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Abstract 
Product-line architectures (PLA)s are a paradigm for 
developing software families by customizing and com-
posing reusable artifacts, rather than handcrafting soft-
ware from scratch. A promising way to reduce the effort 
of developing software PLAs and product variants is to 
leverage Meta-configurable Modeling Environment 
(MME) to provide domain-specific modeling tools for 
customizing the PLA. Since creating a group of DSML 
tools to customize a PLA is hard, however, it is useful to 
provide a toolchain that domain experts can use to 
evolve the DSML tools as the PLA’s requirements or 
knowledge of the domain evolves. This paper presents 
two contributions to the study of constructing DSML 
tools for PLAs: (1) the Generic Eclipse Modeling System 
(GEMS), which is a meta-configurable modeling envi-
ronmentl that enables the rapid construction of domain-
specific modeling languages), and (2) the Model EXTen-
sion Language (MEXTL), which provides a modeling 
language and code generation capabilities to build lay-
ers of abstraction atop existing models.  

Key Words: Model Driven Development, Product-line 
Architectures, Metamodeling, Domain-specific Model-
ing Languages 

 
1 Introduction 
Product-line architectures (PLAs)[1] offer developers the 
ability to produce a group of software packages rapidly 
that are targeted for different requirement sets by lever-
aging a common set of capabilities, patterns, and archi-
tectural styles. The design of a PLA is typically guided 
by scope, commonality, and variability (SCV) analysis 
[6]. SCV captures key characteristics of software prod-
uct-lines, including (1) scope, which defines the domains 
and context of the PLA, (2) commonalities, which de-
scribe the attributes that recur across all members of the 
family of products, and (3) variabilities, which describe 
the attributes unique to the different members of the 
family of products.  

After constructing a PLA, product-line engineers iden-
tify each product variant that must be produced from the 
architecture and its requirements. Once a PLA variant’s 
requirements are obtained, these requirements must be 
mapped to the variabilities in the PLA. Traditional man-
ual processes of mapping the requirements to the PLA 
involve software developers taking each requirement and 
attempting to determine the software components that 
must be in the variant, the components that must be con-
figured, how each component must be changed, and how 
the components must be composed. Such manual ap-
proaches are tedious and error-prone and are a signifi-
cant source of system downtime [2] [12]. 
An alternate approach to mapping the variant’s require-
ments to the PLA involves the use of Model-driven de-
velopment (MDD) [3] techniques and tools, which are 
designed to reduce the effort needed to capture system 
requirements and map them to the underlying PLA infra-
structure. Models of PLA variants developed with MDD 
tools can be constructed and checked for correctness 
(semi-)automatically to ensure that application designs 
meet their requirements. MDD tools can also be used to 
generate the customization, composition, packaging, and 
deployment code to implement PLA variants [4] [5].  

To reduce the effort of developing software PLAs and 
product variants, it is common to build DSML tools on 
top of a Meta-configurable Modeling Environment 
(MME). Creating a group of DSML tools to customize a 
PLA is, in itself, a challenging endeavor. Crucial to cre-
ating a viable MME to develop DSML tools is providing 
a platform that can provide (1) the appropriate level of 
abstract for each domain expert and (2) the means to 
evolve the DSML tools in response to changes in the 
PLA’s requirements or knowledge of the domain.  

To explore characteristics of MDD-based PLAs, we have 
developed an Enterprise Java Beans (EJB)-based con-
straints optimization system (CONST) that schedules 
pickup requests to vehicles, which is shown in Figure 1. 
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Figure 1. A Multi-Layered Autonomic Architecture 

for Scheduling Highway Freight Shipments 
 

As shown in Figure 1, CONST manages a list of items 
that must be scheduled for pickup, a list of times that the 
items must arrive by, and a list of vehicles and drivers 
that are available to perform the pickup. It uses a con-
straint-optimization engine to find a cost effective as-
signment of drivers and trucks to pickups. CONST’s 
optimization engine could be used schedule a wide vari-
ety of shipment types. In one configuration, for example, 
the system could schedule limousines to customers re-
quiring a ride, whereas in another configuration the sys-
tem could dispatch trucks to highway freight shipments. 
The CONST’s optimization engine must therefore be 
customizable at design-time to handle these various do-
mains effectively. 

CONST must also be customizable at run-time to adapt 
to changing operating conditions. During peak traffic 
times, for instance, its optimization engine may need to 
use traffic-aware routing algorithms, whereas during off-
peak times, it may switch to faster traffic-unaware algo-
rithms. CONST also needs to handle failures differently 
depending on the target domain. For scheduling limou-
sines to pickups, for example, a degradation of the time 
required to schedule a reservation below a threshold may 
require CONST’s constraint engine to adapt to improve 
performance. When scheduling highway freight ship-
ments, however, the threshold may be higher since 
pickup and drop-off windows are more flexible. 

To support the degree of customization described above, 
we developed CONST as a PLA using SCV analysis, as 
follows: 

 

• The scope is the constraint optimization system ar-
chitecture and the associated components that ad-
dress the domain of scheduling shipments to vehi-
cles, including computing route times between vehi-
cles and shipments, maintaining a list of waiting 
shipments, and calculating the cost of assigning a 
specific vehicle to a shipment. 

• The commonality is the set of components and their 
interactions that are present in all configurations of 
the optimization system, which include the sched-
uler updating the schedule, the route time module 
answering requests from the schedule, and the dis-
patcher sending routing orders to the vehicles. 

• The variability includes how the list of waiting 
shipments is prioritized, how the system calculates 
the cost of assigning each vehicle and driver combi-
nation to the pickups, how late pickups and dropoffs 
are handled, and how the system handles response 
time degradation.  

By applying the SCV analysis to CONST we designed a 
PLA that enables the customization of its optimization 
engine for various domains. 

The remainder of this paper is organized as follows: Sec-
tion 2 describes the design of the Generic Eclipse Mod-
eling System (GEMS) and how it addresses the chal-
lenges of creating MDD-based customization tools for 
PLAs such as CONST; Section 3 describes the Model 
Extension Language Editing Environment (MELEE) and 
uses a case study to show how it enables the creation of 
layers of abstraction between models; and Section 4 pre-
sents concluding remarks. 

2 The Generic Eclipse Modeling System 
(GEMS) 
To create PLAs rapidly, tools are needed to assemble 
and customize an organization’s component assets. The 
Generic Eclipse Modeling System (GEMS) created by 
the Distributed Object Computing (DOC) Group at the 
Institute for Software Integrated Systems (ISIS) at Van-
derbilt University is an Eclipse-based Meta-configurable 
Modeling Environment that enables developers to gener-
ate Domain-Specific Modeling Language (DSML) tools 
for customizing PLAs via the following capabilities: 

• A visual interface that supports the creation of do-
main-specific modeling languages (DSMLs), i.e., 
GEMS contains a metamodeling environment that 
supports the definition of paradigms, which are type 
systems that describe the roles and relationships in 
particular domains. 

• The creation of models that are instances of DSML 
paradigms within the same environment. 

• Customization of such environments so that the ele-
ments of the modeling language represent the ele-



ments of the domain in a much more intuitive manner 
than is possible via third-generation programming 
languages.  

• A flexible type system that allows inheritance and 
instantiation of elements of modeling languages.  

• An integrated constraint definition and enforcement 
module that can be used to define rules that must be 
adhered to by elements of the models built using a 
particular DSML. 

• Facilities to plug-in analysis and synthesis tools that 
operate on the models. 

Each of these capabilities is shown in Figure 2 and dis-
cussed below. 
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Figure 2. The GEMS Architecture 

 
A key challenge to developing PLA customization tools 
is the formal specification of the PLA’s DSML. Engi-
neers must create a language to capture both the static 
and dynamic semantics. The GEMS metamodeling lan-
guage allows developers to specify the common types in 
their system, the variability in instances of the types, the 
allowed containment compositions of the types, and the 
allowed connections between instances of types. These 
capabilities allow developers to apply SCV analysis to 
their PLAs and capture the results in a metamodel. This 
metamodel can then be interpreted by the GEMS tool to 
generate DSML(s) for customizing the PLA. By allow-
ing developers to formally define the commonal-
ity/variability in the system and automatically generate a 

graphical customization tool that operates on that do-
main, GEMS significantly reduces the development ef-
fort require to develop a PLA by (1) generating a com-
plete implementation of a tool for customizing the PLA, 
(2) ensuring that only legal PLA variants can be con-
structed in the tool, and (3) providing a modeling lan-
guage intuitive to domain experts that customize the 
PLA. 

In the remainder of this section, we discuss the design 
and functionality of the GEMS metamodeling environ-
ment. Each portion of the metamodeling system is exam-
ined in the context of the challenges it solves for build-
ing DSML customization tools for PLAs.  

Section 2.1 Challenge 1: Allow DSML Tool 
Developers to Leverage OO Concepts to 
Construct Flexible DSMLs 

Context. Extensive work has been done identifying how 
to decompose problems into object oriented systems. A 
good metamodeling environment must allow DSML 
developers to leverage the extensive knowledge of OO 
program design. By allowing developers to leverage OO 
design and best practices in their metamodels, existing 
patterns and development expertise can be reused. 

Problem → The metamodeling language must sup-
port OO concepts, such as inheritance and polymor-
phism, and provide a mapping of these concepts to 
the meta-configured modeling environment. 

In order to support OO designs and patterns, the meta-
modeling language must support inheritance and poly-
morphism. These concepts from the metamodeling lan-
guage must in turn be mapped to the underlying meta-
configurable environment. The meta-configurable envi-
ronment must be able to evaluate constraint, visualiza-
tion, and composition rules on both base types and their 
descendants. 

Solution → Provide a metamodeling type system that 
leverages the polymorphism and inheritance facilities 
of the underlying OO programming language imple-
mentation. 

To facilitate model reuse and maintenance, GEMS sup-
ports model types, instances, and type inheritance, simi-
lar to OO language concepts. GEMS provides two key 
types that can be defined: atoms and models. Atom types 
provide indivisible model units and may not contain 
other elements. Model types allow developers to specify 
entities that can contain other elements in the target 
DSML.  

Model and atom types also support properties, which are 
data elements that compose the type. These are the same 
as the member variables of an OO class. Properties 
themselves have a simple type specified to constrain 
their value. GEMS supports Enumeration, String, 
Integer, Decimal, and Boolean types. To provide 



more fine grained type constraints, GEMS also provides 
a built-in facility for extending these basic types using 
regular expression matching,. Both models and atoms 
support inheritance, which allows developers to provide 
polymorphic capabilities in the target DSML and facili-
tates the reuse of entities and provides for better abstrac-
tion. Inheritance applies to the properties, visualization 
rules, containment rules, and constraints of a DSML. 

 

 

Figure 3. Metamodel for CONST Customization Tool 
 

To create a customization tool for our CONST constraint 
optimization system, we first defined types for each of 
its configurable components identified during the com-
monality phase of SCV analysis. Figure 3 illustrates the 
metamodel for the CONST PLA customization tool. This 
figure shows how we used GEMS to model common 
components, including the route time module, scheduler, 
schedule, and route time calculation algorithms. The 
route time module can be configured to use either a route 
time algorithm that is aware of traffic delays or a faster 
calculation algorithm that ignores traffic delays. The 
traffic-aware algorithm is suited to contexts, such as as-
signing limousines to reservations, where lateness is 
measured in minutes. In a situation where shipments 
only need to arrive by multi-hour window within a day, 
such as scheduling trucks to freight shipments, the traf-
fic-unaware algorithm may be more appropriate.  

Section 2.2 Challenge 2: Ensure that Models 
are Correct by Construction 

Context. A key benefit of using MDD tools to customize 
PLA variants is that the models are guaranteed to be 
correct by construction. Without guaranteeing that mod-
els are correctly constructed, developers cannot be cer-
tain that a valid PLA variant is being constructed. Cor-
rectly constructed models are even more crucial when 
multiple PLA customizers are working on the same vari-
ant. Without a properly constrained modeling tool, one 
PLA customizer can introduce subtle errors which ripple 
down the PLA customization chain. It is therefore cru-

cial that the metamodeling tool used to construct the 
MDD PLA customization tools provide a mechanism for 
specifying constraints that should be applied to instances 
of the DSML. 

Problem → The metamodeling language must pro-
vide an expressive constraint specification system 
that can satisfy a wide range of requirements. 

Guaranteeing correctly constructed models requires run-
time checking of both containment and connection con-
straints in the DSML tool. Often, the tool will also re-
quire checking complex context dependent constraints, 
such as the RTM may only be deployed with a traffic 
aware algorithm if it is connected to a traffic status data 
source. Providing a constraints language and evaluator 
that is both natural to the DSML tool developer and ca-
pable of covering a wide range of requirements is chal-
lenging. 

Solution → Provide graphical specification of con-
text-free constraints and a constraint specification 
language for context dependent constraints. 

A crucial aspect of constructing variants in PLAs is en-
suring the validity of the variants. PLAs present multiple 
ways in which a variant may be constructed incorrectly. 
For example, a variant may contain a composition error, 
which may be caused by composing elements that cannot 
be grouped together or by failing to compose elements 
that must be composed together. Another source of prob-
lems in PLA variants is the definition of interactions 
between PLA components, e.g., an interaction may be 
created in the variant between two components with in-
compatible interfaces. There are also complex valida-
tions that cross each of these areas, e.g., a component 
may only be able to interact with another component if it 
has a particular property set to a specific value.  

The GEMS metamodeling language provides multiple 
techniques for defining constraints to ensure that only 
valid variants can be constructed within the generated 
DSML. Its constraint checking system takes an exclu-
sionary approach, where only connections and contain-
ment relationships that are explicitly defined in the meta-
model are allowed. The first constraint type is cardinal-
ity, which can be constructed for (1) containment by 
setting values on the containment association connection 
and (1) connections by setting the cardinality values on 
the connection declaration atom. At runtime, contain-
ment and connection constraints are evaluated before 
new connections and children are added to the model. 
Only valid connections and parent/child relationships are 
allowed. 

In the metamodel for our CONST customization tool, we 
define a containment constraint that ensures exactly one 
scheduler component exists in any variant and that the 
scheduler component interacts with a single pickup list. 
We also define a containment constraint for the route 
time module to ensure it has exactly one route time cal-



culation algorithm that it uses. An attempt to create a 
system with no route time calculation algorithm or a 
scheduler that interacted with more than one pickup list 
will thus be flagged as an invalid variant. 

To further ensure proper containment relationships and 
connection relationships in the generated DSML, GEMS 
supports the definition of type-based constraints. When a 
connection or containment relationship is declared be-
tween two entities within the metamodel, the relationship 
is constrained by the declared types of each entity. Only 
entities of that type, or of a more specialized type created 
through inheritance, can participate in the connection or 
containment relationship. These type-based constraints 
allow developers to ensure that only valid types are com-
posed together and that all connections are between valid 
types. In the CONST DSML, for example, a route time 
module may only contain route time calculation algo-
rithms. We define this constraint in the metamodel 
through a containment connection that ensures the gen-
erated DSML will uphold this constraint. 

 

 
Figure 4. Complex Constraint for a PickupList 

 

Some constraints that must be upheld do not depend 
solely on a single connection or containment relation-
ship. For these complex constraints, GEMS provides a 
constraint entity that can be associated with a type. The 
constraint is evaluated anytime an action is performed on 
an instance of that type, such as adding a child or con-
nection. To create the constraint, GEMS provides a con-
straint editor that evaluates any valid Java code that util-
izes the GEMS model API. This constraint code is 
passed the model entity instance to which the constraint 
is being applied. The constraint code must use this in-
stance to evaluate the validity of the entity’s state and 
return a boolean value to indicate whether the constraint 
is honored or violated. Figure 4 shows a complex con-
straint defined for PickupList to ensure that a system 
with a prioritized pickup list is only created if there ex-
ists a component to determine the prioritization of the 
list. 

 

Section 2.3 Challenge 3: Provide PLA Cus-
tomizers with Intuitive Visualizations of 
Their Domain 

Context. An important aspect of MDD tools is that they 
allow domain experts to manipulate entities familiar to 
their domain. In order for an entity to appear familiar to 
a domain expert, it must use the standard visual repre-
sentation from its domain. Without the ability to display 
entities using the visual standards of their domain, do-
main experts are forced to operate in a less intuitive en-
vironment. 

Problem → The metamodeling language must pro-
vide MDD tool developers with mechanisms for cus-
tomizing the DSML’s appearance and creating dif-
ferent views of the DSML. 

To enable MDD tool developers to create useful DSML 
tools, the metamodeling tool must support the specifica-
tion of the visual properties of the DSML’s entities. The 
specification method must be flexible enough to cover a 
large number of domains but at the same time should 
only require tool developers to hand write code for very 
unusual visualizations. Striking this careful balance be-
tween flexibility and usability is challenging. 

Solution → Provide intuitive default visualizations, 
graphical specification of common visual customiza-
tions, and mechanisms for completely overriding the 
default rendering mechanisms for unusual require-
ments. 

By default, GEMS generates stock icons to represent the 
models and atoms in the generated DSML. Most DSML 
developers, however, will want to customize the render-
ing of the model entities so their look is specific to the 
domain. GEMS provides developers with the ability to 
customize the look of each type by providing icons for 
use in place of stock icons. Developers can also provide 
custom dynamic rendering of model entities. To facili-
tate dynamic rendering, GEMS provides an API devel-
oper can use to provide custom rendering classes for 
their visualization needs. Connections may also have 
their appearance customized. Both the endpoint styles 
(e.g., diamond, arrow, etc.) and the line style itself (e.g., 
dotted, color, etc.) can be customized through settings in 
the metamodeling language. The appearance of attributes 
can also be customized. Connection attributes can be 
configured to appear only in the attribute window or to 
be visible on the rendered connection. 
A PLA can often have hundreds of customizable compo-
nents. In these cases, visualizing the entire model in its 
entirety becomes too complex. In other cases, the model 
may have different possible views that are independent 
of each other. In these cases, a mechanism is needed to 
define different views on the model. Each view should 



only expose the tools and entities relevant to it. Views 
can be leveraged to separate the roles of the domain ex-
perts by defining different views for each domain ex-
pert’s role. Views also allow domain experts to focus on 
a specific aspect of the model, such as the physical or 
logical views. 

The GEMS metamodeling language provides a facility 
for defining different views on the model. Each view in 
the DSML is modeled as an Aspect, which can be 
dragged into the model and have types associated with it 
via containment declarations. In the generated DSML 
editor, these views can be accessed to provide visual 
filters. Only types explicitly associated with the aspect 
through a containment connection in the metamodel will 
be visible on the tool palette and model canvas. Provid-
ing an aspect element allows developers to create multi-
view editing environments rapidly and add new views 
easily as requirements change.  

Figure 5 illustrates the creation of one view to customize 
the route time module and another view to customize 
only the scheduler. The RTM_View will create a model 
view in the generated DSML that allows the developer to 
view only the model entities related to the customization 
of the RTM. Similarly, the Scheduler’s view will allow 
the developer to isolate and view only the entities for 
customization of the Scheduler, such as the PickupList 
and Schedule types. 

 

 
Figure 5. GEMS Aspects 

 

Section 2.4 Challenge 4: Provide PLA Cus-
tomizers with a Mechanism for Mapping 
DSML Instances to Physical PLA Artifacts 

Context. An important aspect of MDD tools is that they 
allow domain experts to manipulate entities familiar to 
their domain. In order for an entity to appear familiar to 
a domain expert, it must use the standard visual repre-
sentation from its domain. Without the ability to display 
entities using the visual standards of their domain, do-

main experts are forced to operate in a less intuitive en-
vironment. 

Problem → A flexible model traversal mechanism 
must be provided that allows MDD tool developers to 
create model interpreters to generate source artifacts 
from DSML instances. 

A key ability of MDD tools is the ability to generate 
source artifacts and perform model analyses. To facili-
tate this, the metamodeling environment must allow de-
velopers to create model interpreters that can be pack-
aged with the generated DSML tools. This requires ex-
posing a model traversal API to allow developers to ana-
lyze the model entities and map them to source artifacts. 
The domain experts must also be provided with a mecha-
nism for accessing the registered model interpreters for 
their model type. 

Solution → Provide a mechanism for programming 
API that allows MDD tool developers to access the 
Java objects implementing the DSML entities. 

Creating variants for PLAs that must be handcrafted is 
tedious and error-prone. Often, the requirements and 
design of the variant are well understood, but incorrect 
interpretation of the specification by software developers 
yields implementations that do not match the require-
ments. Moreover, even developing implementations that 
meet the specification still requires significant software 
development time, testing, and debugging, and manual 
implementation of variants leads to rediscovery of exist-
ing and well understood solutions. As the complexity of 
PLAs increases and the time-to-market windows shrink, 
tools are needed to reduce the complexity of implement-
ing a variant specification. 

GEMS provides an interpreter framework developers can 
use to create code generators that operate on model in-
stances of the generated DSML. By creating interpreters, 
developers can capture well-understood commonality 
and variability in the PLA in a reusable form. Implemen-
tations of the variant can be produced automatically by 
interpreting model instances, which allows variants to be 
generated quickly as requirements change or as new 
variants are defined. Code generation also saves signifi-
cant software development, validation, and debugging 
time since after a correct set of interpreters has been con-
structed and validated, all generated implementations of 
variants will be correct-by-construction. 

The GEMS interpreter framework provides a Java API 
that allows interpreter developers to traverse instances of 
the model entities. This API includes methods for query-
ing the children of each model, querying attribute values, 
and querying connections. The GEMS Metamodel inter-
preter generates the Eclipse plug-in artifacts required to 
implement the modeled PLA customization tool. The 
generated code includes the classes needed for the 
Draw2D and GEF models, controllers, and views. It also 
includes the XML plug-in descriptor required to inte-



grate the customization tool into Eclipse. For customiz-
ing our CONST PLA customization tool, the interpreter 
generated approximately 31 classes, 500 lines of Java 
code, and 70 lines of XML, all of which would have 
been created manually by developers using a traditional 
manual development process. For our CONST customi-
zation tool, we developed multiple interpreters, leverag-
ing our previous work on the Enterprise Jave Bean mod-
eling tool, J2EEML [7],  to generate artifacts to auto-
mate variant implementation. These interpreters include 
numerous artifacts, including XML descriptor and con-
figuration files, Enterprise Java Beans, ANT deployment 
scripts, Java Docs, testing frameworks, and JNDI lookup 
code.  

2.5 Applying GEMS to CONST 
We developed the CONST case study to illustrate the 
advantages of using the GEMS-based PLA customiza-
tion tool to create constraint optimization system vari-
ants. A meta-model describing the problem domain was 
created in GEMS. The GEMS plugin-generator was then 
used to create an Eclipse plugin for creating CONST 
variants. We then performed experiments comparing the 
reduction in development effort provided by the GEMS-
based CONST customization tool versus traditional de-
velopment methods.  

The initial generated implementation of this case study  
created by the CONST customization tool contained 
several thousand lines of Java code. The generated EJB 
implementations accounted for nearly 75% of the com-
plete code base, the test framework accounted for 20%, 
and the adaptive glue code accounted for 5%. Using a 
traditional development process, much of this code 
would have been developed manually. With our PLA 
customization tool, in contrast, all code except for the 
business logic and testing logic was generated initially 
from our specification, which accounted for approxi-
mately one-third of the code required to implement the 
Java classes for the application.  

Using our highway freight scheduling case study, we 
evaluated the difficulty of creating several new variants. 
The first variant was constructed by customizing the 
PLA to add monitoring and adaptation logic. We refac-
tored the design to monitor the response times of the 
route time module component. Adjusting the design us-
ing the PLA customization tool and regenerating the 
implementation took approximately five mouse clicks 
and resulted in the generation of ~20 new lines of source 
code that correctly mirrored the specification and was 
correct-by-construction. Without GEMS’s code genera-
tion tools, in contrast, each change that required the ad-
dition of one new connection in the model would have 
required a manual change to the implementation and 
more testing to attain the same level of confidence. In a 
large-scale development effort with many changes, using 

the PLA customization tool would therefore reduce 
refactoring effort significantly. 

To evaluate the impact of design refactoring on the route 
time model monitoring variant, we modified its initial 
design by changing its response time analysis into a hi-
erarchy of average and maximum response time analy-
ses. We also added adaptive logic to adapt to poor re-
sponse times. The adaptive logic took the following se-
ries of actions: the first action was to suspend the proc-
essing of incoming requests, the second action taken was 
to change the algorithm used by the route time module to 
one that is less precise but faster, and the final action 
taken by the adaptation was to resume processing re-
quests. The refactoring in the PLA customization tool 
was straightforward and took ~12 mouse clicks. The 
change generated ~75 new lines of code, which mini-
mized the complexity of the design change and imple-
mentation update. Again, for large development projects 
without MDD tool support, many such changes would 
occur and hence the manual redevelopment effort would 
be much higher. 
3 Creating Different Abstractions for Each 
Domain Expert 
PLA variants are constructed by having a group of do-
main experts customize different portions of the product. 
In an DSML-based process, each domain expert needs a 
modeling tool that focuses on their specific domain. The 
domain experts’ modeling tools must, however, remain 
interoperable, e.g., so that domain experts can pass their 
models on to the next domain expert in the customiza-
tion chain. Each domain expert may customize larger 
and larger pieces of the system and may therefore not 
need to see all the low-level details configured by the 
previous domain experts. 

PLA variants can be constructed through a variety of 
means. In some scenarios, one domain expert may need 
to customize the work of another domain expert. In our 
CONST PLA, for instance, one domain expert creates 
the EJBs implementing the system components and 
models their library dependencies. Another domain ex-
pert is then responsible for determining which of these 
EJB components are deployed to compose different vari-
ants. The EJB domain expert need not know about the 
intricacies of deploying a variant. The deployment expert 
should not be required to understand all the artifact de-
pendencies of each component. Instead, the deployment 
expert’s customization tool should ensure that each EJB 
is deployed with its required artifacts without exposing 
this information to the deployment expert. Further com-
plicating the problem is that the tools of the domain ex-
perts must be interoperable. Ideally, both (all) tools op-
erate on the same underlying model. 

This section examines R&D challenges associated with 
creating layers of abstraction on top of models. For each 
challenge we will (1) explain the context in which the 



challenge arises, (2) identify the specific problems that 
must be addressed, and (3) outline an approach that helps 
resolve the challenge and show how we could apply 
these solutions in our CONST PLA.  

To present the challenges associated with creating layers 
of abstraction, we use a case study based on CONST. 
CONST presents significant challenges for the deploy-
ment and configuration of its distributed components, 
including the RTM and Scheduler It is therefore impor-
tant that a PLA customization tool be provided, which 
can guarantee that a variant of the optimization system is 
correctly deployed and configured. We extended an ex-
isting deployment and configuration tool, the FireAnt 
model driven deployment and configuration system to 
create a deployment and configuration tool for CONST. 
We use the extension of FireAnt as the case study for 
illustrating our model abstraction technologies. 

 

 
Figure 6. MEXTL Abstraction Architecture 

 

Section 3.1 The Model EXTension Language 
(MEXTL) 
The Model EXTension Language (MEXTL) is a DSML 
that allows developers to annotate an existing instance of 
a DSML, which we call the Basis Underlying Model 
(BUM), to provide a layer of abstraction on top of it. 
MEXTL provides mechanisms for specifying which por-
tions of the Basis Underlying Modeling Paradigm 
(BUMP) to hide in the new DSML. It also contains fa-
cilities for describing points of variability in the new 

DSML and how they are mapped to the BUMP. Finally, 
MEXTL allows developers to mark which groups of 
elements from the BUM should serve as atomic units in 
the new DSML. Figure 6 illustrates the process by which 
an existing DSML instance is extended using MEXTL to 
create a new modeling paradigm. 

We have developed extensions to GEMS that provide a 
graphical editing environment for MEXTL. The envi-
ronment supports the importation of existing instances of 
models, developed with GEMS, and their annotation 
with MEXTL entities. The editor provides mechanisms 
for viewing the underlying model instance and MEXTL 
elements separately. Interpreters for models annotated 
with MEXTL entities can generate new DSMLs, GEMS-
based Eclipse Plug-ins, and translation interpreters from 
the new DSML to the BUMP.  

Section 3.2 Challenge 1: Expose the Same 
Model Elements Through Different Abstrac-
tions to Each Domain Expert 
Context. PLA Variants are constructed by having a 
group of domain experts that customize different por-
tions of the product. Each domain expert needs a model-
ing tool that focuses on their specific domain. The do-
main experts’ modeling tools must, however, remain 
interoperable. Domain experts must be able to pass their 
models on to the next domain expert in the customiza-
tion chain. Often, each domain expert will customize 
larger and larger pieces of the system and will not need 
to see all the low level details configured by the previous 
domain experts. 

Problem → Elements of a model must be exposed to 
two domain experts through different abstractions. 
PLA variants can be constructed through a variety of 
means. In some scenarios, one domain expert may need 
to customize the work of another domain expert. In our 
CONST PLA, one domain expert creates the EJBs im-
plementing the system components and models their 
library dependencies. Another domain expert is then 
responsible for determining which of these EJB compo-
nents are deployed to compose different variants. The 
EJB domain expert does not need to know about the in-
tricacies of deploying a variant. The deployment expert 
should not be required to understand all the artifact de-
pendencies of each component. Instead, a mechanism 
should exist to allow the deployment expert’s customiza-
tion tool to ensure that each EJB is deployed with its 
required artifacts without exposing this information to 
the deployment expert. Further complicating the problem 
is that the tools of the domain experts must be interoper-
able. Preferably, both tools operate on the same underly-
ing model. 

Solution → Forward an entity of one model to an-
other model but with a different name and controlled 
access to its attributes. The Model EXTension language 



(MEXTL) provides entities that can be added to in-
stances of existing metamodels to allow them to become 
the metamodel for a new DSML. MEXTL is the lan-
guage that specifies what entities in the basis model 
should be exposed in the new DSML. It also specifies 
how each entity should be exposed in the new DSML. In 
some cases, an entity may need to be exposed in a man-
ner that hides its constituent parts. In other cases, the 
entity may allow controlled access to its constituents. 

MEXTL provides the means to directly pass entities 
from the BUMP to the new DSML. Entities in the 
BUMP can be connected to a Forwarding Atom that in-
dicates that the entity and its functionality should be cop-
ied into the new DSML. In the new DSML, creation of 
this entity will result in the creation of an entity with the 
same type as the forwarded entity from the BUMP. In 
the new DSML, however, the entity will automatically 
have its properties initialized to the same values as those 
of the instance that the forward was based on. The for-
warded entity may also have its name and appearance 
changed in the new DSML. For each property on the 
forwarded entity, the forwarding atom allows the devel-
oper to specify if the property is read-only, read-write, or 
hidden. This allows developers to expose the entity in a 
controlled manner. The declared containment relation-
ships and connection relationships for the forwarded 
entity are maintained in the new DSML if at least one 
entity with a type, compatible with the other end of the 
relationship, is forwarded. 

 

 
Figure 7. Atomic Forwarding of the Deployment 

Nodes for the Scheduler and RTM 

 

For the constraints optimization system deployment and 
configuration tool, the requirements for the application 
infrastructure, such as requiring an EJB application 
server, do not change substantially. Thus we used atomic 
forwarding to expose the target nodes for the constraint 
optimization system in the configuration and deployment 
tool. In the configuration and deployment tool, develop-

ers only specify the physical address of the node. The 
MEXTL extension hides the other details that the de-
ployer does not need to be concerned with. Figure 7 
shows the MEXTL mode where the deployment nodes 
are being atomically forwarded.  

 

Section 3.3 Challenge 2: Expose a Group of 
Entities Separately to One Domain Expert 
and as an Atomic Unit to Another Domain 
Expert 
Context. Often, one PLA customizer may compose low 
level entities into components that are the basic entities 
over which another PLA customizer operates. In the 
CONST deployment tool, the EJB customizer specifies 
which EJBs and libraries form which components. The 
deployer then maps these components to physical nodes. 
The deployer, however, needs to only know about the 
components and not their low level library dependencies 
and EJB compositions. The EJB customizer must pass 
these compositions of EJBs and libraries on to the de-
ployer in a manner that preserves this dependency in-
formation but hides it from the deployer. 

Problem → Allow one domain expert to create com-
positions of entities and another domain expert to 
configure the compositions without seeing their con-
stituents. If each entity from the composition is for-
warded separately to the new DSML, the next cus-
tomizer in the chain will be exposed to unnecessary low-
level details. To provide this type of abstraction, the 
modeling tool must provide a means for a group of enti-
ties to masquerade as an atomic unit in higher levels of 
abstraction.    

Solution → Forward entities of one model to another 
model as an atomic unit. To allow composite compo-
nents to be forwarded to the new DSML, MEXTL pro-
vides the Composite Forwarding Atom. When an entity 
is connected to the composite forwarding atom, it and all 
of its connected and contained components are exposed 
as a new element in the generated DSML. As with the 
atomic forwarding, the newly forwarded group can be 
given a new name and appearance. The composite ele-
ment allows the developer to specify whether the for-
warded entity in the new DSML is exposed as an atom 
or model. If it is exposed atomically, the entities con-
nected and contained components will not be accessible. 
If the entity is exposed as a model, each of the constitu-
ent components will be accessible.  

To hide the jar and ear dependencies of the route time 
model and scheduler, we used composite forwarding to 
expose the route time module and its artifacts as a single 
atomic entity in the new DSML. The scheduler was also 
forwarded in this manner. This allowed component de-
ployers to focus on where the application pieces would 
reside and not worry about whether or not the applica-



tion pieces themselves were correctly constructed. The 
application developers constructed the dependency in-
formation for the application pieces. Figure 8 shows the 
MEXTL model where the route time module and sched-
uler composites are being forwarded.  

 
Figure 8. Group Forwarding of the Scheduler As-

sembly and RTM Assembly 

 

Section 3.4 Challenge 3: Forwarded Compo-
sitions and Entities May Have New Connec-
tion and Other Constraint Requirements  
Context. One PLA customizer may need to declare con-
straints on the compositions they create. In the CONST 
deployment tool, the EJB component customizer must be 
able to specify which components can be co-located and 
which components cannot. The EJB customizer must 
also specify which components must be deployed for 
each system and their composition rules. Without these 
rules, the deployment expert will be able to compose 
invalid CONST systems.   

Problem → Mechanisms must exist to declare new 
constraints for forwarded entities. Each customizer 
must have a mechanism to pass constraints on to the next 
customizer in the chain. Preferably, these constraints 
should be enforced by the tool chain to ensure that they 
are applied. Constraints, however, are usually specified 
only in the metamodel and apply to general types. There-
fore, a mechanism must be created that allows con-
straints to be applied to specific entity instances within a 
model.   

Solution → Allow developers to declare connections 
between forwarded entities using the metamodeling 
language. After forwarding components into the new 
DSML, developers may still need to declare new entities 
that will be available. MEXTL allows developers to use 
the GEMS metamodeling language to specify new con-
nections between the forwarding atoms that will apply to 
the forwarded entities in the new DSML. MEXTL also 
provides developers with the ability to declare new 

model and atom types that inherit from the forwarded 
entities. Inheriting from forwarded entities allows devel-
opers to specify properties and relationships that only 
make sense in the new DSML. 

The GEMS metamodeling visualization capabilities are 
fully supported in MEXTL. Developers may create as-
pects or views on the forwarded entities that appear in 
the new DSML. The creation of aspects works as de-
scribed in Section 2.3. 

4 Related Work 
The Generic Modeling Environment (GME) [9] [10] is a 
MDD environment that supports the rapid development 
of DSMLs. GEMS provides several capabilities not 
found in GME. GME does not provide a model exten-
sion language that allows layers of abstraction to be built 
on top of existing model instances. GME’s approach to 
providing separate environments to each domain expert 
is its concepts of paradigm sheet and references. Refer-
ences allow one part of the model to refer to another 
portion of the model. They do not, however, allow for 
the creation of new constraints on the referenced ele-
ments as in MEXTL. Paradigm sheets allow multiple 
paradigms to be shared in the same modeling environ-
ment. Paradigm sheets do not enforce the separation of 
concerns between models. Each domain expert can view 
and edit the paradigm sheets of the other domain experts. 
MEXTL allows for an enforced and clean separation of 
modeling concerns. 

The Eclipse Foundation’s Graphical Modeling Frame-
work (GMF) [11], is an emerging MDD tool develop-
ment framework designed to facilitate the creation of 
DSMLs. Unlike GEMS, however, GMF does not provide 
a graphical editor for constructing metamodels. Instead, 
it takes metamodels created via a separate tools and gen-
erates editing environments for the metamodel. GMF is 
also early in development and does not yet have a con-
crete implementation. GMF does intend to support al-
lowing multiple model entities to masquerade as a single 
entity but does not provide a graphical metamodeling 
environment to specify these compositions and to further 
extend them as MEXTL does. 

Microsoft’s Domain-Specific Language Tools [13] is 
another toolsuite for developing MDD tools that sup-
ports the creation of DSMLs. As with GMF, the Corona 
tools do not provide a graphical means to define meta-
models. Moreover, Corona does not support a model 
extension language like MEXTL. 
5 Concluding Remarks 
In theory, PLAs can reduce the effort associated with 
developing a group of component applications. In prac-
tice, it is hard to develop the PLA customization tools 
required to reduce effort. Without PLA customization 
tools, developers must reason about complex sets of QoS 
requirements and large configuration spaces, which 



makes customization tedious and error-prone. With PLA 
customization tools, developers can more effectively 
reason about the correctness of a PLA variant and ensure 
that key QoS requirements are met.  

Developing PLA customization tools themselves is hard 
today, however, due to limited time-to-market and com-
plex graphical modeling requrirements,. It is therefore 
essential that MDD tools be created that allow for the 
rapid construction of DSML tools for customizing PLAs. 
The GEMS MDD tool described in this paper enables 
developers to graphically describe their target domain 
and ensures that PLA customization tools generate cor-
rect models the domain. GEMS allows developers to 
focus on the design of their target DSML, rather than on 
low-level details of integrated development environment 
APIs and drawing packages. By allowing developers to 
focus on a higher level of abstraction and automating the 
implementation of PLA customization tools, GEMS re-
duces development and evolution effort. Moreover, 
GEMS capability to regenerate implementations of the 
DSML tool as requirements change also significantly 
reduces development effort. 

Well-crafted PLA customization tools enable each do-
main expert to focus on their portion of a PLA. Insulat-
ing domain experts from complexities they are not con-
cerned with, improves the usability of the tool, reduces 
the learning curve, and helps clarify developer roles. 
MEXTL provides an automated method for building 
layers of abstraction on models. Developers can use 
MEXTL to create PLA customization tools rapidly that 
separate out each domain specialty and shield domain 
experts from areas that are not their concern. 

In future work, we are developing advanced declarative 
programming, knowledge base, and querying functional-
ity for GEMS, as well as addressing the challenges of 
maintaining model assets when the underlying meta-
model changes. The GEMS software and examples are 
available in open-source format from 
www.sf.net/projects/gems.  
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