
and 26 illustrate the benefits of the optimizations from step
3 by comparing the throughput obtained fordoubles and
BinStructs , respectively, with those from the previous
optimization steps.

Figures 27 and 28 illustrate the remaining high cost
sender-side and receiver-side methods, respectively. The ta-
bles indicate that for primitive types, the cost of writing to the
network and reading from the network becomes the primary
contributor to the run-time costs. These results represent a
substantial improvement over the original results and illus-
trate that IIOP’s marshalling overhead need not unduly limit
ORB performance. ForBinStruct s, however, the sender-
side (which waswrite bound after the optimizations in step
2) spends a substantial amount of time (88%) in the inter-
preter. The receiver spends most of its time in the specialized
functions such asdecode sequence , decode array .
The receiver-side analysis also reveals that the function call
overhead has decreased significantly compared to step 2.

Optimization Step 4: Sender-side optimizations: The
sender-side processor cache optimizations involve splitting
the interpreter into smaller, specialized functions that can en-
code different OMG IDL data types.
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Figure 25: Throughput Comparison for Doubles After Ap-
plying the Third Optimization (receiver-side processor cache
optimization)
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Figure 26: Throughput Comparison for Structs After Ap-
plying the Third Optimization (receiver-side processor cache
optimization)



53.21

38.68 write

TypeCode::traverse

88.16

6.37

TypeCode::traverse

write

Analysis for double s Analysis forBinStruct s
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Figure 28: Receiver-side Overhead After Applying the Third Optimization (receiver-side processor cache optimizations)

The throughput measurements recorded after incorporat-
ing these optimizations are shown in Figure 29. Figures 30
and 31 illustrate the benefits of the optimizations from step
4 by comparing the throughput obtained fordoubles and
BinStructs , respectively, with those from the previous
optimization steps.

Figures 32 and 33 illustrate the remaining high cost
sender-side and receiver-side methods, respectively. The ta-
bles indicate that for primitive types, the cost of writing to
the network and reading from the network becomes the pri-
mary contributor to the run-time costs. This represents a
substantial improvement and illustrates that the marshaling
overhead of IIOP need not be a limiting factor in ORB per-
formance. In addition, forBinStruct s, the sender-side
which spent most of its time in the interpreter after step 3,
becomeswrite bound once again. The receiver-side anal-
ysis is comparable to that after step 3.

4 Related Work

This section describes results from existing work on protocol
optimization based on one or more of the principles in Table
1. In addition, we discuss related work on CORBA perfor-
mance measurements and presentation layer marshaling.

Related work based on optimization principles: [4] de-
scribes a technique calledheader predictionthat predicts the
message header of incoming TCP packets. This technique is
based on the observation that many members in the header
remaining constant between consecutive packets. This ob-
servation led to the creation of a template for the expected
packet header. The optimizations reported in [4] are based
on Principle 1, whichoptimizes for the common caseand
Principle 3, which isprecompute, if possible. We present
the results of applying these principles to optimize IIOP in
Sections 3.2.3, 3.2.4, and 3.2.5.

[5, 1, 3] describe the application of an optimization mech-
anism calledIntegrated Layer Processing(ILP). ILP is based
on the observation that data manipulation loops that operate
on the same protocol data are wasteful and expensive. The
ILP mechanism integrates these loops into a smaller num-
ber of loops that perform all the protocol processing. The
ILP optimization scheme is based on Principle 2, whichgets
rid of gratuitous waste. We demonstrate the application of
this principle to IIOP in Section 3.2.4 where we eliminated
unnecessary calls to thedeep free method, which frees
primitive data types. [3] cautions against improper use of
ILP since this may increase processor cache misses.

Packet filters [18, 2, 8] are a classic example of Principle
6, which recommendspassing information between layers.
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Figure 32: Sender-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimization)
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Figure 33: Receiver-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimizations)

A packet filter demultiplexes incoming packets to the appro-
priate target application(s). Rather than having demultiplex-
ing occur at every layer, each protocol layer passes certain
information to the packet filter, which allows it to identify
which packets are destined for which protocol layer. We ap-
plied Principle 6 for IIOP in Section 3.2.4 where we passed
theTypeCode information and size of the element type of
a sequence to theTypeCode interpreter. Therefore, the
interpreter need not calculate the same quantities repeatedly.

[6] describes a facility called fast buffers (FBUFS).
FBUFS combines virtual page remapping with shared vir-
tual memory to reduce unnecessary data copying and achieve
high throughput. This optimization is based on Principle 2,
which focuses oneliminating gratuitous wasteand Princi-
ple 3, whichreplaces generic schemes with efficient, special
purpose ones. We applied these principles for IIOP in Sec-
tion 3.2.4 where we incorporated thestruct traverse
logic and some of thedecoder logic into theTypeCode
interpreter.

[19] describes a scheme called “outlining” that when used
improves processor cache effectiveness, thereby improving
performance. We describe optimizatons for processor cache
in Section 3.2.5.

Related work on CORBA performance measurements:
[9, 10, 11] show that the performance of CORBA middle-
ware implementations is relatively poor, compared to lower-

level implementations using C/C++. The primary source of
ORB-level overhead stems from marshaling and demarshal-
ing. [9] measures the performance of the static invocation
interface. [10] measures the performance of the dynamic in-
vocation interface and the dynamic skeleton interface. [11]
measures performance of CORBA implementations in terms
of latency and support for very large number of objects.

However, the results of earlier CORBA benchmarking ex-
periments were restricted to measuring the performance of
communication between homogeneous ORBs. These tests
do not measure the run-time costs of interoperability be-
tween ORBs from different vendors. In addition, these pa-
pers do not provide solutions to reduce these overheads.
In contrast, we have provided solutions that significantly
improve performance by reducing marshaling/demarshaling
overhead.

Related work on interpretive and compiled forms of
marshaling: SunSoft IIOP uses an interpretive marshal-
ing/demarshaling engine. An alternative approach is to use
compiledmarshaling/demarshaling. A compiled marshaling
scheme is based ona priori knowledge of the type of an ob-
ject to be marshaled. Thus, in this scheme there is no ne-
cessity to decipher the type of the data to be marshaled at
run-time. Instead, the type is known in advance, which can
be used to marshal the data directly.

[15] describes the tradeoffs of using compiled and inter-
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Figure 29: Throughput After Applying the Fourth Optimiza-
tion (sender-side processor cache optimization)

preted marshaling schemes. Although compiled stubs are
faster, they are also larger. In contrast, interpretive marshal-
ing is slower, but smaller in size. [15] describes a hybrid
scheme that combines compiled and interpretive marshaling
to achieve better performance. This work was done in the
context of the ASN.1/BER encoding [17].

According to the SunSoft IIOP developers, interpretive
marshaling is preferable since it decreases code size and in-
creases the likelihood of remaining in the processor cache.
As explained in Section 5, we are currently implementing a
CORBA IDL compiler [13] that can generate compiled stubs
and skeletons. Our goal is to generate efficient stubs and
skeletons by extending optimizations provided in USC [23]
and “Flick” [7], which is a flexible, optimizing IDL compiler.
Flick uses an innovative scheme where intermediate repre-
sentations guide the generation of optimized stubs. In addi-
tion, due to the intermediate stages, it is possible for Flick
to map different IDLs (e.g.,CORBA IDL, ONC RPC IDL,
MIG IDL) to a variety of target languages such as C, C++.

5 Concluding Remarks

This paper illustrates the benefits of applyingmeasurement-
driven, principle-based optimizationsthat substantially im-
prove the performance of CORBA Inter-ORB Protocol
(IIOP) middleware. The seven principles that directed our
optimizations include:(1) optimizing for the common case,
(2) eliminating gratuitous waste, (3) replacing general-
purpose methods with efficient special-purpose ones, (4) pre-
computing values, if possible, (5) storing redundant state to
speed up expensive operations, (6) passing information be-
tween layers, and (7) optimizing for processor cache affinity.

Table 4 summarizes the problems encountered, the solu-
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Figure 30: Throughput Comparison for Doubles After Ap-
plying the Fourth Optimization (sender-side processor cache
optimization)
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Figure 31: Throughput Comparison for Structs After Ap-
plying the Fourth Optimization (sender-side processor cache
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tions proposed, and the optimization principle used to de-
rive the solutions. The results of applying these optimiza-

Problem Solution Principle

High overhead of C++ inline Optimize for
small, frequently hints common case
called methods
Lack of support for C preprocessor Optimize for
aggressive inlining macros common case
Too many method SpecializeTypeCode Generic to
calls interpreter specialized
Expensive no-ops for Insert a check and Eliminate
deepfree of scalar delete at top level waste
types
Repetitive size and Precompute size and Precompute
alignment calculation alignment info in extra and maintain
of sequence elements state inTypeCode extra state
Duplication of tasks Use default parameters Pass info.
between function solution and pass info. across layers
calls when appropriate
Cache miss penalty Split large interpreter Optimize

into specialized for cache
methods and outline

Table 4: Optimization Principles Applied in TAO

tion principles to SunSoft IIOP improved its performance
1.9 times fordoubles , 3.3 times for longs , 4 times
for shorts , 5 times forchars/octets , and 6.7 times
for richly-typedstructs over ATM networks. Our opti-
mized implementation is now competitive with existing com-
mercial ORBs [9, 11] using the static invocation interface
(SII) and 2 to 4.5 times (depending on the data type) faster
than commercial ORBs using the dynamic skeleton interface
(DSI) [10]. The results of our optimizations provide suf-
ficient proof that performance of complex distributed sys-
tems software can be improved by a systematic application
of principle-driven optimizations.

We have integrated the optimized SunSoft IIOP imple-
mentation with our real-time ORB called TAO [24].4 TAO
extends the freely available SunSoft OMG IDL compiler.
TAO’s IDL compiler adds an optimizing code generation
back-end phase to the existing front end, which generates op-
timized stubs and skeletons from IDL interfaces. These gen-
erated stubs and skeletons transform C++ methods into/from
CORBA requests via our optimized IIOP implementation.
TAO is being used to compare the impact of using compiled
marshaling stubs and skeletons vs. the interpretive scheme
currently implemented in SunSoft IIOP. We plan to measure
the tradeoffs of using the two marshaling schemes to achieve
an optimal hybrid solution [15].

In addition, we have incorporated an Real-time Object
Adapter [14] that supports de-layered active request demul-
tiplexing and rate monotonic scheduling and dispatching of
client requests into TAO. SunSoft IIOP does not provide a
standard CORBA Object Adapter. Therefore, TAO defines a
set of Object Adapter strategies that dispatch requests to the

4The TAO ORB is freely available at URL
www.cs.wustl.edu/ �schmidt/TAO.html .

correct skeleton of the target object. TAO’s request demulti-
plexing and dispatching process provides different strategies
to demultiplex requests to skeletons, including linear search,
dynamic hashing or perfect hashing of operation names, or
direct demultiplexing [12].
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A Overview of the CORBA GIOP and
IIOP Protocols

This section describes the components in the CORBA Gen-
eral Inter-ORB Protocol (GIOP) and Internet Inter-ORB Pro-
tocol (IIOP) protocol in detail.

A.1 Common Data Representation (CDR)

The GIOP Common Data Representation (CDR) defines a
transfer syntax for transmitting OMG IDL data types across a
network. The CDR definition maps the OMG IDL data types
from their native host format into a bi-canonical network-
level representation, which supports both little-endian and
the big-endian formats. The salient features of CDR are:

Variable byte ordering: The sender encodes the data us-
ing its native byte-order. The byte order used by the sender
is indicated by a special flag in the encoded stream. Thus,
only receivers with byte ordering different from the sender
must swap bytes to retrieve correct binary values.

Aligned Types: Primitive OMG IDL data types are
aligned on their “natural” boundaries within GIOP messages,
as shown in the following table:

Type Alignment
char 1
octet 1
short 2
unsigned short 2
long 4
unsigned long 4
float 4
double 8
boolean 1
enum 4

Constructed data types (such as IDLsequence and
struct ) have no additional alignment restrictions beyond
those of their primitive types. Thus, the size and alignment
of the constructed type will depend on the size and alignment
of the primitives that make up constructed type.

Complete OMG IDL mapping: CDR provides a map-
ping for all the OMG IDL data types, including transfer-
able pseudo-objects such asTypeCodes . CORBA pseudo-
objects are those entities that are neither CORBA primitive
types nor constructed types. A client acquiring a reference
to a pseudo-object cannot use DII to make calls to the meth-
ods described by the IDL interface of that pseudo-object.
The DSI and DII interpreters use theTypeCode informa-
tion passed to them by users of DSI and DII, respectively.

CDR Encapsulations: A CDR encapsulation is a
sequence of octets. Encapsulations are typically used to
marshal parameters of the following types:

� Complex TypeCodes: which are shown in Table 5.

� IIOP protocol profiles inside interoperable object ref-
erences (IORs): A protocol profile provides information
about the transport protocol that enables client applications
to talk to the servers. In the IIOP profile (Figure 34), this
informations consists of the host name and port number on
which the server is listening, and the objectkey of the target
object implemented by that server.

An IOR (see Figure 35) represents a complete information
about an object. This information includes the type it repre-
sents, the protocols it supports, whether it is null or not, and
any ORB related services that are available.



TCKind Value Type Parameters
(integer)

tk null 0 empty none
tk void 1 empty none
tk short 2 empty none
tk long 3 empty none
tk ushort 4 empty none
tk ulong 5 empty none
tk float 6 empty none
tk double 7 empty none
tk boolean 8 empty none
tk char 9 empty none
tk octet 10 empty none
tk any 11 empty none
tk TypeCode 12 empty none
tk Principal 13 empty none
tk objref 14 complex string(repository ID), string (name),
tk struct 15 complex string(repository ID), string (name),

ulong(count),fstring(member name),
TypeCode(member type)g

tk union 16 complex string(repository ID), string (name),
TypeCode (discriminant type),
long(default used), ulong(count)
fdiscriminant type(label val),
string(member name),
TypeCode (member type)g

tk enum 17 complex string(repository ID), string (name),
ulong(count),fstring(member name)g

tk string 18 complex ulong(max length)
tk sequence 19 complex TypeCode (element type),

ulong (max length)
tk array 20 complex TypeCode (element type),

ulong (max length)
tk alias 21 complex string(repository ID), string (name),

TypeCode
tk except 22 complex string(repository ID), string (name),

ulong (count),fstring (member name),
TypeCode (member type)g

none 0xffffffff simple string(repository ID), string (name)

Table 5: TypeCode Enum Values, Parameter List Types, and
Parameters

� Service-specific contexts: The CORBA Object Ser-
vices (COS) specification [20] defines a wide range of ser-
vices, such as transactions, events, naming, concurrency, and
audio/video streaming. For interoperability, it may be re-
quired to pass service-specific information via opaque pa-
rameters. This is achieved using theservice-specific
context .

The first byte of an encapsulation always denotes the byte-
order used to create the encapsulation. Encapsulations can
be nested inside of other encapsulations. Each encapsulation
can use any byte-order, irrespective of its other encapsula-
tions.

A.2 GIOP Message Formats

The GIOP specification defines seven standard message
types. Each message is assigned a unique value. The origi-
nator of agiop message can be a client and/or a server. The
following table depicts the seven types of messages and the
permissible originators of these messages:

module IIOP {
struct Version {

char major;  // the number 1
char minor;  // the number 0

};

struct ProfileBody {
Version iiop_version; //protocol version
string host;         //host name
unsigned short port;         //port number
sequence<octet> object_key;   //opaque key

      //identifying the
      //object

};
};

Figure 34: Definition of IIOP Profile

module IOP {
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;

struct TaggedProfile {
ProfileId tag; //any one of the previously

   //defined tag values
sequence<octet> profile_data;

        //protocol specific data
};

// Interoperable Object Reference
struct IOR {

string type_id; //assigned by the
     //interface repository

sequence<TaggedProfile>
profiles; //profile information

};
};

Figure 35: Definition of an Interoperable Object Reference

Message Type Originator Value
Request Client 0
Reply Server 1
CancelRequest Client 2
LocateRequest Client 3
LocateReply Server 4
CloseConnection Server 5
MessageError Both 6

A GIOP message begins with a GIOP header (Figure 36),
followed by one of the message types (Figure 37), and finally
the body of the message, if any.

A.3 GIOP Message Transport

The GIOP specification makes certain assumptions about the
transport protocol that can be used to transfer GIOP mes-
sages. These assumptions are listed below:

� The transport mechanism must be connection-oriented;

� The transport protocol must be reliable;

� The transport data is a byte stream without message de-
limitations;

� The transport provides notification of disorderly con-
nection loss;

� The transport’s model of establishing a connection can
be mapped onto a general connection model (such as
TCP/IP).



module GIOP {
enum MsgType {

Request,
Reply,
CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError

};

struct Version {
char major;  // the number 1
char minor;  // the number 0

};

struct MessageHeader {
char     magic[4];
Version GIOP_version; //protocol version
boolean byte_order;   //0=>big endian
octet message_type; //one of 7 types
unsigned long message_size; //length of msg

};
};

Figure 36: GIOP header

Examples of transport protocols that meet these require-
ments are TCP/IP and OSI TP4.

A.4 Internet Inter-ORB Protocol (IIOP)

The IIOP is a specialized mapping of GIOP onto the TCP/IP
protocols. ORBs that use IIOP can communicate with other
ORBs that publish their TCP/IP addresses as interopera-
ble object references (IORs). IIOP IOR profiles are shown
in Figure 34. Figure 35 shows the format of an IOR.
When IIOP is used, theprofile data member of the
TaggedProfile structure holds the profile data of IIOP
shown in Figure 34.

B TTCP IDL Description and Type-
Code Layout

The following CORBA IDL interface was used in our exper-
iments to measure the throughput of SunSoft IIOP described
in Section 3.2. An example of aTypeCode description for
BinStruct is presented in Section 2.3.2.

// Richly typed data.
interface ttcp_throughput
{

typedef sequence<short> ShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<char> CharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<PerfStruct> StructSeq;

// Methods to send various data type sequences.
oneway void sendShortSeq (in ShortSeq ts);
oneway void sendLongSeq (in LongSeq ts);
oneway void sendDoubleSeq (in DoubleSeq ts);
oneway void sendCharSeq (in CharSeq ts);
oneway void sendOctetSeq (in OctetSeq ts);
oneway void sendStructSeq (in StructSeq ts);

module GIOP {
struct RequestHeader{

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence<octet> object_key;
string operation;
Principal requesting_principal;

};

enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

struct ReplyHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};

struct CancelRequestHeader {
unsigned long request_id;
sequence<octet> object_key;

};

struct LocateRequestHeader {
unsigned long request_id;
sequence<octet> object_key;

};

enum LocateStatusType {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

struct LocateReplyHeader {
unsigned long   request_id;
LocateStatusType  locate_status;

};
};

Figure 37: GIOP Messages

oneway void start_timer ();
oneway void stop_timer ();

};

Figure 38 shows the representation of theTypeCode lay-
out that defines thesequence of BinStruct s from Sec-
tion 2.3.2. An IDL compiler is responsible for generating
TypeCode information for all the data types described in
an IDL definition. TheTypeCode information generated
by an IDL compiler is available at both the sender and the
receiver end, which obviates the need to transmit typecode
information along with the data over the network. Since Sun-
Soft IIOP does not provide an IDL compiler theTypeCode
information for all theBinStruct types was hand-crafted.

The layout of thesequence of BinStruct s and its
parameters are shown in Table 5 and described below:

TypeCode value: A CORBA TypeCode data struc-
ture contains a kind field that indicates theTCKind
value, which is an enumerated type. For instance, the
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Figure 38: TypeCode for Sequence of BinStruct

TCKind value is tk sequence in the “sequence of
BinStruct ” example.

TypeCode length and byte order: The length field in-
dicates the length of the buffer that holds the CDR represen-
tation of theTypeCode ’s parameters. In this example, the
first byte of the CDR buffer indicates the byte order. Here,
the IIOP standard value 0 indicates that big-endian byte-
ordering is used.

Element type: For asequence TypeCode , the next en-
try in the buffer is theTypeCode kind entry for the element
type that comprises thesequence . In our example, this
value istk struct .

Encapsulation length and sequence bound: The next en-
try is a length field indicating the length of the encapsulation
that holds information about thestruct ’s members. The
length field is followed by the encapsulation, which is fol-
lowed by a field that indicates the bounds of thesequence .
A value of 0 indicates an “unbounded”sequence (i.e.,
the size of thesequence is determined at run-time, not at
compile-time).

Encapsulation content and field layouts: The encapsu-
lation contains two string entries, which follow the designa-
tion of the encapsulation’s byte-order. Each string entry has a
field specifying the length of the string followed by the string
values. The first string specifies the “type ID” assigned by
the interface repository. The second string holds the actual
name of the data type as defined in the IDL definition. After
this field is the number of members in theBinStruct IDL
struct . This is followed byTypeCode layouts for each
field (e.g.short , char , long , etc.) in thestruct .

C Tracing the Data Path of an IIOP
Request

To illustrate the run-time behavior of SunSoft IIOP, we trace
the path taken by requests that transmit asequence of
BinStruct s (shown in Appendix B). We show how the
TypeCode interpreter consults theTypeCode information
as it marshals and unmarshals parameters. We use the same
BinStruct in this example and in our optimization exper-
iments described in Section 3.2.

Client-side Data Path: The client-side data path is shown
in Figure 39. This figure depicts the path traced by outgo-

sendStructSequence(seq)

do_call()

TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

GIOP::Invocation::invoke()

NETWORK

write()

OS  KERNEL

Create a CDR stream to send
Fill GIOP Header
Create a GIOP:Request
message
For each parameter,
        call CDR::put_param

SENDER

CDR::encoder(param_tc,
     value,0,cdr_strm,env)

CDR::put_param()

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->put_char
(*(char *)data);

break;
case tk_short:

strm->put_short
(*(short *)data);

break;
case tk_long:

strm->put_long
(*(long *)data);

break;
case tk_double:

strm->put_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->put_long
(*(long *)seq->length);
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, encoder,

strm, env);
}

CDR::encoder(tc, data,

                   0, strm, env)

Figure 39: Sender-side Datapath for the Original SunSoft
IIOP Implementation

ing client requests through theTypeCode interpreter. The
CDR::encoder method marshals the parameters from na-
tive host format into a CDR representation suitable for trans-
mission on the network.

The client uses thedo call method, which is the SII
API provided by SunSoft IIOP that uses theTypeCode in-
terpreter to marshal the parameters and send the client re-
quests. The DII mechanism uses thedo dynamic call
method to send client requests.

Although thedo call anddo dynamic call meth-
ods play similar roles, their type signatures are different.
Thedo call is used by the IDL compiler generated stubs
to send client requests. Thedo dynamic call is used
by the ORB’s API (e.g. send oneway and invoke ) for
DII to send client requests. Thedo dynamic call is



passed anNVList representing all the parameters to the
operation being invoked. In addition, it is passed a flag
indicating whether the operation is oneway or twoway, a
string argument that represents the operation name, and
a NamedValue pseudo-object that holds the results.

The do call method creates a CDR stream into which
operations for CORBA parameters are marshaled before
they are sent over the network. To marshal the parame-
ters,do call uses theCDR::encoder visit method.
For primitive types (such asoctet , short , long , and
double ), theCDR::encoder method marshals them into
the CDR stream using the lowest-levelCDR::put meth-
ods. For constructed data types (such as IDLstructs
and sequences ), the encoder recursively invokes the
TypeCode interpreter.

The traverse method of theTypeCode interpreter
consults theTypeCode layout passed to it by an applica-
tion to determine the data types that comprise a constructed
data type. For each member of a constructed data type, the
interpreter invokes the samevisit method that invoked it.
In our case, theencoder is thevisit method that orig-
inally called the interpreter. This process continues recur-
sively until all parameters have been marshaled. At this point
the request is transmitted over the network via theinvoke
method of theGIOP::Invocation class.

Server-side Data Path: The server-side data path is shown
in Figure 40. This figure depicts the path traced by incoming
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handle_message()
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    tcp_oa_dispatch()
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sendStructSeq_skel()
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PARAMETER  TYPECODES

for each parameter
get the typecode, tc
CDR::decoder(tc,val,0,

strm,env)

ServerRequest::params()

PARSING   PARAMETERSPARSING   PARAMETERS TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->get_char
(*(char *)data);

break;
case tk_short:

strm->get_short
(*(short *)data);

break;
case tk_long:

strm->get_long
(*(long *)data);

break;
case tk_double:

strm->get_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->get_ulong
(seq->length);
seq->max=seq->length;
seq->buffer=0;
// get typecode of elem
tc2=typecode_param(0);
size = tc2->size(env);
//allocate buffer
seq->buffer=new uchar [
size*seq->max];
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, decoder,

strm, env);
}

CDR::decoder(tc, data,

          parent, strm, env)
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Figure 40: Receiver-side Datapath for the Original SunSoft
IIOP Implementation

client requests through theTypeCode interpreter. An event
handler (TCPOA) waits in the ORB Core for incoming data.
After a CORBA request is received, its GIOP type is decoded
and the Object Adapter demultiplexes the request to the ap-
propriate method of the target object. TheCDR::decoder
method then unmarshals the parameters from the CDR rep-

resentation into the server’s native host format. Finally, the
server’s dispatching mechanism dispatches the request to
the skeleton of the target object via a user-supplied upcall
method.

The SunSoft IIOP receiver supports the DSI mechanism.
Therefore, anNVList CORBA pseudo-object is created
and populated with theTypeCode information for the
parameters retrieved from the incoming request. These
parameters are retrieved by calling theparams method
of the ServerRequest class. Similar to the client-
side data path, the server’sTypeCode interpreter uses the
CDR::decoder visit method to unmarshal individual
data types into a parameter list. These parameters are subse-
quently passed to the server application’s upcall method.


