
Evaluating the Performance of Demultiplexing
Strategies for Real-time CORBA

Aniruddha Gokhale and Douglas C. Schmidt

gokhale@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science,

Washington University
St. Louis, MO 63130, USA.�

This paper will appear in the proceedings of GLOBECOM ’97,
Phoenix, AZ, November, 1997.

Abstract

Efficient and predictable demultiplexing is necessary to provide
real-time support for distributed object computing applications
developed with CORBA. This paper presents two contributions
to the study of demultiplexing for real-time CORBA endsystems.
First, we present an empirical study of four CORBA request de-
multiplexing strategies (linear search, perfect hashing, dynamic
hashing, and active demultiplexing) for a range of target objects
and operations. Second, we describe how we are using the perfect
hashing and active demultiplexing strategies to develop a high-
performance, real-time ORB called TAO.

Keywords: Communication software, Real-time CORBA, De-
multiplexing.

1 Introduction

CORBA is a distributed object computing middleware standard de-
fined by the Object Management Group (OMG) [14]. CORBA is
designed to allow clients to invoke operations on remote objects
without concern for where the object resides or what language the
object is written in. In addition,CORBA shields applications from
non-portable details related to theOS/hardware platform they run
on and the communication protocols and networks used to inter-
connect distributed objects [20].

However, the performance and features of currentCORBA im-
plementations are not yet suited for hard real-time systems (e.g.,
avionics) and constrained latency systems (e.g.,teleconferencing)
due to overheads incurred by conventional Object Request Bro-
kers (ORBs). Our earlier work focused on measuring and optimz-
ing ORB presentation layer overhead to improve throughput [5, 6]
and reduce latency [7]. This paper extends our earlier work by
focusing on strategies for optimizingCORBA demultiplexingover-
head.

�This work was supported in part by NSF grant NCR-9628218, US Sprint, and
Boeing.

This paper is organized as follows: Section 2 presents an
overview ofCORBA demultiplexing and compares our work to re-
lated research; Section 3 outlines ourCORBA/ATM testbed and
describes the methodology for our demultiplexing experiments;
Section 4 examines the results of our experiments and analyzes
the overhead associated with each demultiplexing strategy; and
Section 5 presents concluding remarks.

2 Overview of CORBA Demultiplexing

2.1 Conventional CORBA Demultiplexing Archi-
tectures

A CORBA request header contains the identity of its remote object
implementation (which is called aservantby the CORBA spec-
ification [14]) and its intended remote operation. A servant is
uniquely identified by anobject keyand anoperation name.An
object key is represented as anIDL sequence , which is a single
dimensional dynamic array of bytes; an operation name is repre-
sented as a string.

The Object Adapter is the component in theCORBA architec-
ture that associates a servant with theORB, demultiplexes incom-
ing requests to the servant, and dispatches the appropriate opera-
tion of that servant. While currentCORBA implementations typ-
ically provide a single Object Adapter perORB, recentORBOS

portability enhancements [15] define the Portable Object Adapter
(POA) to support multiple Object Adapters perORB.

The demultiplexing strategy used by anORB can impact per-
formance significantly. ConventionalORBs demultiplex client re-
quests to the appropriate operation of the servant using the follow-
ing steps shown in Figure 1.

� Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g.,through the data link,
network, and transport layers up to the user/kernel boundary and
theORB core;

� Steps 3, 4, and 5: The ORB core uses the addressing infor-
mation in the client’s object key to locate the appropriate Object
Adapter, servant, and the skeleton of the targetIDL operation;1

2:2: DEMUX TO DEMUX TO

 I/OI/O HANDLE HANDLE

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

.........

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

.........

.........IDL

SKEL 1
IDLIDL

SKEL SKEL 22
IDLIDL

SKEL SKEL MM

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

SERVANT SERVANT 11 SERVANT SERVANT 22 SERVANT SERVANT NN

5:5: DEMUX TO DEMUX TO

 SKELETON SKELETON

6:6: DEMUX TO DEMUX TO

 OPERATION OPERATION

1:1: DEMUX THRU DEMUX THRU

 PROTOCOL STACK PROTOCOL STACK

4:4: DEMUX TO DEMUX TO

 SERVANT SERVANT

LAYERED

DEMUXING

ORB COREORB CORE

OBJECT ADAPTER

3:3: DEMUX TO DEMUX TO

 OBJECT ADAPTER OBJECT ADAPTER

Figure 1: Layered CORBA Request Demultiplexing

� Step 6: The IDL skeleton locates the appropriate operation,
demarshals the request buffer into operation parameters, and per-
forms the operation upcall.

Demultiplexing client requests through all these layers is ex-
pensive, particularly when a large number of operations appear in
an IDL interface and/or a large number of servants are managed
by anORB. Layered demultiplexing is particularly inappropriate
for real-time applications [19] because it increases latency by in-
creasing the number of times that internal tables must be searched
while incoming client requests traverse various protocol process-
ing layers. In addition, layered demultiplexing can cause priority
inversions because servant-level QoS information is inaccessible
to the lowest level device drivers and protocol stacks in theI/O
subsystem of anORB endsystem.

Conventional implementations ofCORBA incur significant de-
multiplexing overhead. In particular, [5, 7] show that�17% of the
total server processing time is spent demultiplexing requests. Un-
less this overhead is reduced and demultiplexing is performed pre-
dictably,ORBs cannot provide real-time quality of service guaran-
tees to applications.

2.2 Design of a Real-time Object Adapter for TAO

TAO is a high performance, real-timeORB developed at Washing-
ton University [18]. It runs on a range ofOSplatforms that support
real-time features including VxWorks, Solaris 2.x, and Windows
NT. TAO provides a highly optimized version of SunSoft’s imple-
mentation of theCORBA Internet Inter-ORB Protocol (IIOP)[8].1

TAO’s Object Adapter is designed to minimize overhead via de-
layered demultiplexing [19] shown in Figure 2. This approach
maps client requests directly to servant/operation tuples that per-
form application-level upcalls. The result isO(1) performance for

1SunSoft IIOP is freely available from the OMG web site at
URL ftp://ftp.omg.org and the TAO ORB is available at
http://www.cs.wustl.edu/ �schmidt/TAO.html .

.........

S
E

R
V

A
N

T
S

E
R

V
A

N
T
N

::
N

::
O

P
E

R
A

T
IO

N
O

P
E

R
A

T
IO

N
KK

S
E

R
V

A
N

T
S

E
R

V
A

N
T
N

::
N

::
O

P
E

R
A

T
IO

N
O

P
E

R
A

T
IO

N
11

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

DEDE--LAYERED REQUESTLAYERED REQUEST

DEMULTIPLEXERDEMULTIPLEXER

OBJECT ADAPTER

ORB COREORB CORE

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

3:3: DEMUX DIRECTLY DEMUX DIRECTLY

 TO OPERATION TO OPERATION

DEDE--LAYEREDLAYERED

ACTIVEACTIVE

DEMUXINGDEMUXING

2:2: DEMUX TO DEMUX TO

 I/OI/O HANDLE HANDLE

1:1: DEMUX THRU DEMUX THRU

 PROTOCOL STACK PROTOCOL STACK

Figure 2: De-layered CORBA Request Demultiplexing

the average- and worst-cases.
Figure 3 illustrates the components in theCORBA architec-

ture and the various demultiplexing strategies supported byTAO.
TAO’s flexible design allows different demultiplexing strategies
[17] to be plugged into its Object Adapter. Section 4 presents
the results of experiments using the following four demultiplex-
ing strategies: (A) linear search, (B) perfect hashing, (C) dynamic
hashing, and (D) de-layered active demultiplexing shown in Fig-
ure 3:

Linear search: The linear search demultiplexing strategy is a
two-step layered demultiplexing strategy (shown in Figure 3(A)).
In the first step, the Object Adapter uses the object key to linearly
search through the active object map2 to locate the right object
and its skeleton (each entry in an active object map maintains a
pointer to its associated skeleton). The skeleton maintains a table
of operations defined by theIDL interface. In the second step,
the Object Adapter uses the operation name to linearly search the
operation table of the associated skeleton to locate the appropriate
operation and invoke an upcall on it.

Linear search is known to be expensive and non-scalable. We
include it in our experiments for two reasons: (1) to provide an up-
per bound on the worst-case performance, and (2) to contrast our
optimizing demultiplexing strategies with strategies used in exist-
ing ORBs (such as Orbix) that use linear search for their operation
demultiplexing.

Perfect hashing: The perfect hashing strategy is also a two-
step layered demultiplexing strategy (shown in Figure 3(B)). In
contrast to linear search, the perfect hashing strategy uses an
automatically-generated perfect hashing function to locate the ser-
vant. A second perfect hashing function is then used to locate the
operation. Both servant and operation lookup take constant time.

Perfect hashing is applicable when the keys to be hashed are
knowna priori. In many hard real-time systems (such as avionic

2The active object map [15] associates object keys to servants maintained by
an Object Adapter.

2

ORBORB
CORECOREGIOPGIOP//IIOPIIOP

DIIDII ORBORB
INTERFACEINTERFACE

operation()operation()

IDLIDL
STUBSSTUBS OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON DSIDSI

in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT

IMPLEMENTATIONIMPLEMENTATION

.........

.........IDLIDL

SKEL SKEL 22

OBJECT ADAPTER

SERVANT SERVANT 500500

(A) LAYERED DEMUXING,
LINEAR SEARCH

SERVANT SERVANT 11 SERVANT SERVANT 22

IDLIDL

SKEL SKEL 11

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

1
0
0

1
0
0

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N
22

.........

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

IDLIDL

SKEL NSKEL N

.........

S
E

R
V

A
N

T
S

E
R

V
A

N
T
5
0
0
::

5
0
0
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

1
0
0

1
0
0

S
E

R
V

A
N

T
S

E
R

V
A

N
T
5
0
0
::

5
0
0
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

1
0
0

1
0
0

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

OBJECT ADAPTER

.........

.........IDLIDL

SKEL SKEL 22

OBJECT ADAPTER

(B) LAYERED DEMUXING,
PERFECT HASHING

SERVANT SERVANT 11 SERVANT SERVANT 22

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

1
0
0

1
0
0

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N
22

.........

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

IDLIDL

SKEL NSKEL N

search(object key)

hash(operation)

IDLIDL

SKEL SKEL 11

(D) DE-LAYERED ACTIVE DEMUXING

hash(object key)

search(operation)

index(object key/operation)

(C) LAYERED DEMUXING,
DYNAMIC HASHING

SERVANT SERVANT 500500

Figure 3: Alternative Demultiplexing Strategies inTAO

control systems [9]), the objects and operations can be configured
statically. In this scenario, it is possible to use perfect hashing
to hash the object and operations. For our experiment, we used
the GNU gperf [16] tool to generate perfect hash functions for
object keys and operation names.

The following is a code fragment from theGNU gperf gener-
ated hash function for 500 object keys used in our experiments:

class Object_Hash
{

// ...
static u_int hash (const char *str, int len);

};

u_int
Object_Hash::hash (register const char *str,

register int len)
{

static const u_short asso_values[] =
{

// all values not shown here
1032, 1032, 1032, 1032, 1032, 1032, 1032,

100, 105, 130, 20, 100, 395, 435,
505, 330, 475, 45, 365, 180, 390,
440, 160, 125, 1032, 1032, 1032, 1032,

};
return len + asso_values[str[len - 1]]

+ asso_values[str[0]];
}

The code above works as follows: upon receiving a client re-
quest, the Object Adapter retrieves the object key. It uses the ob-
ject key to obtain a handle to the active object map by using the
perfecthash function shown above. Thehash function uses
an automatically generated active object map (asso values) to
return a unique hash value for each object key.

Dynamic hashing: The dynamic hashing strategy is also a two-
step layered demultiplexing strategy (shown in Figure 3(C)). In

contrast to perfect hashing, which hasO(1) worst-case behavior
and low constant overhead, dynamic hashing has higher overhead
andO(n2) worse-case behavior. In particular, two or more keys
may dynamically hash to the same bucket. These collisions are
resolved using linear search, which can yield poor worse-case per-
formance. The primary benefit of dynamic hashing is that it can
be used when the object keys are not knowna priori. In order
to minimize collisions, the object and the operation hash tables
contained twice as many array elements as the number of servants
and operations, respectively.

De-layered active demultiplexing: The fourth demultiplexing
strategy is calledde-layered active demultiplexing(shown in Fig-
ure 3(D)). In this strategy, the client includes a handle to the ob-
ject in the active object map and the operation table in theCORBA

request header. This handle is configured into the client when
the target object reference is registered with a Naming service or
Trading service. On the receiving side, the Object Adapter uses
the handle supplied in theCORBA request header to locate the ob-
ject and its associated operation in a single step.3

2.3 Related Work

Related work on demultiplexing focuses largely on the lower lay-
ers of the protocol stack (i.e., the transport layer and below) as
opposed to theCORBA middleware. For instance, [19, 4, 2] study
demultiplexing issues in communication systems and show how
layered demultiplexing is not suitable for applications that require
real-time quality of service guarantees.

3Detailed description on the four demultiplexing strategies is available atURL

http://www.cs.wustl.edu/ �schmidt/GLOBECOM-97.ps.gz
3

Packet filters are a mechanism for efficiently demultiplexing
incoming packets to application endpoints [13]. A number of
schemes to implement fast and efficient packet filters are avail-
able. These include theBSD Packet Filter (BPF) [12], the Mach
Packet Filter (MPF) [21], PathFinder [1], demultiplexing based on
automatic parsing [11], and the Dynamic Packet Filter (DPF) [3].

Most existing demultiplexing strategies are implemented within
the OS kernel. However, to optimally reduceORB endsystem de-
multiplexing overhead requires a vertically integrated architecture
that extends from theOS kernel to the application servants. Since
ourORB is currently implemented in user-space, however, this pa-
per focuses on minimizing the demultiplexing overhead in steps
3, 4, 5, and 6 (which are shaded in Figure 1).

3 CORBA/ATM Testbed and Experimen-
tal Methods

3.1 Hardware and Software Platforms

The experiments in this section were conducted using aFORE

systemsASX-1000ATM switch connected to two dual-processor
UltraSPARC-2s running SunOS 5.5.1. TheASX-1000 is a 96 Port,
OC12 622 Mbs/port switch. Each UltraSPARC-2 contains two 168
MHz CPUs with a 1 Megabyte cache per-CPU. The SunOS 5.5.1
TCP/IP protocol stack is implemented using theSTREAMS com-
munication framework.

In addition, each UltraSPARC-2 has 256 Mbytes ofRAM and
anENI-155s-MF ATM adapter card, which supports 155 Megabits
per-sec (Mbps)SONET multimode fiber. The Maximum Trans-
mission Unit (MTU) on theENI ATM adapter is 9,180 bytes. Each
ENI card has 512 Kbytes of on-board memory. A maximum of
32 Kbytes is allotted perATM virtual circuit connection for re-
ceiving and transmitting frames (for a total of 64 K). This allows
up to eight switched virtual connections per card. This hardware
platform is shown in Figure 4.

���� 2Ultra 2Ultra
�������������� ��������������

Object Adapter

ATM Switch

Requests

Client Server

Services

ORB Core

Figure 4: Hardware for theCORBA/ATM Testbed

3.2 Parameter Settings

Our earlier studies [5, 7] ofCORBA performance overATM

demonstrate the performance impact of parameters such as the

number of servants on an endsystem (e.g.,a server), and inter-
faces with large number of methods. Therefore, our benchmarks
systematically varied these parameters for each experiment as fol-
lows:

� Number of servants: Increasing the number of objects on the
server increases the demultiplexing effort required to dispatch the
incoming request to the appropriate object. To pinpoint this de-
multiplexing overhead and to evaluate the efficiency of different
demultiplexing strategies, we benchmarked a range of objects (1,
100, 200, 300, 400, and 500) on the server.

� Number of operations defined by the interface: In addition
to the number of objects, demutiplexing overhead increases with
the number of operations defined in an interface. To measure this
demultiplexing overhead, our experiments defined a range of op-
erations (1, 10, and 100) in theIDL interface. Since our experi-
ments measured the overhead of demultiplexing, these operations
defined no parameters, thereby eliminating the overhead of pre-
sentation layer conversions.

3.3 Request Invocation Strategies

Our experiments used two different invocation strategies for in-
voking different operations on the server objects. The two invoca-
tion strategies are:

� Random request invocation strategy: In this case, the client
makes a request on a randomly chosen object reference for a ran-
domly chosen operation. This strategy is useful to test the effi-
ciency of the hashing-based strategy. In addition, it measures the
average performance of the linear search based strategy. The al-
gorithm for randomly sending client requests is shown below.

for (int i = 0; i < NUM_OBJECTS; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

choose an object at random from
the set [0, NUM_OBJECTS - 1];

choose an operation at random from
the set [0, NUM_OPERATIONS - 1];

invoke the operation on that object;
}

}

� Worst-case request invocation: In this case, we choose the
last operation of the last object. This strategy elicits the worst-
case performance of the linear search strategy. The algorithm for
sending the worse-case client requests is shown below:

for (int i = 0; i < NUM_OBJECTS; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

invoke the last operation on the
last object

}
}

3.4 Profiling Tools

Thegethrtime system call was used to determine demultiplex-
ing overhead by computing detailed timing measurements. This
system call uses the SunOS 5.5 high-resolution timer, which ex-
presses time in nanoseconds from an arbitrary time in the past.
The time returned bygethrtime is very accurate since it does
not drift.

4

The profile information for the empirical analysis was ob-
tained using theQuantify [10] performance measurement
tool. Quantify analyzes performance bottlenecks and identi-
fies sections of code that dominate execution time. Unlike tra-
ditional sampling-based profilers (such as theUNIX gprof tool),
Quantify reports results without including its own overhead. In
addition,Quantify measures the overhead of system calls and
third-party libraries without requiring access to source code.

All data is recorded in terms of machine instruction cycles and
converted to elapsed times according to the clock rate of the ma-
chine. The collected data reflect the cost of the original program’s
instructions and automatically exclude anyQuantify counting
overhead.

4 Demultiplexing Performance Results

This section presents our experimental results that measure the
overhead of the four demultiplexing strategies described in Sec-
tion 2.2. Section 4.1 presents the blackbox results of our exper-
iments. Section 4.2 provides detailed whitebox analysis of the
blackbox results. Section 4.3 evaluates the pros and cons of each
demultiplexing strategy.

4.1 Performance Results for Demultiplexing
Strategies

1100200300400500

A
ct

iv
e

D
em

ux
 (

1
M

et
ho

d)

A
ct

iv
e

D
em

ux
 (

10
 M

et
ho

ds
)

A
ct

iv
e

D
em

ux
 (

10
0

M
et

ho
ds

)

G
P

E
R

F
 (

1
M

et
ho

d)

G
P

E
R

F
 (

10
 M

et
ho

ds
)

G
P

E
R

F
 (

10
0

M
et

ho
ds

)

D
yn

am
ic

 H
as

h
(1

 M
et

ho
d)

D
yn

am
ic

 H
as

h
(1

0
M

et
ho

ds
)

D
yn

am
ic

 H
as

h
(1

00
 M

et
ho

ds
)

Li
ne

ar
 (

1
m

et
ho

d)

Li
ne

ar
 (

10
 m

et
ho

ds
)

Li
ne

ar
 (

10
0

m
et

ho
ds

)

0

20

40

60

80

100

120

140

L
at

en
cy

 in
 m

ic
ro

se
co

n
d

s

Number of Objects

Demultiplexing scheme

Figure 5: Demultiplexing Overhead for the Random Invocation
Strategy

Figures 5 and 6 illustrate the performance of the four demulti-
plexing strategies for the random and worst-case invocation strate-
gies, respectively. These figures reveal that in both cases, the
de-layered active demultiplexing and perfect hash-based demulti-

plexing strategies substantially outperform the linear-search strat-
egy and the dynamic hashing strategy. Moreover, the worst-case
performance overhead of the linear-search strategy for 500 objects
and 100 operations is�1.87 times greater than random invocation,
which illustrates the non-scalability of linear search as a demulti-
plexing strategy.

In addition, the figures reveal that both the active demulti-
plexing and perfect hash-based demultiplexing perform quite effi-
ciently and predictably regardless of the invocation strategies. The
de-layered active demultiplexing strategy performs slightly better
than the perfect hash-based strategy for both invocation strategies.
Section 4.2 explains the reasons for these results.

4.2 Detailed Analysis of Demultiplexing Overhead

110
020

030
040

050
0

A
ct

iv
e

D
em

ux
 (

1
M

et
ho

d)

A
ct

iv
e

D
em

ux
 (

10
 M

et
ho

ds
)

A
ct

iv
e

D
em

ux
 (

10
0

M
et

ho
ds

)

G
P

E
R

F
 (

1
M

et
ho

d)

G
P

E
R

F
 (

10
 M

et
ho

ds
)

G
P

E
R

F
 (

10
0

M
et

ho
ds

)

Li
ne

ar
 (

1
m

et
ho

d)

Li
ne

ar
 (

10
 m

et
ho

ds
)

Li
ne

ar
 (

10
0

m
et

ho
ds

)

0

50

100

150

200

250

L
at

en
cy

 in
 m

ic
ro

se
co

n
d

s

Number of Objects

Demultiplexing scheme

Figure 6: Demultiplexing Overhead for the Worst-case Invocation
Strategy

This section presents the results of our whitebox profiling to
illustrate the overhead of each demultiplexing strategy shown in
Section 4.1. We explain theQuantify results from invoking 100
operations on 500 objects using the worst-case invocation strategy
in Table 1.

Thedispatch method used for our experiments is shown be-
low:

int
CORBA_BOA::dispatch (CORBA_OctetSequence key,

CORBA_ServerRequest& req,
CORBA_Object_ptr obj)

{
skeleton *skel;
CORBA_Object_ptr obj;
CORBA_String opname;

// Find the object ptr corresponding
// to the key in the object table.

5

Strategy Analysis
Name Time in msec Called %

Active OA::find 280.45 50,000 9.14
demux skeleton 249.94 50,000 8.14

Object::find 36.71 50,000 1.20
Perfect OA::find 346.42 50,000 23.73

hash skeleton 253.62 50,000 17.37
Object::find 78.67 50,000 5.39

Dynamic OA::find 670.56 50,000 34.13
hash Object::find 265.39 50,000 13.51

skeleton 253.62 50,000 12.91
Linear OA::find 12,122.73 50,000 72.46
search Object::find 3,617.48 50,000 21.62

skeleton 249.65 50,000 1.49

Table 1: Analysis of Demultiplexing Overhead

// Use one of the 4 demux strategies
if (this->find (key, obj) {

opname = req.opname ();
// Now find the skeleton corresponding
// to the operation name.
if (obj->find (opname, skel) {

// invoke the skeleton
}

}
}

Only the overhead incurred by theCORBA::OA::dispatch
method and its descendants are shown in Table 1. The primary
descendants of thedispatch method include the following:

� OA::find – which locates a servant corresponding to an
object key in the object table maintained by theOA;

� Object::find – which locates a skeleton corresponding
to the operation name in the operation table in the servant;

� The skeleton – which parses any arguments and makes
the final upcall on the target servant.

ColumnNameidentifies the name of the high cost descendants.
The execution time is shown under columnTime in msec .
The Called column indicates the number of times the method
was invoked and%indicates the percentage of the total execution
time incurred by this method and its descendants.

Table 1 reveals that the linear-search based strategy spends
a substantial portion of its time in theOA::find and
Object::find . In turn, they perform string comparisons on
the object keys and operation names, respectively. In contrast,
both the hashing-based and active demultiplexing strategies incur
no measurable overhead to locate the object and the associated
operation. The dynamic hashing scheme involves fewer string
comparisons compared to the linear search strategy and hence it
performs better.

TheOA::dispatch method and its descendants account for
�20% of the total execution time for theDe-layered Active De-
multiplexingstrategy,�50% for thePerfect hashstrategy,�63%
for the Dynamic hashstrategy, and�95% for theLinear search
strategy. This explains why the de-layered active demultiplexing
strategy outperforms the rest of the strategies.

4.3 Analysis of the Demultiplexing Strategies

The performance results and analysis presented in Sections 4.1
and 4.2 reveal that to provide low-latency and predictable real-
time support, aCORBA Object Adapter must use demultiplexing
strategies based on active demultiplexing or perfect hashing rather
than strategies such as linear-search (which does not scale) and
dynamic hashing (which has high overhead).

The perfect hashing strategy is primarily applicable when the
object keys are knowna priori. The number of operations are al-
ways knowna priori since they are defined in anIDL interface.
Thus, anIDL compiler can generate stubs and skeletons that use
perfect hashing for operation lookup. However, objects imple-
menting an interface can be created dynamically. In this case,
the perfect hashing strategy cannot generally be used for object
lookup.4 In this situation, more dynamic forms of hashing can
be used as long as they provide predictable collision resolution
strategies. In many hard real-time environments it is possible to
configure the systema priori. In this situation, however, perfect
hashing-based demultiplexing can be used.

Our results show that de-layered active demultiplexing outper-
forms the other demultiplexing strategies. However, it requires the
client to possess a handle for each object and its associated oper-
ations in the active object map and operation tables, respectively.
Therefore, active demultiplexing requires either (1) preconfigur-
ing the client with this knowledge or (2) defining a protocol for
dynamically managing handles to add and remove objects cor-
rectly and securely.5

For hard real-time systems, this preconfiguration is typically
feasible and beneficial. For this reason, we are using the perfect
hashing demultiplexing strategy in theTAO ORB we are building
for real-time avionics applications [18, 9].

5 Concluding Remarks

An important class of applications (such as avionics, virtual re-
ality, and telecommunication systems) require scalable, low la-
tency communication. Our earlier work [5, 7] shows why latency-
sensitive applications that utilize many servants and large inter-
faces are not yet supported efficiently by contemporaryCORBA

implementations due to demultiplexing overhead, presentation
layer conversions, data copying, and many layers of virtual
method calls. On low-speed networks this overhead is often
masked. On high-speed networks, this overhead becomes a signif-
icant factor limiting communication performance and ultimately
limiting adoption ofCORBA by developers.

The results presented in this paper compare four demultiplexing
strategies. The object and operation lookup used by these strate-
gies are based on linear-search, perfect hashing, dynamic hash-
ing, and de-layered active demultiplexing. Our results reveal that
the de-layered active demultiplexing strategy provides the low-
est latency and most predictability amongst the three strategies
studied. We have currently implemented the de-layered active

4It is possible to add new objects at run-time using dynamic linking, though
this is generally disparaged in hard real-time environments.

5We assume that the security implications of using active demultiplexing are
addressed via theCORBA security service.

6

demultiplexing strategy inTAO, which is our high performance,
real-timeORB [18].

References
[1] Mary L. Bailey, Burra Gopal, Prasenjit Sarkar, Michael A. Pagels, and

Larry L. Peterson. Pathfinder: A pattern-based packet classifier. InProceed-
ings of the1st Symposium on Operating System Design and Implementation.
USENIX Association, November 1994.

[2] Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox. The APIC Ap-
proach to High Performance Network Interface Design: Protected DMA and
Other Techniques. InProceedings of INFOCOM ’97, Kobe, Japan, April
1997. IEEE.

[3] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation. InProceedings of ACM
SIGCOMM ’96 Conference in Computer Communication Review, pages 53–
59, Stanford University, California, USA, August 1996. ACM Press.

[4] David C. Feldmeier. Multiplexing Issues in Communications System De-
sign. In Proceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM), pages 209–219, Philadelphia, PA, September
1990. ACM.

[5] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the Performance
of Communication Middleware on High-Speed Networks. InProceedings of
SIGCOMM ’96, pages 306–317, Stanford, CA, August 1996. ACM.

[6] Aniruddha Gokhale and Douglas C. Schmidt. The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skeleton Interface over
High-Speed ATM Networks. InProceedings of GLOBECOM ’96, pages 50–
56, London, England, November 1996. IEEE.

[7] Aniruddha Gokhale and Douglas C. Schmidt. Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks. InProceedings of
the International Conference on Distributed Computing Systems, Baltimore,
Maryland, May 1997. IEEE.

[8] Aniruddha Gokhale and Douglas C. Schmidt. Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance. InSubmitted to the
Hawaiian International Conference on System Sciences (Washington Uni-
versity Technical Report #WUCS-97-10), January 1998.

[9] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design
and Performance of a Real-time CORBA Event Service. InProceedings of
OOPSLA ’97, Atlanta, GA, October 1997. ACM.

[10] Pure Software Inc.Quantify User’s Guide. Pure Software Inc., 1996.

[11] Mahesh Jayaram and Ron Cytron. Efficient Demultiplexing of Network
Packets by Automatic Parsing. InProceedings of the Workshop on Compiler
Support for System Software (WCSSS 96), University of Arizona, Tucson,
AZ, February 1996.

[12] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. InProceedings of the Winter USENIX
Conference, pages 259–270, San Diego, CA, January 1993.

[13] Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet
Filter: an Efficient Mechanism for User-level Network Code. InProceedings
of the11th Symposium on Operating System Principles (SOSP), November
1987.

[14] Object Management Group.The Common Object Request Broker: Architec-
ture and Specification, 2.0 edition, July 1995.

[15] Object Management Group.Specification of the Portable Object Adapter
(POA), OMG Document orbos/97-05-15 edition, June 1997.

[16] Douglas C. Schmidt. GPERF: A Perfect Hash Function Generator. InPro-
ceedings of the2nd C++ Conference, pages 87–102, San Francisco, Cali-
fornia, April 1990. USENIX.

[17] Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Ex-
tensible and Maintainable ORB Middleware.Communications of the ACM
(Special Issue on Software Maintenance), 40(12), December 1997.

[18] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design
and Performance of Real-Time Object Request Brokers.Computer Commu-
nications, 1997.

[19] David L. Tennenhouse. Layered Multiplexing Considered Harmful. InPro-
ceedings of the1st International Workshop on High-Speed Networks, May
1989.

[20] Steve Vinoski. CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments.IEEE Communications Magazine, 14(2),
February 1997.

[21] M. Yuhara, B. Bershad, C. Maeda, and E. Moss. Efficient Packet Demulti-
plexing for Multiple Endpoints and Large Messages. InProceedings of the
Winter Usenix Conference, January 1994.

7

