
Simplifying the Development of Product-line Customization Tools
via Model Driven Development

Jules White and Douglas Schmidt

{jules, schmidt}@dre.vanderbilt.edu
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, USA

Abstract
Product-line architectures (PLA)s are a paradigm for
developing software families by customizing and com-
posing reusable artifacts, rather than handcrafting soft-
ware from scratch. A promising way to reduce the effort
of developing software PLAs and product variants is to
leverage Meta-configurable Modeling Environment
(MME) to provide domain-specific modeling tools for
customizing the PLA. Since creating a group of DSML
tools to customize a PLA is hard, however, it is useful to
provide a toolchain that domain experts can use to
evolve the DSML tools as the PLA’s requirements or
knowledge of the domain evolves. This paper presents
two contributions to the study of constructing DSML
tools for PLAs: (1) the Generic Eclipse Modeling System
(GEMS), which is a meta-configurable modeling envi-
ronmentl that enables the rapid construction of domain-
specific modeling languages), and (2) the Model EXTen-
sion Language (MEXTL), which provides a modeling
language and code generation capabilities to build lay-
ers of abstraction atop existing models.

Key Words: Model Driven Development, Product-line
Architectures, Metamodeling, Domain-specific Model-
ing Languages

1 Introduction
Product-line architectures (PLAs)[1] offer developers the
ability to produce a group of software packages rapidly
that are targeted for different requirement sets by lever-
aging a common set of capabilities, patterns, and archi-
tectural styles. The design of a PLA is typically guided
by scope, commonality, and variability (SCV) analysis
[6]. SCV captures key characteristics of software prod-
uct-lines, including (1) scope, which defines the domains
and context of the PLA, (2) commonalities, which de-
scribe the attributes that recur across all members of the
family of products, and (3) variabilities, which describe
the attributes unique to the different members of the
family of products.

After constructing a PLA, product-line engineers iden-
tify each product variant that must be produced from the
architecture and its requirements. Once a PLA variant’s
requirements are obtained, these requirements must be
mapped to the variabilities in the PLA. Traditional man-
ual processes of mapping the requirements to the PLA
involve software developers taking each requirement and
attempting to determine the software components that
must be in the variant, the components that must be con-
figured, how each component must be changed, and how
the components must be composed. Such manual ap-
proaches are tedious and error-prone and are a signifi-
cant source of system downtime [2] [12].
An alternate approach to mapping the variant’s require-
ments to the PLA involves the use of Model-driven de-
velopment (MDD) [3] techniques and tools, which are
designed to reduce the effort needed to capture system
requirements and map them to the underlying PLA infra-
structure. Models of PLA variants developed with MDD
tools can be constructed and checked for correctness
(semi-)automatically to ensure that application designs
meet their requirements. MDD tools can also be used to
generate the customization, composition, packaging, and
deployment code to implement PLA variants [4] [5].

To reduce the effort of developing software PLAs and
product variants, it is common to build DSML tools on
top of a Meta-configurable Modeling Environment
(MME). Creating a group of DSML tools to customize a
PLA is, in itself, a challenging endeavor. Crucial to cre-
ating a viable MME to develop DSML tools is providing
a platform that can provide (1) the appropriate level of
abstract for each domain expert and (2) the means to
evolve the DSML tools in response to changes in the
PLA’s requirements or knowledge of the domain.

To explore characteristics of MDD-based PLAs, we have
developed an Enterprise Java Beans (EJB)-based con-
straints optimization system (CONST) that schedules
pickup requests to vehicles, which is shown in Figure 1.

Scheduling System

Pickup
Requests

Vehicle
Locations

Scheduler JFense

Next Pickup Location

Route Time
Module

JFense
Autonomic
Guardian

Route Time
Calculation
Algorithm

Monitors

R
ou

t e
 T

i m
e

C
al

cu
la

t i o
ns

Response
Time QoS
Assertion

Route
Time

Module

Figure 1. A Multi-Layered Autonomic Architecture

for Scheduling Highway Freight Shipments

As shown in Figure 1, CONST manages a list of items
that must be scheduled for pickup, a list of times that the
items must arrive by, and a list of vehicles and drivers
that are available to perform the pickup. It uses a con-
straint-optimization engine to find a cost effective as-
signment of drivers and trucks to pickups. CONST’s
optimization engine could be used schedule a wide vari-
ety of shipment types. In one configuration, for example,
the system could schedule limousines to customers re-
quiring a ride, whereas in another configuration the sys-
tem could dispatch trucks to highway freight shipments.
The CONST’s optimization engine must therefore be
customizable at design-time to handle these various do-
mains effectively.

CONST must also be customizable at run-time to adapt
to changing operating conditions. During peak traffic
times, for instance, its optimization engine may need to
use traffic-aware routing algorithms, whereas during off-
peak times, it may switch to faster traffic-unaware algo-
rithms. CONST also needs to handle failures differently
depending on the target domain. For scheduling limou-
sines to pickups, for example, a degradation of the time
required to schedule a reservation below a threshold may
require CONST’s constraint engine to adapt to improve
performance. When scheduling highway freight ship-
ments, however, the threshold may be higher since
pickup and drop-off windows are more flexible.

To support the degree of customization described above,
we developed CONST as a PLA using SCV analysis, as
follows:

• The scope is the constraint optimization system ar-
chitecture and the associated components that ad-
dress the domain of scheduling shipments to vehi-
cles, including computing route times between vehi-
cles and shipments, maintaining a list of waiting
shipments, and calculating the cost of assigning a
specific vehicle to a shipment.

• The commonality is the set of components and their
interactions that are present in all configurations of
the optimization system, which include the sched-
uler updating the schedule, the route time module
answering requests from the schedule, and the dis-
patcher sending routing orders to the vehicles.

• The variability includes how the list of waiting
shipments is prioritized, how the system calculates
the cost of assigning each vehicle and driver combi-
nation to the pickups, how late pickups and dropoffs
are handled, and how the system handles response
time degradation.

By applying the SCV analysis to CONST we designed a
PLA that enables the customization of its optimization
engine for various domains.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the design of the Generic Eclipse Mod-
eling System (GEMS) and how it addresses the chal-
lenges of creating MDD-based customization tools for
PLAs such as CONST; Section 3 describes the Model
Extension Language Editing Environment (MELEE) and
uses a case study to show how it enables the creation of
layers of abstraction between models; and Section 4 pre-
sents concluding remarks.

2 The Generic Eclipse Modeling System
(GEMS)
To create PLAs rapidly, tools are needed to assemble
and customize an organization’s component assets. The
Generic Eclipse Modeling System (GEMS) created by
the Distributed Object Computing (DOC) Group at the
Institute for Software Integrated Systems (ISIS) at Van-
derbilt University is an Eclipse-based Meta-configurable
Modeling Environment that enables developers to gener-
ate Domain-Specific Modeling Language (DSML) tools
for customizing PLAs via the following capabilities:

• A visual interface that supports the creation of do-
main-specific modeling languages (DSMLs), i.e.,
GEMS contains a metamodeling environment that
supports the definition of paradigms, which are type
systems that describe the roles and relationships in
particular domains.

• The creation of models that are instances of DSML
paradigms within the same environment.

• Customization of such environments so that the ele-
ments of the modeling language represent the ele-

ments of the domain in a much more intuitive manner
than is possible via third-generation programming
languages.

• A flexible type system that allows inheritance and
instantiation of elements of modeling languages.

• An integrated constraint definition and enforcement
module that can be used to define rules that must be
adhered to by elements of the models built using a
particular DSML.

• Facilities to plug-in analysis and synthesis tools that
operate on the models.

Each of these capabilities is shown in Figure 2 and dis-
cussed below.

DSML Plugin

GEMS Figures

Draw2D

GEMS
Controllers

GEF

GEMS Plugin
API

Eclipse Plugin
API

Eclipse Platform

GEMS
Metamodel

Instance

GEMS Metamodel
Interpreter

Figure 2. The GEMS Architecture

A key challenge to developing PLA customization tools
is the formal specification of the PLA’s DSML. Engi-
neers must create a language to capture both the static
and dynamic semantics. The GEMS metamodeling lan-
guage allows developers to specify the common types in
their system, the variability in instances of the types, the
allowed containment compositions of the types, and the
allowed connections between instances of types. These
capabilities allow developers to apply SCV analysis to
their PLAs and capture the results in a metamodel. This
metamodel can then be interpreted by the GEMS tool to
generate DSML(s) for customizing the PLA. By allow-
ing developers to formally define the commonal-
ity/variability in the system and automatically generate a

graphical customization tool that operates on that do-
main, GEMS significantly reduces the development ef-
fort require to develop a PLA by (1) generating a com-
plete implementation of a tool for customizing the PLA,
(2) ensuring that only legal PLA variants can be con-
structed in the tool, and (3) providing a modeling lan-
guage intuitive to domain experts that customize the
PLA.

In the remainder of this section, we discuss the design
and functionality of the GEMS metamodeling environ-
ment. Each portion of the metamodeling system is exam-
ined in the context of the challenges it solves for build-
ing DSML customization tools for PLAs.

Section 2.1 Challenge 1: Allow DSML Tool
Developers to Leverage OO Concepts to
Construct Flexible DSMLs

Context. Extensive work has been done identifying how
to decompose problems into object oriented systems. A
good metamodeling environment must allow DSML
developers to leverage the extensive knowledge of OO
program design. By allowing developers to leverage OO
design and best practices in their metamodels, existing
patterns and development expertise can be reused.

Problem → The metamodeling language must sup-
port OO concepts, such as inheritance and polymor-
phism, and provide a mapping of these concepts to
the meta-configured modeling environment.

In order to support OO designs and patterns, the meta-
modeling language must support inheritance and poly-
morphism. These concepts from the metamodeling lan-
guage must in turn be mapped to the underlying meta-
configurable environment. The meta-configurable envi-
ronment must be able to evaluate constraint, visualiza-
tion, and composition rules on both base types and their
descendants.

Solution → Provide a metamodeling type system that
leverages the polymorphism and inheritance facilities
of the underlying OO programming language imple-
mentation.

To facilitate model reuse and maintenance, GEMS sup-
ports model types, instances, and type inheritance, simi-
lar to OO language concepts. GEMS provides two key
types that can be defined: atoms and models. Atom types
provide indivisible model units and may not contain
other elements. Model types allow developers to specify
entities that can contain other elements in the target
DSML.

Model and atom types also support properties, which are
data elements that compose the type. These are the same
as the member variables of an OO class. Properties
themselves have a simple type specified to constrain
their value. GEMS supports Enumeration, String,
Integer, Decimal, and Boolean types. To provide

more fine grained type constraints, GEMS also provides
a built-in facility for extending these basic types using
regular expression matching,. Both models and atoms
support inheritance, which allows developers to provide
polymorphic capabilities in the target DSML and facili-
tates the reuse of entities and provides for better abstrac-
tion. Inheritance applies to the properties, visualization
rules, containment rules, and constraints of a DSML.

Figure 3. Metamodel for CONST Customization Tool

To create a customization tool for our CONST constraint
optimization system, we first defined types for each of
its configurable components identified during the com-
monality phase of SCV analysis. Figure 3 illustrates the
metamodel for the CONST PLA customization tool. This
figure shows how we used GEMS to model common
components, including the route time module, scheduler,
schedule, and route time calculation algorithms. The
route time module can be configured to use either a route
time algorithm that is aware of traffic delays or a faster
calculation algorithm that ignores traffic delays. The
traffic-aware algorithm is suited to contexts, such as as-
signing limousines to reservations, where lateness is
measured in minutes. In a situation where shipments
only need to arrive by multi-hour window within a day,
such as scheduling trucks to freight shipments, the traf-
fic-unaware algorithm may be more appropriate.

Section 2.2 Challenge 2: Ensure that Models
are Correct by Construction

Context. A key benefit of using MDD tools to customize
PLA variants is that the models are guaranteed to be
correct by construction. Without guaranteeing that mod-
els are correctly constructed, developers cannot be cer-
tain that a valid PLA variant is being constructed. Cor-
rectly constructed models are even more crucial when
multiple PLA customizers are working on the same vari-
ant. Without a properly constrained modeling tool, one
PLA customizer can introduce subtle errors which ripple
down the PLA customization chain. It is therefore cru-

cial that the metamodeling tool used to construct the
MDD PLA customization tools provide a mechanism for
specifying constraints that should be applied to instances
of the DSML.

Problem → The metamodeling language must pro-
vide an expressive constraint specification system
that can satisfy a wide range of requirements.

Guaranteeing correctly constructed models requires run-
time checking of both containment and connection con-
straints in the DSML tool. Often, the tool will also re-
quire checking complex context dependent constraints,
such as the RTM may only be deployed with a traffic
aware algorithm if it is connected to a traffic status data
source. Providing a constraints language and evaluator
that is both natural to the DSML tool developer and ca-
pable of covering a wide range of requirements is chal-
lenging.

Solution → Provide graphical specification of con-
text-free constraints and a constraint specification
language for context dependent constraints.

A crucial aspect of constructing variants in PLAs is en-
suring the validity of the variants. PLAs present multiple
ways in which a variant may be constructed incorrectly.
For example, a variant may contain a composition error,
which may be caused by composing elements that cannot
be grouped together or by failing to compose elements
that must be composed together. Another source of prob-
lems in PLA variants is the definition of interactions
between PLA components, e.g., an interaction may be
created in the variant between two components with in-
compatible interfaces. There are also complex valida-
tions that cross each of these areas, e.g., a component
may only be able to interact with another component if it
has a particular property set to a specific value.

The GEMS metamodeling language provides multiple
techniques for defining constraints to ensure that only
valid variants can be constructed within the generated
DSML. Its constraint checking system takes an exclu-
sionary approach, where only connections and contain-
ment relationships that are explicitly defined in the meta-
model are allowed. The first constraint type is cardinal-
ity, which can be constructed for (1) containment by
setting values on the containment association connection
and (1) connections by setting the cardinality values on
the connection declaration atom. At runtime, contain-
ment and connection constraints are evaluated before
new connections and children are added to the model.
Only valid connections and parent/child relationships are
allowed.

In the metamodel for our CONST customization tool, we
define a containment constraint that ensures exactly one
scheduler component exists in any variant and that the
scheduler component interacts with a single pickup list.
We also define a containment constraint for the route
time module to ensure it has exactly one route time cal-

culation algorithm that it uses. An attempt to create a
system with no route time calculation algorithm or a
scheduler that interacted with more than one pickup list
will thus be flagged as an invalid variant.

To further ensure proper containment relationships and
connection relationships in the generated DSML, GEMS
supports the definition of type-based constraints. When a
connection or containment relationship is declared be-
tween two entities within the metamodel, the relationship
is constrained by the declared types of each entity. Only
entities of that type, or of a more specialized type created
through inheritance, can participate in the connection or
containment relationship. These type-based constraints
allow developers to ensure that only valid types are com-
posed together and that all connections are between valid
types. In the CONST DSML, for example, a route time
module may only contain route time calculation algo-
rithms. We define this constraint in the metamodel
through a containment connection that ensures the gen-
erated DSML will uphold this constraint.

Figure 4. Complex Constraint for a PickupList

Some constraints that must be upheld do not depend
solely on a single connection or containment relation-
ship. For these complex constraints, GEMS provides a
constraint entity that can be associated with a type. The
constraint is evaluated anytime an action is performed on
an instance of that type, such as adding a child or con-
nection. To create the constraint, GEMS provides a con-
straint editor that evaluates any valid Java code that util-
izes the GEMS model API. This constraint code is
passed the model entity instance to which the constraint
is being applied. The constraint code must use this in-
stance to evaluate the validity of the entity’s state and
return a boolean value to indicate whether the constraint
is honored or violated. Figure 4 shows a complex con-
straint defined for PickupList to ensure that a system
with a prioritized pickup list is only created if there ex-
ists a component to determine the prioritization of the
list.

Section 2.3 Challenge 3: Provide PLA Cus-
tomizers with Intuitive Visualizations of
Their Domain

Context. An important aspect of MDD tools is that they
allow domain experts to manipulate entities familiar to
their domain. In order for an entity to appear familiar to
a domain expert, it must use the standard visual repre-
sentation from its domain. Without the ability to display
entities using the visual standards of their domain, do-
main experts are forced to operate in a less intuitive en-
vironment.

Problem → The metamodeling language must pro-
vide MDD tool developers with mechanisms for cus-
tomizing the DSML’s appearance and creating dif-
ferent views of the DSML.

To enable MDD tool developers to create useful DSML
tools, the metamodeling tool must support the specifica-
tion of the visual properties of the DSML’s entities. The
specification method must be flexible enough to cover a
large number of domains but at the same time should
only require tool developers to hand write code for very
unusual visualizations. Striking this careful balance be-
tween flexibility and usability is challenging.

Solution → Provide intuitive default visualizations,
graphical specification of common visual customiza-
tions, and mechanisms for completely overriding the
default rendering mechanisms for unusual require-
ments.

By default, GEMS generates stock icons to represent the
models and atoms in the generated DSML. Most DSML
developers, however, will want to customize the render-
ing of the model entities so their look is specific to the
domain. GEMS provides developers with the ability to
customize the look of each type by providing icons for
use in place of stock icons. Developers can also provide
custom dynamic rendering of model entities. To facili-
tate dynamic rendering, GEMS provides an API devel-
oper can use to provide custom rendering classes for
their visualization needs. Connections may also have
their appearance customized. Both the endpoint styles
(e.g., diamond, arrow, etc.) and the line style itself (e.g.,
dotted, color, etc.) can be customized through settings in
the metamodeling language. The appearance of attributes
can also be customized. Connection attributes can be
configured to appear only in the attribute window or to
be visible on the rendered connection.
A PLA can often have hundreds of customizable compo-
nents. In these cases, visualizing the entire model in its
entirety becomes too complex. In other cases, the model
may have different possible views that are independent
of each other. In these cases, a mechanism is needed to
define different views on the model. Each view should

only expose the tools and entities relevant to it. Views
can be leveraged to separate the roles of the domain ex-
perts by defining different views for each domain ex-
pert’s role. Views also allow domain experts to focus on
a specific aspect of the model, such as the physical or
logical views.

The GEMS metamodeling language provides a facility
for defining different views on the model. Each view in
the DSML is modeled as an Aspect, which can be
dragged into the model and have types associated with it
via containment declarations. In the generated DSML
editor, these views can be accessed to provide visual
filters. Only types explicitly associated with the aspect
through a containment connection in the metamodel will
be visible on the tool palette and model canvas. Provid-
ing an aspect element allows developers to create multi-
view editing environments rapidly and add new views
easily as requirements change.

Figure 5 illustrates the creation of one view to customize
the route time module and another view to customize
only the scheduler. The RTM_View will create a model
view in the generated DSML that allows the developer to
view only the model entities related to the customization
of the RTM. Similarly, the Scheduler’s view will allow
the developer to isolate and view only the entities for
customization of the Scheduler, such as the PickupList
and Schedule types.

Figure 5. GEMS Aspects

Section 2.4 Challenge 4: Provide PLA Cus-
tomizers with a Mechanism for Mapping
DSML Instances to Physical PLA Artifacts

Context. An important aspect of MDD tools is that they
allow domain experts to manipulate entities familiar to
their domain. In order for an entity to appear familiar to
a domain expert, it must use the standard visual repre-
sentation from its domain. Without the ability to display
entities using the visual standards of their domain, do-

main experts are forced to operate in a less intuitive en-
vironment.

Problem → A flexible model traversal mechanism
must be provided that allows MDD tool developers to
create model interpreters to generate source artifacts
from DSML instances.

A key ability of MDD tools is the ability to generate
source artifacts and perform model analyses. To facili-
tate this, the metamodeling environment must allow de-
velopers to create model interpreters that can be pack-
aged with the generated DSML tools. This requires ex-
posing a model traversal API to allow developers to ana-
lyze the model entities and map them to source artifacts.
The domain experts must also be provided with a mecha-
nism for accessing the registered model interpreters for
their model type.

Solution → Provide a mechanism for programming
API that allows MDD tool developers to access the
Java objects implementing the DSML entities.

Creating variants for PLAs that must be handcrafted is
tedious and error-prone. Often, the requirements and
design of the variant are well understood, but incorrect
interpretation of the specification by software developers
yields implementations that do not match the require-
ments. Moreover, even developing implementations that
meet the specification still requires significant software
development time, testing, and debugging, and manual
implementation of variants leads to rediscovery of exist-
ing and well understood solutions. As the complexity of
PLAs increases and the time-to-market windows shrink,
tools are needed to reduce the complexity of implement-
ing a variant specification.

GEMS provides an interpreter framework developers can
use to create code generators that operate on model in-
stances of the generated DSML. By creating interpreters,
developers can capture well-understood commonality
and variability in the PLA in a reusable form. Implemen-
tations of the variant can be produced automatically by
interpreting model instances, which allows variants to be
generated quickly as requirements change or as new
variants are defined. Code generation also saves signifi-
cant software development, validation, and debugging
time since after a correct set of interpreters has been con-
structed and validated, all generated implementations of
variants will be correct-by-construction.

The GEMS interpreter framework provides a Java API
that allows interpreter developers to traverse instances of
the model entities. This API includes methods for query-
ing the children of each model, querying attribute values,
and querying connections. The GEMS Metamodel inter-
preter generates the Eclipse plug-in artifacts required to
implement the modeled PLA customization tool. The
generated code includes the classes needed for the
Draw2D and GEF models, controllers, and views. It also
includes the XML plug-in descriptor required to inte-

grate the customization tool into Eclipse. For customiz-
ing our CONST PLA customization tool, the interpreter
generated approximately 31 classes, 500 lines of Java
code, and 70 lines of XML, all of which would have
been created manually by developers using a traditional
manual development process. For our CONST customi-
zation tool, we developed multiple interpreters, leverag-
ing our previous work on the Enterprise Jave Bean mod-
eling tool, J2EEML [7], to generate artifacts to auto-
mate variant implementation. These interpreters include
numerous artifacts, including XML descriptor and con-
figuration files, Enterprise Java Beans, ANT deployment
scripts, Java Docs, testing frameworks, and JNDI lookup
code.

2.5 Applying GEMS to CONST
We developed the CONST case study to illustrate the
advantages of using the GEMS-based PLA customiza-
tion tool to create constraint optimization system vari-
ants. A meta-model describing the problem domain was
created in GEMS. The GEMS plugin-generator was then
used to create an Eclipse plugin for creating CONST
variants. We then performed experiments comparing the
reduction in development effort provided by the GEMS-
based CONST customization tool versus traditional de-
velopment methods.

The initial generated implementation of this case study
created by the CONST customization tool contained
several thousand lines of Java code. The generated EJB
implementations accounted for nearly 75% of the com-
plete code base, the test framework accounted for 20%,
and the adaptive glue code accounted for 5%. Using a
traditional development process, much of this code
would have been developed manually. With our PLA
customization tool, in contrast, all code except for the
business logic and testing logic was generated initially
from our specification, which accounted for approxi-
mately one-third of the code required to implement the
Java classes for the application.

Using our highway freight scheduling case study, we
evaluated the difficulty of creating several new variants.
The first variant was constructed by customizing the
PLA to add monitoring and adaptation logic. We refac-
tored the design to monitor the response times of the
route time module component. Adjusting the design us-
ing the PLA customization tool and regenerating the
implementation took approximately five mouse clicks
and resulted in the generation of ~20 new lines of source
code that correctly mirrored the specification and was
correct-by-construction. Without GEMS’s code genera-
tion tools, in contrast, each change that required the ad-
dition of one new connection in the model would have
required a manual change to the implementation and
more testing to attain the same level of confidence. In a
large-scale development effort with many changes, using

the PLA customization tool would therefore reduce
refactoring effort significantly.

To evaluate the impact of design refactoring on the route
time model monitoring variant, we modified its initial
design by changing its response time analysis into a hi-
erarchy of average and maximum response time analy-
ses. We also added adaptive logic to adapt to poor re-
sponse times. The adaptive logic took the following se-
ries of actions: the first action was to suspend the proc-
essing of incoming requests, the second action taken was
to change the algorithm used by the route time module to
one that is less precise but faster, and the final action
taken by the adaptation was to resume processing re-
quests. The refactoring in the PLA customization tool
was straightforward and took ~12 mouse clicks. The
change generated ~75 new lines of code, which mini-
mized the complexity of the design change and imple-
mentation update. Again, for large development projects
without MDD tool support, many such changes would
occur and hence the manual redevelopment effort would
be much higher.
3 Creating Different Abstractions for Each
Domain Expert
PLA variants are constructed by having a group of do-
main experts customize different portions of the product.
In an DSML-based process, each domain expert needs a
modeling tool that focuses on their specific domain. The
domain experts’ modeling tools must, however, remain
interoperable, e.g., so that domain experts can pass their
models on to the next domain expert in the customiza-
tion chain. Each domain expert may customize larger
and larger pieces of the system and may therefore not
need to see all the low-level details configured by the
previous domain experts.

PLA variants can be constructed through a variety of
means. In some scenarios, one domain expert may need
to customize the work of another domain expert. In our
CONST PLA, for instance, one domain expert creates
the EJBs implementing the system components and
models their library dependencies. Another domain ex-
pert is then responsible for determining which of these
EJB components are deployed to compose different vari-
ants. The EJB domain expert need not know about the
intricacies of deploying a variant. The deployment expert
should not be required to understand all the artifact de-
pendencies of each component. Instead, the deployment
expert’s customization tool should ensure that each EJB
is deployed with its required artifacts without exposing
this information to the deployment expert. Further com-
plicating the problem is that the tools of the domain ex-
perts must be interoperable. Ideally, both (all) tools op-
erate on the same underlying model.

This section examines R&D challenges associated with
creating layers of abstraction on top of models. For each
challenge we will (1) explain the context in which the

challenge arises, (2) identify the specific problems that
must be addressed, and (3) outline an approach that helps
resolve the challenge and show how we could apply
these solutions in our CONST PLA.

To present the challenges associated with creating layers
of abstraction, we use a case study based on CONST.
CONST presents significant challenges for the deploy-
ment and configuration of its distributed components,
including the RTM and Scheduler It is therefore impor-
tant that a PLA customization tool be provided, which
can guarantee that a variant of the optimization system is
correctly deployed and configured. We extended an ex-
isting deployment and configuration tool, the FireAnt
model driven deployment and configuration system to
create a deployment and configuration tool for CONST.
We use the extension of FireAnt as the case study for
illustrating our model abstraction technologies.

Figure 6. MEXTL Abstraction Architecture

Section 3.1 The Model EXTension Language
(MEXTL)
The Model EXTension Language (MEXTL) is a DSML
that allows developers to annotate an existing instance of
a DSML, which we call the Basis Underlying Model
(BUM), to provide a layer of abstraction on top of it.
MEXTL provides mechanisms for specifying which por-
tions of the Basis Underlying Modeling Paradigm
(BUMP) to hide in the new DSML. It also contains fa-
cilities for describing points of variability in the new

DSML and how they are mapped to the BUMP. Finally,
MEXTL allows developers to mark which groups of
elements from the BUM should serve as atomic units in
the new DSML. Figure 6 illustrates the process by which
an existing DSML instance is extended using MEXTL to
create a new modeling paradigm.

We have developed extensions to GEMS that provide a
graphical editing environment for MEXTL. The envi-
ronment supports the importation of existing instances of
models, developed with GEMS, and their annotation
with MEXTL entities. The editor provides mechanisms
for viewing the underlying model instance and MEXTL
elements separately. Interpreters for models annotated
with MEXTL entities can generate new DSMLs, GEMS-
based Eclipse Plug-ins, and translation interpreters from
the new DSML to the BUMP.

Section 3.2 Challenge 1: Expose the Same
Model Elements Through Different Abstrac-
tions to Each Domain Expert
Context. PLA Variants are constructed by having a
group of domain experts that customize different por-
tions of the product. Each domain expert needs a model-
ing tool that focuses on their specific domain. The do-
main experts’ modeling tools must, however, remain
interoperable. Domain experts must be able to pass their
models on to the next domain expert in the customiza-
tion chain. Often, each domain expert will customize
larger and larger pieces of the system and will not need
to see all the low level details configured by the previous
domain experts.

Problem → Elements of a model must be exposed to
two domain experts through different abstractions.
PLA variants can be constructed through a variety of
means. In some scenarios, one domain expert may need
to customize the work of another domain expert. In our
CONST PLA, one domain expert creates the EJBs im-
plementing the system components and models their
library dependencies. Another domain expert is then
responsible for determining which of these EJB compo-
nents are deployed to compose different variants. The
EJB domain expert does not need to know about the in-
tricacies of deploying a variant. The deployment expert
should not be required to understand all the artifact de-
pendencies of each component. Instead, a mechanism
should exist to allow the deployment expert’s customiza-
tion tool to ensure that each EJB is deployed with its
required artifacts without exposing this information to
the deployment expert. Further complicating the problem
is that the tools of the domain experts must be interoper-
able. Preferably, both tools operate on the same underly-
ing model.

Solution → Forward an entity of one model to an-
other model but with a different name and controlled
access to its attributes. The Model EXTension language

(MEXTL) provides entities that can be added to in-
stances of existing metamodels to allow them to become
the metamodel for a new DSML. MEXTL is the lan-
guage that specifies what entities in the basis model
should be exposed in the new DSML. It also specifies
how each entity should be exposed in the new DSML. In
some cases, an entity may need to be exposed in a man-
ner that hides its constituent parts. In other cases, the
entity may allow controlled access to its constituents.

MEXTL provides the means to directly pass entities
from the BUMP to the new DSML. Entities in the
BUMP can be connected to a Forwarding Atom that in-
dicates that the entity and its functionality should be cop-
ied into the new DSML. In the new DSML, creation of
this entity will result in the creation of an entity with the
same type as the forwarded entity from the BUMP. In
the new DSML, however, the entity will automatically
have its properties initialized to the same values as those
of the instance that the forward was based on. The for-
warded entity may also have its name and appearance
changed in the new DSML. For each property on the
forwarded entity, the forwarding atom allows the devel-
oper to specify if the property is read-only, read-write, or
hidden. This allows developers to expose the entity in a
controlled manner. The declared containment relation-
ships and connection relationships for the forwarded
entity are maintained in the new DSML if at least one
entity with a type, compatible with the other end of the
relationship, is forwarded.

Figure 7. Atomic Forwarding of the Deployment

Nodes for the Scheduler and RTM

For the constraints optimization system deployment and
configuration tool, the requirements for the application
infrastructure, such as requiring an EJB application
server, do not change substantially. Thus we used atomic
forwarding to expose the target nodes for the constraint
optimization system in the configuration and deployment
tool. In the configuration and deployment tool, develop-

ers only specify the physical address of the node. The
MEXTL extension hides the other details that the de-
ployer does not need to be concerned with. Figure 7
shows the MEXTL mode where the deployment nodes
are being atomically forwarded.

Section 3.3 Challenge 2: Expose a Group of
Entities Separately to One Domain Expert
and as an Atomic Unit to Another Domain
Expert
Context. Often, one PLA customizer may compose low
level entities into components that are the basic entities
over which another PLA customizer operates. In the
CONST deployment tool, the EJB customizer specifies
which EJBs and libraries form which components. The
deployer then maps these components to physical nodes.
The deployer, however, needs to only know about the
components and not their low level library dependencies
and EJB compositions. The EJB customizer must pass
these compositions of EJBs and libraries on to the de-
ployer in a manner that preserves this dependency in-
formation but hides it from the deployer.

Problem → Allow one domain expert to create com-
positions of entities and another domain expert to
configure the compositions without seeing their con-
stituents. If each entity from the composition is for-
warded separately to the new DSML, the next cus-
tomizer in the chain will be exposed to unnecessary low-
level details. To provide this type of abstraction, the
modeling tool must provide a means for a group of enti-
ties to masquerade as an atomic unit in higher levels of
abstraction.

Solution → Forward entities of one model to another
model as an atomic unit. To allow composite compo-
nents to be forwarded to the new DSML, MEXTL pro-
vides the Composite Forwarding Atom. When an entity
is connected to the composite forwarding atom, it and all
of its connected and contained components are exposed
as a new element in the generated DSML. As with the
atomic forwarding, the newly forwarded group can be
given a new name and appearance. The composite ele-
ment allows the developer to specify whether the for-
warded entity in the new DSML is exposed as an atom
or model. If it is exposed atomically, the entities con-
nected and contained components will not be accessible.
If the entity is exposed as a model, each of the constitu-
ent components will be accessible.

To hide the jar and ear dependencies of the route time
model and scheduler, we used composite forwarding to
expose the route time module and its artifacts as a single
atomic entity in the new DSML. The scheduler was also
forwarded in this manner. This allowed component de-
ployers to focus on where the application pieces would
reside and not worry about whether or not the applica-

tion pieces themselves were correctly constructed. The
application developers constructed the dependency in-
formation for the application pieces. Figure 8 shows the
MEXTL model where the route time module and sched-
uler composites are being forwarded.

Figure 8. Group Forwarding of the Scheduler As-

sembly and RTM Assembly

Section 3.4 Challenge 3: Forwarded Compo-
sitions and Entities May Have New Connec-
tion and Other Constraint Requirements
Context. One PLA customizer may need to declare con-
straints on the compositions they create. In the CONST
deployment tool, the EJB component customizer must be
able to specify which components can be co-located and
which components cannot. The EJB customizer must
also specify which components must be deployed for
each system and their composition rules. Without these
rules, the deployment expert will be able to compose
invalid CONST systems.

Problem → Mechanisms must exist to declare new
constraints for forwarded entities. Each customizer
must have a mechanism to pass constraints on to the next
customizer in the chain. Preferably, these constraints
should be enforced by the tool chain to ensure that they
are applied. Constraints, however, are usually specified
only in the metamodel and apply to general types. There-
fore, a mechanism must be created that allows con-
straints to be applied to specific entity instances within a
model.

Solution → Allow developers to declare connections
between forwarded entities using the metamodeling
language. After forwarding components into the new
DSML, developers may still need to declare new entities
that will be available. MEXTL allows developers to use
the GEMS metamodeling language to specify new con-
nections between the forwarding atoms that will apply to
the forwarded entities in the new DSML. MEXTL also
provides developers with the ability to declare new

model and atom types that inherit from the forwarded
entities. Inheriting from forwarded entities allows devel-
opers to specify properties and relationships that only
make sense in the new DSML.

The GEMS metamodeling visualization capabilities are
fully supported in MEXTL. Developers may create as-
pects or views on the forwarded entities that appear in
the new DSML. The creation of aspects works as de-
scribed in Section 2.3.

4 Related Work
The Generic Modeling Environment (GME) [9] [10] is a
MDD environment that supports the rapid development
of DSMLs. GEMS provides several capabilities not
found in GME. GME does not provide a model exten-
sion language that allows layers of abstraction to be built
on top of existing model instances. GME’s approach to
providing separate environments to each domain expert
is its concepts of paradigm sheet and references. Refer-
ences allow one part of the model to refer to another
portion of the model. They do not, however, allow for
the creation of new constraints on the referenced ele-
ments as in MEXTL. Paradigm sheets allow multiple
paradigms to be shared in the same modeling environ-
ment. Paradigm sheets do not enforce the separation of
concerns between models. Each domain expert can view
and edit the paradigm sheets of the other domain experts.
MEXTL allows for an enforced and clean separation of
modeling concerns.

The Eclipse Foundation’s Graphical Modeling Frame-
work (GMF) [11], is an emerging MDD tool develop-
ment framework designed to facilitate the creation of
DSMLs. Unlike GEMS, however, GMF does not provide
a graphical editor for constructing metamodels. Instead,
it takes metamodels created via a separate tools and gen-
erates editing environments for the metamodel. GMF is
also early in development and does not yet have a con-
crete implementation. GMF does intend to support al-
lowing multiple model entities to masquerade as a single
entity but does not provide a graphical metamodeling
environment to specify these compositions and to further
extend them as MEXTL does.

Microsoft’s Domain-Specific Language Tools [13] is
another toolsuite for developing MDD tools that sup-
ports the creation of DSMLs. As with GMF, the Corona
tools do not provide a graphical means to define meta-
models. Moreover, Corona does not support a model
extension language like MEXTL.
5 Concluding Remarks
In theory, PLAs can reduce the effort associated with
developing a group of component applications. In prac-
tice, it is hard to develop the PLA customization tools
required to reduce effort. Without PLA customization
tools, developers must reason about complex sets of QoS
requirements and large configuration spaces, which

makes customization tedious and error-prone. With PLA
customization tools, developers can more effectively
reason about the correctness of a PLA variant and ensure
that key QoS requirements are met.

Developing PLA customization tools themselves is hard
today, however, due to limited time-to-market and com-
plex graphical modeling requrirements,. It is therefore
essential that MDD tools be created that allow for the
rapid construction of DSML tools for customizing PLAs.
The GEMS MDD tool described in this paper enables
developers to graphically describe their target domain
and ensures that PLA customization tools generate cor-
rect models the domain. GEMS allows developers to
focus on the design of their target DSML, rather than on
low-level details of integrated development environment
APIs and drawing packages. By allowing developers to
focus on a higher level of abstraction and automating the
implementation of PLA customization tools, GEMS re-
duces development and evolution effort. Moreover,
GEMS capability to regenerate implementations of the
DSML tool as requirements change also significantly
reduces development effort.

Well-crafted PLA customization tools enable each do-
main expert to focus on their portion of a PLA. Insulat-
ing domain experts from complexities they are not con-
cerned with, improves the usability of the tool, reduces
the learning curve, and helps clarify developer roles.
MEXTL provides an automated method for building
layers of abstraction on models. Developers can use
MEXTL to create PLA customization tools rapidly that
separate out each domain specialty and shield domain
experts from areas that are not their concern.

In future work, we are developing advanced declarative
programming, knowledge base, and querying functional-
ity for GEMS, as well as addressing the challenges of
maintaining model assets when the underlying meta-
model changes. The GEMS software and examples are
available in open-source format from
www.sf.net/projects/gems.

References
[1] P. Clements, L. Northrop, Software Product Lines,
Practices, and Patterns, Addison-Wesley, Boston, 2002

[2] D. Oppenheimer, A. Ganapathi, D. Patterson, “Why
do Internet services fail, and what can be done about
it?”, “USENIX Symposium on Internet Technologies
and Systems,USENIX Symposium on Internet Tech-
nologies and Systems,” March 2003.

[3] N. Wang, D. Schmidt, A. Gokhale, C. Rodrigues, B.
Natarajan, J. Loyall, R. Schantz, and C. Gill, “QoS-
enabled Middleware,” in Middleware for Communi-
cations, edited by Q. Mahmoud, Wiley and Sons, New
York, 2003.

[4] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. Schmidt, ``A Platform-Independent
Component Modeling Language for Distributed Real-
time and Embedded Systems,'' Proceedings of the 11th
IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, San Francisco, CA, March 2005.

[5] J. Hatcliff., W. Deng, M. Dwyer, G. Jung, V. Prasad,,
“Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Sys-
tems,” In: Proceedings of the 25th International Confer-
ence on Software Engineering (2003), Portland, OR

[6] J. Coplien, D. Hoffman, D. Weiss, “Commonality
and Variability in Software Engineering,” IEE Software,
15(6), November/December 1998

[7] J. White, D. Schmidt, A. Gokhale, “Simplifying the
Development of Autonomic Enterprise Java Bean Appli-
cations via Model Driven Development.,” In: Proc.
ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (2005),
Seattle, WA

[8] Apache Foundation: Apache Ant.
http://ant.apache.org

[9] Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P.,
Nordstrom, G., Sprinkle, J., Karsai, G, “Composing
Domain-Specific Design Environments,” IEEE Com-
puter, Nov. (2001)

[10] A. Ledeczi, “The Generic Modeling Environment,”
In: Proc. Workshop on Intelligent Signal Processing
(2001), Budapest, Hungary

[11] The Eclipse Foundation: The Graphical Modeling
Framework. http://www.eclipse.org/gmf/

[12] G. Edwards, G. Deng, D. Schmidt, A. Gokhale,, B.
Natarajan, “Model-driven Configuration and Deploy-
ment of Component Middleware Publisher/Subscriber
Services,” In: Proceedings of the 3rd ACM International
Conference on Generative Programming and Component
Engineering (2004), Vancouver, CA

[13] Microsoft Coroporation. Domain-Specific Lan-
guage Tools,
http://lab.msdn.microsoft.com/teamsystem/workshop/dsl
tools/default.aspx

http://www.sf.net/projects/gems
http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf
http://www.cs.wustl.edu/~schmidt/PDF/QoS4DRE.pdf
http://ant.apache.org/
http://www.eclipse.org/gmf/
http://www.program-transformation.org/Gpce
http://www.program-transformation.org/Gpce
http://www.program-transformation.org/Gpce

	Simplifying the Development of Product-line Customization To
	via Model Driven Development
	Jules White and Douglas Schmidt
	Section 2.1 Challenge 1: Allow DSML Tool Developers to Lever
	Section 2.2 Challenge 2: Ensure that Models are Correct by C
	Section 2.3 Challenge 3: Provide PLA Customizers with Intuit
	Section 2.4 Challenge 4: Provide PLA Customizers with a Mech

	2.5 Applying GEMS to CONST
	3 Creating Different Abstractions for Each Domain Expert
	Section 3.1 The Model EXTension Language (MEXTL)
	Section 3.2 Challenge 1: Expose the Same Model Elements Thro
	Section 3.3 Challenge 2: Expose a Group of Entities Separate
	Section 3.4 Challenge 3: Forwarded Compositions and Entities
	4 Related Work

	References

