An Introduction to Design Patterns

Douglas C. Schmidt Design Patterns

Elements of Reusable

Vanderbi It U n ive rSIty Object-Oriented Software

Erich Gamma

Richard Helm

schmidt@adre.vanderbilt. edu Se g

~

Based on material produced by John Viissides)

mailto:schmidt@dre.vanderbilt.edu

Overview

N

Part I: Motivation & Concept
= the Issue
= What design patterns are
= What they're good for
= how we develop & categorize them

N

Overview (cont’d)

L

Part 11: Application
= Use patterns to design a document editor
s demonstrate usage & benefits

Part 111: Wrap-Up
m Observations, caveats, & conclusion

Part 1. Motivation & Concept

N

OOD methods emphasize design notations
Fine for specification, documentation

But OOD Is more than just drawing diagrams

Good draftsmen # good designers

Good OO designers rely on lots of experience
At least as important as syntax

Most powerful reuse is design reuse
Match problem to design experience

N

Part I. Motivation & Concept (cont'd)
Recurring Design Structures

OO systems exhibit recurring structures that
promote

s abstraction

= flexibility
= modularity
= elegance

Therein lies valuable design knowledge

Problem:
capturing, communicating, & applying this
knowledge

Part I. Motivation & Concept (cont'd)

N

A Design Pattermn...

e abstracts a recurring design structure

e comprises class and/or object
= dependencies

= structures
= |nteractions
= conventions

e names & specifies the design structure explicitly
 distills design experience

Part I. Motivation & Concept (cont'd)
Four Basic Parts

N

Name

Problem (including “forces™)

Solution

Consequences & trade-offs of application

BN

Language- & implementation-independent
A “micro-architecture”

Adjunct to existing methodologies (RUP, Fusion, SCRUM,

etc.)
,

N

Part I. Motivation & Concept (cont'd)
Example: OBSERVER

observers
S window se— | 7]| BN window Se— e 5)|] window Se— = 3

50| 30
80| 10

M=

——— change notification
subject — ———+ requests, modifications

Part I. Motivation & Concept (cont'd)
Goals

N

Codify good design

m distill & generalize experience
= aid to novices & experts alike

Give design structures explicit names

= common vocabulary
= reduced complexity
m greater expressiveness

Capture & preserve design information

= articulate design decisions succinctly
= improve documentation

Facilitate restructuring/refactoring

m patterns are interrelated
= additional flexibility

N

Part I. Motivation & Concept (cont'd)

Design Space for GoF Patterns

Purpose
Creational Structural Behavioral
@ | Factory Method Adapter (class) Interpreter
© Template Method
(&)
o Abstract Factory Adapter (object) Chain of Responsibility
Q Builder Bridge Command
) Prototype Composite Iterator
a % | Singleton Decorator Mediator
@ Flyweight Memento
a Facade Observer
(o) Proxy State
Strategy
Visitor

Scope: domain over which a pattern applies
Purpose: reflects what a pattern does

10

Part I. Motivation & Concept (cont’'d)

Design Pattern Template (1st half)

N

NAME SCope purpose

Intent
short description of the pattern & its purpose

Also Known As

short description of the pattern & its purpose
Motivation

motivating scenario demonstrating pattern’s use
Applicability

circumstances in which pattern applies

Structure
graphical representation of the pattern using modified OMT notation

Participants

participating classes and/or objects & their responsibilities
11

Part I: Motivation & Concept (cont'd)

Design Pattern Template (2nd half)

N

Collaborations

how participants cooperate to carry out their responsibilities
Consequences

the results of application, benefits, liabilities
Implementation

pitfalls, hints, techniques, plus language-dependent issues
Sample Code

sample implementations in C++, Java, C#, Smalltalk, C, etc.
Known Uses

examples drawn from existing systems
Related Patterns

discussion of other patterns that relate to this one

12

N

Part I. Motivation & Concept (cont'd)

Modified UML/OMT Notation

object reference l
one ConcreteClass
: < / many
abstractOperation() | creates / / -l|
ConcreteSubclass1 ConcreteSubclass2
. implementation
operation() O----=-=--f-==---=---=-=-------------- pseudocode

instanceVariable

13

N

Motivation & Concept (cont’d)
OBSERVER object behavioral

L

Intent

define a one-to-many dependency between objects so that when on
object changes state, all dependents are notified & updated

Applicability

= an abstraction has two aspects, one dependent on the other

= a change to one object requires changing untold others
= an object should notify unknown other objects

Subject obsarvers ,...I Observer
attach(Observer) update()
det_ach(Observer) for all o in observers {
notify() o------ ~=1 o.update() #
1
ﬁ# ConcreteObserver
subject observerState =
0_ -l o= o
ConcreteSubject | update() subject.getState()
ﬂ_ oA ==
getState() return subjectS tat}' observerState 12
subjectState

c

Motivation & Concept (cont’d)

OBSERVER (cont'd)

object behavioral

N

L

Consequences
+ modularity: subject & observers may vary independently
+ extensibility: can define & add any number of observers
+ customizability: different observers offer different views of subject

unexpected updates: observers don't know about each other
update overhead: might need hints or filtering

Implementation

subject-observer mapping

dangling references

update protocols: the push & pull models
registering modifications of interest explicitly

Known Uses

Smalltalk Model-View-Controller (MVC)

InterViews (Subjects & Views, Observer/Observable)
Andrew (Data Objects & Views)

Mailing lists

15

Part I. Motivation & Concept (cont'd)

N

Benefits of Patterns

Design reuse
Uniform design vocabulary

Enhance understanding, restructuring, &
team communication

Basis for automation
Transcends language-centric biases/myopia

Abstracts away from many unimportant
details

16

Part I. Motivation & Concept (cont'd)

Liabilities of Patterns

N

e Require significant tedious & error-prone
human effort to handcraft pattern
Implementations design reuse

e Can be deceptively simple uniform design
vocabulary

e Leaves some important details unresolved

17

Part 11: Application: Document

N

L]
File Edit

Editor (Lexi)

Ll

W G Pt o e TOnV e, The e
oprmtion {which 0 oot dewt) mply adls dorw on e
Thbax

Th ol W Bild @ TaOFuw i vesilan W
wiigad darw e, (Rt Wl e W aliing
et G B demoun, v el s
Hart, wl] drww el whera oy, Uving
ST WP S p ol e, Baceus only e
sty that lw wrin e decuged wgen will pan
dirw calln, Tha posracecs dor red Bavy s Wi S
codie Hat drcidn whed obiec o pelnewr- tfut oo W
o B twodit (o @n gl i te Tepladmiation
of #e Box dovw oprmtion). ladoed, the glypl-baned
wrgdmnmiation of TeetVaw b ren riglo Shun e
it codd bodmoe B esfaniner ared ondy declar
waf ol s S wits - B Ao ook aoed % apoiify ki
the bt thendd EATET.

1.3 Mubiiple fonis

Beiwais s basly T ¥ors 5 £lpla, o o aily *

i e thnal e T Y. PR B
Aifieale v sglannn Far bl Figsan }:-:H
& Soioan, At of & ek of TenrWere dar Bigten
TUC = ireded Rgaduna Wi, AARwg s S W
ULV wach 38 e A ans T, S woald pgeti
FrEngdrn prari . e w only i T Qi ol ol
Figuan Spboran tha shange

Shanster flyghi (e s plmnal o coiing i
piasnetnn Hut apriifie B 1o U e it Srng
Tia ATCT] - madiod wwl e e Chabitinl Bt i
the @=L ABCT] - caieded “u 4™ Fatt, g JTE-aaaded

e

M (Rt el o RIS WY (RO Chamod
ittt 18 - P S15 - omtled "R fort

T Mixing text one grophics

Wy ool pan, o glvph masl & cmganns glvph o
= norinightiireand B mted TextViee W Sy
nbadilied grpbien. Fipow € thown 3w dumg
3 virw Eu mkn e dhamcten i 3 £
wvaritdr by drverieg righicsd sparsmiation of Ko
rwlinn, el femedredy Frpuar 7 stow the medd
oo T bl B vew
A& fRmtl 3 glvph i Saglan 3 briap, a0 HEY
Anwn 5 Beriocdsd liee, sl Vil srperssh vt
bk space. The comsinuciss parsmaters b Bulr o

while {ie = ;-:-.:Eluq” i mary |
LE fp = fhaty
ing * mow LEBax{l;
® § ales if {limsmcidifell {
Liza = appared {
e Eharsstary
ajir e, gputodfidadl, Wid
b

] ilu i
Lisa- -EE;-:M(
aaw Charsctacio, wld)
| B

]
}

Fipunt 3 B ifind Tax 1 ¥ iow St dngLinr dpitacic '.I:IE
¥

IR

Bl
B MRB=ER7REI

7 Design Problems

. Document structure

. Formatting

. Embellishment

. Multiple look & feels

. Multiple window systems
. User operations

~N O O B W N B

. Spelling checking &
hyphenation

18

Document Structure

N

Goals:
= present document’s visual aspects
= drawing, hit detection, alignment

= support physical structure
(e.g., lines, columns)

Constraints/forces:
m treat text & graphics uniformly
= No distinction between one & many

19

N

Document Structure (cont’d)

Solution: Recursive Composition

characters space image composite (row)

VAN

L AN
' AN

— "\ 2 |
gl == ||

composite (column)

20

Document Structure (cont’d)

N

Object Structure

composite

composite
(column)

composite
(row)

21

N

Document Structure (cont’d)

Glyph

Base class for composable graphical objects

Basic interface:

Task Operations

appearance | VO 1d draw(Window)

hit detection | boolean iIntersects(Coord, Coord)

structure | void i1nsert(Glyph)
void remove(Glyph)

Glyph child(int)
Glyph parent()

Subclasses: Character, Image, Space, Row, Column

22

Document Structure (cont’d)

N

Glyph Hierarchy

Glyph

children

Note the inherent recursion in this hierarchy

draw(Window)

intersects(Coord, Coord)
insert(Glyph, int)

)

|

Row

———CA drawy...)

intersects(...)
insert(...)

Character Rectangle
draw(...} draw(...)
intersects(...) intersects(...) .
char ¢ Coord |, b
Coordr, t

Polygon Column children
draw(...) draw(...) o
intersects(...) intersectsi...)

insert{...)
Coord =[]
Coord y[]

*|.e., a Row /s a Glyph & a Row also Aas Glyphs!

23

Document Structure (cont’d)

CoMPOSITE object structural

N

L

Intent

treat individual objects & multiple, recursively-composed
objects uniformly

Applicability
objects must be composed recursively,
and no distinction between individual & composed elements,
and objects in structure can be treated uniformly

Structure s

add{Componernt) -
remove{Componeant)
getChildfint)

A

Leaf Composite

operation() operation() ©---=---f=-=-==-=----- forall g in children
addiComponeant) g-operation();

remove(Companeant) 24
getChild(int)

childran

N

Document Structure (cont’d)

CoMPOSITE (cont’d) object structural

L

Consequences
+ uniformity: treat components the same regardless of complexity
+ extensibility: new Component subclasses work wherever old ones do
— overhead: might need prohibitive numbers of objects

Implementation
= do Components know their parents?
= uniform interface for both leaves & composites?
m don't allocate storage for children in Component base class
= responsibility for deleting children

Known Uses
= ET++ Vobjects
= InterViews Glyphs, Styles
= Unidraw Components, MacroCommands

25

N

Formatting

Goals:
= automatic linebreaking, justification

Constraints/forces:
= support multiple linebreaking algorithms

= don't tightly couple these algorithms with
the document structure

26

N

Formatting (cont’'d)
Solution: Encapsulate Linebreaking Strategy

L

Compositor
= base class abstracts linebreaking algorithm

» subclasses for specialized algorithms,
e.g., SimpleCompositor, TeXCompositor

Composition
= composite glyph
= supplied a compositor & leaf glyphs

= Creates row-column structure as directed by
compositor

27

N

Formatting (cont’'d)
New Object Structure

composition- L
generated composition

Generated in accordance with
compositor strategies & do not column
affect contents of leaf glyphs

28

Formatting (cont’d)
STRATEGY object behavioral

N

L

Intent

define a family of algorithms, encapsulate each one, & make them
Interchangeable to let clients & algorithms vary independently

Applicability
when an object should be configurable with one of many algorithms,
and all algorithms can be encapsulated,
and one interface covers all encapsulations

Context (Composition) IC = Strategy (Compositor)
contextinterfacey) algorithminterfacey)
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

algorithminterface() algorithminterface() algorithminterface() 29

Formatting (cont’d)

STRATEGY (contd)

object behavioral

N

L

Consequences

-+
+

greater flexibility, reuse

can change algorithms dynamically

strategy creation & communication overhead

Inflexible Strategy interface

semantic incompatibility of multiple strategies used together

Implementation

exchanging information between a Strategy & its context
static strategy selection via templates

Known Uses

InterViews text formatting
RTL register allocation & scheduling strategies
ET++SwapsManager calculation engines

See Also

Bridge pattern (object structural) 0

Embellishment

N

Goals:
= add a frame around text composition
= add scrolling capability

Constraints:

= embellishments should be reusable without
subclassing, I.e., so they can be added
dynamically at runtime

= should go unnoticed by clients

31

Embellishment (cont’d)

Solution: “Transparent” Enclosure

N

Monoglyph
= base class for glyphs having one child
= operations on MonoGlyph pass through to child

MonoGlyph subclasses:
= Frame: adds a border of specified width
m Scroller: scrolls/clips child, adds scrollbars

32

Embellishment (cont’d)

N

-

MonoGlyph Hierarchy

Glyph

draw(Window)

<

component

MonoGlyph

draw({Window)

l

Frame

Scroller

draw({Window)

void MonoGlyph::draw (Window &w) {

draw{Window)

component->draw (w);

}

voild Frame::draw (Window &w) {
// Order may be important!
MonoGlyph: :draw (w);
drawFrame (w);

N

Embellishment (cont’d)

New Object Structure

frame

scroller

34

N

Embellishment (cont’d)

DECORATOR

L

Intent

object structural

augment objects with new responsibilities

Applicability

= When extension by subclassing is impractical
m for responsibilities that can be withdrawn

Compeonent
operation()
I | component
ConcreteComponent Decorator (MonoGlyph)
operation() operation() O-=======d=sceeceeeeoe o= component.operation()
I |
ConcreteDecoratorA ConereteDecoratorB
: N
. . super.operation
operation() operation() O =------==----- adﬁedaihaymrﬁ]
addedBehavior()
addedState

35

Embellishment (cont'd)

DECORATOR (cont’d)

object structural

N

L

Consequences

+
+
+

responsibilities can be added/removed at run-time
avoids subclass explosion

recursive nesting allows multiple responsibilities
interface occlusion

identity crisis

Implementation

interface conformance
use a lightweight, abstract base class for Decorator
heavyweight base classes make Strategy more attractive

Known uUses

embellishment objects from most OO-GUI toolkits
ParcPlace PassivityWrapper
InterViews DebuggingGlyph

36

N

Multiple Look & Feels

Goals:
= support multiple look & feel standards
= generic, Motif, Swing, PM, Macintosh,

Windows, ...
s extensible for future standards

Constraints:
= don’t recode existing widgets or clients
= switch look & feel without recompiling

37

Multiple Look & Feels (cont’d)
Solution: Abstract Object Creation

N

Instead of
Scrollbar *sb = new MotifScrollbar();

use
Scrollbar *sb = factory->createScrollbar();

where factory is an instance of MotifFactory

e BTW, this begs the question of who created the
factory!

38

Multiple Look & Feels (cont’d)
Factory Interface

N

L

e defines “manufacturing interface”
e subclasses produce specific products
* subclass instance chosen at run-time

// This class 1s essentially a Java interface
class Factory {

public:

Scrollbar *createScrollbar() = O;
Menu *createMenu() = O;

39

N

Multiple Look & Feels (cont’d)

Factory Structure

Factory

createfenuy)

createScrollbary)

l

|

PMFactory

MotifFactory

createScrollbar()
createMenuy)

createScrollbar()
createMenuy)

Glyph

draw(Window)

i

Scrollbar

draw{Window)

PMScrollbar MotifScrolibar
draw(Window) draw(Window)

Scrollbar *MotifFactory::createScrollBar () {
return new MotifScrollbar();

be
Scrollbar *PMFactory: :createScrollBar () {

return new PMScrollbar(Q);

}

40

Multiple Look & Feels (cont'd)

ABSTRACT FACTORY object creational

AbstractProductE -I—i_

p
¢V
Intent
create families of related objects without specifying class names
Applicability
when clients cannot anticipate groups of classes to instantiate
Structure
AbstractFactory [== Client
createProductA()
createProductB() AbstractProducta
| 4 |
J\ :--I- ProductAZ2 ProductAT -'l--:
ConcreteFactoryl! - ConcreteFactory2 | - ______
createProductA() createProductA()
createProductB() createProductBy{)

ProductB1

__

41

Multiple Look & Feels (cont'd)
ABSTRACT FACTORY (cont'd) object creational

N

L

Consequences
+ flexibility: removes type dependencies from clients
+ abstraction: hides product’s composition
— hard to extend factory interface to create new products

Implementation

m parameterization as a way of controlling interface size

= configuration with Prototypes, i.e., determines who creates the
factories

Known Uses
m InterViews Kits
m ET++ WindowSystem
= AWT Toolkit

42

N

Multiple Window Systems

Goals:
= make composition appear in a window
= Ssupport multiple window systems

Constraints:

= Minimize window system dependencies in
application & framework code

43

N

Multiple Window Systems (cont’d)

Solution: Encapsulate Implementation Dependencie

L

Window
= user-level window abstraction
= displays a glyph (structure)
= window system-independent

» task-related subclasses
(e.g., lconWindow, PopupWindow)

44

S

Multiple Window Systems (cont’d)
Window Interface

N

L

class Window {
public:

void i1conifty(); // window-management
void raise();

void drawLine(...); // device-independent
void drawText(...); // graphics interface

45

Multiple Window Systems (cont’d)
Window uses a WindowRep

N

e abstract implementation interface
e encapsulates window system dependencies

e window systems-specific subclasses
(e.g., XWindowRep, SunWindowRep)

An Abstract Factory can produce
the right WindowRep!

46

Multiple Window Systems (cont’d)

Window/WindowRep Structure

Glyph

draw{Window)

-

Characier

draw(Window)

-
N
Window contents
. il
drawLine() rep rm——
drawText() | WindowHep
deviceText()
lconWindow PopupWindow l I
Pup XWindowRep SunWindowRep
deviceText() deviceText()

void Character::draw (Window &w) {
w.drawText(...);

}

void Window: :drawText (...) {

rep->deviceText(...);

}

void XWindowRep::deviceText (...) {

XText(.-

}

)

47

N

Multiple Window Systems (cont’d)

New Object Structure

Note the decoupling
between the logical
structure of the contents
In a window from the
physical rendering of the
contents in the window

48

Multiple Window Systems (cont'd)
BRrRIDGE object structural

N

L

Intent

separate a (logical) abstraction interface from its (physical)
Implementation(s)

Applicability

= when interface & implementation should vary independently

= require a uniform interface to interchangeable class hierarchies

Structure
Abstraction (Window) {;lmp = |mplementor (WindowRep)
operation() Q _ operationimpy()
[imp.operationimp())\
| |

ConcretelmplementorA ConcretelmplementorB
RefinedAbstraction . ; _

operationlmp(} operationlmp() 49

N

Multiple Window Systems (cont'd)
BRIDGE (contd) object structural

L

Consequences

+ abstraction interface & implementation are independent
+ implementations can vary dynamically
— one-size-fits-all Abstraction & Implementor interfaces

Implementation

m sharing Implementors & reference counting
m creating the right implementor

Known Uses
s ET++ Window/WindowPort
s libg++ Set/{LinkedList, HashTable}
= AWT Component/ComponentPeer

50

N

User Operations

Goals:
= support execution of user operations
= support unlimited-level undo

Constraints:
» Scattered operation implementations
= mMust store undo state
= Not all operations are undoable

51

N

User Operations (cont’d)
Solution: Encapsulate Each Request

L

A Command encapsulates
= an operation (execute())
= an inverse operation (unexecute())

= a operation for testing reversibility
(boolean reversible())

= State for (un)doing the operation

Command may
= Implement the operations itself, or
= delegate them to other object(s)

52

User Operations (cont’d)

N

Glyph

draw(Window)

i

command

Menultem

<

Command Hierarchy

voild PasteCommand: :execute ()

- Command

clicked()

execute()

{
// do the paste
}
void CopyCommand: :execute ()
{
// do the copy
}

D\

CopyCommand

PasteCommand

execute()

execute()

void Menultem::clicked (O

{

command->execute();

}

53

N

User Operations (cont’d)

List of Commands = Execution History

L

Undo:

past

future

Redo:

past

future 54

User Operations (cont’d)
COMMAND object behavioral

N

L

Intent
encapsulate the request for a service
Applicability
= to parameterize objects with an action to perform

m to specify, queue, & execute requests at different times
s for multilevel undo/redo

Structure
Client Invoker [K>————m=| Command
exacute()
/\
= Target

) target| concreteCommand
action() ‘

execute() pe-ecmmm-alaeeaaa target.action()

state

N

User Operations (cont’d)

COMMAND (cont'd) object behavioral

L

Consequences

+ abstracts executor of a service

+ supports arbitrary-level undo-redo

+ composition yields macro-commands

— might result in lots of trivial command subclasses

Implementation
= copying a command before putting it on a history list
= handling hysteresis
m supporting transactions

Known Uses
s InterViews Actions
= MacApp, Unidraw Commands
s JDK’s UndoableEdit, AccessibleAction

56

N

Spelling Checking & Hyphenation

Goals:
= analyze text for spelling errors
= INntroduce potential hyphenation sites

Constraints:
= support multiple algorithms

= don’t tightly couple algorithms with
document structure

57

Spelling Checking & Hyphenation (cont’d)

Solution: Encapsulate Traversal

N

L

lterator

= encapsulates a
traversal algorithm
without exposing
representation
details to callers

= uses Glyph’s child
enumeration
operation

= This Is an example
of a “preorder
iterator”

iterator
-

58

N

Spelling Checking & Hyphenation (contd)

| TERATOR object behavioral

L

Intent

access elements of a container without exposing its representation

Applicability

= require multiple traversal algorithms over a container

= require a uniform traversal interface over different containers

= When container classes & traversal algorithm must vary

Independently
Structure

Aggregate (Glyph)

createlferator()

i

ConcreteAggregate

Iterator

first(}

next()
isDaone()
currentitemny)

S

createlterator(}) @

return new Concretelte rator{this}lb'

Concretelterator

59

Spelling Checking & Hyphenation (contd)
| TERATOR (cont’d) object behavioral

N

L

Iterators are used heavily in the C++ Standard
Template Library (STL)

int main (int argc, char *argv[]) {
vector<string> args;

for (aint 1 = 0; 1 < argc; 1++)
args.push back (string (argv|i]));

for (vector<string>::i1terator 1 (args.begin ();
1 I= args.end ();
i1++)
cout << *i;
The same iterator pattern can be

cout << endl; applied to any STL container!
return O;

} 60

N

Spelling Checking & Hyphenation (contd)
| TERATOR (cont’d) object behavioral

L

Consequences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
— additional communication overhead between iterator &
aggregate

Implementation

m internal versus external iterators
= Violating the object structure’s encapsulation
m robust iterators

Known Uses

m C++ STL iterators
s JDK Enumeration, lterator
= Unidraw lterator 61

Spelling Checking & Hyphenation (cont’d)
Visitor

N

e defines action(s) at each step of traversal
e avoids wiring action(s) into Glyphs
e |terator calls glyph’'s accept(Visitor) at each node

e accept() calls back on visitor (a form of “static
polymorphism” based on method overloading by type)

voild Character::accept (Visitor &v) { v.visit (Cthis); }

class Visitor {
public:
virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses

Spelling Checking & Hyphenation (cont’d)

SpellingCheckerVisitor

e gets character code from each character glyph

Can define getCharCode () operation just on
Character () class

e checks words accumulated from character glyphs
e combine with Preorderlterator

N

class SpellCheckerVisitor : public Visitor {
public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

// etc. for all relevant Glyph subclasses

63

N

Spelling Checking & Hyphenation (cont’d)

iterator

Accumulating Words

Spelling check
performed when a
nonalphabetic
character it reached

64

N

Spelling Checking & Hyphenation (cont’d)
Interaction Diagram

L

e The iterator controls the order in which accept() is called on each
glyph in the composition

e accept() then “visits” the glyph to perform the desired action

e The Visitor can be subclassed to implement various desired actions
aCharacter ("a")

accept(aSpellingChecker)

accept(aSpellingChecker)

anotherCharacter ("_") aSpellingChecker
visit(this) -
getCharCode()
-~
checﬁs
et completea
_r visit(this) __I word
I getCharCode()
~mill
A4 65
T /

Spelling Checking & Hyphenation (cont’d)

HyphenationVisitor

N

e gets character code from each character glyph
e examines words accumulated from character glyphs

e at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {
public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

// etc. for all relevant Glyph subclasses

66

Spelling Checking & Hyphenation (cont’d)

Discretionary Glyph

N

* |ooks like a hyphen when at end of a line
e has no appearance otherwise

linebreaks

Ilall IIIII IIIII “0" Ilyll

| - |
| or -
‘aluminum alloy | Haluminum al- |

e Compositor considers its presence when determining

67

N
\J

Spelling Checking & Hyphenation (cont’'d)

VISITOR

Intent

centralize operations on an object structure so that they can

object behavioral

vary independently but still behave polymorphically

Applicability

= Wwhen classes define many unrelated operations
m class relationships of objects in the structure rarely change,

but the operations on them change often

m algorithms keep state that's updated during traversal

Structure

ObjectStructure 4-4 Element

Visitor

visitConcreteElement 1{ConcreteElemeant1)
visitConcrefeElement2(ConcrefeClemeant?)

3

ConcreteVisitor

visitConcrefeElement 1{ConcrafeElemeant)
visitConcreteElement2(ConcrateElemeant2)

accepliVisitor)

ConcreteElementi

ConcreteElement2

accepiVisitor v)

acceptVisitar v)

vvisitConcreteElament 1{this)

vsitConcrate Elament2{this) j=

68

Spelling Checking & Hyphenation (cont’'d)
VISITOR (cont'd) object behavioral

N

L

Consequences
+ flexibility: visitor & object structure are independent

+ |ocalized functionality
— circular dependency between Visitor & Element interfaces
— Visitor brittle to new ConcreteElement classes

Implementation

= double dispatch
= general interface to elements of object structure

Known Uses
= ProgramNodeEnumerator in Smalltalk-80 compiler
= |IRIS Inventor scene rendering

s TAO IDL compiler to handle different backends
69

Part 111: Wrap-Up

N

Observations

Patterns are applicable in all stages of the OO lifecycle
m design & reviews
m realization & documentation
m reuse & refactoring

Patterns permit design at a more abstract level
m treat many class/object interactions as a unit
m often beneficial after initial design
m targets for class refactorings

Variation-oriented design
m consider what design aspects are variable
m identify applicable pattern(s)
m vary patterns to evaluate tradeoffs
m repeat o

N

Part 111: Wrap-Up (cont'd)

But...

L

Don’t apply them blindly

Added indirection can yield increased complexity,
cost

Resist branding everything a pattern
Articulate specific benefits
Demonstrate wide applicability

Find at least #/1ree existing examples from code
other than your own!

Pattern design even harder than OO design!

71

Part I11: Wrap-Up (cont’d)
Concluding Remarks

N

e design reuse
e uniform design vocabulary

e understanding, restructuring, & team
communication

e provides the basis for automation
* a “new” way to think about design

72

Pattern References

N

Books

The Timeless Way of Building, Alexander, ISBN 0-19-502402-
8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2
CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Buschmann, et al.,
0-471-95869-7
Pattern-Oriented Software Architecture, Vol 2 Schmidt, et

al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol 3, Jain & Kircher,

et al.,
0-470-84525-2

Analysis Patterns, Fowler; 0-201-89542-0 Is

Pattern References (cont’'d)

N

More Books

Concurrent Programming in Java, 2 ed., Lea, 0-201-
31009-0

Pattern Languages of Program Design
Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

AntiPatterns, Brown, et al., 0-471-19713-0

Applying UML & Patterns, 2 ed., Larman, 0-13-092569-1
Pattern Hatching, Vlissides, 0-201-43293-5

The Pattern Almanac 2000, Rising, 0-201-61567-3

N

Pattern References (cont’'d)

Even More Books
Small Memory Software, Noble & Weir, 0-201-59607-5

Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-
31957-7

Smalltalk Best Practice Patterns, Beck; 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.,
0-201-18462-1

Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5

Building Parsers with Java, Metsker, 0-201-71962-2

75

N

Pattern References (cont’'d)

New Books
Core J2EE Patterns, Alur, et al., 0-130-64884-1

Design Patterns Explained, Shalloway & Trott, 0-201-
71594-5

The Joy of Patterns, Goldfedder, 0-201-65759-7
The Manager Pool, Olson & Stimmel, 0-201-72583-5

76

Pattern References (cont’'d)

N

Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA '92

“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”
Gamma, Helm, Johnson, Vlissides, ECOOP '93

Articles

Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,
Java Developers Journal, C++ Report

77

N

Pattern-Oriented Conferences

L

PLoP 2006: Pattern Languages of Programs
October 2006, Collocated with OOPSLA

EuroPLoP 2006, July 2006, Kloster Irsee,
Germany

See hillside.net/conferencesnavigation.htm for
up-to-the-minute info.

78

http://hillside.net/conferencesnavigation.htm

Mailing Lists

N

patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on
Pattern-Oriented Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface patterns

business-patterns@cs.uiuc.edu: discussion on patterns for
business processes

Ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed
systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

79

http://hillside.net/patterns/mailing.htm

	An Introduction to Design Patterns��Douglas C. Schmidt�Vanderbilt University�schmidt@dre.vanderbilt.edu������Based on material
	Overview
	Overview (cont’d)
	Part I: Motivation & Concept
	Part I: Motivation & Concept (cont’d)�Recurring Design Structures
	Part I: Motivation & Concept (cont’d)�A Design Pattern…
	Part I: Motivation & Concept (cont’d)�Four Basic Parts
	Part I: Motivation & Concept (cont’d)�Example: OBSERVER
	Part I: Motivation & Concept (cont’d)�Goals
	Part I: Motivation & Concept (cont’d)�Design Space for GoF Patterns
	Part I: Motivation & Concept (cont’d)�Design Pattern Template (1st half)�NAME scope pur
	Part I: Motivation & Concept (cont’d)�Design Pattern Template (2nd half)
	Part I: Motivation & Concept (cont’d)�Modified UML/OMT Notation
	Motivation & Concept (cont’d)�OBSERVER object behavioral
	Motivation & Concept (cont’d) �OBSERVER (cont’d) object behavioral
	Part I: Motivation & Concept (cont’d)�Benefits of Patterns
	Part I: Motivation & Concept (cont’d)�Liabilities of Patterns
	Part II: Application: Document Editor (Lexi)
	Document Structure
	Document Structure (cont’d)�Solution: Recursive Composition	
	Document Structure (cont’d)�Object Structure	
	Document Structure (cont’d)�Glyph	
	Document Structure (cont’d)�Glyph Hierarchy	
	Document Structure (cont’d)�COMPOSITE object structural
	Document Structure (cont’d)�COMPOSITE (cont’d) object structural
	Formatting
	Formatting (cont’d)�Solution: Encapsulate Linebreaking Strategy	
	Formatting (cont’d)�New Object Structure	
	Formatting (cont’d)�STRATEGY	 object behavioral
	Formatting (cont’d)�STRATEGY (cont’d) object behavioral
	Embellishment
	Embellishment (cont’d)�Solution: “Transparent” Enclosure
	Embellishment (cont’d)�MonoGlyph Hierarchy
	Embellishment (cont’d)�New Object Structure	
	Embellishment (cont’d)�DECORATOR object structural
	Embellishment (cont’d) �DECORATOR (cont’d) object structural
	Multiple Look & Feels
	Multiple Look & Feels (cont’d)�Solution: Abstract Object Creation
	Multiple Look & Feels (cont’d)�Factory Interface
	Multiple Look & Feels (cont’d)�Factory Structure
	Multiple Look & Feels (cont’d)�ABSTRACT FACTORY object creational
	Multiple Look & Feels (cont’d)�ABSTRACT FACTORY (cont’d) object creational
	Multiple Window Systems
	Multiple Window Systems (cont’d)�Solution: Encapsulate Implementation Dependencies
	Multiple Window Systems (cont’d)�Window Interface
	Multiple Window Systems (cont’d)�Window uses a WindowRep
	Multiple Window Systems (cont’d)�Window/WindowRep Structure
	Multiple Window Systems (cont’d)�New Object Structure	
	Multiple Window Systems (cont’d)�BRIDGE object structural
	Multiple Window Systems (cont’d)�BRIDGE (cont’d) object structural
	User Operations
	User Operations (cont’d)�Solution: Encapsulate Each Request	
	User Operations (cont’d)�Command Hierarchy
	User Operations (cont’d)�List of Commands = Execution History
	User Operations (cont’d)�COMMAND object behavioral
	User Operations (cont’d)�COMMAND (cont’d) object behavioral
	Spelling Checking & Hyphenation
	Spelling Checking & Hyphenation (cont’d)�Solution: Encapsulate Traversal	
	Spelling Checking & Hyphenation (cont’d)�ITERATOR object behavioral
	Spelling Checking & Hyphenation (cont’d)�ITERATOR (cont’d) object behavioral
	Spelling Checking & Hyphenation (cont’d)�ITERATOR (cont’d) object behavioral
	Spelling Checking & Hyphenation (cont’d)�Visitor
	Spelling Checking & Hyphenation (cont’d)�SpellingCheckerVisitor
	Spelling Checking & Hyphenation (cont’d)�Accumulating Words
	Spelling Checking & Hyphenation (cont’d)�Interaction Diagram
	Spelling Checking & Hyphenation (cont’d)�HyphenationVisitor
	Spelling Checking & Hyphenation (cont’d)�Discretionary Glyph
	Spelling Checking & Hyphenation (cont’d)�VISITOR object behavioral
	Spelling Checking & Hyphenation (cont’d)�VISITOR (cont’d) object behavioral
	Part III: Wrap-Up
	Part III: Wrap-Up (cont’d)�But…
	Part III: Wrap-Up (cont’d)�Concluding Remarks
	Pattern References
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern-Oriented Conferences
	Mailing Lists

