
The Generic Eclipse Modeling System

Jules White, Douglas C. Schmidt, Sean Mulligan
Vanderbilt University, EECS Nashville, TN, USA

{jules,schmidt}@dre.vanderbilt.edu

ABSTRACT
The Generic Eclipse Modeling System (GEMS), a part of the Eclipse
Generative Modeling Technologies (GMT) project, gives domain
experts the ability to generate the implementation of a graphical
modeling tool from a visual language specification (metamodel).
Domain experts that use GEMS can create an Eclipse-based graph-
ical modeling tool without intimate knowledge of the Eclipse Mod-
eling Framework, Graphical Editor Framework, Graphical Model
Framework, or Eclipse Plug-in API. GEMS imbues each generated
modeling tool with complex constraint checking and constraint-
solver guided modeling assistance. Stylesheets can be applied to
GEMS modeling tools to customize the graphical interface and
separate visualization properties from Java code. Finally, GEMS
provides a remoting infrastructure that allows modeling tools to
connect to remote sensors, GEMS models, and other CORBA or
Java RMI-enabled clients. This paper focuses on the stylesheet,
remoting, and constraint-solver modeling guidance capabilities of
GEMS. These features of GEMS are discussed in the context of
an example application for building interactive television applica-
tions.

1. INTRODUCTION
Model-Driven Development (MDD) has become a popular approach
to creating solutions in a large number of domains. Most visual
MDD tools are built using the Model View Controller (MVC)
pattern [1]. Eclipse provides numerous frameworks to support de-
velopment of MVC-based graphical modeling tools. The Draw2D
framework provides the basic visualization mechanisms to draw
the Visio-like diagrams common in MDD tools. The Graphical
Editor Framework (GEF) provides inversion of control for load-
ing a graphical model, creating controllers for each model ele-
ment, and constructing and associating views with the controllers.
The Eclipse Modeling Framework (EMF) contains various APIsfor
building object graphs for a model, serializing and de-serializing
object graphs, and enforcing basic constraints on the graphs. Fi-
nally, the Graphical Modeling Framework (GMF) allows devel-
opers to develop complex controller logic from specifications that
map a model to the different elements of a view.

Even with all of these powerful frameworks, developing a model-
driven development tool is still challenging. In most circumstances,
stock visualizations from the framework are not acceptableand
complex coding in GMF, Draw2D, or GEF is needed. Furthermore,
all of these frameworks assume that developers possess intimate
knowledge of Eclipse APIs and concepts and thus are not easy for
domain experts to leverage. Even if a domain expert has the re-
quired skills to implement a tool, performing the complex coding
to implement a graphical modeling tool subtracts from the time the
domain expert spends on the key assets of these tools; the complex
domain validation, code-generation, optimization, and simulation
capabilities. Finally, if a tool is developed with a traditional manual
EMF, GEF, and GMF approach, there is a significant cost associ-
ated with maintaining the implementation, as understanding of the
domain deepens and the tool and modeling language requirements
change.

The Generic Eclipse Modeling System (GEMS) is a part of the
Eclipse Generative Modeling Technologies (GMT) project. GEMS
allows domain experts to rapidly create complex graphical mod-
eling tools for Eclipse without writing Graphical User Interface
(GUI), EMF, or XML code. Developers create a visual specifica-
tion of the metamodel for a modeling language and GEMS gener-
ates the requisite GEF, EMF, Draw2D, and Eclipse code to imple-
ment an editor for the modeling language. GEMS is an open-source
project, that has been developed in conjunction with Siemens CT
SE2, IBM, and Prismtech.

By automatically generating the needed code artifacts to implement
a modeling tool, GEMS substantially reduces the implementation
cost of a graphical modeling tool. With less implementationwork
needed for the MVC components of the modeling tool, develop-
ers can focus on the key aspects of their tool: the specification of
the modeling language and the intellectual assets built around the
use of the language, such as code generation capabilities. As the
supporting EMF/GEF/Draw2D and Eclipse infrastructure evolves
or the requirements of the modeling tool change, GEMS can regen-
erate the implementation of the tool to meet the new requirements.
By using GEMS, developers save not only the initial implemen-
tation cost but the continued support and refactoring costs. A final
key attribute of GEMS is that it separates the graphical specification
into style-sheets and allows domain-experts or graphic designers to
create complex visualization without GUI coding. This separation
of the visualization properties from the metamodel provides a de-
velopment process similar to web-based applications.

A GEMS-generated graphical modeling tool can have both static
and dynamic visual behaviour specified through stylesheets. Graphic



designers or developers can create styles and icons that should be
applied to elements when they are in specific states. For example, a
developer building a tool for specifying the deployment of interac-
tive television applications to set-top boxes could develop separate
icons and styles for drawing an application when it is deployed and
undeployed.

This paper provides an introduction to GEMS and its remoting,
stylesheet, and constraint solving capabilities. Each GEMS feature
is presented in the context of an interactive television example. The
remainder of this paper is organized as follows: Section 2 presents
the interactive television example that is used throughoutthe paper;
Section 3 presents the remoting, stylesheet, and constraint solving
capabilities of GEMS in the context of the television example; and
Section 4 presents concluding remarks.

2. MOTIVATING EXAMPLE
An application for building interactive television applications is
used as the motivating example throughout the paper. The inter-
active television scenario is outlined in the workshop announce-
ment [2]. After further discussion, the project managers for the in-
teractive television modeling tool have identified severaladditional
challenges for the project.

2.1 Challenge: No Developers with GUI or IDE
Coding Experience

In the process of assembling the development team for the project,
the managers have realized that few of the developers have any
experience developing graphical modeling tools or GUI-based ap-
plications. Most of the developers have only done back-end image
processing, data archival, and web application development. The
organization’s typical development projects are web-based and thus
the User Interface (UI) components of the applications are built by
graphic designers, web developers, and some developers with Java
Server Page expertise. None of the developers have built tools for
Eclipse, Visio, or any of the other potential modeling platforms.

Due to the lack of developers with UI experience available for the
project, the managers have decided that they wish to use a tool that
provides a development process more similar to a web-based appli-
cation. The managers would like to have an IT-architect design the
overall structure of the modeling language, a group of experienced
back-end programmers develop the code generation portion,and
a web-development team focus on the visualization aspects.The
managers also do not want any of the developers to learn any tech-
niques or APIs specific to the Integrated Development Environment
(IDE) that the modeling tool will be built on top of.

2.2 Challenge: Remote Model Access
The advertising department for the organization has contacted the
project manager and expressed its desire to be involved in the project.
The advertising department would like to be able to use the model-
ing tool to monitor poll results as they arrive. The advertising de-
partment would also like to change the interactive television menus
delivered to subscribers on the fly to include new advertisements
targeted towards the trends from the interactive polls. Thedepart-
ment has a polling statistics package, developed with Java,that they
would like to interface with the tool.

The statistics package requires significant processing power and
cannot be co-located with the modeling tool. The package needs
to be able to remotely capture the contents of the models via Java

RMI and publish updates to the interactive menus based on their
analyses. Furthermore, the modeling tool needs to be able totrig-
ger the menu code generation routines when these updates arrive
and push the new interactive television code for the menus out to
the server that communicates with the set-top television boxes. The
server that communicates with the set-top boxes is only accessible
via CORBA. The overall architecture for the dynamic ad placement
mechanism can be seen in Figure 1.

Figure 1: Architecture for Dynamic Ad Placement

2.3 Challenge: Heterogenous Set-Top Box Ca-
pabilities

The organization began rolling out its interactive television service
over 5 years ago. Due to the long span of time over which the or-
ganization has offered interactive television service, they now have
a large number of customers with multiple models of set-top boxes
and interactive television software packages. Generally,once a cus-
tomer signs up for the service their set-top box is installedby a
technician and not replaced unless absolutely necessary. Over the
five years, the organization has rolled out multiple types ofhard-
ware with differing CPU, memory, HDTV, and other capabilities.
The boxes also have a variety of interactive television platforms
installed.

The organization does not want the producers to be limited tomod-
eling GUIs that can be run on the lowest common denominator.
Many of their customers pay for HDTV and they would like to pro-
vide each customer with the best possible GUI that their box can
support. Thus, the modeling tool needs to be able to capture the
requirements of the interactive applications and determine which
boxes can support which GUIs.

Due to the large number of box types and range of capabilities,
the modeling tool must provide support for helping modelersto



understand what applications can run on what boxes. Withoutthis
type of modeling guidance, it is unlikely the modelers will fully
understand their design decisions. Furthermore, the tool must be
able to use the requirements of the GUIs and capabilities of each
box type to deduce the GUIs that will run on each box type. This
capability to deduce the correct GUI for each box type must also be
remotely accessible and automated so that the boxes can be updated
on the fly by the dynamic ad injection mechanism described in the
last challenge.

3. USING GEMS TO ADDRESS THE CHAL-
LENGES OF INTERACTIVE TV MOD-
ELING

The challenges outlined in Section 2, require that the modeling plat-
form chosen for the project be able to: 1) allow developers tocre-
ate a graphical modeling tool and integrate it with an IDE without
coding; 2) provide a visualization interface that can be styled in a
manner similar to web pages; 3) be capable of exposing model in-
stances remotely through CORBA and Java RMI; and 4) provide
complex constraint solving infrastructure to derive the valid GUIs
for a set-top box. In this section, we show how GEMS provides the
capabilities to address each of these requirements.

3.1 Code-less UI Development and Stylable In-
terfaces

GEMS is based on the Model-Integrated Computing (MIC) paradigm
[5] developed at Vanderbilt University’s Institute for Software Inte-
grated Systems (ISIS). MIC was originally pioneered in the Generic
Modeling Environment [3]. With the rise in popularity of Eclipse
and the Eclipse Modeling Framework, the Distributed ObjectCom-
puting (DOC) group at ISIS has implemented a similar
meta-programmable environment for Eclipse.

As shown in Figure 2, modelers can use GEMS to visually de-
scribe a metamodel in Eclipse and use GEMS to generate the EMF,
Draw2D, and GEF code to implement a modeling tool for the lan-
guage described by the metamodel. In step 1, domain experts use
the modeling tool to build the metamodel for the language using
GEMS’ GEF-based visual metamodel editor. In step 2, the do-
main experts invoke the GEMS code generators to produce the GEF
code, Eclipse plugin descriptor, EMF code, and other sourcearti-
facts to implement a graphical modeling tool for the language. In
step 3, graphic designers use CSS style sheets to change the look
and feel of the generated modeling tool’s UI to match common do-
main notations. In step 5, domain experts or developers can attach
OCL, Prolog, and Java constraints to the modeling language or spe-
cific model instances. In step 6, domain experts use the generated
modeling tool to build instances of the modeling language.

With GEMS, domain experts do not need to write Java code, Ecore
XML models, GMF code, or Eclipse plug-in descriptors to pro-
duce a modeling tool for Eclipse. GEMS takes care of generating
all of these required artifacts from the visual metamodel specifi-
cation. This code-generation frees domain experts from having to
worry about the low-level implementation details typically associ-
ated with developing a modeling tool for Eclipse.

For the interactive television example, the producers would first
use GEMS to specify a metamodel for the interactive television
application. GEMS would then take care of generating the requisite
Java code to implement the editor. This alleviates the producers

Figure 2: Developing an Eclipse Modeling Tool with GEMS

and developers from having to figure out how to implement the
specification of the producers’ desired modeling language.

3.2 CSS Styles
One of the novel aspects of GEMS is the ability to apply Cascad-
ing Style Sheet (CSS) styles to the generated modeling tools. Just
as with web development, the GEMS approach to modeling-tool
development separates the specification of the content and content
structure from the visualizaton properties of the data. A domain-
expert uses the GEMS metamodel to specify the structure and con-
tent captured in the models and graphic designers use stylesto cus-
tomize the look of the content.

The CSS style sheet language exposed by GEMS adds domain-
specific modeling concepts. Traditionally, a CSS style sheet uses
selectors that match structural elements in an HTML page. For
example, the style:

p { font-size: large;}

would match all paragraphs (denoted by "p" HTML elements) and
set the font size for those paragraphs to large. In GEMS CSS style
sheets, the selectors match against the types defined in the meta-
model. For example, in our implementation of the interactive tele-
vision modeling application,Menu is a type of modeling element.
To create a style sheet that changed the font used by the figuredraw-
ing the Menu modeling element, a graphic designer could create the
following style sheet:

Menu { font-name: Verdana;}

In this example, "Menu" is being used as the selector and the name
of the font face used by Menu elements is being set. The domain-
specific selectors used by GEMS can rely on the inheritance hi-
erarchies from the metamodel. For example, an element of type
HDTVMenu that is derived from Menu, can have the following
style applied to override the font color:

HDTVMenu { font-color: RGB(100,100,100);}

The HDTV menu will have both the Menu style and any properties
from the HDTVMenu style applied. Properties overriden in the



HDTV style will supercede those from the Menu style. Styles can
set complex properties of figures, such as layouts, text alignments,
label formats, attributes attached to connections, and icons.

3.3 Dynamically Changing Styles
A typical scenario with a modeling tool is that the domain expert
wants the way that a modeling element is visualized to change
based on different types of domain analyses. In the interactive
television example, a domain expert may wish to have a large red
background applied to Menu that is so large that it will extend off
the customers’ television screens. Furthermore, the domain expert
may want a small popup to appear above the element specifyingthe
error that has created the red X.

Most modeling approaches use the Model-View Controller paradigm.
Creating a graphical change, driven by a domain analysis, requires
placing complex domain analysis code into the controller ofthe
view. Implenting a domain analysis in a controller requiresinti-
mate understanding of the underlying GUI APIs and tedious and
error-prone graphical coding. Often, domain experts change their
mind about when these visualizations should be triggered and what
they should look like, which causes costly code refactoring.

With GEMS, each model element can have a group of tags associ-
ated with it. GEMS tags are analogous to CSS class attributes. A
CSS class attribute acts as a filter to reduce the scope that a style is
applied to. For example:

p.menucontent { font-size: large;}

would only match HTML "p" elements with the "class" attribute
set to "menucontent." The class attribute can then be used bythe
content producer to more specifically annotate different sections of
the document. GEMS provides a similar facility for its modeling
elements. GEMS styles can be scoped by the tags that are currently
applied to a model element.

GEMS provides facilities to use domain analyses written in OCL,
Java, Prolog, and other languages to dynamically apply tagsto
model elements in GEMS. For example, an OCL expression can be
built that applies an "overflow" tag to any Menu element that has
more than 10 children. A style can then be created that adds the ap-
propriate red "X" to the menu and invokes a popup error message.
GEMS’ active constraint framework allows OCL, Java, and Pro-
log expressions to be dynamically invoked as the model changes
and trigger actions if the expressions evaluate to true. A dynamic
OCL or Prolog analysis can then swap styles on elements and create
complex visual behaviors. The decoupling of the domain analyses
from the controller and the separation of the analysis and visualiza-
tion specification allows domain experts to create complex triggers
from domain-specific events and graphic designers to specify com-
plex visualizations for elements that are attached to the triggers.

To enable marking menus in red and displaying a popup error mes-
sage, an OCL expression can be created to identify overflowing
menus. In the example that follows, the evaluation of an OCL ex-
pression that checks for overflowing menus is set to be triggered by
changes in the number of children of a menu. The analysis codeis:

on: Menu.Children
evaluate: (self.children->size() * 10)

> self.container.height
trigger: context.addTag("overflow")

This expression checks to ensure that the container (the panel dis-
playing the menu) is tall enough to encompass all of the children
of the menu. The expression evaluated by a trigger can be any
Java, OCL, or Prolog expression that returns a boolean value. The
graphic designer can leverage the domain analysis by creating a
style that is applied when a menu element has the overflow tag.
The style is:

Menu.overflow {
background-color:RGB(200,0,0);
show-message: This menu is too tall for its container.;

}

With a custom built editor using GEF and EMF, achieving this type
of analysis-based dynamic visualization change would require writ-
ing complex controller logic. The controller logic would not be
accessible to the graphic designer and could not be overriden on
a per-model basis. Furthermore, each change to the desired trig-
ger condition or visualization would require rewriting thecontroller
logic.

3.4 Remotely Accessible Models
Typically, to enable remote communication with a modeling tool,
complex remoting mechanisms must be developed from scratch.
In some cases, generic remoting infrastructure can be developed
and reused across models but these generic mechanisms oftenlack
domain-specificity and are hard to develop complex domain-specific
applications with. Domain-specific remoting mechanisms can also
be developed but they tend to have limited reusability.

GEMS addresses the remoting challenge by automatically gener-
ating a domain-specific remoting mechanism with each modeling
tool. GEMS-generated modeling tools include remoting capabili-
ties for both CORBA and Java RMI. A unique property of the re-
moting mechanism exported by GEMS is that the interface to the
CORBA and Java RMI classes is the same across modeling lan-
guages but the application-level remoting protocol used tointeract
with the models is domain-specific.

The domain-specific application-level protocol used by GEMS for
each modeling tool is based on the terminology from the meta-
model. If Menu is a type in the metamodel, Menu becomes a first
class entity in the protocol. For example, the low-level protocol
messages:

Menu(1),Name(1,"Foo"),SubMenus(1,[2,3])

would create a Menu item with ID 1, Name "Foo", and with Sub-
Menu associations to the model elements with ID 2 and 3. Each
statement in the protocl specifies a predicate, an element towhich
the predicate is applied, and the value that should be applied to
the element. The statement "SubMenus(1,[2,3])" specifies that the
element with ID 1 should have its "SubMenus" role set to the el-
ements with IDs 2 and 3. Each attribute name, association role,
containment role, and element type from the metamodel becomes
a first-class entity in the protocol.



3.5 GEMS Remote Collaboration Architectures
The remoting mechanism generated by GEMS can be used to ob-
tain data from devices, such as sensors, and update the modelin
real-time. In the interactive television example, the CORBA remot-
ing mechanism can be used by the server receiving poll results from
set-top boxes to update the model as results arrive. The generated
remoting mechanism also provides a publisher/subscriber frame-
work that allows clients to receive events as the model changes
or to update the model by publishing events to specific topics. A
menu-item is available for starting and stopping the remoting in-
frastructure.

The generated modeling tool includes a basic remote collaboration
mechanism. A modeler can subscribe to any remotely accessible
GEMS model. As the remote model is updated, the client model
will receive and add these updates to itself. A single clientmodel
can subscribe to multiple remote models and perform remote model
aggregation into a single model on the client. In the interactive
television scenario, this could be used to subscribe to polling results
from multiple poll result streams. This remote model aggregation
architecture is shown in Figure 3.

Figure 3: A Remoting Architecture in GEMS

3.6 GEMS Modeling Guidance and Constraint
Solving

Constraint checking is an integral part of domain-specific model-
ing. Constraint checking allows developers to catch errorsthat typ-
ically would not be discernible in source artifacts. The errors that
are caught can rely on complex sets of domain-specific information
available in the model.

Although constraint checking can improve solution correctness, most
tools focus on constraint checking and not reasoning with the con-
straints. Often, models are so large or the constraints so complex
that it is infeasibe or extremely tedious to manually produce a cor-
rect solution [4]. In these cases, automation is needed to relieve the

developer of performing complex and repetitive modeling tasks.

GEMS provides two types of modeling guidance. First, when a
modeler is attempting to modify a model by creating a connection
or containment relationship, a constraint solver can be executed to
deduce the valid model elements that may participate as the end-
point of the relationship. Once the valid endpoints are deduced,
visual queues are used to show the modeler the correct endpoints.

Second, GEMS provides the ability to create constraint solver-driven
batch processes. These batch processes take a global constraint
as input and derive a valid set of model elements that satisfies the
constraint. The batch process then creates a series of connections,
containment relationships, or attribute values for the model based
on the constraint solver’s results. An example batch process devel-
oped to perform constraint-based deployment of menus to deploy-
ment servers is shown in Figure 4.

Figure 4: A GEMS Constraint Solver-Driven Batch Process

Each constraint in GEMS is associated with a model element orre-
lationship between two model elements. Constraints can be devel-
oped using OCL, Prolog, and Java. OCL and Prolog constraintscan
be used by GEMS modeling guidance. Constraints can be added
globally to all instances of a particular modeling languageor to
a specific model instance. Changes to constraints on individual
model instances become active immediately.

After an OCL or Prolog constraint is added to the model, it is au-
tomatically indexed by the GEMS modeling guidance framework.
To add a constraint, a user right-clicks and accesses the constraint
set modification menu. From there, new constraints can be applied
to arbitrary types and relationships.

For the interactive television application, a solver-guided batch pro-
cess can be created to assign each menu to a set-top box that can
support it. Each menu has an attribute called, OSVersion, which
specifies the required version of the interactive television software



on the target set-top box. The following Prolog constraint checks
to ensure that the set-top box has both the required OS version and
has a display with sufficient height to accomodate the menu:

is_a_valid_menu_settopbox(Menu, TVBox) :-
self_version(Menu, MenuRequiredVersion),
self_version(TVBox, TVVersion),
TVVersion >= MenuRequiredVersion,
self_display_height(TVBox,TH),
self_menu_height(Menu,MH),
TH >= MH.

To create a deployment solver for the menus, the domain expert
creates one further Prolog rule:

assign_all_menu_settopbox(Result).

This rule tells GEMS to invoke the Prolog constraint solver,find a
valid set-top box for each menu, and create a connection fromthe
menu to the box.

4. CONCLUSION
GEMS focuses on allowing developers to create Eclipse-based mod-
eling tools without writing plug-in descriptors, GMF mapping files,
GEF code, or EMF code. Furthermore, GEMS provides facilities
to support external specification of visualization detailsso that they
can be managed by graphic designers and other individuals not ex-
perienced with complex GUI coding. All modeling tools developed
in GEMS can expose their models remotely via CORBA and Java
RMI as well as receive remote changes. Finally, GEMS provides
a constraint solver infrastructure to help guide modelers through
complex modeling changes. GEMS is an opensource project avail-
able from: http://www.sf.net/projects/gems.

5. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[2] S. Kelly. Interactive television example, 2007.
[3] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling
Environment.Workshop on Intelligent Signal Processing, Budapest,
Hungary, May, 17, 2001.

[4] A. Nechypurenko, E. Wuchner, J. White, and D. C. Schmidt.
Application of Aspect-based Modeling and Weaving for Complexity
Reduction in the Development of Automotive Distributed Realtime
Embedded System. InProceedings of the Sixth International
Conference on Aspect-Oriented Software Development, Vancouver,
British Columbia, March 2007.

[5] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer,
30(4):110–111, 1997.


