The Generic Eclipse Modeling System

Jules White, Douglas C. Schmidt, Sean Mulligan
Vanderbilt University, EECS Nashville, TN, USA

{jules,schmidt}@dre.vanderbilt.edu

ABSTRACT

The Generic Eclipse Modeling System (GEMS), a part of thgBel
Generative Modeling Technologies (GMT) project, gives dom
experts the ability to generate the implementation of a lyjcab
modeling tool from a visual language specification (metaghod
Domain experts that use GEMS can create an Eclipse-basel-gra
ical modeling tool without intimate knowledge of the Eckdglod-
eling Framework, Graphical Editor Framework, Graphicalddo
Framework, or Eclipse Plug-in API. GEMS imbues each geedrat
modeling tool with complex constraint checking and coristra
solver guided modeling assistance. Stylesheets can bedgpl
GEMS modeling tools to customize the graphical interfacd an
separate visualization properties from Java code. Fin@BMS
provides a remoting infrastructure that allows modelinglsao

Even with all of these powerful frameworks, developing a eled
driven development tool is still challenging. In most cimtstances,
stock visualizations from the framework are not acceptairle
complex coding in GMF, Draw2D, or GEF is needed. Furthermore
all of these frameworks assume that developers possessateti
knowledge of Eclipse APIs and concepts and thus are not easy f
domain experts to leverage. Even if a domain expert has the re
quired skills to implement a tool, performing the complexic

to implement a graphical modeling tool subtracts from theetthe
domain expert spends on the key assets of these tools; th#eom
domain validation, code-generation, optimization, amdusation
capabilities. Finally, if a tool is developed with a tradital manual
EMF, GEF, and GMF approach, there is a significant cost associ
ated with maintaining the implementation, as understandirthe

connect to remote sensors, GEMS models, and other CORBA ordomain deepens and the tool and modeling language requiteme

Java RMI-enabled clients. This paper focuses on the sigtsh
remoting, and constraint-solver modeling guidance cdipiali of

change.

GEMS. These features of GEMS are discussed in the context of The Generic Eclipse Modeling System (GEMS) is a part of the

an example application for building interactive televisiapplica-
tions.

1. INTRODUCTION

Model-Driven Development (MDD) has become a popular apghroa
to creating solutions in a large number of domains. Mostalisu
MDD tools are built using the Model View Controller (MVC)
pattern [1]. Eclipse provides numerous frameworks to st
velopment of MVC-based graphical modeling tools. The Driaw?2
framework provides the basic visualization mechanismsr&wd
the Visio-like diagrams common in MDD tools. The Graphical
Editor Framework (GEF) provides inversion of control foath
ing a graphical model, creating controllers for each model e
ment, and constructing and associating views with the obeats.
The Eclipse Modeling Framework (EMF) contains various ABts
building object graphs for a model, serializing and deadiing
object graphs, and enforcing basic constraints on the graph
nally, the Graphical Modeling Framework (GMF) allows devel
opers to develop complex controller logic from specificasidhat
map a model to the different elements of a view.

Eclipse Generative Modeling Technologies (GMT) projedENES
allows domain experts to rapidly create complex graphicatim
eling tools for Eclipse without writing Graphical User Inface
(GUI), EMF, or XML code. Developers create a visual specifica
tion of the metamodel for a modeling language and GEMS gener-
ates the requisite GEF, EMF, Draw2D, and Eclipse code toampl
ment an editor for the modeling language. GEMS is an openssou
project, that has been developed in conjunction with Sient&h
SE2, IBM, and Prismtech.

By automatically generating the needed code artifacts pbament

a modeling tool, GEMS substantially reduces the implentanta
cost of a graphical modeling tool. With less implementaticork
needed for the MVC components of the modeling tool, develop-
ers can focus on the key aspects of their tool: the speciicat
the modeling language and the intellectual assets builtrardhe
use of the language, such as code generation capabilitiesheA
supporting EMF/GEF/Draw2D and Eclipse infrastructureles®

or the requirements of the modeling tool change, GEMS cagrreg
erate the implementation of the tool to meet the new requeres
By using GEMS, developers save not only the initial implemen
tation cost but the continued support and refactoring cdstimal
key attribute of GEMS is that it separates the graphicalifipation
into style-sheets and allows domain-experts or graphiigdess to
create complex visualization without GUI coding. This gegian

of the visualization properties from the metamodel prosidede-
velopment process similar to web-based applications.

A GEMS-generated graphical modeling tool can have botficstat
and dynamic visual behaviour specified through stylesh&sephic

designers or developers can create styles and icons thaltshe
applied to elements when they are in specific states. Forgram
developer building a tool for specifying the deploymentrdtrac-
tive television applications to set-top boxes could develeparate
icons and styles for drawing an application when it is deptbgind
undeployed.

This paper provides an introduction to GEMS and its remoting
stylesheet, and constraint solving capabilities. Each GEd&ture

is presented in the context of an interactive televisiomgla. The
remainder of this paper is organized as follows: Sectiore2eqmts
the interactive television example that is used througtiwipaper;
Section 3 presents the remoting, stylesheet, and cortséaliring
capabilities of GEMS in the context of the television exagpind
Section 4 presents concluding remarks.

2. MOTIVATING EXAMPLE

An application for building interactive television apgiions is
used as the motivating example throughout the paper. Thkee- int
active television scenario is outlined in the workshop amuoe-
ment [2]. After further discussion, the project managerdfie in-
teractive television modeling tool have identified sevedditional
challenges for the project.

2.1 Challenge: No Developerswith GUI or IDE
Coding Experience
In the process of assembling the development team for thegbro
the managers have realized that few of the developers hagve an
experience developing graphical modeling tools or GU lelaep-
plications. Most of the developers have only done back-erabe
processing, data archival, and web application developmEhne
organization’s typical development projects are web-thasel thus
the User Interface (Ul) components of the applications ait by
graphic designers, web developers, and some developdrdavia
Server Page expertise. None of the developers have but fimo
Eclipse, Visio, or any of the other potential modeling patfis.

Due to the lack of developers with Ul experience availabtetfiie
project, the managers have decided that they wish to usé th&to
provides a development process more similar to a web-bagei a
cation. The managers would like to have an IT-architectgieie
overall structure of the modeling language, a group of égpeed
back-end programmers develop the code generation podiuh,
a web-development team focus on the visualization aspddts.
managers also do not want any of the developers to learn ehy te
niques or APIs specific to the Integrated Development Envirent
(IDE) that the modeling tool will be built on top of.

2.2 Challenge: Remote Model Access

The advertising department for the organization has ctedaihe
project manager and expressed its desire to be involvee jprtject.
The advertising department would like to be able to use theatro
ing tool to monitor poll results as they arrive. The advéntjsde-
partment would also like to change the interactive televishenus
delivered to subscribers on the fly to include new advertesgm
targeted towards the trends from the interactive polls. déwart-
ment has a polling statistics package, developed with flagtthey
would like to interface with the tool.

The statistics package requires significant processingep@and
cannot be co-located with the modeling tool. The packagesee
to be able to remotely capture the contents of the modelsavia J

RMI and publish updates to the interactive menus based dn the
analyses. Furthermore, the modeling tool needs to be albtgto
ger the menu code generation routines when these updaies arr
and push the new interactive television code for the mentisoou
the server that communicates with the set-top televisioe$oT he
server that communicates with the set-top boxes is onlysadue

via CORBA. The overall architecture for the dynamic ad phaeat
mechanism can be seen in Figure 1.

T —
R T ;
= e —__2. Statistics Package Run _—
. = : A
g e .
I = N
e - .New Ul_——= 1
=_ = Ads

4. New Ul Code Sent to Server

1. Polling Results Reported

New Ul + Ads
Distri TVs

([!D

-

Figure 1: Architecture for Dynamic Ad Placement

2.3 Challenge: Heterogenous Set-Top Box Ca-
pabilities
The organization began rolling out its interactive tel@risservice
over 5 years ago. Due to the long span of time over which the or-
ganization has offered interactive television serviceythow have
a large number of customers with multiple models of set-tmyeb
and interactive television software packages. Genemllse a cus-
tomer signs up for the service their set-top box is instabigch
technician and not replaced unless absolutely necessagy. the
five years, the organization has rolled out multiple typefafd-
ware with differing CPU, memory, HDTV, and other capab#i
The boxes also have a variety of interactive televisionfptats
installed.

The organization does not want the producers to be limiteadd-
eling GUIs that can be run on the lowest common denominator.
Many of their customers pay for HDTV and they would like to pro
vide each customer with the best possible GUI that their @ox ¢
support. Thus, the modeling tool needs to be able to caphere t
requirements of the interactive applications and detezmihich
boxes can support which GUIs.

Due to the large number of box types and range of capabijlities
the modeling tool must provide support for helping modelers

understand what applications can run on what boxes. Witthisit
type of modeling guidance, it is unlikely the modelers willly
understand their design decisions. Furthermore, the tast fme
able to use the requirements of the GUIs and capabilitieacii e
box type to deduce the GUIs that will run on each box type. This
capability to deduce the correct GUI for each box type mussi be
remotely accessible and automated so that the boxes canlaedp
on the fly by the dynamic ad injection mechanism describetien t
last challenge.

3. USINGGEMSTO ADDRESSTHE CHAL-
LENGES OF INTERACTIVE TV MOD-

ELING
The challenges outlined in Section 2, require that the niogl@lat-
form chosen for the project be able to: 1) allow developersréo
ate a graphical modeling tool and integrate it with an IDEhwitt
coding; 2) provide a visualization interface that can béestyn a
manner similar to web pages; 3) be capable of exposing moeel i
stances remotely through CORBA and Java RMI; and 4) provide
complex constraint solving infrastructure to derive thedv&UIs
for a set-top box. In this section, we show how GEMS provities t
capabilities to address each of these requirements.

3.1 Code-lessUI Development and Stylableln-

terfaces
GEMS is based on the Model-Integrated Computing (MIC) pigrad
[5] developed at Vanderbilt University’s Institute for 8@ére Inte-
grated Systems (ISIS). MIC was originally pioneered in tea&ic
Modeling Environment [3]. With the rise in popularity of Ha$e
and the Eclipse Modeling Framework, the Distributed Objzmtn-
puting (DOC) group at ISIS has implemented a similar
meta-programmable environment for Eclipse.

As shown in Figure 2, modelers can use GEMS to visually de-

Customize the Look
of the Modeling Tool
Using Cascading
Style Sheets (CSS)
and Custom Icons

(QJ) Create Model
& Constraints
_- Java, OCL, or

Prolog
Constraints

Java, EMF, S
GEF, GMF *

XML & G
Descriptors' & 7

Generate a Graphical
Modeling Plug-in

\

/
Refine the Maxamod}l\w
/ Needed and Repeat

B0 , :
Creaté a Mefamodel |/ \

Use the Modeling
Tool

Figure 2: Developing an Eclipse Modeling Tool with GEMS

and developers from having to figure out how to implement the
specification of the producers’ desired modeling language.

3.2 CSSStyles

One of the novel aspects of GEMS is the ability to apply Cascad
ing Style Sheet (CSS) styles to the generated modeling.tdakt

as with web development, the GEMS approach to modeling-tool
development separates the specification of the content@mtdrt
structure from the visualizaton properties of the data. Andm-
expert uses the GEMS metamodel to specify the structure@md c
tent captured in the models and graphic designers use stytes-
tomize the look of the content.

The CSS style sheet language exposed by GEMS adds domain-
specific modeling concepts. Traditionally, a CSS style shees
selectors that match structural elements in an HTML page. For
example, the style:

scribe a metamodel in Eclipse and use GEMS to generate the EMFp { font-size: |arge;}

Draw2D, and GEF code to implement a modeling tool for the lan-
guage described by the metamodel. In step 1, domain expsets u
the modeling tool to build the metamodel for the languagegisi
GEMS’ GEF-based visual metamodel editor. In step 2, the do-
main experts invoke the GEMS code generators to producekHte G
code, Eclipse plugin descriptor, EMF code, and other soartie
facts to implement a graphical modeling tool for the langualn
step 3, graphic designers use CSS style sheets to changethe |
and feel of the generated modeling tool’s Ul to match comnmn d
main notations. In step 5, domain experts or developers ttacha
OCL, Prolog, and Java constraints to the modeling languagpe
cific model instances. In step 6, domain experts use the gtater
modeling tool to build instances of the modeling language.

With GEMS, domain experts do not need to write Java code,&Ecor
XML models, GMF code, or Eclipse plug-in descriptors to pro-
duce a modeling tool for Eclipse. GEMS takes care of genggati
all of these required artifacts from the visual metamodeic&p
cation. This code-generation frees domain experts fronmgao
worry about the low-level implementation details typigadissoci-
ated with developing a modeling tool for Eclipse.

For the interactive television example, the producers ddinkt
use GEMS to specify a metamodel for the interactive telewisi
application. GEMS would then take care of generating theistg
Java code to implement the editor. This alleviates the prexu

would match all paragraphs (denoted by "p" HTML elements) an
set the font size for those paragraphs to large. In GEMS O8& st
sheets, the selectors match against the types defined inetae m
model. For example, in our implementation of the interact®e-
vision modeling applicationylenu is a type of modeling element.
To create a style sheet that changed the font used by the ficawe
ing the Menu modeling element, a graphic designer couldetba
following style sheet:

Menu { font-name: Verdana;}

In this example, "Menu" is being used as the selector anddheen

of the font face used by Menu elements is being set. The demain
specific selectors used by GEMS can rely on the inheritance hi
erarchies from the metamodel. For example, an element ef typ
HDTVMenu that is derived from Menu, can have the following
style applied to override the font color:

HDTVMenu { font-col or: RGB(100, 100, 100);}

The HDTV menu will have both the Menu style and any properties
from the HDTVMenu style applied. Properties overriden ie th

HDTV style will supercede those from the Menu style. Styles ¢
set complex properties of figures, such as layouts, textialénts,
label formats, attributes attached to connections, ambkico

3.3 Dynamically Changing Styles

A typical scenario with a modeling tool is that the domain exp
wants the way that a modeling element is visualized to change
based on different types of domain analyses. In the inteeact
television example, a domain expert may wish to have a lade r
background applied to Menu that is so large that it will exteirf

the customers’ television screens. Furthermore, the dosxqert
may want a small popup to appear above the element spectfyégng
error that has created the red X.

Most modeling approaches use the Model-View Controlleagigm.
Creating a graphical change, driven by a domain analy<isijnes
placing complex domain analysis code into the controllethef
view. Implenting a domain analysis in a controller requiirs
mate understanding of the underlying GUI APIs and tedious an
error-prone graphical coding. Often, domain experts caahgir
mind about when these visualizations should be triggerdddmat
they should look like, which causes costly code refactoring

With GEMS, each model element can have a group of tags associ-

ated with it. GEMS tags are analogous to CSS class attribdtes
CSS class attribute acts as a filter to reduce the scope thdeass
applied to. For example:

p. menucontent { font-size: large;}

would only match HTML "p" elements with the "class" attribut
set to "menucontent.” The class attribute can then be useleby
content producer to more specifically annotate differectises of
the document. GEMS provides a similar facility for its madgl
elements. GEMS styles can be scoped by the tags that arattyrre
applied to a model element.

GEMS provides facilities to use domain analyses written ©LO
Java, Prolog, and other languages to dynamically apply tags

> sel f. contai ner. hei ght
trigger: context.addTag("overflow')

This expression checks to ensure that the container (thel g3
playing the menu) is tall enough to encompass all of the oiild

of the menu. The expression evaluated by a trigger can be any
Java, OCL, or Prolog expression that returns a boolean vale
graphic designer can leverage the domain analysis by ogeati
style that is applied when a menu element has the overflow tag.
The style is:

Menu. over fl ow {
backgr ound- col or: RGB(200, 0, 0) ;
show nmessage: This nmenu is too tall for its container.;

}

With a custom built editor using GEF and EMF, achieving thjset
of analysis-based dynamic visualization change wouldiregurit-
ing complex controller logic. The controller logic would tnioe
accessible to the graphic designer and could not be ovarade
a per-model basis. Furthermore, each change to the desiged t
ger condition or visualization would require rewriting ttentroller
logic.

3.4 Remotely Accessible Models

Typically, to enable remote communication with a modeliogl
complex remoting mechanisms must be developed from scratch
In some cases, generic remoting infrastructure can be ajeel
and reused across models but these generic mechanismsaaften
domain-specificity and are hard to develop complex dompéatiic
applications with. Domain-specific remoting mechanisnsalao

be developed but they tend to have limited reusability.

GEMS addresses the remoting challenge by automaticallgrgen
ating a domain-specific remoting mechanism with each mogdeli
tool. GEMS-generated modeling tools include remoting bidpa
ties for both CORBA and Java RMI. A unique property of the re-
moting mechanism exported by GEMS is that the interface ¢o th

model elements in GEMS. For example, an OCL expression can beCORBA and Java RMI classes is the same across modeling lan-

built that applies an "overflow" tag to any Menu element theg h
more than 10 children. A style can then be created that aécsth
propriate red "X" to the menu and invokes a popup error me&ssag
GEMS'’ active constraint framework allows OCL, Java, and-Pro
log expressions to be dynamically invoked as the model amng
and trigger actions if the expressions evaluate to true. Wadyc
OCL or Prolog analysis can then swap styles on elements aatkcr
complex visual behaviors. The decoupling of the domainyesesl
from the controller and the separation of the analysis asdaliza-
tion specification allows domain experts to create compiggérs
from domain-specific events and graphic designers to gpeaih-
plex visualizations for elements that are attached to fggers.

To enable marking menus in red and displaying a popup errer me
sage, an OCL expression can be created to identify overftpwin
menus. In the example that follows, the evaluation of an O%L e
pression that checks for overflowing menus is set to be traghey
changes in the number of children of a menu. The analysisisode

on: Menu. Children
eval uate: (self.children->size() * 10)

guages but the application-level remoting protocol usedteract
with the models is domain-specific.

The domain-specific application-level protocol used by GEtdr
each modeling tool is based on the terminology from the meta-
model. If Menu is a type in the metamodel, Menu becomes a first
class entity in the protocol. For example, the low-leveltpcol
messages:

Menu(1), Name(1,"Foo"), SubMenus(1,[2,3])

would create a Menu item with ID 1, Name "Foo", and with Sub-
Menu associations to the model elements with ID 2 and 3. Each
statement in the protocl specifies a predicate, an elemenibith

the predicate is applied, and the value that should be appdie
the element. The statement "SubMenus(1,[2,3])" specifigsthe
element with ID 1 should have its "SubMenus" role set to the el
ements with IDs 2 and 3. Each attribute name, associati@ rol
containment role, and element type from the metamodel besom
a first-class entity in the protocol.

3.5 GEMSRemoteCollaboration Architectures

developer of performing complex and repetitive modelirsksa

The remoting mechanism generated by GEMS can be used to ob-

tain data from devices, such as sensors, and update the imodel
real-time. In the interactive television example, the C@RBmot-

ing mechanism can be used by the server receiving poll ezsatn
set-top boxes to update the model as results arrive. Theaede
remoting mechanism also provides a publisher/subscritaend-
work that allows clients to receive events as the model obsng
or to update the model by publishing events to specific topikcs
menu-item is available for starting and stopping the rengptn-
frastructure.

The generated modeling tool includes a basic remote colidibo
mechanism. A modeler can subscribe to any remotely acdessib
GEMS model. As the remote model is updated, the client model
will receive and add these updates to itself. A single clieotlel

can subscribe to multiple remote models and perform remotiein
aggregation into a single model on the client. In the intévac
television scenario, this could be used to subscribe tagplesults
from multiple poll result streams. This remote model aggtiem
architecture is shown in Figure 3.

2. Statistics Package Run
via GEMS Java RMI

]t

~
N
o @
3. New sent mrough GEMS
Java RMI,
i1, 1) 1" mdd-tr)
1. Polling Result { New Ul Code Sent
) Reported to Server via CORBA
Via CORBA to GEM
CORBA Server

New Ul + Ads
i TVs

—

2. Statistics Package_'
Run
via GEMS Java RMI

Figure 3: A Remoting Architecture in GEMS

3.6 GEMSModeling Guidanceand Constraint
Solving

Constraint checking is an integral part of domain-specifadet-
ing. Constraint checking allows developers to catch etrastyp-
ically would not be discernible in source artifacts. Theoesrthat
are caught can rely on complex sets of domain-specific irdition
available in the model.

Although constraint checking can improve solution comest, most
tools focus on constraint checking and not reasoning witctin-
straints. Often, models are so large or the constraints smplex
that it is infeasibe or extremely tedious to manually pradacor-
rect solution [4]. In these cases, automation is needediéveghe

GEMS provides two types of modeling guidance. First, when a
modeler is attempting to modify a model by creating a corioact

or containment relationship, a constraint solver can betgre to
deduce the valid model elements that may participate asrttie e
point of the relationship. Once the valid endpoints are dedu
visual queues are used to show the modeler the correct endpoi

Second, GEMS provides the ability to create constraintesedviven
batch processes. These batch processes take a globalaganstr
as input and derive a valid set of model elements that satigfe
constraint. The batch process then creates a series of ctmns
containment relationships, or attribute values for the ehddsed
on the constraint solver’s results. An example batch podesel-
oped to perform constraint-based deployment of menus tloglep
ment servers is shown in Figure 4.

) Deploy.gemsmets ([N d

T8 Copyof Depioytd.. | T

3

User Invokes the Model | ;...

Intelligence Batch Processor
to Assign a Target Host for
Every Component

$g Deployl.deploy2 X W Copy of Deployl.d... W cost.deploy2

/ Yy

"The Solution Generated boun
by the Batch Process .-~
Conforms to All of the H

Domain Constraints |~

Figure 4: A GEMS Constraint Solver-Driven Batch Process

Each constraint in GEMS is associated with a model elemerg-or
lationship between two model elements. Constraints carebel-d
oped using OCL, Prolog, and Java. OCL and Prolog constredmts

be used by GEMS modeling guidance. Constraints can be added
globally to all instances of a particular modeling languageo

a specific model instance. Changes to constraints on indiVid
model instances become active immediately.

After an OCL or Prolog constraint is added to the model, itlis a
tomatically indexed by the GEMS modeling guidance framéwor
To add a constraint, a user right-clicks and accesses trstraon
set modification menu. From there, new constraints can bieapp
to arbitrary types and relationships.

For the interactive television application, a solver-guidbatch pro-
cess can be created to assign each menu to a set-top boxmhat ca
support it. Each menu has an attribute called, OSVersiolighwh
specifies the required version of the interactive televisioftware

on the target set-top box. The following Prolog constratmtaks
to ensure that the set-top box has both the required OS neasid
has a display with sufficient height to accomodate the menu:

is_a valid_nenu_settopbox(Menu, TVBox) :-
sel f _versi on(Menu, MenuRequiredVersion),
sel f _version(TVBox, TWersion),

TWer si on >= MenuRequi redVer si on,

sel f _di spl ay_hei ght (TVBox, TH),

sel f _menu_hei ght (Menu, MH) ,

TH >= M.

To create a deployment solver for the menus, the domain exper
creates one further Prolog rule:

assign_al | _menu_sett opbox(Resul t).

This rule tells GEMS to invoke the Prolog constraint solvierd a
valid set-top box for each menu, and create a connection fhem
menu to the box.

4. CONCLUSION

GEMS focuses on allowing developers to create Eclipsedrasel-
eling tools without writing plug-in descriptors, GMF mappifiles,
GEF code, or EMF code. Furthermore, GEMS provides fadglitie
to support external specification of visualization detadghat they
can be managed by graphic designers and other individuakxno
perienced with complex GUI coding. All modeling tools destd

in GEMS can expose their models remotely via CORBA and Java
RMI as well as receive remote changes. Finally, GEMS pravide
a constraint solver infrastructure to help guide modelbrsugh
complex modeling changes. GEMS is an opensource projeitt ava
able from: http://www.sf.net/projects/gems.

5. REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[2] S. Kelly. Interactive television example, 2007.

[3] A.Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, Thomason,
G. Nordstrom, J. Sprinkle, and P. \olgyesi. The Generic Ninde
EnvironmentWorkshop on Intelligent Sgnal Processing, Budapest,
Hungary, May, 17, 2001.

[4] A. Nechypurenko, E. Wuchner, J. White, and D. C. Schmidt.
Application of Aspect-based Modeling and Weaving for Coexjily
Reduction in the Development of Automotive Distributed Rege
Embedded System. Froceedings of the Sxth International
Conference on Aspect-Oriented Software Development, Vancouver,
British Columbia, March 2007.

[5] J. Sztipanovits and G. Karsai. Model-integrated conmautComputer,
30(4):110-111, 1997.

