Evaluating the Performance of Demultiplexing
Strategies for Real-time CORBA

Aniruddha Gokhale and Douglas C. Schmidt

gokhale@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science,
Washington University
St. Louis, MO 63130, USA.

This paper will appear in the proceedings of GLOBECOM '97, This paper is organized as follows: Section 2 presents an
Phoenix, AZ, November, 1997. overview ofcORBA demultiplexing and compares our work to re-
lated research; Section 3 outlines aumRBA/ATM testbed and
describes the methodology for our demultiplexing experiments;
Abstract Section 4 examines the results of our experiments and analyzes

-~ . . L ., the overhead associated with each demultiplexing strategy; and
Efficient and predictable demultiplexing is necessary to prowdpSection 5 presents concluding remarks

real-time support for distributed object computing applications
developed with CORBA. This paper presents two contributions

to the study of demultiplexing for real-time CORBA endsystems.)])
First, we present an empirical study of four CORBA request de2 ~ Overview of CORBA Demultlplexmg
multiplexing strategies (linear search, perfect hashing, dynamic

hashing, and active demultiplexing) for a range of target object® 1 Conventional CORBA Demultiplexing Archi-
and operations. Second, we describe how we are using the perfect

. tectures
hashing and active demultiplexing strategies to develop a high-
performance, real-time ORB called TAO. A coRBA request header contains the identity of its remote object
Keywords: Communication software, Real-time CORBA, De- implementation (which is called servantby the CORBA spec-
multiplexing. ification [14]) and its intended remote operation. A servant is

uniquely identified by ambject keyand anoperation name An
object key is represented asi@n sequence , which is a single

1 Introduction dimensional dynamic array of bytes; an operation name is repre-
sented as a string.

CORBAIs a distributed object computing middleware standard de- The Object Adapter is the component in theRrBA architec-

fined by the Object Management GroupmG) [14]. CORBA is Fure that associates a servant Wlth' tws, demultiplexes incom-

designed to allow clients to invoke operations on remote object$d requests to the servant, and dispatches the appropriate opera-

without concern for where the object resides or what language tHén of that servant. While curreorea implementations typ-

object is written in. In additioncoRrBA shields applications from ically provide a single Object Adapter peRB, recentorsos

non-portable details related to thevhardware platform they run Portability enhancemgnts [15] define the Portable Object Adapter

on and the communication protocols and networks used to intekPOA) to support multiple Object Adapters pere.

connect distributed objects [20]. The demultiplexing strategy used by amB can impact per-
However, the performance and features of curmmRBA im- formance significantly. ConventionaRBs demultiplex client re-

plementations are not yet suited for hard real-time systengs,(duests to the appropriate operation of the servant using the follow-

avionics) and constrained latency systemg (teleconferencing) iNg steps shown in Figure 1.

due to overheads incurred by conventional Object Request Bro-

kers ORBs). Our earlier work focused on measuring and optimz- Steps 1 and 2: The os protocol stack demultiplexes the in-

ing ORB presentation layer overhead to improve throughput [5, 6coming client request multiple times,g.,through the data link,

and reduce latency [7]. This paper extends our earlier work byetwork, and transport layers up to the user/kernel boundary and

focusing on strategies for optimizimpRrBA demultiplexingpver- the ORB core;

head.

e Steps 3, 4, and 5: The oRB core uses the addressing infor-
‘ation in the client's object key to locate the appropriate Object
1 Adapter, servant, and the skeleton of the targetoperation;

*This work was supported in part by NSF grant NCR-9628218, US Sprint, an
Boeing.

Ell & E LAYERED g E E g E
é % % DEMUXING DE-LAYERED g = é g 5
6 e ACTIVE sIIg|l (8] |8 |8
: DEMUX TO = || = [o00 | % (000 [Z (000 |
R = B o (T DEMUXING % % % % %
SKEL 1) \ SKEL 2 M E E % E >
5:DEMUX TO [—] g & & 2 é
SKELETON
(SERVANT 1) (SERVANT 2) eoe GERVANT N) L _I_| —L —T
4: DEMUX TO [[] (OBJECT ADAPTER)
SERVANT L
(OBJECT ADAPTE@ 3: DEMUX DIRECTLY DE-LAYERED REQUEST
3:DEMUX TO | TO OPERATION DEMULTIPLEXER
OBJECT ADAPTER
;) 2: DEMUX TO
2:DEMUX TO
I/O HANDLE OS KERNEL 1/0 HANDLE OS KERNEL

0S 1/0 SUBSYSTEM

0s 1/0 SUBSYSTEM
1: DEMUX THRU 1: DEMUX THRU
PROTOCOL STACK NETWORK ADAPTERS, PROTOCOL STACK NETWORK ADAPTERS

Figure 1: Layered CORBA Request Demultiplexing Figure 2: De-layered CORBA Request Demultiplexing

e Step 6: The DL skeleton locates the appropriate operation the average- and worst-cases.
demarshals the request buffer into operation parameters, and perFigure 3 illustrates the components in tb@RBA architec-
forms the operation upcall. ture and the various demultiplexing strategies supportethoy
])]) TAO's flexible design allows different demultiplexing strategies
De.muluple.xmg client requests through all these_layers s €X117] to be plugged into its Object Adapter. Section 4 presents
pensive, particularly when a large number of operations appear e results of experiments using the following four demultiplex-

an pL interface and/or a large number of servants are manageflg strategies: (A) linear search, (B) perfect hashing, (C) dynamic
by anors. Layered demultiplexing is particularly inappropriate hashing, and (D) de-layered active demultiplexing shown in Fig-
for real-time applications [19] because it increases latency by ing,e 3.

creasing the number of times that internal tables must be searched)]) .
while incoming client requests traverse various protocol procesd-near search: - The linear search demultiplexing strategy is a
ing layers. In addition, layered demultiplexing can cause priorityfWo-step layered demultiplexing strategy (shown in Figure 3(A)).
inversions because servant-level QoS information is inaccessibl8 the first step, the Object Adapter uses the object key to linearly

to the lowest level device drivers and protocol stacks inifbe ~ Search through the active object miap locate the right object
subsystem of anRB endsystem. and its skeleton (each entry in an active object map maintains a

Conventional implementations aoRrBA incur significant de- Pointer to its associated skeleton). The skeleton maintains a table

multiplexing overhead. In particular, [5, 7] show that 7% ofthe ~ Of operations defined by theL interface. In the second step,
total server processing time is spent demultiplexing requests. i€ Object Adapter uses the operation name to linearly search the
less this overhead is reduced and demultiplexing is performed pr@Peration table of the associated skeleton to locate the appropriate

dictably,0RBSs cannot provide real-time quality of service guaran-OP€ration and invoke an upcall onit.
tees to applications. Linear search is known to be expensive and non-scalable. We

include it in our experiments for two reasons: (1) to provide an up-

] .) per bound on the worst-case performance, and (2) to contrast our
2.2 Design of a Real-time Object Adapter for TAO optimizing demultiplexing strategies with strategies used in exist-
ing ORBs (such as Orbix) that use linear search for their operation

TAO is a high performance, real-tintRB developed at Washing- demultiplexing

ton University [18]. It runs on a range ofs platforms that support
real-time features including VxWorks, Solaris 2.x, and WindowsPerfect hashing: The perfect hashing strategy is also a two-
NT. TAO provides a highly optimized version of SunSoft's imple- step layered demultiplexing strategy (shown in Figure 3(B)). In
mentation of thecORBA Internet Interors Protocol (10P)[8].1 contrast to linear search, the perfect hashing strategy uses an
TAO’s Object Adapter is designed to minimize overhead via de-automatically-generated perfect hashing function to locate the ser-
layered demultiplexing [19] shown in Figure 2. This approachvant. A second perfect hashing function is then used to locate the
maps client requests directly to servant/operation tuples that pepperation. Both servant and operation lookup take constant time.
form application-level upcalls. The resultiX1) performance for Perfect hashing is applicable when the keys to be hashed are
knowna priori. In many hard real-time systems (such as avionic

1sunSoft 11op is freely available from the oMG web site at
URL ftp://ftp.omg.org and the TAO ORB is available at 2The active object map [15] associates object keys to servants maintained by
http://lwww.cs.wustl.edu/ ~schmidt/TAO.html . > an Object Adapter.

in args

O——— 0
CLIENT operation() OBJECT
out args + return value MLEIVIENTAHON
<+—O0 A Iy

A IDL
SK.ELETO DSI A 4
DI SIT]?III;S ORB OBJECT]
INTERFACE ADAPTER
GIOP/IIOP /

(A) LAYERED DEMUXING,
LINEAR SEARCH

(D) DE-LAYERED ACTIVE DEMUXING
(B) LAYERED DEMUXING, —

PERFECT HASHING
(C) LAYERED DEMUXING,
DYNAMIC HASHING

OPERATION100| |

OPERATION2
OPERATION100

OPERATION1
OPERATION]1

search(operation) hash(operation)

SKEL 1 SKEL 2 SKEL N SKEL SKEL N
(SERVANT 1) (SERVANT 2) (1) (SERVANT 50(9 (SERVANT l) (SERVANT 2) 'OO(SERVANT 50(9
LA LA LA

search(object key) hash(object key) index(object key/operation)
OBJECT ADAPTER OBJECT ADAPTER OBJECT ADAPTER

Figure 3: Alternative Demultiplexing StrategiesTino

|SERVANT500: :OPERATION100 |

SERVANT1::0PERATION1
SERVANT1::0PERATION2
| SERVANTS00::0PERATION1 |

_)l SERVANT1::0PERATION100

control systems [9]), the objects and operations can be configuredntrast to perfect hashing, which h@gl) worst-case behavior
statically. In this scenario, it is possible to use perfect hashingnd low constant overhead, dynamic hashing has higher overhead
to hash the object and operations. For our experiment, we useohdO(n?) worse-case behavior. In particular, two or more keys
the GNU gperf [16] tool to generate perfect hash functions for may dynamically hash to the same bucket. These collisions are
object keys and operation names. resolved using linear search, which can yield poor worse-case per-

The following is a code fragment from tlenu gperf gener- formance. The primary benefit of dynamic hashing is that it can
ated hash function for 500 object keys used in our experiments: be used when the object keys are not knaavpriori. In order

class Object_Hash to minimize collisions, the object and the operation hash tables
{ - contained twice as many array elements as the number of servants
.. _ and operations, respectively.
static u_int hash (const char *str, int len);
k De-layered active demultiplexing: The fourth demultiplexing
u_int

_ir) strategy is calledle-layered active demultiplexirfighown in Fig-
Object_Hash::hash (register CO”Stre‘gi‘sat;r =t on) ure 3(D)). In this strategy, the client includes a handle to the ob-
ject in the active object map and the operation table ircthrBA

static const u_short asso_values[] = request header. This handle is configured into the client when

J/ all values not shown here the tgrget object reference is registeyed with a Naming service or
1032, 1032, 1032, 1032, 1032, 1032, 1032, Trading service. On the receiving side, the Object Adapter uses
100, 105, 130, 20, 100, 395, 435, iad i ;
505 330, 475 45 365 180, 390 Fhe hand_le suppll_ed in tkIBORBAre_ques'_[headerto locate the ob
440, 160, 125, 1032, 1032, 1032, 1032, ject and its associated operation in a single $tep.

return len + asso_values[str[len - 1]]
+ asso_values[str[0]];

} - 2.3 Related Work

The code above works as follows: upon receiving a client reRelated work on demultiplexing focuses largely on the lower lay-
quest, the Object Adapter retrieves the object key. It uses the or's of the protocol stack.¢., the transport layer and below) as
ject key to obtain a handle to the active object map by using thePposed to theorsA middleware. For instance, [19, 4, 2] study
perfecthash function shown above. Theash function uses demultiplexing issues in communication systems and show how
an automatically generated active object magsp _values)to layered demultiplexing is not suitable for applications that require
return a unique hash value for each object key. real-time quality of service guarantees.

Dynamic haShing: The dynamic haShing stra?egy- is also a two- 3Detailed description on the four demultiplexing strategies is availableat
step layered demultiplexing strategy (shown in Figure 3(C)).3|I‘http://www.cs.wustl.edu/ ~schmidt/GLOBECOM-97.ps.gz

Packet filters are a mechanism for efficiently demultiplexingnumber of servants on an endsystesmg(,a server), and inter-
incoming packets to application endpoints [13]. A number offaces with large number of methods. Therefore, our benchmarks
schemes to implement fast and efficient packet filters are avaibystematically varied these parameters for each experiment as fol-
able. These include thesb Packet Filter §PF) [12], the Mach lows:

Packet Filter (1PF) [21], PathFinder [1], demultiplexing based on , \ymper of servants: Increasing the number of objects on the

automatic'pallrsing [11]’, and.the Dynamic Packet Filter) [3]. . server increases the demultiplexing effort required to dispatch the
Most existing demultlpIeX|ng.strategles are implemented W'th'r\ncoming request to the appropriate object. To pinpoint this de-
the os kernel. However, to optimally reduceRB endsystem de- o, siplexing overhead and to evaluate the efficiency of different

multiplexing overhead requires a vertically integrated arChitecwrﬁemultiplexing strategies, we benchmarked a range of objects (1,
that extends from thes kernel to the application servants. Since 10q 200 300 400. and 500) on the server.

ouroRBis currently implemented in user-space, however, this pa-

per focuses on minimizing the demultiplexing overhead in step® Number of operations defined by the interface: In addition
3, 4, 5, and 6 (which are shaded in Figure 1). to the number of objects, demutiplexing overhead increases with

the number of operations defined in an interface. To measure this
demultiplexing overhead, our experiments defined a range of op-
3 CORBA/ATM Testbed and Experimen- erations (1, 10, and 100) in theL interface. Since our experi-
ments measured the overhead of demultiplexing, these operations
tal Methods defined no parameters, thereby eliminating the overhead of pre-
sentation layer conversions.
3.1 Hardware and Software Platforms

The experiments in this section were conducted usimpae ~ 3-3 Request Invocation Strategies
systemsasx-1000ATM switch connected to two dual-processor o experiments used two different invocation strategies for in-

UltrasPARG2s running SunOS 5.5.1. Thesx-1000is a 96 Port, \ying different operations on the server objects. The two invoca-
0C12 622 Mbs/port switch. Each Ults®ARG2 contains two 168 ;o strategies are:

MHz cPus with a 1 Megabyte cache peru. The SunOS 5.5.1)]])

TCP/IP protocol stack is implemented using theREAMS com- ® Random request invocation strategy: In this case, the client
munication framework. makes a request on a randomly chosen object reference for a ran-
In addition, each UltraPARG2 has 256 Mbytes oRAM and domly chosen operation. This strategy is useful to test the effi-
anENI-155sMF ATM adapter card, which supports 155 MegabitsCie”Cy of the hashing-based strategy. In addition, it measures the
per-sec (MbpsjONET multimode fiber. The Maximum Trans- 2verage performance of the linear search based strategy. The al-
mission Unit (TU) on theeni ATM adapter is 9,180 bytes. Each 90rithm for randomly sending client requests is shown below.

ENI card has 512 Kbytes of on-board memory. A maximum of for (int i = 0; i < NUM_OBJECTS: i++) {

32 Kbytes is allotted peat™ virtual circuit connection for re- for (int j = 0; j < NUM_OPERATIONS; j++) {
ceiving and transmitting frames (for a total of 64 K). This allows Choi’ﬁg ol ?gfeﬁuﬁ_gggg&g‘)f” 1
up to eight switched virtual connections per card. This hardware choose an operation at random from
platform is shown in Figure 4. _the set [0, NUM_OPERATIONS - 1J;
invoke the operation on that object;
}
Services — }
@ @ @ — ¢ Worst-case request invocation: In this case, we choose the
—d = last operation of the last object. This strategy elicits the worst-
‘! Requests o~ Object Adapter E case performance of the linear search strategy. The algorithm for
(ORBCoe) | = sending the worse-case client requests is shown below:
Client Server for (int i = 0; i < NUM_OBJECTS; i++) {
—’i —’i for (int j = 0; j < NUM_OPERATIONS; j++) {
invoke the last operation on the
’ x \ last object
| [. =] }
ATM Switch TR }
Ultra Ultra
Figure 4: Hardware for theorBA/ATM Testbed 3.4 Profiling Tools

Thegethrtime system call was used to determine demultiplex-

ing overhead by computing detailed timing measurements. This
3.2 Parameter Settings system call uses the SunOS 5.5 high-resolution timer, which ex-

presses time in nanoseconds from an arbitrary time in the past.
Our earlier studies [5, 7] oLoORBA performance overT™m The time returned bgethrtime is very accurate since it does
demonstrate the performance impact of parameters such ai thet drift.

The profile information for the empirical analysis was ob- plexing strategies substantially outperform the linear-search strat-
tained using theQuantify [10] performance measurement egy and the dynamic hashing strategy. Moreover, the worst-case
tool. Quantify analyzes performance bottlenecks and identi-performance overhead of the linear-search strategy for 500 objects
fies sections of code that dominate execution time. Unlike traand 100 operations is1.87 times greater than random invocation,
ditional sampling-based profilers (such asthax gprof tool), which illustrates the non-scalability of linear search as a demulti-
Quantify reports results without including its own overhead. In plexing strategy.
addition,Quantify measures the overhead of system calls and In addition, the figures reveal that both the active demulti-
third-party libraries without requiring access to source code. plexing and perfect hash-based demultiplexing perform quite effi-

All data is recorded in terms of machine instruction cycles andtiently and predictably regardless of the invocation strategies. The
converted to elapsed times according to the clock rate of the male-layered active demultiplexing strategy performs slightly better
chine. The collected data reflect the cost of the original program’than the perfect hash-based strategy for both invocation strategies.

instructions and automatically exclude aQuantify counting Section 4.2 explains the reasons for these results.
overhead.

4.2 Detailed Analysis of Demultiplexing Overhead
4 Demultiplexing Performance Results

This section presents our experimental results that measure the
overhead of the four demultiplexing strategies described in Sec-
tion 2.2. Section 4.1 presents the blackbox results of our exper-
iments. Section 4.2 provides detailed whitebox analysis of the €
blackbox results. Section 4.3 evaluates the pros and cons of eac
demultiplexing strategy.

4.1 Performance Results for Demultiplexing
Strategies

o
o
2
9
£

g
9l
=
o
L1

4

Linear (100 methods)

Linear (1 method)
Linear (10 methods)

GPERF (10 Methods)
GPERF (100 Methods)

Number of Objects

Active Demux (100 Methods)
GPERF (1 Method)

Active Demux (1 Method)
Active Demux (10 Methods)

Demultiplexing scheme

12
§ 100
(8]
2 Figure 6: Demultiplexing Overhead for the Worst-case Invocation
2 Strategy
i
gl 40 3 O This section presents the results of our whitebox profiling to
= w 2 £ ©
5 _ 2388 ¢: illustrate the overhead of each demultiplexing strategy shown in
° o = o
20 z £ 3 2ec2c Section 4.1. We explain ti@uantify results from invoking 100
@ o Q9 &8 g S
g 85 32g¢%¢t g 2 operations on 500 objects using the worst-case invocation strategy
% 2 s = _E E e =24 3 - .
500 400 490 g £ & % g £ 38 8 in Table 1.
SREC TN S R Thedispatch method used for our experiments is shown be-
= o
Number of Objects é g § int

o 2 v

2 £ 3 CORBA_BOA::dispatch (CORBA_OctetSequence key,

< = Demultiplexing scheme CORBA_ServerRequest& req,

CORBA_Object_ptr obj)
Figure 5: Demultiplexing Overhead for the Random Invocation{
Strategy skeleton *skel;
CORBA_Object_ptr obj;

Figures 5 and 6 illustrate the performance of the four demulti- CORBA_String opname;
plexing strategies for the random and worst-case invocation strate-
gies, respectively. These figures reveal that in both cases, the // Find the object ptr corresponding
de-layered active demultiplexing and perfect hash-based derrg,nti— /[l to the key in the object table.

Strategy Analysis 4.3 Analysis of the Demultiplexing Strategies
Name Time in msec | Called %
Active OA:find 280.45| 50,000 9.14 The performance results and analysis presented in Sections 4.1
demux | skeleton 249.94 | 50,000] 8.14 and 4.2 reveal that to provide low-latency and predictable real-
Object:find 36.71 | 50,0001 1.20 time support, &£ORBA Object Adapter must use demultiplexing
Perfect OA:find 346.42 | 50,000 | 23.73 : ’ . | k y
hash Skeleton 253.62 | 50,000 | 17.37 strategies based on active demultiplexing or perfect hashing rather
Object::find 78.67 | 50,000| 5.39 than strategies such as linear-search (which does not scale) and
DS;]”arr':iC 8@_1‘;&?‘_’%(‘ %g-gg 28’888 i’géi dynamic hashing (which has high overhead).
as skeJIeto“n 253.67 1 50,000 | 12.01 The perfect hashing strategy is primarily applicable when the
Linear OA-find 12.122.73| 50,000 | 72.46 object keys are knowa priori. The number of operations are al-
search Object::find 3,617.48] 50,000 | 21.62 ways knowna priori since they are defined in abL interface.
skeleton 249.65] 50,000 1.49 Thus, anibL compiler can generate stubs and skeletons that use
perfect hashing for operation lookup. However, objects imple-
Table 1: Analysis of Demultiplexing Overhead menting an interface can be created dynamically. In this case,
the perfect hashing strategy cannot generally be used for object
I/l Use one of the 4 demux strategies lookup? In this situation, more dynamic forms of hashing can
if (this->find (key, obj) { be used as long as they provide predictable collision resolution
opname = reqg.opname (); strategies. In many hard real-time environments it is possible to
/I Now find the skeleton corresponding configure the systera priori. In this situation, however, perfect
/I to the operation name. hashing-based demultiplexing can be used.
if (obj->find (opname, skel) { Our results show that de-layered active demultiplexing outper-
/I invoke the skeleton forms the other demultiplexing strategies. However, it requires the
} client to possess a handle for each object and its associated oper-
} ations in the active object map and operation tables, respectively.
} Therefore, active demultiplexing requires either (1) preconfigur-
ing the client with this knowledge or (2) defining a protocol for
Only the overhead incurred by tiORBA::OA::dispatch dynamically managing handles to add and remove objects cor-
method and its descendants are shown in Table 1. The primargctly and securels.
descendants of thidispatch method include the following: For hard real-time systems, this preconfiguration is typically
feasible and beneficial. For this reason, we are using the perfect
e OA:find — which locates a servant corresponding to anhashing demultiplexing strategy in thteo orBs we are building
object key in the object table maintained by 4 for real-time avionics applications [18, 9].
e Object::find — which locates a skeleton corresponding

to the operation name in the operation table in the servant; 5 Concluding Remarks

e The skeleton — which parses any arguments and makes
the final upcall on the target servant. An important class of applications (such as avionics, virtual re-
ality, and telecommunication systems) require scalable, low la-
ColumnNameidentifies the name of the high cost descendantstency communication. Our earlier work [5, 7] shows why latency-
The execution time is shown under coluiiime in msec . sensitive applications that utilize many servants and large inter-
TheCalled column indicates the number of times the methodfaces are not yet supported efficiently by contempopgrBA
was invoked an@oindicates the percentage of the total executionmplementations due to demultiplexing overhead, presentation
time incurred by this method and its descendants. layer conversions, data copying, and many layers of virtual
Table 1 reveals that the linear-search based strategy spengigthod calls. On low-speed networks this overhead is often
a substantial portion of its time in th®©A:find and masked. On high-speed networks, this overhead becomes a signif-
Object::find . In turn, they perform string comparisons on icant factor limiting communication performance and ultimately
the object keys and operation names, respectively. In contragimiting adoption ofcorBA by developers.
both the hashing-based and active demultiplexing strategies incur The results presented in this paper compare four demultiplexing
no measurable overhead to locate the object and the associatsithtegies. The object and operation lookup used by these strate-
operation. The dynamic hashing scheme involves fewer stringies are based on linear-search, perfect hashing, dynamic hash-
comparisons compared to the linear search strategy and henceénit), and de-layered active demultiplexing. Our results reveal that
performs better. the de-layered active demultiplexing strategy provides the low-
TheOA::dispatch method and its descendants account forest latency and most predictability amongst the three strategies
~20% of the total execution time for tHge-layered Active De- studied. We have currently implemented the de-layered active
multiplexingstrategy,~50% for thePerfect haststrategy~63% e — biccts at run-time using dviamic inking. thouah
for the Dynamic haststrategy, and-95% for theLinear search this is Se%%sresllllyedisp;agggvivnOhajlfdc rseaal-time environm%né. ¢ ’

strategy. This explains why the de-layered_ active demultiplexing sye assume that the security implications of using active demultiplexing are
strategy outperforms the rest of the strategies. 6 addressed via theoRBA security service.

demultiplexing strategy iAo, which is our high performance, [20] Steve Vinoski. CORBA: Integrating Diverse Applications Within Distributed
real-timeorB [18]. Heterogeneous EnvironmentslIEEE Communications Magazine4(2),
February 1997.

[21] M. Yuhara, B. Bershad, C. Maeda, and E. Moss. Efficient Packet Demulti-
References plexing for Multiple Endpoints and Large Messages.Phoceedings of the
Winter Usenix Conferencdanuary 1994.
[1] Mary L. Bailey, Burra Gopal, Prasenjit Sarkar, Michael A. Pagels, and
Larry L. Peterson. Pathfinder: A pattern-based packet classifi€robeed-
ings of thel s Symposium on Operating System Design and Implementation
USENIX Association, November 1994.

[2] Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox. The APIC Ap-
proach to High Performance Network Interface Design: Protected DMA and
Other Techniques. IRroceedings of INFOCOM ’'97Kobe, Japan, April
1997. IEEE.

[3] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation. Rroceedings of ACM
SIGCOMM ’'96 Conference in Computer Communication Reviages 53—

59, Stanford University, California, USA, August 1996. ACM Press.

[4] David C. Feldmeier. Multiplexing Issues in Communications System De-
sign. InProceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM)pages 209-219, Philadelphia, PA, September
1990. ACM.

[5] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the Performance
of Communication Middleware on High-Speed NetworksPmceedings of
SIGCOMM 96 pages 306-317, Stanford, CA, August 1996. ACM.

[6] Aniruddha Gokhale and Douglas C. Schmidt. The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skeleton Interface over
High-Speed ATM Networks. IRroceedings of GLOBECOM '9pages 50—

56, London, England, November 1996. IEEE.

[7] Aniruddha Gokhale and Douglas C. Schmidt. Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks. IRroceedings of
the International Conference on Distributed Computing Syst&aisimore,
Maryland, May 1997. IEEE.

[8] Aniruddha Gokhale and Douglas C. Schmidt. Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance. Swmbmitted to the
Hawaiian International Conference on System Sciences (Washington Uni-
versity Technical Report #WUCS-97-10anuary 1998.

[9] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design
and Performance of a Real-time CORBA Event ServiceProceedings of
OOPSLA '97 Atlanta, GA, October 1997. ACM.

[10] Pure Software IncQuantify User's GuidePure Software Inc., 1996.

[11] Mahesh Jayaram and Ron Cytron. Efficient Demultiplexing of Network
Packets by Automatic Parsing. Rroceedings of the Workshop on Compiler
Support for System Software (WCSSS 8Bjiversity of Arizona, Tucson,
AZ, February 1996.

[12] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.Aroceedings of the Winter USENIX
Conferencepages 259-270, San Diego, CA, January 1993.

[13] Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet
Filter: an Efficient Mechanism for User-level Network CodePhoceedings
of the11t" Symposium on Operating System Principles (SQS&)ember
1987.

[14] Object Management Grouffhe Common Object Request Broker: Architec-
ture and Specificatigr2.0 edition, July 1995.

[15] Object Management GroupSpecification of the Portable Object Adapter
(POA), OMG Document orbos/97-05-15 edition, June 1997.

[16] Douglas C. Schmidt. GPERF: A Perfect Hash Function GeneratdPrdn
ceedings of th@"? C++ Conference pages 87-102, San Francisco, Cali-
fornia, April 1990. USENIX.

[17] Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Ex-
tensible and Maintainable ORB Middlewar€ommunications of the ACM
(Special Issue on Software Maintenane#)(12), December 1997.

[18] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design
and Performance of Real-Time Object Request Brokeéesnputer Commu-
nications 1997.

[19] David L. Tennenhouse. Layered Multiplexing Considered HarmfuPrin
ceedings of thas? International Workshop on High-Speed Networkiay
1989.

