Optimizations for High
Performance ORBSs

Douglas C. Schmidt
(www.cs.wustl.edu/~schmidt)
Aniruddha S. Gokhale

(www.cs.wustl.edu/~gokhale)

Washington University, St. Louis,
USA.

Motivation

e Typical state of affairs today is the “Distri-
bution Crisis”

— Computers and networks get faster and cheaper

— Communication software gets slower, buggier, more
expensive

e Accidental complexity is one source of prob-
lems, e.g.,

— Incompatible software infrastructures

— Continuous rediscovery and reinvention of core con-
cepts and components

e Inherent complexity is another source of prob-
lems

— e.g., latency, partial failures, partitioning, causal
ordering, etc.

Candidate Solution: CORBA

in args

op()
CLIENT IMPLEMENTATIO

out args + return value

IDL v
SKELETON
ORB OBJECT
INTERFACE ADAPTER

REQUEST BROKER

e Goals

1. Simplify development of distributed applications

2. Provide flexible foundation for higher-level services

Observations

e CORBA is well-suited for certain commu-
nication requirements and certain network
environments

— e.g., request/response or oneway messaging over
low-speed Ethernet or Token Ring

e However, current CORBA implementations
exhibit high overhead for other types of re-
quirements and environments

— e.g., bandwidth-intensive and delay-sensitive ap-
plications over high-speed networks

e Performance limitations will ultimately im-
pede adoption of CORBA

Performance Problems with
Existing ORBs

Key Research Questions

Existing ORBs lack certain features (e.g.,

end-to-end QO0S) e “Can CORBA be used for performance-sensitive

applications on high-speed networks?”

Reasons for poor performance — Goal is to determine this empirically

Inefficient server demultiplexing techniques

e “What are the strategic optimizations for
Gigabit CORBA"?

Long chains of intra-ORB function calls

Excessive presentation layer conversions and data — Goal is to maintain strict CORBA compliance

copying

Non-optimized buffering algorithms used for net-

work reads and writes e “What changes are required to provide Real-

time CORBA?”

Improper choice of underlying operating system in-

— Goal is to provide end-to-end QoS guarantees
terfaces

Lack of integration with advanced ”"OS"” and net-
work features

General Path of CORBA

Requests

Pinpointing CORBA Overhead

e Presentation layer overhead

CLIENT SERVER
— e.g., typed and untyped data

STUBS (SII) OR
DIl REQUEST

INTERFACE METHOD
IMPLEMENTATION

e Data manipulation and data copying over-
head

— e.g., message management DEMARSHALLING AND

e Demultiplexing and operation dispatching over-

head

— e.g., layered and de-layered demultiplexing

e OS/network/protocol integration

— e.g., ATM/host adapters, resource reservation and
scheduling

FRAMING, ERROR
CHECKING AND
INTEROPERABILITY

OS LEVEL

MARSHALLING .
DEMULTIPLEXING

FRAMING, ERROR
CHECKING AND
INTEROPERABILITY

OS LEVEL

|

NETWORK

Network /Host Environment

Experiments Performed

e Throughput measurements

— i.e., using static and dynamic invocation policies

BAY NETWORKS
LATTISCELL
ATM SWITCH

(16 rorT, OC3

e Latency measurements 155MBPS/PORT,

9,180 MmTU)
ULTRA
SPARC 2

e Receiver-side request demultiplexing

e Scalability

(ENI ATM
— i.e., under varying number of objects per server ADAPTORS
AND ETHERNET)

TTCP Configuration for CORBA Experimental Setup for
Throughput Measurements

Implementation

e Enhanced version of TTCP

3: send(bu — TTCP measures end-to-end data/request transfer
\1: send(buf) (t}

— Enhanced version compares Orbix 2.1 and Visi-
2: forward Broker 2.0

e Parameters varied

— 64MB of typed data

> Types included sequences of scalars and structs

— Sender buffer sizes ranged from 1K to 1024K

— Socket queues were 8k (default) and 64k (maxi-
mum)

— Network was 155 Mbps ATM and “loopback”

Orbix SII 'Blackbox’ Performance

T
short —<—
long -+

double -&--
char -
octet -&--

Throughput Measurements using

Static Invocation Interface

Throughput in Mbps

e www.cs.wustl.edu/~schmidt/SIGCOMM—-96.ps.gz

40 60 80 100
Sender Buffer size in KBytes

VisiBroker SII 'Blackbox’)))
Orbix High-Cost Functions
Performance

(sender side)

e Orbix sequences for 128K user buffer

Time

long -+
double -=-- . memcpy

522;7:777 struct . write
struct -*- . NullCoder: :codeLongArray
Request: :op<<(double&)
BinStruct: :encodeOp
Request::encodeLongArray
Request: :insertOctet
Request: :op<<(short&)
Request: :op<<(long&)
Request: :op<<(char&)
NullCoder: :codeDouble
NullCoder: :codeLong
memcpy

Throughput in Mbps

. .
40 60 80 100
Sender Buffer size in KBytes

PP, P NNMNDNNDNDN

Orbix Whitebox Analysis of
Throughput using SII

CLIENT SERVER

VisiBroker High-Cost Functions

sendStructSequence sendStructSequence

(sender side)

MARSHALLING

20.25% o e P v e VisiBroker sequences for 128K user buffer
send dispatch 75-80%

Time %Exec Name
FRRInterface::dispatch

Channe: scalars
rocestncomingise struct . write
op<<(NCostream&,BinStruct&)
.83 memcpy

: PMCIIOPStream: :op<<(double)
OrbixTCPChannel . PMCIIOPStream: :put
echeullr . PMCIIOPStream: :op<<(long)
PMCIIOPStream: :op<<(short)

08 Kernel OS Kernel

! i

NETWORK

VisiBroker Whitebox Analysis of
Throughput using SII

CLIENT SERVER

0.01%

Throughput Measurements using

N Dynamic Invocation and Dynamic

St B

o e Skeleton Interface
PMCStublnfo; PMCBOAClient::

send ProcessMessasge
PMCIIOPStream: PMCIIOPStream:
sendMe: receiveMessage
PMCIIOPstream: PMCIIOPstream
_write _read

08 Kemnel 08 Kemel

! !

NETWORK

CLIENT SEND

15-20%

MARSHALLING

e www.cs.wustl.edu/~schmidt/GLOBECOM-96.ps.gz

ALITIEVIIONTIND

Throughput in Mbps

Orbix DII 'Blackbox’ Performance

T
short —<—
long -

double -&--
char
octet
struct

40 60
Sender Buffer size in KBytes

Throughput in Mbps

VisiBroker DII 'Blackbox’

Performance

short -—

double -=--

struct -*--

long -+

char -x
octet -&--

Sender Buffer size in KBytes

VisiBroker DII Client Datapath

CORBA_Request::|
send_oneway

Orbix High-Cost Functions

_write_value(NCostreams,
TypeCodes,

CORBA_Request:
_invoke

ICORBA_Request:
|_marshal_out

CORBA_Object::
_send

writev

OS Kernel

Q0O o

2% =z
8 Q
> 5
> el
5 2
@ @ =
4 g
s E
H]
g]
g 3
J g

_write_value(NCostreams.,
TypeCode&,MarshallnBuf)

Marshal individual fields
of the struct

memcpy

PMCStublnfo::send

PMCIIOPStream::
sendMessage

memcpy

e Orbix sequences for 128K user buffer

Time %Exec

scalars

struct . 44,085,834
46,190,107

44,092,964

4,195,328

46,190,159

46,190,158

2,097,664

_libc_write
memcpy

cleanfree
_free_unlocked
realfree

count

malloc

new

CORBA: :typeCode
::putValue

VisiBroker High-Cost Functions

VisiBroker High-Cost Functions (cont,d.)

o VisiBroker sequences for 128K user buffer #Exec #Calls

Time %Exec #Calls

16,777,216 CORBA: :MarshallInBuffer
: operator>>(long&)
16,817,163 memcpy
16,777,728 CORBA: :MarshallInBuffer
::get (char*)
512 writev
512 CORBA: :MarshallInBuffer
1 :get (long*)

octets/chars

512 writev
8,195 memcpy

doubles

8,414,220 memcpy
512 writev
8,388,608 CORBA: :MarshallInBuffer
: toperator>>(double&)
8,389,632 CORBA: :MarshallInBuffer
::get (charx)
512 CORBA: :MarshallInBuffer
::get(doublex)

shorts

33,554,422 CORBA: :MarshallInBuffer
operator>>(short&)
33,554,944 CORBA: :MarshallInBuffer
::get (char*)
33,627,659 memcpy
512 CORBA: :MarshallInBuffer
1 :get (short*)
512 writev

VisiBroker DSI ’'Blackbox’
VisiBroker High-Cost Functions

(cont,d.)

%Exec #Calls

short

long -
double -&--
structs char
octet
struct

Performance

9,216 writev
2,796,032 various marshalling
functions
39,321,438 memcpy
16,776,192 write_value(NCOstreamé,
CORBA: : :TypeCodex*,
CORBA: :MarshallInBuffer)
19,572,736 CORBA: :MarshalInBuffer
: :get (char*)
2,796,032 _wWrite_struct_value
(NCOstream, TypeCode)
13,980,160 CORBA: :TypeCode::
member_type

16,776,192 CORBA: :TypeCode: : - 80 100
member_count Sender Buffer size in KBytes

Throughput in Mbps

Measuring Server-side Request

Demultiplexing Overhead

An interface with N (N is large, say 100)
methods defined Client-side Latency in seconds

Version Iterations
Method names chosen arbitrarily
VisiBroker 0.010

In each iteration, client invokes the final
method M times (M is large, say 100)

Repeat the experiment 100, 500, 1,000 times

Demultiplexing in ORBs

5. DEMUX 0 < LAVERED Demultiplexing and Dispatching

METHOD DEMULTIPLEXING Overhead in ORBSs
4: DEMUX TO

SKELETON DL oL) ... (DL
SKEL 1) \ SKEL 2 M
]

3: DEMUX TO T — Both Orbix and VisiBroker pass the method
OBIJECT .
(OBJECT 1) (OBJECT 2) ooo (OBJECT N) name in the request
I | |
1

2:DEMUX TO
I/O HANDLE

1: DEMUX THRU
PROTOCOL STACK

(OBJ ECT ADAPTER)

Passing a string adds to the amount of in-
formation carried in the request header

DE-LAYERED

DEMULTIPLEXING))
Orbix uses strcmp and linear search on the

server side to demultiplex incoming request

H omsecTl:METHOD2 |
H onsect1::vETHODK |
H onsecTN::meTHODI |
oBsECTN::METHODK |

-| OBJECT1::METHOD1 |

3:DEMUX TO
METHOD

2 DEMUX TO For very large interfaces, this is undesirable
/O HANDLE DEMULTIPLEXER

1: DEMUX THRU
PROTOCOL STACK

(OBJECT ADAPTER)

Hand-crafted Optimizations

Client-side Latency in seconds
e For both the ORBSs, hash the method name Version Iterations
to a numeric value and pass this information

in the request header
Optimized Orbix

VisiBroker

Optimized VisiBroker 0.010
e For Orbix, use numeric comparisons using

the hashed value for method name lookup

Latency for Parameterless
Latency Measurements over ATM Method Invocation

e Latency measurements for twoway methods

e Methods are of two types:

=
o

1. Parameterless methods

2. Methods that send a sequence of octets and structs
of primitive data types

Latency in msec

o
o

e Sequence parameter takes range of buffer
sizes from 1 to 1,024 units of the specific —
data type Topii (a8 |

Latency for Methods Sending

Sequences

[@—®@ CORBA (Orbix) structs
B— CORBA (Visigenic) structs
4——& TCP/IP (ACE) structs
A—A CORBA (Orbix) octets
'¥——¥ CORBA (Visigenic) octets
k——% TCPI/IP (ACE) octets

Latency in msec

200.0 400.0 600.0 800.0 1000.0
Units sent (1 struct unit = 32 bytes, 1 octet unit = 1 byte)

Optimizations for High
Performance ORBSs
e Lack of integration with advanced OS and
network features:

— Provide hooks to utilize OS features such as Real-
Time scheduling, Multi-threading, and zero-copy
buffer management

e Inefficient server demultiplexing techniques:

— Use delayered demultiplexing and efficient packet
filters

e Long chains of intra-ORB function calls:

— Use Integrated Layer Processing and Inlining

— Use compiler techniques to automate this

Optimizations for High

Performance ORBS

e Excessive presentation layer conversions and

data copying:

— Use efficient stub compilers

— Achieve an optimal tradeoff between compiled ver-

sus interpreted stubs

e Non-optimized buffering algorithms used for

network reads and writes:

— Use optimal buffer sizes and flow control

Gigabit CORBA Optimizations

o in args
PRESENTATION
CLIENT E opQ OBJECT NE LAYER

OPTIMIZATIONS

IMPLEMENTATIO

out args + return value
-—O

DATA COPYING

IDL OPTIMIZATIONS

SKELETON T
= Jcﬂe o
INTERFACE ADAPTER DEMULTIPLEXING
OPTIMIZATIONS

OBJECT COMMUNICATION
REQUEST BROKER PROTOCOL
"€ OPTIMIZATIONS

os 1/o

SUBSYSTEM S / YOsuBSYSTEM
€ OPTIMIZATIONS

OPTIMIZATIONS

N ORK
NETWORK
ADAPTER ADAPTER ADAPTER
\

Integrated View of CORBA

Optimizations
Real-time CORBA

—
APPLICATION
SPECIFIC
CODE

& CORBA
SERVICES

S
QoS
SPECIFICATIONS PRESENTATION LAYER

OBJECT1::METHOD1
0

OBJECT1::METHODK
.

APPLICATION
SPECIFIC
CODE

ADAPTER _pevuumriexes % % 92
GIOP/IOP END-TO-END TRANSPORT = s
430 RTP

TCP/IP ATM
COPY

numms GIGABIT I/0O SUBSYSTEM j GIGABIT IO SUBSYSTEM
J

S

vep v vz vy

REAL-TIME

SRElEkS
SCHEDULING
QUEUES
REAL-TIME OBJECT ADAPTER
REAL-TIME GIOP/IOP PROTOCOLS

-IomEcrN METHOD1 |
-|0BJEC1‘N::METHODK |

L

-|0BJECI‘1::METHOD2 |
1 -| OBJECT1::METHODK |

-| OBJECT1::METHOD1 |

.

ATM PORT

INTERFACE

ONTROLLER
(APIC)

ATM NETWORK

Concluding Remarks

e CORBA is a promising architecture for dis-
tributed computing

e Conventional CORBA implementations are
not tuned for high-performance or real-time
systems

— Note, low-speed networks often hide performance
overhead

e Ultimately, an integrated approach is the
best solution

e Optimizations must be applied at multiple
layers

— e.g., network/OS/protocol/ORB

