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Motivation

e Typical state of affairs today is the “Distri-
bution Crisis”

— Computers and networks get faster and cheaper

— Communication software gets slower, buggier, more
expensive

e Accidental complexity is one source of prob-
lems, e.g.,

— Incompatible software infrastructures

— Continuous rediscovery and reinvention of core con-
cepts and components

e Inherent complexity is another source of prob-
lems

— e.g., latency, partial failures, partitioning, causal
ordering, etc.

Candidate Solution: CORBA
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e Goals

1. Simplify development of distributed applications

2. Provide flexible foundation for higher-level services

Observations

e CORBA is well-suited for certain commu-
nication requirements and certain network
environments

— e.g., request/response or oneway messaging over
low-speed Ethernet or Token Ring

e However, current CORBA implementations
exhibit high overhead for other types of re-
quirements and environments

— e.g., bandwidth-intensive and delay-sensitive ap-
plications over high-speed networks

e Performance limitations will ultimately im-
pede adoption of CORBA




Performance Problems with
Existing ORBs

Key Research Questions

Existing ORBs lack certain features (e.g.,

end-to-end QO0S) e “Can CORBA be used for performance-sensitive

applications on high-speed networks?”

Reasons for poor performance — Goal is to determine this empirically

Inefficient server demultiplexing techniques

e “What are the strategic optimizations for
Gigabit CORBA"?

Long chains of intra-ORB function calls

Excessive presentation layer conversions and data — Goal is to maintain strict CORBA compliance

copying

Non-optimized buffering algorithms used for net-

work reads and writes e “What changes are required to provide Real-

time CORBA?”

Improper choice of underlying operating system in-

— Goal is to provide end-to-end QoS guarantees
terfaces

Lack of integration with advanced ”"OS"” and net-
work features

General Path of CORBA
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Pinpointing CORBA Overhead

e Presentation layer overhead
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e Data manipulation and data copying over-
head

— e.g., message management DEMARSHALLING AND

e Demultiplexing and operation dispatching over-

head

— e.g., layered and de-layered demultiplexing

e OS/network/protocol integration

— e.g., ATM/host adapters, resource reservation and
scheduling
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Network /Host Environment

Experiments Performed

e Throughput measurements

— i.e., using static and dynamic invocation policies
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e Receiver-side request demultiplexing

e Scalability

(ENI ATM
— i.e., under varying number of objects per server ADAPTORS
AND ETHERNET)

TTCP Configuration for CORBA Experimental Setup for
Throughput Measurements

Implementation

e Enhanced version of TTCP

3: send(bu — TTCP measures end-to-end data/request transfer
\1: send(buf) ( t}

— Enhanced version compares Orbix 2.1 and Visi-
2: forward Broker 2.0

e Parameters varied

— 64MB of typed data

> Types included sequences of scalars and structs

— Sender buffer sizes ranged from 1K to 1024K

— Socket queues were 8k (default) and 64k (maxi-
mum)

— Network was 155 Mbps ATM and “loopback”




Orbix SII 'Blackbox’ Performance
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Orbix Whitebox Analysis of
Throughput using SII
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Throughput in Mbps
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_write_value(NCostreams.,
TypeCode&,MarshallnBuf)

Marshal individual fields
of the struct

memcpy
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e Orbix sequences for 128K user buffer
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VisiBroker High-Cost Functions

VisiBroker High-Cost Functions (cont,d.)

o VisiBroker sequences for 128K user buffer #Exec  #Calls

Time %Exec  #Calls

16,777,216 CORBA: :MarshallInBuffer
: operator>>(long&)
16,817,163 memcpy
16,777,728 CORBA: :MarshallInBuffer
::get (char*)
512 writev
512 CORBA: :MarshallInBuffer
1 :get (long*)

octets/chars

512 writev
8,195 memcpy

doubles

8,414,220 memcpy
512 writev
8,388,608 CORBA: :MarshallInBuffer
: toperator>>(double&)
8,389,632 CORBA: :MarshallInBuffer
::get (charx)
512 CORBA: :MarshallInBuffer
::get(doublex)

shorts

33,554,422 CORBA: :MarshallInBuffer
operator>>(short&)
33,554,944 CORBA: :MarshallInBuffer
::get (char*)
33,627,659 memcpy
512 CORBA: :MarshallInBuffer
1 :get (short*)
512 writev
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(cont,d.)
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9,216 writev
2,796,032 various marshalling
functions
39,321,438 memcpy
16,776,192 write_value(NCOstreamé,
CORBA: : :TypeCodex*,
CORBA: :MarshallInBuffer)
19,572,736 CORBA: :MarshalInBuffer
: :get (char*)
2,796,032 _wWrite_struct_value
(NCOstream, TypeCode)
13,980,160 CORBA: :TypeCode::
member_type

16,776,192 CORBA: :TypeCode: : - 80 100
member_count Sender Buffer size in KBytes

Throughput in Mbps




Measuring Server-side Request

Demultiplexing Overhead

An interface with N (N is large, say 100)
methods defined Client-side Latency in seconds

Version Iterations
Method names chosen arbitrarily
VisiBroker 0.010

In each iteration, client invokes the final
method M times (M is large, say 100)

Repeat the experiment 100, 500, 1,000 times

Demultiplexing in ORBs
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Passing a string adds to the amount of in-
formation carried in the request header
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Hand-crafted Optimizations

Client-side Latency in seconds
e For both the ORBSs, hash the method name Version Iterations
to a numeric value and pass this information

in the request header
Optimized Orbix

VisiBroker

Optimized VisiBroker 0.010
e For Orbix, use numeric comparisons using

the hashed value for method name lookup

Latency for Parameterless
Latency Measurements over ATM Method Invocation

e Latency measurements for twoway methods

e Methods are of two types:

=
o

1. Parameterless methods

2. Methods that send a sequence of octets and structs
of primitive data types

Latency in msec

o
o

e Sequence parameter takes range of buffer
sizes from 1 to 1,024 units of the specific —
data type Topii (a8 |




Latency for Methods Sending

Sequences
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Optimizations for High
Performance ORBSs
e Lack of integration with advanced OS and
network features:

— Provide hooks to utilize OS features such as Real-
Time scheduling, Multi-threading, and zero-copy
buffer management

e Inefficient server demultiplexing techniques:

— Use delayered demultiplexing and efficient packet
filters

e Long chains of intra-ORB function calls:

— Use Integrated Layer Processing and Inlining

— Use compiler techniques to automate this

Optimizations for High

Performance ORBS

e Excessive presentation layer conversions and

data copying:

— Use efficient stub compilers

— Achieve an optimal tradeoff between compiled ver-

sus interpreted stubs

e Non-optimized buffering algorithms used for

network reads and writes:

— Use optimal buffer sizes and flow control

Gigabit CORBA Optimizations
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Integrated View of CORBA

Optimizations
Real-time CORBA
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Concluding Remarks

e CORBA is a promising architecture for dis-
tributed computing

e Conventional CORBA implementations are
not tuned for high-performance or real-time
systems

— Note, low-speed networks often hide performance
overhead

e Ultimately, an integrated approach is the
best solution

e Optimizations must be applied at multiple
layers

— e.g., network/OS/protocol/ORB




