The Perfor mance of the CORBA Dynamic Invocation Interface and
Dynamic Skeleton Interface over High-Speed ATM Networks

Aniruddha Gokhale and Douglas C. Schmidt

gokhale@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science, Box 1045

Washington University
St. Louis, MO 63130-4899, USA
Phone: (314) 935-6160 Fax: (314) 935-7302

Ansubset of thispaper appeared inthe GLOBECOM Con-
ference, London, November 18 — 227¢ 1996.

Abstract

The Common Object Request Broker Architecture (CORBA)
isintended to simplify the task of devel oping distributed ap-
plications. Although it iswell-suited for conventional RPC-
style applications, several limitations become evident when
CORBA isused for abroader rangeof performance-sensitive
applications running in heterogeneous environments over
high-speed networks. This paper illustratesthe performance
limitations of existing CORBA implementationsin terms of
their support for the dynamic invocation interface and the
dynamic skeleton interface. The results described below in-
dicate that ORB implementors must optimize both the DII
and DS significantly before CORBA will be suitable for
performance-sensitive applicationson high-speed networks.
In addition, the CORBA 2.0 DIl specification must be clar-
ified in order to ensure application portability and optimal
performance.

1 Introduction

The Common Object Reguest Broker Architecture
(CORBA) [9]) is a promising approach for improving the
flexibility, reliability, and portability of communication soft-
ware. CORBA isdesigned as an open standard for distributed
object computing. It automates many common network pro-
gramming tasks such as object registration, location, and ac-
tivation; request demultiplexing; framing and error-handling;
parameter marshalling and demarshalling; and operation dis-
patching.

Our experience over the past several years [13, 12] indi-
cates that CORBA is well-suited for statically typed, syn-
chronous request/response applications that run over con-
ventional low-speed networks. However, as developers in-
creasingly attempt to use CORBA for more dynamic types
of distributed applicationsthat run over high-speed networks
severa performance limitations have become evident. This
paper quantifies the performance of two widely used exist-
ing CORBA implementations (Orbix 2.0 and ORBeline 2.0)

in terms of their support for the dynamic invocation inter-
face and the dynamic skel eton interface, which are described
bel ow.

e The Dynamic Invocation Interface:. CORBA provides
two different interfaces for clients to communicate with
servers,

e Satic Invocation Interface (SI1) —is provided by static
stubsgenerated by aCORBA IDL compiler andisuseful
when client applications know the interface offered by
the server a compile-time.

o Dynamic Invocation Interface (DII) — is provided by
an ORB'’s dynamic messaging mechanism and is use-
ful when client applications do not have compile-time
knowledge of the interfaces offered by servers.

Many distributed applications can be written using
CORBA'sSII. However, thereis an important class of appli-
cations (such as network management M 1B browsers, config-
uration management tools and distributed visualization tools
and debuggers) that areeasier todevelop using CORBA'sDI|.
TheDII enablesapplicationsto construct andinvoke CORBA
requests at run-time by querying the Interface Repository of
aserver.

In addition, the DI is required for applications that use
CORBA's deferred synchronous model of operation invo-
cation. Although al operation invocations in CORBA are
synchronous, there are three model s of invocation:

e Twoway synchronous — which is the typical re-
guest/response model associated with RPC toolkits,
where the client blocks after sending the request until
the response arrives from the server;

e Oneway synchronous —which is a “request-only” mes-
saging model where the client does not receive a re-
sponse;

o Deferred synchronous — this model of twoway call de-
couplestherequest fromtheresponse so that other client
processing can occur until the server sendstheresponse.

The DIl supports &l three forms of invocation semantics,
whereas the Sl stubs only support twoway and oneway syn-
chronous calls. Note that neither oneway nor deferred syn-
chronous CORBA calls are asynchronous since the CORBA



specification permits the ORB to block while sending a
oneway cal (e.g., if theunderlyingtransport |ayer connection
isflow controlled).

Thefirst set of experimentsin thispaper pinpoint precisely
where the key sources of overhead existin CORBA using the
Dll. These experiments reveal that the CORBA implemen-
tations spent considerable amounts of time in presentation
layer conversions for various data types. The experimen-
tal resultsindicate that throughput for different datatypesis
significantly different. Thisis due to the differences in the
amount of overhead in presentation conversion for different
data types.

e The Dynamic Skeleton Interface: A dynamic skeleton
interface (DSI) istheserver equivalent of the client side’sdy-
namic invocation interface. The DSI is used when an object
implementation does not have any compile time knowledge
of thetype of the object it isimplementing. In this case, the
DSl provides a mechanism for delivering incoming requests
from the ORB to the object. A client in this case has no way
to determine if the server was using a type-specific skeleton
oraDSl.

The second set of experiments in this paper pinpoint pre-
cisely where the key sources of overhead exist in CORBA
for aclient using DIl and a server using DSI using twoway
requests. These experiments revea that the CORBA imple-
mentations spent considerable amounts of time in presenta
tion layer conversions for various data types. In addition,
non-optimal interna buffer management strategies resultsin
large amount of time spent for network writes and reads.

Our resultsindicate that the Orbix and ORBeline CORBA
implementations incur very different amounts of overhead
depending on the interpretation of the CORBA 2.0 DII/DS|
specification and type of the data exchanged between client
and server. For instance, CORBA 2.0 does not specify if a
DIl request object can bereused after an operationisinvoked
onit. ORBdinealowsreuse of DIl requests, whereas Orbix
does not. This design decision has a substantial impact on
performance, e.g., ORBeline with DIl request reuse consis-
tently achieved twice as much throughput as the Orbix ver-
sion that did not reuse DI requests. In contrast, the through-
put for sending shor t s in Orbix for abuffer size of 128 K
is 34 Mbps as opposed to 7 Mbpsin the equivalent! ORBe-
line version. In addition, both implementations of CORBA
performed very poorly (between 1 to 4 Mbps) when send-
ing st ruct s. Finaly, twoway request transfers achieved
around 80% of the oneway throughput for each data type,
due primarily to the impact of ORB latency.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the key components in the CORBA com-
munication architecture; Section 3 demonstrates the key
sources of overhead in conventional CORBA implementa
tions over ATM; Section 4 describes related work; and Sec-
tion 5 presents concluding remarks.

1we performed two sets of DIl experiments for ORBeline: one that
reused DIl requests and one that did not — the latter is equivalent to the
Orbix behavior.
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Figure 1: Components in the CORBA Distributed Object
Computing Model

2 Oveview of CORBA

The CORBA 2.0 standard [9] defines a set of components
that allow client applicationsto invoke operations (op) with
arguments(ar gs) onobject implementations. Object imple-
mentations can be configured to run locally and/or remotely
without affecting their implementation or use. Figurelillus-
trates the primary components in the CORBA architecture.
Theresponsibility of each component in CORBA isdescribed
bel ow:

e Object Implementation: This defines operations that
implement a CORBA IDL interface. Object implementa
tions can be written in a variety of languages including C,
C++, Java, Smdlltalk, and Ada

e Client: Thisisthe program entity that invokes an opera-
tion on an object implementation. Accessing the services of
a remote object should be transparent to the caller. 1dedlly,
it should be as simple as calling a method on an object, i.e.,
obj - >op( ar gs) . The remaining componentsin Figure 1
help to support thislevel of transparency.

¢ Object Request Broker (ORB):  When aclient invokes
an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, de-
livering the request to the object, and returning any response
tothecaller.

¢ ORB Interface. An ORB is a logical entity that may
be implemented in various ways (such as one or more pro-
cesses or a st of libraries). To decouple applications from
implementation details, the CORBA specification defines an
abstract interface for an ORB that provides various helper
functions such as converting object references to strings and
vice versa, and creating argument lists for requests made
through the dynamic invocation interface described bel ow.

e CORBA IDL stubs and skeletons:  Many applications
utilizethel DL stubsand skeletonsin CORBA's Staticlnvoca
tionInterface (SI1). These Sl componentsserve asthe” glue”’
between the client and server applications, respectively, and




the ORB. The transformation between CORBA IDL defini-
tions and the target programming language is automated by
acompiler for CORBA IDL.

e Dynamic Invocation Interface (DIl): Thisinterface d-
lows aclient to directly access the underlying request mech-
anisms provided by an ORB. Applications use the DIl to
dynamically issue requests to objects without requiring IDL
interface-specific stubs to be linked in. Unlike the SI1 IDL
stubs (which only alow RPC-style requests), the DIl aso
allows clients to make non-blocking deferred synchronous
(separate send and receive) operations.

o Dynamic Skeleton Interface (DSI): thisisthe server
side’s analogue to the client side’'s DIl. The DSl alows an
ORB to ddiver requests to an object implementation that
does not have compile-time knowledge of the type of the
object it isimplementing. The client making the request has
no ideawnhether theimplementationisusing thetype-specific
IDL skeletons or is using the dynamic skeletons.

o Object Adapter: associates object implementationswith
the ORB and assists the ORB with delivering requeststo the
object and with activating the object.

As shown below, the primary drawback to using CORBA
isitsrelatively poor performance over high-speed networks.
In particular, CORBA implementations of the DIl and DSI
perform substantially worse than the Sl [5]. Moreover, the
Sl itself does not perform well relative to programming
with lower-level communication mechanisms (such as using
sockets directly over TCP/IP).

3 Experimental Results of CORBA
over ATM

3.1 CORBA/ATM Testbed

This section describes our CORBA/ATM testbed and
presents the results of our performance experiments. The
experiments in this section were collected using a Bay Net-
works LattisCell 10114 ATM switch connected to two dual-
processor SPARCstation 20 Model 712s running SunOS5.5.
The LattisCell 10114 isa 16 Port, OC3 155Mbs/port switch.
Each SPARCstation 20 containstwo 70 MHz Super SPARC
CPUs with a 1 Megabyte cache per-CPU. The SunOS 5.5
TCP/IP protocol stack isimplemented using the STREAMS
communication framework. Each SPARCstation has 128
Mbytes of RAM and an ENI-155s-MF ATM adaptor card,
which supports 155 Megabits per-sec (Mbps) SONET mul-
timode fiber. The Maximum Transmission Unit (MTU) on
the ENI ATM adaptor is 9,180 bytes. Each ENI card has 512
Khbytes of on-board memory. A maximum of 32 Kbytesis
allotted per ATM virtual circuit connection for receiving and
transmitting frames (for a total of 64 K). This allows up to
eight switched virtua connections per card.

To approximate the performance of communication mid-
dieware for channel speeds greater than our available ATM

network, weal so duplicated our experimentsinal oopback
mode using the I/O backplane of a dual-CPU SPARCstation
20s as a high-speed “network.” The user-level memory-to-
memory bandwidth of our SPARCstation 20 model 712swere
measured at 1.4 Gbps, which is comparable to OC24 gigabit
ATM networks[11].

3.2 Traffic Generators

Earlier studies[13, 12] tested the performance of transferring
untyped bytestream data between hosts using severa imple-
mentations of CORBA and other lower-level mechanisms
like sockets. However, there were several limitations with
these experiments:

o Lack of presentation layer measurements — typed data
reveal s the overhead imposed by the presentation layer
conversions since it must be marshalled and demar-
shalled. However, earlier studies only examined un-
typed data.

e Lack of DIl measurements — Earlier studies used the
CORBA IDL compiler generated S| stubsthat are un-
able to test important CORBA DI based applications
such as network management and distributed visualiza-
tion/debugging tools.

o Lack of DS measurements — Earlier studies used the
CORBA IDL compiler generated skeletons for the
server side. No measurements were performed to eval-
uate the performance of the DSl.

In contrast, the experiments described below used richly
typed data to identify overheads imposed by the DIl and
DSl. The experiments conducted for thispaper extend earlier
studies by measuring the performance of two different im-
plementations of CORBA (Orbix 2.0 and ORBeline 2.0) for
two features of CORBA:

e The Dynamic Invocation Interface: Both CORBA im-
plementationsof the CORBA-TTCP[12]? client send 64 MB
of richly-typed and untyped data as asequence data type
using the DII. The client tests thei nvoke (twoway com-
munication) and send_oneway (oneway communication)
methods supported by the CORBA Request interface. The
server uses the skeletons generated by the IDL compiler. To
use the DII, a client must first creste a request using the
CORBA cr eat e_r equest method. This request is then
populated by the appropriatemethod name and its parameters
in the correct order. In our experiment, we create a request
and populate it with the method name and a data buffer of
the desired size. We sent the same reguest repeatedly, only
varying the data buffer, until 64 MB of data is sent to the
server.

Since the request object (i.e., the operation name and as-
sociated internal state) does not change in our tests, it is

2CORBA-TTCP is a freely available benchmarking program we de-
veloped to evaluate the performance of CORBA implementations over
TCP/IP/ATM networks.



desirable to reuse the request object on every invocation
to amortize the cost of creating the object. However, the
CORBA specification [9] does not specify whether a request
created using thecr eat e_r equest method can be reused
or whether it must be created new and populated by the pa-
rameters, and released after every invocation.

Orbix 2.0 did not allow reuse of therequest. Therefore, we
had to create a new request and populate it repeatedly. This
had an adverse effect on the performance since the client
spends a significant amount of time in the request creation,
population, and release. Conversely, ORBeline2.0 didallow
reuse of the request object, so we could just replace the
data buffer. We performed two sets of experiments using
the ORBeline CORBA-TTCP client - both with and without
request reuse. As described in Section 3.4.1, ORBeinewith
request reuse twice as well compared with the versions not
reusing requests.

e TheDynamic Skeleton Interface:  The same ORBdline®
clientin the DIl experiment was used to send requests to the
ORBeline CORBA-TTCP server, which uses DSI. The DIl
client tests the i nvoke (twoway communication) method*
supported by the CORBA Request interface. We reused
the requests in these tests, as described above.

Traffic for the experiments was generated and consumed
by an extended version of the CORBA-TTCP [12] protocol
benchmarkingtool. Thistool extended thestandard TTCPfor
usewith CORBA implementationslike Orbix 2.0 and ORBe-
line 2.0. CORBA-TTCP measures end-to-end data transfer
throughputin Mbpsfromatransmitter processto aremotere-
ceiver process across an ATM network. In the oneway case,
the flow of user data for each version of CORBA-TTCP
is uni-directional, with the transmitter flooding the receiver
with a user-specified number of data buffers. The twoway
communication is just like the oneway communication ex-
cept that additionally the client blocks until it receives an
acknowledgement from the server. Various sender and re-
ceiver parameters may be selected at run-timewhich include
thesize of the socket transmit and receive queues, the number
of data buffers transmitted, the size of data buffers, and the
type of datain the buffers.

The following data types were used for al the tests:
scalars (short, char, | ong, octet, doubl e) and a
st ruct composed of al thescalars (Per f St ruct). The
CORBA implementationtransferred the datatypesusing IDL
sequences, which are dynamicaly-sized arrays. These
definitions are shown in the Appendix.

3.3 Parameter Settings

Existing studies [4, 7, 2, 13, 12] of transport protocol per-
formance over ATM demonstrate the impact of parameters

30rbix 2.0 does not yet support DSI, so we could not perform the DSI
testsfor Orbix.

4\We observed many requestswere not reaching the ORBeline DSI server
since the requests were oneway. Hence we did not report results for this
tests.

such as socket queue sizes and data buffer on performance.
Therefore, our CORBA-TTCP benchmarks varied these two
parameters for each type of data as follows:

e Socket queuesize:  the sender and receiver socket queue
size used was 64 K bytes, which is the maximum on SunOS
5.5. These parameters are shown to have a significant impact
on CORBA-level and TCP-level performance on high-speed
networksduetotheir influenceonthesize of the TCP segment
window [7, 13].

e Data buffer size Sender buffers were incremented by
powers of two, ranging from 1 K bytesto 128 K bytes. The
experiment was carried out ten times for each buffer size to
account for variations in ATM network traffic (which was
insignificant since the network was otherwise unused). The
average of the throughput results is reported in the figures
bel ow.

3.4 Performance Results

The throughput measurements for the DIl and DS fea
tures of CORBA using remote transfers are presented in
this section. Detailed profiling measurements of presenta-
tion layer, data copying, and memory management overhead
are also presented. The profile information was obtained
using the Quant i f y performance measurement tool [14].
Quant i f y analyzes performance bottlenecksand identifies
sectionsof code that dominate execution timewithout includ-
ingitsoverhead asisthe case with traditiona sampling-based
profilerslike the UNIX gpr of tool.

3.4.1 Dynamiclnvocation Interface M easurements

Thefigures presented in this section depict the observed user-
level throughput at the sender for buffer sizes of 1 K, 2 K,
4K,8K, 16 K, 32K, 64 K and 128 K bytes using 64 KB
sender and receiver socket queues (the maximum possibleon
Sun0S5.5).5

Figures 2 and 3 and 6 depict the throughput obtained for
sending 64 MB of data of different data types for the Or-
bix and ORBéline implementations of CORBA-TTCP over
ATM using oneway® and twoway communication without
request reuse, respectively. Figure 4 depicts the through-
put for the ORBeline CORBA-TTCP implementation that
reuses the request.

The shape of the CORBA DI performance curvesindicate
that the observed throughputsdiffer significantly for different
types of data. The observed throughput for a given data
type depends on how the CORBA implementation performs

50ur tests reveal ed that the receiver-side throughput was approximately
the same asthe sender-side. Therefore, we only show sender-sidethroughput
results.

6The twoway results are consistently lower than the oneway results
since the client in the twoway case blocks for an acknowledgement.
Therefore, we omitted the results due to lack of space. Complete re-
sults for the tests (i.e., twoway results for DII, loopback tests for the
oneway and twoway DII, and oneway results for DSl) are available at
http://ww. wist! . edu/ ~schmi dt/ GLCOBECOM 96. ps. gz.
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Figure 3: ORBedline: Client-side Throughput for Oneway
Communication using DIl without Reguest Reuse.

presentation layer conversions, data copying and memory
management. Thethroughputsinitially increase asthesender
buffer size increases due to a decrease in the number of
wri t es. However, thisthroughput increase beginsto level
off once network-layer fragmentation occurs. For the ATM
network we used, the maximum transfer unit (MTU) was
9,180 bytes. Thus, fragmentation startsoncethewritebuffers
become greater than the MTU size. Although the MTU
is 9,180 bytes, we do not observe the highest throughput
for sender buffer sizes of 8 K, since for these buffer sizes,
the number of wri t es is large and the presentation layer
overhead plays amajor rolein decreasing the throughpuit.
The throughput for the oneway transfer case was consis-
tently higher than that of the twoway case. In the oneway
transfer, the client does not block for a response from the
server after it has sent a request. This alows the client to
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Figure 4: ORBeline: Client-side Throughput for Oneway
Communication using DIl with Request Reuse.

send the next request immediately. This behavior differs
from our CORBA twoway communication tests, where the
clients are blocked until they receive an acknowledgement
from the server (athough no return values are sent back).
The additional latency associated with thisblocking reduced
the throughput by roughly 20% for the twoway case. This
latency may be hard to avoid, however, if the client requires
confirmation that the server has completed the request.

A detailed analysis of the overhead incurred on the client
and the server sidein sending theoct et and st ruct data
types for the oneway case with 128 K sender buffer sizesis
presented in Tables 1 and 2, respectively. 7 InTables1and 2,
theTi ne i n nsec columnindicatesthetotal timespent by
the corresponding operation indicated under the cat egor y
column. The Per cent execut i on column indicatesthe
percentage of thetotal execution timetaken up by themethod.
Tablelrevedsthat forsendingoct et / char , theOrbix and
bothversionsof ORBeline spent most of theirtimeinwr i t e
and populating the request.

In contrast, for each of theother datatypes(only st r uct s
are shown in the table), the implementations spent a signif-
icant amount of time creating a request, populating it with
parameters and marshalling the data. For example, to send
64 MB of st r uct s, the Orbix version spent 96% of itstime
in marshalling its parameter and packetizing the data. The
throughput for the ORBelineversion without request reuseis
comparable to that of Orbix. The ORBdineversion with re-
guest reuse performs much better than the ORBeline version
without request reuse and the Orbix version. Thisis dueto
the less amount of time spent in marshalling (14,168 msec)
and memcpy (896 msec) as opposed to the time taken by the
ORBélineversion that does not reuse requests (22,215 msec
for marshalling and 13,428 msec for nencpy).

In addition, the tables revea that the throughput for
short s islower than that for | ongs because the CORBA

"The analysis for the twoway case was similar to the oneway case.



Version Data Analysis
Type | Category Time Percent
(msec) | Execution
Orbix octet | write 26,728 73.52
Populating 7,160 19.70
and
marshalling
Allocate 1,164 3.15
memory
memcpy 895 2.46
struct | Marshalling | 397,724 96.6
and
packetizing
write 5,016 1.23
ORBeline | octet | writev 4,623 61.14
(without memcpy 1,791 23.69
request Allocate 940 12.43
reuse) memory
struct | writev 77,605 55.72
Populating 22,215 15.95
and
marshalling
memcpy 13,428 9.64
ORBeline | octet | writev 5,794 85.83
(with memcpy 898 1331
request struct | writev 76,575 64.89
reuse) Populating 14,168 12.01
and
marshalling

Table 1: Andysisof Client-side Overheads for CORBA DIl

Version Data Analysis
Type | Category Time Percent
(msec) | Execution
Orbix octet | typecode 3,361 50.00
assertion
read 2,140 32.00
memcpy 896 13.39
struct | demarshalling | 11,849 49.00
typecode 6,665 2757
assertion
read 4,985 20.62
ORBeline | octet | read 3,177 90.48
(without | struct | demarshalling | 10,552 58.52
request memcpy 3,878 215
reuse) read 3,318 184
ORBeline | octet | read 3,238 90.60
(with struct | demarshaling | 10,552 58.52
request memcpy 3,878 2141
reuse) read 3,395 18.74

Table 2: Analysisof Server-side Overheads for CORBA Dl
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DIl implementation spent alarger amount of time doing mar-
shalling and datacopying for shor t s thanfor | ongs. The
lowest throughputs were observed for sending st ruct s.
The analysis of overheads for the server-side is similar to
that of the client-side. The receiver side for data types other
thanchar / oct et spends asignificant amount of time per-
forming r eads and demarshalling the data.

o Loopback Results:  Figures5and 7 depict thethroughput
obtained for sending 64M B data of variousdatatypesfor the
ORBéline implementation® of CORBA-TTCP over ATM.
Theloopback results provide an insight into the performance
that can be expected of the CORBA DIl implementations
for network channel speeds greater than the 155 Mbps ATM
network available for our research.

The figures indicate that for sending oct et / char s, the
observed throughput increases as the sender buffer sizes in-

8As noted earlier, Orbix DIl did not operate correctly.
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crease. This is due to the lesser number of writes needed
as sender buffer size increases. Also, due to the loopback
mode, the maximum transfer unit (MTU) of the ATM net-
work (9,180 bytes) does not cause any fragmentation and
hence the throughput improves with increasing buffer sizes.
Thefiguresa soindicatethat for therest of the datatypes, the
presentation layer conversions and data copying operations
severely restrict the throughput. A comparison between the
Quant i f y analysisfor sending char and doubl e for 64
K sender buffer sizerevealsthat char s spend 1,207 msecin
nmentpy as opposed to 7,208 msec taken up by doubl es.
In addition, the marshalling of char s take up 0.54 msec as
opposed to 4,434 msec for doubl es. Thisexplainswhy the
throughput for sending char / oct et is much higher than
that for the rest of the data types.

3.4.2 Dynamic Skeleton I nterface M easurements:

Figure 8 depicts the client-side throughput for an ORBe-

Agent | Data Analysis
Type | Category Time Percent
(msec) | Execution
Client | octet | read 3,911 47.95
writev 2,923 35.84
memcpy 912 11.19
struct | writev 505,914 91.34
marshalling 13,341 241
and
populating
memcpy 7,198 1.30
read 5,062 091
Server | octet | writev 23,572 82.00
memcpy 2,701 9.40
read 1,806 6.29
struct | writev 1,250,130 92.41
demarshalling 39,373 2.89
memcpy 19,693 1.46

Table 3: Anaysis of Overhead using Twoway Client-side
DIl and Server-Side DSI

line client using DIl and an ORBeline server using DS| for
twoway transfer.’ The shape of the CORBA DSl perfor-
mance curves indicate that the observed throughputs differ
significantly for different types of data. The throughput for
a given data type depends on how the CORBA implemen-
tation performs presentation layer conversions, data copying
and memory management.

Of al the CORBA data types we tested, the chars
and oct et s performed the best. This is not surprising,
and results from the fact that presentation layer conversions
and data copying can be minimized for this“untyped” data
(though both ORBs do perform multiple data copies for
char s and oct et s). Throughput initially increases as the
sender buffer size increases due to a decrease in the number
of wr it es andr eads. However, theincreased throughput
beginsto level off once network-layer fragmentation occurs.
For our ATM network, the maximum transfer unit (MTU)
was 9,180 bytes. Thus, fragmentation occurs once the write
buffers become gresater than the MTU size. Although the
MTU is 9,180 bytes, we do not observe the highest through-
put for sender buffer sizes of 8K. For these buffer sizes,
the number of wri t es islarge and the presentation layer
overhead plays a mgjor role in decreasing the throughput.

Table 3 depicts the time spent by the sender and receiver
of the ORBédline version of CORBA-TTCP using DS| when
transferring 64 Mbytes of sequences using 128 K sender
and receiver buffersand 64 K socket queues. An analysisfor
oct et s (bestthroughput) andst r uct s (worst throughput)
ispresented. These figures precisely pinpoint the time spent
in marshalling, data copying, and reading and writing of
buffers. Thetimetakenforwr i t es suggeststhe use of non-
optimal buffer management and flow control methods used
by the ORBs.

90neway transfer results have not been presented sincethe ORBeline 2.0
frequently drops oneway operationsat the server. Although this behavior
isallowed by the “ best effort” semantics of CORBA oneway operations, it
appearsto be a bug in the ORBeline implementation.



The anaysis of the performance of the CORBA imple-
mentations suggests that optimized read/writes, presentation
layer conversionsand datacopying are the primary areas that
must be optimized to achieve higher throughputs.

4 Related Work

Existing research in gigabit networking has focused exten-
sively on enhancements to TCP/IP. Less attention has been
paid to integrating the following topics related to communi-
cation middleware like CORBA:

o Transport Protocol Performance over ATM networks:
[4, 7, 2] present results on performance of TCP/IP (and
UDP/IP [2]) on ATM networks by varying a number of pa-
rameters (such as TCP window size, socket queue size, and
user data size). This work indicates that in addition to the
host architecture and host network interface, parameters con-
figurable in software (like TCP window size, socket queue
size and user data size) significantly affect TCP throughput.
[2] aso showsthat UDP performsbetter than TCP over ATM
networks, which is attributed to redundant TCP processing
overhead on highly-reliable ATM links.

A comparison of our current results for typed data with
other work using untyped data in a similar CORBA/ATM
testbed [13] reved that the performance of Orbix for se-
guencesof scalar datatypesisa most thesameasthat reported
for untyped data sequences using the statically generated
stubsand the I1OP. However, the performance of transferring
sequences of CORBA st r uct s for 64 K and 8 K was much
worse than those for the scalars. As discussed earlier, this
overhead arises from the amount of time the CORBA imple-
mentations spend performing presentation layer conversions
and data copying.

¢ Presentation layer and data copying: The presentation
layer isamajor bottleneck in high-performance communica
tion subsystems[1]. Thislayer transformstyped data objects
from higher-level representations to lower-level representa
tions (marshalling) and vice versa (demarshaling). In both
RPC toolkitsand CORBA, thistransformation processisper-
formed by client-side stubs and server-side skeletonsthat are
generated by interface definition language (IDL) compilers.
IDL compilerstrandateinterfaceswritteninan IDL (such as
XDR [15], NDR [3], or CDR [9]) to other forms such as a
network wire format. A significant amount of research has
been devoted to devel oping efficient stub generators. Wecite
afew of these and classify them as below.

e Annotating high level programming languages — The
Universal Stub Compiler (USC) [10] annotates the C
programming language with layouts of various data
types. The USC stub compiler supports the automatic
generation of device and protocol header marshalling
code. The USC tool generates optimized C code that
automatically aligns data structures and performs net-
work/host byte order conversions.

e Generating code based on Control Flow Analysis of
interface specification — [6] describes a technique of
exploiting application-specific knowledge contained in
the type specifications of an application to generate op-
timized marshalling code. This work tries to achieve
an optimal tradeoff between interpreted code (whichis
slow but compact in size) and compiled code (whichis
fast but larger in size). A frequency-based ranking of
application data types is used to decide between inter-
preted and compiled code for each datatype.

None of the systems described above are targeted for com-
munication middleware (e.g., CORBA) requirements and
consgtraints such as heterogeneity, high system reliability, ef-
ficient marshalling/demarshalling of parameters, flexible and
efficient object |ocation and sel ection, and higher evel mech-
anismsfor collaboration among services [8].

5 Concluding Remarks

An important and growing class of applications (such asin-
terface browsers, network management applications, and dis-
tributedvisualization/debuggingtool s) requireflexible, high-
performance communication middleware linked by high-
speed networks. Contemporary CORBA implementations
do not yet meet these requirements due to overhead stem-
ming from (1) excessive presentation layer conversions and
data copying, (2) inefficient server demultiplexing tech-
niques, (4) long chains of intrasORB function calls, and (4)
non-optimized buffering algorithms used for network reads
and writes. On low-speed networks this overhead is often
masked. On high-speed networks, this overhead becomes a
significant factor limiting communication performance and
ultimately adoption by developers.

As users and organizations migrate to networks with gi-
gabit data rates, the inefficiencies of current communication
middleware (like CORBA) will force developers to choose
lower-level mechanisms (like sockets) to achieve the neces-
sary transfer rates thereby increasing devel opment effort and
reducing system rdiability, flexibility, and reuse. Thisisa
serious problemfor mission/life-critical applications(such as
satellite surveillance and medical imaging [4]).

This paper illustrates how existing CORBA implementa
tionsincur considerable overhead when application use the
dynamicinvocationinterface (DI1) and the dynamic skeleton
interface (DSI) over high-speed ATM networks. Our DIl and
DSl resultsindicatethat both Orbix 2.0 and ORBeline2.0 in-
cur different levels of presentation conversion overhead for
different CORBA datatypes. Moreover, non-optimal inter-
nal buffer management strategies lead to large amounts of
time spent in network writes and reads.

Finally, theexperimentsindicatethat for DI, itisdesirable
to permit reuse of requests if the operationsare oneway and
the parameter val ues do not change. The current CORBA 2.0
specification does not define whether thisislega or not, so
different implementations interpret the specification differ-



ently. Not only does thisimpede portability across ORB im-
plementations, but it also permits non-optimal performance
if requests are not reused.
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Appendix

Thefollowing CORBA IDL interface was used for the Orbix
and ORBeline CORBA implementationsfor both the DIl and
DSl tests:

struct PerfStruct{ short s; char c; long |I;
octet o; double d; };

/!l Richly typed data
interface ttcp_sequence

typedef sequence<short> Short Seq;
/1 The rest of the sequence typedefs
/] are defined in a simlar way.

/1 Routines to send sequences of various data types.

oneway voi d sendShortSeq (in ShortSeq ttcp_seq);

/1 The rest of the nethods are defined in a simlar

/1 To measure time taken for receipt of data.
oneway void start_timer ();
oneway void stop_tinmer ();

For the twoway data transfer case, the keyword oneway
from the above interface was removed.
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