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Abstract

The Common Object Request Broker Architecture (CORBA)
is intended to simplify the task of developing distributed ap-
plications. Although it is well-suited for conventional RPC-
style applications, several limitations become evident when
CORBA is used for a broader range of performance-sensitive
applications running in heterogeneous environments over
high-speed networks. This paper illustrates the performance
limitations of existing CORBA implementations in terms of
their support for the dynamic invocation interface and the
dynamic skeleton interface. The results described below in-
dicate that ORB implementors must optimize both the DII
and DSI significantly before CORBA will be suitable for
performance-sensitive applications on high-speed networks.
In addition, the CORBA 2.0 DII specification must be clar-
ified in order to ensure application portability and optimal
performance.

1 Introduction

The Common Object Request Broker Architecture
(CORBA) [9]) is a promising approach for improving the
flexibility, reliability, and portability of communication soft-
ware. CORBA is designed as an open standard for distributed
object computing. It automates many common network pro-
gramming tasks such as object registration, location, and ac-
tivation; request demultiplexing; framing and error-handling;
parameter marshalling and demarshalling; and operation dis-
patching.

Our experience over the past several years [13, 12] indi-
cates that CORBA is well-suited for statically typed, syn-
chronous request/response applications that run over con-
ventional low-speed networks. However, as developers in-
creasingly attempt to use CORBA for more dynamic types
of distributed applications that run over high-speed networks
several performance limitations have become evident. This
paper quantifies the performance of two widely used exist-
ing CORBA implementations (Orbix 2.0 and ORBeline 2.0)

in terms of their support for the dynamic invocation inter-
face and the dynamic skeleton interface, which are described
below.

� The Dynamic Invocation Interface: CORBA provides
two different interfaces for clients to communicate with
servers:

� Static Invocation Interface (SII) – is provided by static
stubs generated by a CORBA IDL compiler and is useful
when client applications know the interface offered by
the server at compile-time.

� Dynamic Invocation Interface (DII) – is provided by
an ORB’s dynamic messaging mechanism and is use-
ful when client applications do not have compile-time
knowledge of the interfaces offered by servers.

Many distributed applications can be written using
CORBA’s SII. However, there is an important class of appli-
cations (such as network management MIB browsers, config-
uration management tools and distributed visualization tools
and debuggers) that are easier to develop using CORBA’s DII.
The DII enables applications to construct and invoke CORBA
requests at run-time by querying the Interface Repository of
a server.

In addition, the DII is required for applications that use
CORBA’s deferred synchronous model of operation invo-
cation. Although all operation invocations in CORBA are
synchronous, there are three models of invocation:

� Twoway synchronous – which is the typical re-
quest/response model associated with RPC toolkits,
where the client blocks after sending the request until
the response arrives from the server;

� Oneway synchronous – which is a “request-only” mes-
saging model where the client does not receive a re-
sponse;

� Deferred synchronous – this model of twoway call de-
couples the request from the response so that other client
processing can occur until the server sends the response.

The DII supports all three forms of invocation semantics,
whereas the SII stubs only support twoway and oneway syn-
chronous calls. Note that neither oneway nor deferred syn-
chronous CORBA calls are asynchronous since the CORBA
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specification permits the ORB to block while sending a
oneway call (e.g., if the underlying transport layer connection
is flow controlled).

The first set of experiments in this paper pinpoint precisely
where the key sources of overhead exist in CORBA using the
DII. These experiments reveal that the CORBA implemen-
tations spent considerable amounts of time in presentation
layer conversions for various data types. The experimen-
tal results indicate that throughput for different data types is
significantly different. This is due to the differences in the
amount of overhead in presentation conversion for different
data types.

� The Dynamic Skeleton Interface: A dynamic skeleton
interface (DSI) is the server equivalent of the client side’s dy-
namic invocation interface. The DSI is used when an object
implementation does not have any compile time knowledge
of the type of the object it is implementing. In this case, the
DSI provides a mechanism for delivering incoming requests
from the ORB to the object. A client in this case has no way
to determine if the server was using a type-specific skeleton
or a DSI.

The second set of experiments in this paper pinpoint pre-
cisely where the key sources of overhead exist in CORBA
for a client using DII and a server using DSI using twoway
requests. These experiments reveal that the CORBA imple-
mentations spent considerable amounts of time in presenta-
tion layer conversions for various data types. In addition,
non-optimal internal buffer management strategies results in
large amount of time spent for network writes and reads.

Our results indicate that the Orbix and ORBeline CORBA
implementations incur very different amounts of overhead
depending on the interpretation of the CORBA 2.0 DII/DSI
specification and type of the data exchanged between client
and server. For instance, CORBA 2.0 does not specify if a
DII request object can be reused after an operation is invoked
on it. ORBeline allows reuse of DII requests, whereas Orbix
does not. This design decision has a substantial impact on
performance, e.g., ORBeline with DII request reuse consis-
tently achieved twice as much throughput as the Orbix ver-
sion that did not reuse DII requests. In contrast, the through-
put for sending shorts in Orbix for a buffer size of 128 K
is 34 Mbps as opposed to 7 Mbps in the equivalent1 ORBe-
line version. In addition, both implementations of CORBA
performed very poorly (between 1 to 4 Mbps) when send-
ing structs. Finally, twoway request transfers achieved
around 80% of the oneway throughput for each data type,
due primarily to the impact of ORB latency.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the key components in the CORBA com-
munication architecture; Section 3 demonstrates the key
sources of overhead in conventional CORBA implementa-
tions over ATM; Section 4 describes related work; and Sec-
tion 5 presents concluding remarks.

1We performed two sets of DII experiments for ORBeline: one that
reused DII requests and one that did not – the latter is equivalent to the
Orbix behavior.
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Figure 1: Components in the CORBA Distributed Object
Computing Model

2 Overview of CORBA

The CORBA 2.0 standard [9] defines a set of components
that allow client applications to invoke operations (op) with
arguments (args) on object implementations. Object imple-
mentations can be configured to run locally and/or remotely
without affecting their implementation or use. Figure 1 illus-
trates the primary components in the CORBA architecture.
The responsibility of each component in CORBA is described
below:

� Object Implementation: This defines operations that
implement a CORBA IDL interface. Object implementa-
tions can be written in a variety of languages including C,
C++, Java, Smalltalk, and Ada.

�Client: This is the program entity that invokes an opera-
tion on an object implementation. Accessing the services of
a remote object should be transparent to the caller. Ideally,
it should be as simple as calling a method on an object, i.e.,
obj->op(args). The remaining components in Figure 1
help to support this level of transparency.

� Object Request Broker (ORB): When a client invokes
an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, de-
livering the request to the object, and returning any response
to the caller.

� ORB Interface: An ORB is a logical entity that may
be implemented in various ways (such as one or more pro-
cesses or a set of libraries). To decouple applications from
implementation details, the CORBA specification defines an
abstract interface for an ORB that provides various helper
functions such as converting object references to strings and
vice versa, and creating argument lists for requests made
through the dynamic invocation interface described below.

� CORBA IDL stubs and skeletons: Many applications
utilize the IDL stubs and skeletons in CORBA’s Static Invoca-
tion Interface (SII). These SII components serve as the “glue”
between the client and server applications, respectively, and
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the ORB. The transformation between CORBA IDL defini-
tions and the target programming language is automated by
a compiler for CORBA IDL.

� Dynamic Invocation Interface (DII): This interface al-
lows a client to directly access the underlying request mech-
anisms provided by an ORB. Applications use the DII to
dynamically issue requests to objects without requiring IDL
interface-specific stubs to be linked in. Unlike the SII IDL
stubs (which only allow RPC-style requests), the DII also
allows clients to make non-blocking deferred synchronous
(separate send and receive) operations.

� Dynamic Skeleton Interface (DSI): this is the server
side’s analogue to the client side’s DII. The DSI allows an
ORB to deliver requests to an object implementation that
does not have compile-time knowledge of the type of the
object it is implementing. The client making the request has
no idea whether the implementation is using the type-specific
IDL skeletons or is using the dynamic skeletons.

�Object Adapter: associates object implementations with
the ORB and assists the ORB with delivering requests to the
object and with activating the object.

As shown below, the primary drawback to using CORBA
is its relatively poor performance over high-speed networks.
In particular, CORBA implementations of the DII and DSI
perform substantially worse than the SII [5]. Moreover, the
SII itself does not perform well relative to programming
with lower-level communication mechanisms (such as using
sockets directly over TCP/IP).

3 Experimental Results of CORBA
over ATM

3.1 CORBA/ATM Testbed

This section describes our CORBA/ATM testbed and
presents the results of our performance experiments. The
experiments in this section were collected using a Bay Net-
works LattisCell 10114 ATM switch connected to two dual-
processor SPARCstation 20 Model 712s running SunOS 5.5.
The LattisCell 10114 is a 16 Port, OC3 155Mbs/port switch.
Each SPARCstation 20 contains two 70 MHz Super SPARC
CPUs with a 1 Megabyte cache per-CPU. The SunOS 5.5
TCP/IP protocol stack is implemented using the STREAMS
communication framework. Each SPARCstation has 128
Mbytes of RAM and an ENI-155s-MF ATM adaptor card,
which supports 155 Megabits per-sec (Mbps) SONET mul-
timode fiber. The Maximum Transmission Unit (MTU) on
the ENI ATM adaptor is 9,180 bytes. Each ENI card has 512
Kbytes of on-board memory. A maximum of 32 Kbytes is
allotted per ATM virtual circuit connection for receiving and
transmitting frames (for a total of 64 K). This allows up to
eight switched virtual connections per card.

To approximate the performance of communication mid-
dleware for channel speeds greater than our available ATM

network, we also duplicated our experiments in aloopback
mode using the I/O backplane of a dual-CPU SPARCstation
20s as a high-speed “network.” The user-level memory-to-
memory bandwidth of our SPARCstation 20 model 712s were
measured at 1.4 Gbps, which is comparable to OC24 gigabit
ATM networks [11].

3.2 Traffic Generators

Earlier studies [13, 12] tested the performance of transferring
untyped bytestream data between hosts using several imple-
mentations of CORBA and other lower-level mechanisms
like sockets. However, there were several limitations with
these experiments:

� Lack of presentation layer measurements – typed data
reveals the overhead imposed by the presentation layer
conversions since it must be marshalled and demar-
shalled. However, earlier studies only examined un-
typed data.

� Lack of DII measurements – Earlier studies used the
CORBA IDL compiler generated SII stubs that are un-
able to test important CORBA DII based applications
such as network management and distributed visualiza-
tion/debugging tools.

� Lack of DSI measurements – Earlier studies used the
CORBA IDL compiler generated skeletons for the
server side. No measurements were performed to eval-
uate the performance of the DSI.

In contrast, the experiments described below used richly
typed data to identify overheads imposed by the DII and
DSI. The experiments conducted for this paper extend earlier
studies by measuring the performance of two different im-
plementations of CORBA (Orbix 2.0 and ORBeline 2.0) for
two features of CORBA:

� The Dynamic Invocation Interface: Both CORBA im-
plementations of the CORBA-TTCP [12]2 client send 64 MB
of richly-typed and untyped data as a sequence data type
using the DII. The client tests the invoke (twoway com-
munication) and send oneway (oneway communication)
methods supported by the CORBARequest interface. The
server uses the skeletons generated by the IDL compiler. To
use the DII, a client must first create a request using the
CORBA create request method. This request is then
populated by the appropriate method name and its parameters
in the correct order. In our experiment, we create a request
and populate it with the method name and a data buffer of
the desired size. We sent the same request repeatedly, only
varying the data buffer, until 64 MB of data is sent to the
server.

Since the request object (i.e., the operation name and as-
sociated internal state) does not change in our tests, it is

2CORBA-TTCP is a freely available benchmarking program we de-
veloped to evaluate the performance of CORBA implementations over
TCP/IP/ATM networks.
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desirable to reuse the request object on every invocation
to amortize the cost of creating the object. However, the
CORBA specification [9] does not specify whether a request
created using the create request method can be reused
or whether it must be created new and populated by the pa-
rameters, and released after every invocation.

Orbix 2.0 did not allow reuse of the request. Therefore, we
had to create a new request and populate it repeatedly. This
had an adverse effect on the performance since the client
spends a significant amount of time in the request creation,
population, and release. Conversely, ORBeline 2.0 did allow
reuse of the request object, so we could just replace the
data buffer. We performed two sets of experiments using
the ORBeline CORBA-TTCP client - both with and without
request reuse. As described in Section 3.4.1, ORBeline with
request reuse twice as well compared with the versions not
reusing requests.

�The Dynamic Skeleton Interface: The same ORBeline3

client in the DII experiment was used to send requests to the
ORBeline CORBA-TTCP server, which uses DSI. The DII
client tests the invoke (twoway communication) method4

supported by the CORBA Request interface. We reused
the requests in these tests, as described above.

Traffic for the experiments was generated and consumed
by an extended version of the CORBA-TTCP [12] protocol
benchmarking tool. This tool extended the standard TTCP for
use with CORBA implementations like Orbix 2.0 and ORBe-
line 2.0. CORBA-TTCP measures end-to-end data transfer
throughput in Mbps from a transmitter process to a remote re-
ceiver process across an ATM network. In the oneway case,
the flow of user data for each version of CORBA-TTCP
is uni-directional, with the transmitter flooding the receiver
with a user-specified number of data buffers. The twoway
communication is just like the oneway communication ex-
cept that additionally the client blocks until it receives an
acknowledgement from the server. Various sender and re-
ceiver parameters may be selected at run-time which include
the size of the socket transmit and receive queues, the number
of data buffers transmitted, the size of data buffers, and the
type of data in the buffers.

The following data types were used for all the tests:
scalars (short, char, long, octet, double) and a
struct composed of all the scalars (PerfStruct). The
CORBA implementation transferred the data types using IDL
sequences, which are dynamically-sized arrays. These
definitions are shown in the Appendix.

3.3 Parameter Settings

Existing studies [4, 7, 2, 13, 12] of transport protocol per-
formance over ATM demonstrate the impact of parameters

3Orbix 2.0 does not yet support DSI, so we could not perform the DSI
tests for Orbix.

4We observed many requests were not reaching the ORBeline DSI server
since the requests were oneway. Hence we did not report results for this
tests.

such as socket queue sizes and data buffer on performance.
Therefore, our CORBA-TTCP benchmarks varied these two
parameters for each type of data as follows:

� Socket queue size: the sender and receiver socket queue
size used was 64 K bytes, which is the maximum on SunOS
5.5. These parameters are shown to have a significant impact
on CORBA-level and TCP-level performance on high-speed
networks due to their influence on the size of the TCP segment
window [7, 13].

� Data buffer size: Sender buffers were incremented by
powers of two, ranging from 1 K bytes to 128 K bytes. The
experiment was carried out ten times for each buffer size to
account for variations in ATM network traffic (which was
insignificant since the network was otherwise unused). The
average of the throughput results is reported in the figures
below.

3.4 Performance Results

The throughput measurements for the DII and DSI fea-
tures of CORBA using remote transfers are presented in
this section. Detailed profiling measurements of presenta-
tion layer, data copying, and memory management overhead
are also presented. The profile information was obtained
using the Quantify performance measurement tool [14].
Quantify analyzes performance bottlenecks and identifies
sections of code that dominate execution time without includ-
ing its overhead as is the case with traditional sampling-based
profilers like the UNIX gprof tool.

3.4.1 Dynamic Invocation Interface Measurements

The figures presented in this section depict the observed user-
level throughput at the sender for buffer sizes of 1 K, 2 K,
4 K, 8 K, 16 K, 32 K, 64 K and 128 K bytes using 64 KB
sender and receiver socket queues (the maximum possible on
SunOS 5.5).5

Figures 2 and 3 and 6 depict the throughput obtained for
sending 64 MB of data of different data types for the Or-
bix and ORBeline implementations of CORBA-TTCP over
ATM using oneway6 and twoway communication without
request reuse, respectively. Figure 4 depicts the through-
put for the ORBeline CORBA-TTCP implementation that
reuses the request.

The shape of the CORBA DII performance curves indicate
that the observed throughputsdiffer significantly for different
types of data. The observed throughput for a given data
type depends on how the CORBA implementation performs

5Our tests revealed that the receiver-side throughput was approximately
the same as the sender-side. Therefore, we only show sender-side throughput
results.

6The twoway results are consistently lower than the oneway results
since the client in the twoway case blocks for an acknowledgement.
Therefore, we omitted the results due to lack of space. Complete re-
sults for the tests (i.e., twoway results for DII, loopback tests for the
oneway and twoway DII, and oneway results for DSI) are available at
http://www.wustl.edu/�schmidt/GLOBECOM-96.ps.gz.
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Figure 2: Orbix: Client-side Throughput for Oneway Com-
munication using DII without Request Reuse.
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Figure 3: ORBeline: Client-side Throughput for Oneway
Communication using DII without Request Reuse.

presentation layer conversions, data copying and memory
management. The throughputsinitially increase as the sender
buffer size increases due to a decrease in the number of
writes. However, this throughput increase begins to level
off once network-layer fragmentation occurs. For the ATM
network we used, the maximum transfer unit (MTU) was
9,180 bytes. Thus, fragmentation starts once the write buffers
become greater than the MTU size. Although the MTU
is 9,180 bytes, we do not observe the highest throughput
for sender buffer sizes of 8 K, since for these buffer sizes,
the number of writes is large and the presentation layer
overhead plays a major role in decreasing the throughput.

The throughput for the oneway transfer case was consis-
tently higher than that of the twoway case. In the oneway
transfer, the client does not block for a response from the
server after it has sent a request. This allows the client to
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Figure 4: ORBeline: Client-side Throughput for Oneway
Communication using DII with Request Reuse.

send the next request immediately. This behavior differs
from our CORBA twoway communication tests, where the
clients are blocked until they receive an acknowledgement
from the server (although no return values are sent back).
The additional latency associated with this blocking reduced
the throughput by roughly 20% for the twoway case. This
latency may be hard to avoid, however, if the client requires
confirmation that the server has completed the request.

A detailed analysis of the overhead incurred on the client
and the server side in sending the octet and struct data
types for the oneway case with 128 K sender buffer sizes is
presented in Tables 1 and 2, respectively. 7 In Tables 1 and 2,
theTime in msec column indicates the total time spent by
the corresponding operation indicated under the category
column. The Percent execution column indicates the
percentage of the total execution time taken up by the method.
Table 1 reveals that for sendingoctet/char, the Orbix and
both versions of ORBeline spent most of their time inwrite
and populating the request.

In contrast, for each of the other data types (onlystructs
are shown in the table), the implementations spent a signif-
icant amount of time creating a request, populating it with
parameters and marshalling the data. For example, to send
64 MB of structs, the Orbix version spent 96% of its time
in marshalling its parameter and packetizing the data. The
throughput for the ORBeline version without request reuse is
comparable to that of Orbix. The ORBeline version with re-
quest reuse performs much better than the ORBeline version
without request reuse and the Orbix version. This is due to
the less amount of time spent in marshalling (14,168 msec)
and memcpy (896 msec) as opposed to the time taken by the
ORBeline version that does not reuse requests (22,215 msec
for marshalling and 13,428 msec for memcpy).

In addition, the tables reveal that the throughput for
shorts is lower than that for longs because the CORBA

7The analysis for the twoway case was similar to the oneway case.
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Version Data Analysis

Type Category Time Percent
(msec) Execution

Orbix octet write 26,728 73.52
Populating 7,160 19.70
and
marshalling
Allocate 1,164 3.15
memory
memcpy 895 2.46

struct Marshalling 397,724 96.6
and
packetizing
write 5,016 1.23

ORBeline octet writev 4,623 61.14
(without memcpy 1,791 23.69
request Allocate 940 12.43
reuse) memory

struct writev 77,605 55.72
Populating 22,215 15.95
and
marshalling
memcpy 13,428 9.64

ORBeline octet writev 5,794 85.83
(with memcpy 898 13.31

request struct writev 76,575 64.89
reuse) Populating 14,168 12.01

and
marshalling

Table 1: Analysis of Client-side Overheads for CORBA DII

Version Data Analysis

Type Category Time Percent
(msec) Execution

Orbix octet typecode 3,361 50.00
assertion
read 2,140 32.00
memcpy 896 13.39

struct demarshalling 11,849 49.00
typecode 6,665 27.57
assertion
read 4,985 20.62

ORBeline octet read 3,177 90.48
(without struct demarshalling 10,552 58.52
request memcpy 3,878 21.5
reuse) read 3,318 18.4

ORBeline octet read 3,238 90.60
(with struct demarshalling 10,552 58.52

request memcpy 3,878 21.41
reuse) read 3,395 18.74

Table 2: Analysis of Server-side Overheads for CORBA DII
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Figure 5: Client-side Throughput for Oneway Communica-
tion using DII in Loopback Mode.
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Figure 6: Client-side Throughput for Twoway Communica-
tion using DII.

DII implementation spent a larger amount of time doing mar-
shalling and data copying for shorts than for longs. The
lowest throughputs were observed for sending structs.
The analysis of overheads for the server-side is similar to
that of the client-side. The receiver side for data types other
than char/octet spends a significant amount of time per-
forming reads and demarshalling the data.

�Loopback Results: Figures 5 and 7 depict the throughput
obtained for sending 64MB data of various data types for the
ORBeline implementation8 of CORBA-TTCP over ATM.
The loopback results provide an insight into the performance
that can be expected of the CORBA DII implementations
for network channel speeds greater than the 155 Mbps ATM
network available for our research.

The figures indicate that for sending octet/chars, the
observed throughput increases as the sender buffer sizes in-

8As noted earlier, Orbix DII did not operate correctly.
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Figure 7: Client-side Throughput for Twoway Communica-
tion using DII in Loopback Mode.
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Figure 8: Observed Client Throughput using ORBeline DSI

crease. This is due to the lesser number of writes needed
as sender buffer size increases. Also, due to the loopback
mode, the maximum transfer unit (MTU) of the ATM net-
work (9,180 bytes) does not cause any fragmentation and
hence the throughput improves with increasing buffer sizes.
The figures also indicate that for the rest of the data types, the
presentation layer conversions and data copying operations
severely restrict the throughput. A comparison between the
Quantify analysis for sending char and double for 64
K sender buffer size reveals that chars spend 1,207 msec in
memcpy as opposed to 7,208 msec taken up by doubles.
In addition, the marshalling of chars take up 0.54 msec as
opposed to 4,434 msec for doubles. This explains why the
throughput for sending char/octet is much higher than
that for the rest of the data types.

3.4.2 Dynamic Skeleton Interface Measurements:

Figure 8 depicts the client-side throughput for an ORBe-

Agent Data Analysis

Type Category Time Percent
(msec) Execution

Client octet read 3,911 47.95
writev 2,923 35.84
memcpy 912 11.19

struct writev 505,914 91.34
marshalling 13,341 2.41
and
populating
memcpy 7,198 1.30
read 5,062 0.91

Server octet writev 23,572 82.00
memcpy 2,701 9.40
read 1,806 6.29

struct writev 1,250,130 92.41
demarshalling 39,373 2.89
memcpy 19,693 1.46

Table 3: Analysis of Overhead using Twoway Client-side
DII and Server-Side DSI

line client using DII and an ORBeline server using DSI for
twoway transfer.9 The shape of the CORBA DSI perfor-
mance curves indicate that the observed throughputs differ
significantly for different types of data. The throughput for
a given data type depends on how the CORBA implemen-
tation performs presentation layer conversions, data copying
and memory management.

Of all the CORBA data types we tested, the chars
and octets performed the best. This is not surprising,
and results from the fact that presentation layer conversions
and data copying can be minimized for this “untyped” data
(though both ORBs do perform multiple data copies for
chars and octets). Throughput initially increases as the
sender buffer size increases due to a decrease in the number
of writes and reads. However, the increased throughput
begins to level off once network-layer fragmentation occurs.
For our ATM network, the maximum transfer unit (MTU)
was 9,180 bytes. Thus, fragmentation occurs once the write
buffers become greater than the MTU size. Although the
MTU is 9,180 bytes, we do not observe the highest through-
put for sender buffer sizes of 8K. For these buffer sizes,
the number of writes is large and the presentation layer
overhead plays a major role in decreasing the throughput.

Table 3 depicts the time spent by the sender and receiver
of the ORBeline version of CORBA-TTCP using DSI when
transferring 64 Mbytes of sequences using 128 K sender
and receiver buffers and 64 K socket queues. An analysis for
octets (best throughput) andstructs (worst throughput)
is presented. These figures precisely pinpoint the time spent
in marshalling, data copying, and reading and writing of
buffers. The time taken for writes suggests the use of non-
optimal buffer management and flow control methods used
by the ORBs.

9Oneway transfer results have not been presented since the ORBeline 2.0
frequently drops oneway operations at the server. Although this behavior
is allowed by the “best effort” semantics of CORBA oneway operations, it
appears to be a bug in the ORBeline implementation.
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The analysis of the performance of the CORBA imple-
mentations suggests that optimized read/writes, presentation
layer conversions and data copying are the primary areas that
must be optimized to achieve higher throughputs.

4 Related Work

Existing research in gigabit networking has focused exten-
sively on enhancements to TCP/IP. Less attention has been
paid to integrating the following topics related to communi-
cation middleware like CORBA:

� Transport Protocol Performance over ATM networks:
[4, 7, 2] present results on performance of TCP/IP (and
UDP/IP [2]) on ATM networks by varying a number of pa-
rameters (such as TCP window size, socket queue size, and
user data size). This work indicates that in addition to the
host architecture and host network interface, parameters con-
figurable in software (like TCP window size, socket queue
size and user data size) significantly affect TCP throughput.
[2] also shows that UDP performs better than TCP over ATM
networks, which is attributed to redundant TCP processing
overhead on highly-reliable ATM links.

A comparison of our current results for typed data with
other work using untyped data in a similar CORBA/ATM
testbed [13] reveal that the performance of Orbix for se-
quences of scalar data types is almost the same as that reported
for untyped data sequences using the statically generated
stubs and the IIOP. However, the performance of transferring
sequences of CORBAstructs for 64 K and 8 K was much
worse than those for the scalars. As discussed earlier, this
overhead arises from the amount of time the CORBA imple-
mentations spend performing presentation layer conversions
and data copying.

� Presentation layer and data copying: The presentation
layer is a major bottleneck in high-performance communica-
tion subsystems [1]. This layer transforms typed data objects
from higher-level representations to lower-level representa-
tions (marshalling) and vice versa (demarshalling). In both
RPC toolkitsand CORBA, this transformation process is per-
formed by client-side stubs and server-side skeletons that are
generated by interface definition language (IDL) compilers.
IDL compilers translate interfaces written in an IDL (such as
XDR [15], NDR [3], or CDR [9]) to other forms such as a
network wire format. A significant amount of research has
been devoted to developing efficient stub generators. We cite
a few of these and classify them as below.

� Annotating high level programming languages – The
Universal Stub Compiler (USC) [10] annotates the C
programming language with layouts of various data
types. The USC stub compiler supports the automatic
generation of device and protocol header marshalling
code. The USC tool generates optimized C code that
automatically aligns data structures and performs net-
work/host byte order conversions.

� Generating code based on Control Flow Analysis of
interface specification – [6] describes a technique of
exploiting application-specific knowledge contained in
the type specifications of an application to generate op-
timized marshalling code. This work tries to achieve
an optimal tradeoff between interpreted code (which is
slow but compact in size) and compiled code (which is
fast but larger in size). A frequency-based ranking of
application data types is used to decide between inter-
preted and compiled code for each data type.

None of the systems described above are targeted for com-
munication middleware (e.g., CORBA) requirements and
constraints such as heterogeneity, high system reliability, ef-
ficient marshalling/demarshalling of parameters, flexible and
efficient object location and selection, and higher level mech-
anisms for collaboration among services [8].

5 Concluding Remarks

An important and growing class of applications (such as in-
terface browsers, network management applications, and dis-
tributedvisualization/debuggingtools) require flexible, high-
performance communication middleware linked by high-
speed networks. Contemporary CORBA implementations
do not yet meet these requirements due to overhead stem-
ming from (1) excessive presentation layer conversions and
data copying, (2) inefficient server demultiplexing tech-
niques, (4) long chains of intra-ORB function calls, and (4)
non-optimized buffering algorithms used for network reads
and writes. On low-speed networks this overhead is often
masked. On high-speed networks, this overhead becomes a
significant factor limiting communication performance and
ultimately adoption by developers.

As users and organizations migrate to networks with gi-
gabit data rates, the inefficiencies of current communication
middleware (like CORBA) will force developers to choose
lower-level mechanisms (like sockets) to achieve the neces-
sary transfer rates thereby increasing development effort and
reducing system reliability, flexibility, and reuse. This is a
serious problem for mission/life-critical applications (such as
satellite surveillance and medical imaging [4]).

This paper illustrates how existing CORBA implementa-
tions incur considerable overhead when application use the
dynamic invocation interface (DII) and the dynamic skeleton
interface (DSI) over high-speed ATM networks. Our DII and
DSI results indicate that both Orbix 2.0 and ORBeline 2.0 in-
cur different levels of presentation conversion overhead for
different CORBA data types. Moreover, non-optimal inter-
nal buffer management strategies lead to large amounts of
time spent in network writes and reads.

Finally, the experiments indicate that for DII, it is desirable
to permit reuse of requests if the operations are oneway and
the parameter values do not change. The current CORBA 2.0
specification does not define whether this is legal or not, so
different implementations interpret the specification differ-
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ently. Not only does this impede portability across ORB im-
plementations, but it also permits non-optimal performance
if requests are not reused.
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Appendix

The following CORBA IDL interface was used for the Orbix
and ORBeline CORBA implementations for both the DII and
DSI tests:

struct PerfStruct{ short s; char c; long l;
octet o; double d; };

// Richly typed data
interface ttcp_sequence
{
typedef sequence<short> ShortSeq;
// The rest of the sequence typedefs
// are defined in a similar way.

// Routines to send sequences of various data types.
oneway void sendShortSeq (in ShortSeq ttcp_seq);

// The rest of the methods are defined in a similar way.

// To measure time taken for receipt of data.
oneway void start_timer ();
oneway void stop_timer ();

};

For the twoway data transfer case, the keyword oneway
from the above interface was removed.
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