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ABSTRACT
Performance-intensive software, such as that found in high-perfo-
rmance computing systems and distributed real-time and embedded
systems, increasingly executes on a multitude of platforms and user
contexts. To ensure that performance-intensive software meets its
quality of service (QoS) requirements, it must often be fine-tuned to
specific platforms/contexts by adjusting many (in some cases hun-
dreds of) configuration options. Developers who write these types
of systems must therefore try to ensure that their additions and mod-
ifications work across this large configuration space. In practice,
however, time and resource constraints often force developers to
assess performance on very few configurations and to extrapolate
from these to the entire configuration space, which allows many
performance bottlenecks and sources of QoS degradation to escape
detection until systems are fielded.

To improve the assessment of performance across large config-
uration spaces, we present a model-based approach to develop-
ing and deploying a new distributed continuous quality assurance
(DCQA) process. Our approach builds upon and extends the Skoll
environment, which is developing and validating novel software QA
processes and tools that leverage the extensive computing resources
of worldwide user communities in a distributed, continuous man-
ner to significantly and rapidly improve software quality. This pa-
per describes how our new DCQA performance assessment process
enables developers to run formally-designed screening experiments
that isolate the most significant options. After that, exhaustive ex-
periments (on the now much smaller configuration space) are con-
ducted. We implemented this process using model-based software
tools and executed it in the Skoll environment to demonstrate its ef-
fectiveness via two experiments on widely used QoS-enabled mid-
dleware. Our results show that model-based DCQA processes im-
proves developer insight into the effect of system changes on per-
formance at an acceptable cost.

1. INTRODUCTION
While developing quality reusable software is hard, developing

it for use in performance-intensive systems is even harder. Ex-
amples of performance-intensive software systems include high--
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performance scientific computing systems and distributed real-time
and embedded (DRE) systems. The performance of these types
of systems depends heavily on the underlying systems software,
such as operating systems, middleware, and language processing
tools. Quality of service (QoS)-enabled middleware [13, 14, 2]
has become an essential abstraction layer for developing flexible
and reusable performance-intensive software systemse.g., its use
has been cited [12] as a key factor in improving the development
cost, time-to-market, and reuse of performance-intensive software
systems, such as distributed scientific visualizations, fly-by-wire
aircraft, and total ship computing environments.

QoS-enabled middleware is systems software that resides be-
tween the applications and the underlying operating systems, net-
work protocol stacks and hardware, and isolates performance-inte-
nsive application software from lower-level infrastructure complex-
ities, such as concurrency issues on heterogeneous platforms and
error-prone network programming mechanisms. The defining char-
acteristic of this type of middleware is its ability to specify and en-
force the QoS requirements of performance-intensive systems end-
to-end across heterogeneous combinations of OS, compiler, and
hardware platforms. These capabilities result from the mechanisms
that QoS-enabled middleware provide to provision performance--
intensive systems by tuning and optimizing numerous configura-
tion options, such as configuring policies for end-to-end priority
propagation, the size of thread pools and priorities of pool threads,
network connection caching policies, and type of transport proto-
col(s) to use, among many others.

The numerous configuration options needed to use QoS-enabled
middleware effectively on heterogeneous combinations of OS, com-
piler and hardware platforms is exacerbating the limitations with
conventional quality assurance (QA) techniques and motivating new
QA processes. In particular, the explosion of the middleware con-
figuration space is not adequately addressed by QA techniques that
execute in-house on developer-generated workloads and regression
tests [3]. Such processes rarely capture, predict, and recreate the
run-time environment and usage patterns encountered in the field
on all supported target platforms across all desired configuration
options.

Other forces are also driving developers and organizations to
change the processes they use to build and validate performance-
intensive software. Specifically, they are moving towards more ag-
ile processes characterized by (1) decentralized development teams,
(2) greater reliance on middleware component reuse, assembly and
deployment, and (3) evolution-oriented development requiring fre-
quent software updates. While these new processes are beneficial in
certain ways, they also exacerbate QA challenges,e.g., coping with
frequent software changes, remote developer coordination, and ex-
ploding software integration and configuration spaces.
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To address these challenges in the context of performance-inte-
nsive software, we are developing and integrating the following
techniques:

� Distributed continuous quality assurance (DCQA) tech-
niques, which are designed to improve software quality and
performance iteratively, opportunistically, efficiently, and con-
tinuously in multiple, geographically distributed locations [8].
In prior work, we have developed a prototype DCQA en-
vironment calledSkoll (www.cs.umd.edu/projects/
skoll ) that provides a framework for executing QA tasks
continuously across a grid of computing distributed around
the world.

� Model-based software development techniques, which help
to minimize the cost of QA activities by capturing the cus-
tomizability of middleware within models and automatically
generating configuration files from these higher level mod-
els [4]. In prior work, we have developed prototype model-
based software tools including (1) the Options Configura-
tion Modeling language (OCML) [15] that allows develop-
ers to model middleware configuration options as high-level
models and (2) model-driven benchmarking tools [6] that al-
low developers to compose benchmarking experiments that
observe QoS behavior by mixing and matching middleware
configurations.

This paper extends our prior work by focusing on how we inte-
grated our modeling tools with the Skoll environment to support
more effective DCQA processes for performance-intensive soft-
ware. In particular, we describe model-based enhancements to
Skoll that enable it to rapidly identify a small subset of highly in-
fluential performance-related configuration options and systemati-
cally explore that subset of options empirically to estimate system
performance across the entire configuration space. We then present
results of using this DCQA process on ACE+TAO (deuce.doc.
wustl.edu/Download.html ), which are widely-used produc-
tion QoS-enabled middleware frameworks. Our results show that
(1) model-based DCQA tools and processes can correctly identify
a key subset of options that affect system performance significantly
and (2) monitoring only these selected options improves developer
insight into the effect of system changes on performance at an ac-
ceptable cost.

The remainder of the paper is organized as follows: Section 2
outlines the QA challenges associated with improving the quality
of performance-intensive software and describes how we are re-
solving these challenges by integrating model-based systems en-
gineering techniques with DCQA processes; Section 3 reports the
results of experiments using this model-based DCQA process on
the ACE+TAO middleware; Section related compares our research
with related work; and Section 5 presents concluding remarks and
outlines future work.

2. ADDRESSING QA CHALLENGES FOR
PERFORMANCE-INTENSIVE SOFTWA-
RE SYSTEMS

This section describes key QA challenges faced by developers of
performance-intensive software and describes how DCQA environ-
ments and model-based software development techniques can help
to resolve these challenges.

2.1 Challenge 1: Configuration Space Explo-
sion in Performance-intensive Software Sy-
stems

Context. Performance-intensive software often provide fine-grai-
ned knobs to tune QoS behavior so it can be optimized for par-
ticular run-time contexts and application requirements. For exam-
ple, high-performance web servers (e.g., Apache), object request
brokers (e.g., TAO), and databases (e.g., Oracle) have hundreds of
options and configuration parameters. General-purpose, one-size-
fits-all solutions often have unacceptable QoS for performance-
intensive software systems.
Problem. To support customizations demanded by users, perfor-
mance-intensive software must run on many hardware and OS plat-
forms and typically have many options to configure the system
at compile- and/or run-time. Highly configurable performance-
intensive software can therefore yield an explosion of thesoftware
configuration space. While the flexibility of many options and con-
figuration parameters promotes customization, it also creates many
potential system configurations, each of which deserves extensive
QA. As software configuration spaces increase in size and software
development resources decrease, it becomes infeasible to handle
all QA activities in-house since developers often lack all the hard-
ware, OS, and compiler platforms on which their reusable software
artifacts will run.
Solution approach! the Skoll DCQA environment. To address
the QA challenges caused by the explosion of the software configu-
ration space and the limitations of in-house QA processes, we have
developed theSkoll environment to prototype and evaluate tools
necessary to perform “around-the-world, around-the-clock” DCQA
processes. Our feedback-driven Skoll environment includes lan-
guages for modeling system configurations and their constraints,
algorithms for scheduling and remotely executing tasks, and anal-
ysis techniques for characterizing faults. Skoll divides QA pro-
cesses into multiple subtasks that are intelligently and continuously
distributed to, and executed by, a grid of computing resources con-
tributed by end-users and distributed development teams around the
world. The results of these executions are returned to central col-
lection sites where they are fused together to identify defects and
guide subsequent iterations of the DCQA process.

To support DCQA processes we have developed the following
components and services for use by Skoll QA process designers (a
comprehensive discussion appears in [8]):
�Configuration space model. The cornerstone of Skoll is its

formal model of a QA process’ configuration space, which cap-
tures all valid configurations for QA subtasks. This information is
used in planning the global QA process, for adapting the process
dynamically, and aiding in analyzing and interpreting results.
�Intelligent Steering Agent. A novel feature of Skoll is its use

of anIntelligent Steering Agent(ISA) to control the global QA pro-
cess by deciding which valid configuration to allocate to each in-
coming Skoll client request. For example, given the current state
of the global process including the results of previous QA subtasks
(e.g., which configurations are known to have failed tests), the con-
figuration model, and metaheuristics (e.g., nearest neighbor search-
ing), the ISA will choose the next configuration such that process
goals (e.g., evaluating configurations in proportion to known usage
distributions) will be met. After a valid configuration is chosen, the
ISA packages the corresponding QA subtask implementation into
a job configuration, which consists of the code artifacts, configu-
ration parameters, build instructions, and QA-specific code (e.g.,
regression/performance tests) associated with a software project.
�Adaptation strategies.As QA subtasks are performed by clients

in the Skoll grid, their results are returned to the ISA, which can
learn from the incoming results. For example, when some con-
figurations prove to be faulty, the ISA can refocus resources on
other unexplored parts of the configuration space. To support such
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dynamic behavior, Skoll QA process designers can develop cus-
tomizedadaptation strategiesthat monitor the global QA process
state, analyze it, and use the information to modify future subtask
assignments in ways that improve process performance.

Figure 1: An Example Skoll DCQA Process

Skoll uses the components described above to perform DCQA
processes as shown in Figure 1 and described below.
1. Developers create the configuration model and adaptation strate-
gies. The ISA automatically translates the model into planning op-
erators. Developers create the generic QA subtask code that will be
specialized when creating actual job configurations.
2. A user requests Skoll client software via a web-based regis-
tration process. The user receives the Skoll client software and a
configuration template. If a user wants to change certain config-
uration settings or constrain specific options he/she can do so by
modifying the configuration template.
3. A Skoll client periodically (or on-demand) requests a job con-
figuration from a Skoll server.
4. The Skoll server queries its databases and the user-provided con-
figuration template to determine which configuration option set-
tings are fixed for that user and which must be set by the ISA. It
then packages this information as a planning goal and queries the
ISA. The ISA generates a plan, creates the job configuration and
returns it to the Skoll client.
5. A Skoll client invokes the job configuration and returns the re-
sults to the Skoll server.
6. The Skoll server examines these results and invokes all adapta-
tion strategies. These update the ISA operators to adapt the global
process.
7. The Skoll server prepares avirtual scoreboard(seewww.dre.
vanderbilt.edu/scoreboard for an example) that summa-
rizes subtask results and the current state of the overall process.
�Evaluating Skoll. The Skoll environment supports DCQA tasks

on a range of hardware/OS/compiler platforms. The adaptation
strategies in Skoll allow QA processes to accurately pinpoint the
configuration space leading to compilation failures across varied
platforms. This capability provides feedback to developers by help-
ing them identify how their changes impact software quality. In the
initial Skoll [8] prototype, however, QA tasks were limited to test-

ing the functional correctnessof software,i.e., clean compilation
and passing regression tests.

2.2 Challenge 2: Evaluating the QoS of Perfor-
mance-intensive Software Systems

Context. Performance-intensive software systems run on a multi-
tude of hardware/OS/compiler platforms and provide fine grained
knobs to tune QoS behavior.
Problem. To evaluate key QoS characteristics of performance-inten-
sive software, QA engineers today often handcraft individual QA
tasks (e.g., benchmarking experiments) by writing (1) interface def-
initions that model the data exchange format between clients and
servers, (2) component implementations in the target language,e.g.,
C, C++, Java, Ada etc., (3) client test applications that measure
key performance metrics, such as round-trip request latency, jitter,
and throughput, and (4) scaffolding code, such as scripts needed
to startup daemons, initialize the software infrastructure and appli-
cations, run experiments, generate results, and tear down the ex-
periment. Manually implementing these steps is tedious and error-
prone since each step may be repeated many times for every QA
experiment. Further, in a handcrafted approach, QA engineers vi-
sualize experiments via application source code, which provides an
excessively low level of abstraction.
Solution approach! the Benchmark Generation Modeling Lan-
guage (BGML). BGML [6] is a model-driven benchmarking tool
that allows component middleware QA engineers to (1) visually
model interaction scenarios between configuration options and sys-
tem components using domain-specific building blocks,i.e., cap-
ture software variability in higher-level models rather than in lower-
level source code, (2) automate benchmarking code generation and
reuse QA task code across configurations, (3) generate control scripts
to distribute and execute the experiments to users around the world
to monitor QoS performance behavior in a wide range of execu-
tion contexts, and (4) enable evaluation of multiple performance
metrics, such as throughput, latency, jitter, and other QoS criteria.
Below, we describe the key elements of BGML that are relevant for
this paper.
�Syntactic elements in BGML. The BGML meta-model de-

fines a modeling paradigm that allows the specification of QoS con-
figurations, parameters, and constraints. To allow variation in data
exchange, BGML can model a subset of OMG’s IDL interface. To
quantify various performance characteristics, it also models QoS
metrics such as latency, throughput and jitter. The BGML modeling
language consists of the following building blocks based on a QoS-
enabled implementation of the CORBA Component Model(CCM)
middleware:1

� Object, which in CORBA is an implementation entity that
consists of an identity, an interface, and an implementation.

� Component, which in CCM are implementation entities that
collaborate with each other viaports, which are explained
below.

� Server, which export CORBA objects and/or components to
clients.

� Client, which is the program entity that invokes an operation
on an object or component implementation.

1We focus on CORBA and CCM in our work on BGML since it is
currently the most suitable standards-compliant QoS-enabled mid-
dleware for performance-intensive software. As the QoS capabili-
ties of other middleware platforms mature we plan to support them,
as well.
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The motivation for developing these building blocks is to en-
able QA engineers to model the following four possible interac-
tion scenarios in the context of CORBA and CCM: (1) a CORBA
server interacting with a CORBA client, (2) a CORBA server in-
teracting with a CCM component (playing the role of the client) ,
(3) a CCM component (playing role of server) interacting with a
CORBA client, and (4) a CCM component interacting with another
CCM component (playing both client and server roles). CCM also
provides component assemblies that are hierarchical collection of
interacting components. In BGML, an assembly is considered as a
virtual entity that is realized by explicitly modeling the nesting of
components.

BGML definesports, which are well-defined interaction points
through with CCM components in BGML communicate with each
other. The following ports are supported in BGML:
� Facets, which define an interface that provides point-to-point

method invocations from other components. Components
and servers provide facets for other components/clients to
communicate with.

� Receptacles, which define an interface that accepts point-to-
point method invocations from other components.

� Event sources, which define a mechanism for exchanging
typed messages with one or more components.

� Event sinks, which are recipients of messages generated from
event sources.

The use of ports in BGML allows QA engineers to model point-to-
point (via facet receptacle interconnection) and point-to-multi point
(via event-source event-sink interaction) communication.

In BGML, the data exchanged between the between different in-
teraction entities is represented using CORBA’s Interface Defini-
tion Language (IDL), including:
� Interfaces, which represent the type of data exchanged be-

tween communicating entities. In BGML, each interface con-
tains a set of operations.

� Operations, which have the following attributes associated
with it: (1) argument type, specifies the type of input, (2)
operation name, name for this operation and (3)return type,
specifies type for return argument.

� EventTypes, which represent the typed messages that event
sources and sinks exchange. Each EventType has an opera-
tion name and identifier associated with it.

Allowing QA engineers to model IDL data types facilitates syn-
thesis of IDL files from the models directly, freeing them from the
need to (1) handcraft IDL files and (2) understand the relatively low
level syntax of the IDL language.

In addition to building blocks required to model the experiment,
BGML provides constructs to observe QoS metrics in the experi-
ment modeled. BGML currently supports associating QoS param-
eters with EventTypes and on a per operation basis with IDL inter-
faces. The metrics that can be gathered via BGML include:
� Latency, which for a given operation/event computes the

mean roundtrip time at the client.
� Throughput , which for a given operation/event computes

the mean number of invocations completed per second at the
client.

� Jitter , which for a given operation/event computes the vari-
ance in the latency measures (jitter is always associated with
a latency or throughput metric).

Each metric described above has two attributes: (1)warmup itera-
tions, which indicates the number of iterations the operation under
test will be invoked before start of actual measurement and (2)sam-
ple space, which indicates the number of sample points that will

be collected to determine each metric value. Latency, throughput,
and jitter metrics represent commonly used rubrics for comparing
the QoS of performance-intensive software systems. By providing
these building blocks, QA engineers can visually represent the met-
ric they want to observe in the experiment and synthesize the code
from the models directly.
�Semantic elements in BGML.BGML uses the following three

modeling abstractions to help QA engineers compose benchmark-
ing experiments:
� Containment relation. Every component and server can ex-

port facets to communicate with clients. Similarly, compo-
nents can also provide event-sources for multi-point commu-
nication. Clients and components playing role of a client can
interact with the exported facets/event sources via recepta-
cle and event sinks. BGML uses the containment relation to
depictports.

� Association relation.Facets provide or realize an IDL inter-
face. In BGML, this is modeled using an association relation,
wherein each facet element is connected to an IDL interface.
Similarly, event sources publish EventTypes that are mod-
eled using this relation. A Facet/Event-Source in one compo-
nent communicates with a Receptacle/Event-Sink in another
component. This communication is modeled by associating,
i.e., connecting the facet with the receptacle. Similarly, QoS
metrics are associated with IDL operations using association
relationship.

� Reference association.All dependency information in BGML
is modeled using references. For example, a receptacle com-
municating with a facet is dependent on the interface ex-
ported by the facet. Associating any other interface will be
flagged as a typesystem violation by BGML.

�BGML generative tools. The BGML model interpreter parses
the model and synthesizes the code required to benchmark the mod-
eled configuration. The BGML model interpreter includes the fol-
lowing code generation engines:
� Benchmark code engine, which generates source code to

run an experiment. The generated code includes header and
implementation files to execute and profile the applications
and to summarize the results. This engine relies on themet-
rics aspectsin which end-user specify the metrics to be col-
lected during the experiment.

� IDL engine, which generates the IDL files forming the con-
tract between the client and the server. These files are com-
piled by the CORBA and/or CCM IDL compiler to generate
the “glue-code” needed by the benchmarking infrastructure.
This engine relies on theconfiguration aspectin which end-
users specify the data exchanged between the communica-
tion entities.

� Script engine, which generates the script files used to run the
experiment in an automated manner. In particular, the scripts
start and stop the server/client, pass parameters, and display
the experimentation results. This engine is associated with
the interconnectionaspect in which component interactions
are specified.

Each of entities described above have attributes,e.g., the number
of threads in a component, that are specified in the building blocks
as attributes.
�Evaluating BGML. BGML helps improve the productivity of

QA engineers by resolving the accidental complexity of handcraft-
ing tedious and error-prone source code. For each experiment, the
BGML tool generates close to 90% [6] of the required IDL, con-
figuration and implementation files. Since it is a generative tool,
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BGML only reduces the cost of constructing benchmarking experi-
ment for various configurations. In its original form, however, it did
not provide information on the consequences of configuration op-
tion on QoS behavior on varied hardware/OS/compiler platforms.

2.3 Challenge 3: Assessing QoS of Performan-
ce-intensive Software Across Large Con-
figuration Spaces

Context. As developers create and modify their performance-inten-
sive software systems, they often conduct benchmarking experi-
ments to identify when changes negatively affect performance. Due
to time and resource constraints, however, these experiments are
typically executed on a very small number of default configura-
tions. While this provides some data, it leaves substantial por-
tions of the entire configuration space unevaluated, allowing perfor-
mance problems to escape detection until the software is fielded. To
close this gap, developers of performance-intensive software could
use the BGML modeling language together with the Skoll DCQA
environment to gather a much wider sampling of performance data.
Problem. Although Skoll and BGML provide an infrastructure
for performing large-scale QA, the configuration spaces of perfor-
mance-intensive software systems are often so large that brute force
processes are still infeasible. For example, the ACE+TAO systems
have�500 configuration options, with over2500 potential com-
binations. To be effective for highly configurable performance-
intensive software systems, therefore, DCQA processes must gen-
erally include some type ofadaptation strategyto efficiently navi-
gate large configuration spaces.
Solution! Applying Experimental Design Theory for Config-
uration Space Reduction. In the remainder of this section we
present a new DCQA process, calledmain effects screening. The
aim of this process is to efficiently improve the visibility of de-
velopers into the QoS of performance-intensive software across
large configuration spaces. As described below, we have integrated
BGML and Skoll to instantiate and execute the process.

As software systems change, developers often run regression
tests to detect unintended functional side effects. In addition to
functionality, developers of performance-intensive systems must
also be wary of unintended effects on QoS. They will therefore
periodically run performance benchmarking tests to detect such
problems. As described in Section 1, however, QA efforts can be
confounded in highly configurable systems due to the enormous
configuration space. Moreover, time and resource constraints (and
high change frequencies) severely limit the number of configura-
tions that can be examined. For example, in our earlier experience
with ACE+TAO [8], only a small number of default configurations
are benchmarked routinely. As a result, ACE+TAO developers get
a very limited view of their middleware’s QoS and problems not
readily seen in the single default configuration can escape detec-
tion until system based on ACE+TAO are fielded.

To address these problems, we developed themain effects screen-
ingDCQA process, which is performed in the following two phases:
� Phase 1.We execute a large-scale, formally-designed exper-

iment across the Skoll grid. As part of this experiment, we run
benchmarks on a wide-ranging, but sparsely distributed, set of con-
figurations. These configurations are selected using a class of ex-
perimental designs calledscreening designs[17], which are highly
economical and can reveal individual options that significantly af-
fect performance (colloquially, these are referred to as first-order or
“main” effects). These designs are economical since they are not
intended to detect high-order interaction effects (i.e., significant in-

teractions between,e.g., five different options). The choice of sig-
nificance level at which to separate significant from non-significant
options can be set by QA process engineers.
� Phase 2. Once we have identified the main effects, we only

focus on them, effectively reducing the configuration space to just
these few options. The process continues executing using only in-
house resources. Each time the system changes, we exhaustively
benchmark all combinations of the first-order options, while us-
ing default (or random) settings for the remaining options. Our
intent is that by focusing only on the first-order options, we can
greatly reduce the configuration space, while at the same time cap-
ture a much more complete picture of the system’s QoS. This data
is plotted and maintained on the system’s build scoreboard (e.g.,
www.dre.vanderbilt.edu/Stats ). Since the main effects
might change over time, the process can be restarted periodically
to recalibrate the main effects options.

Although the details of computing a screening design are beyond
the scope of this paper, we give a simple example to help introduce
key terminology and concepts. We will assume our example sys-
tem has 5 binary configuration options A, B, C, D, and E. The con-
figuration space thus has 32 (2

5) configurations and the example
screening design will involve only 8 configurations. We begin by
creating a2(3) full-factorial design for options A, B, and C. This
starting point ensures that the main effects will not be confounded
with each other, which is referred to as a resolution III design.

Since all the options are binary, we encode their settings as either
(-) for the first setting or (+) for the second setting. Non-binary
options can be handled as well, but the design is more complicated.
At this point, our initial design is as follows:

A - + - + - + - +
B - - + + - - + +
C - - - - + + + +

This design includes only three options. To compute the settings
of the fourth option, we select a design generator, indicated 4=12,
to generate the settings of the fourth option. The number on the
left side of the design generator equation gives the row that will
be generated, while the right side indicateshow that row will be
generated. In this particular case, therefore, the fourth row (for D)
will be generated by multiplying rows 1 and 2i.e., each entry in the
row for D is the same as the product of the corresponding entries
in the rows for A and B. We generate row E similarly, using design
generator 5=23 and the final design matrix is as follows:

A - + - + - + - +
B - - + + - - + +
C - - - - + + + +
D + - - + + - - +
E + + - - - - + +

To analyze the data, we must calculate the main effect of each
option. In our simple example, the main effect of option A, ME(A),
is ME(A) = z(A-) - z(A+), where z(A-) and z(A+) are the mean
values of the observed variable over all runs when A is (-) and when
A is (+), respectively.

2.4 Putting It All Together
Figure 2 presents an overview of how we have integrated BGML

with the existing Skoll prototype to support themain effects screen-
ing DCQA process described in Section 2.3. Below we describe the
enhanced Skoll QA process, referencing the steps shown in the fig-
ure.
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Figure 2: Skoll QA Process View with BGML Enhancements

A A QA engineer defines a test configuration using BGML mod-
els. The necessary experimentation details are captured in the mod-
els, e.g., the configuration options examined during main effects
screening, the IDL interface exchanged between the client and the
server, and the benchmark metric performed by the experiment.
B & C The QA engineer then uses BGML to interpret the model.
The paradigm interpreter parses the modeled CORBA middleware
configuration options and generates the required configuration files
to configure the underlying CORBA middleware. The BGML para-
digm interpreter then generates the required benchmarking code,
i.e., IDL files, the required header and source files, and necessary
script files to run the experiment. Steps A, B, and C also generate
internal files used by Skoll.
D When users register with the Skoll infrastructure they obtain the
Skoll client software and configuration template. This step happens
in concert with Step 2, 3, and 4 of the Skoll process.
E & F Clients execute steps in the main effects screening experi-
ment and return the result to the Skoll server, which updates its in-
ternal database. When prompted by developers, Skoll displays exe-
cution results using an on demand scoreboard. This scoreboard dis-
plays graphs and charts for QoS metrics,e.g., performance graphs,
latency measures and foot-print metrics. Steps E and F correspond
to steps 5, 6, and 7 of the Skoll process.

3. FEASIBILITY STUDY
This section describes a feasibility study that assesses the imple-

mentation cost and the effectiveness of the main effects screening
process on a large performance-intensive software system.

3.1 Hypotheses
In this study, we will explore the following high-level hypothe-

ses:
1. Our proposed DCQA process can be easily instantiated for

a specific system using the model-based Skoll environment
described in Section 2.

2. The process’s initial screening phase identifies a small subset
of options whose effect on performance is significant.

3. The process’s second phase produces performance data that
(1) is representative of the system’s QoS across the entire
configuration space and (2) is more representative of the over-
all performance than that produced by observing a small num-
ber of randomly selected configurations.

3.2 Experimental Process
We use the following experimental process to evaluate our hy-

potheses:
Step 1: Choose a middleware software system that has a represen-

tative (i.e., large) configuration space.
Step 2: Choose an application scenario and performance criteria.
Step 3: Use the BGML tools (Section 2.2) to design an experiment

for the application scenario.
Step 4: Apply the main effects screening process,i.e., use the screen-

ing step to identify key options and use the second step to
obtain performance variation by exhaustively exploring the
key options.

Step 5: Explore the entire configuration space and obtain perfor-
mance variation. Explore a few random configuration set-
tings and obtain their performance variation.

Below, we compare the performance variation exposed by the
main effects screening process to that obtained by examining the
entire configuration space and random space.

3.2.1 Step 1: Subject Applications
We used ACE v5.4 + TAO v1.4 + CIAO v0.4 for this study.

CIAO is a QoS-enabled implementation of CCM being developed
at Washington University, St. Louis and Vanderbilt University to
extend TAO [5] so it supports components, which simplifies the de-
velopment of DRE applications by enabling developers to declara-
tively provision QoS policies end-to-end when assembling a sys-
tem. TAO is an open-source, high-performance, highly config-
urable Real-time CORBA ORB that implements key patterns [11]
to meet the demanding QoS requirements of DRE systems. TAO
is developed atop lower-level middleware called ACE that imple-
ments core concurrency and distribution patterns [11] for commu-
nication software. ACE provides reusable C++ wrapper facades
and framework components that support the QoS requirements of
high-performance, real-time applications. ACE and TAO run on a
wide range of OS platforms, including Windows, most versions of
UNIX, and real-time operating systems such as Sun/Chorus Clas-
siX, LynxOS, and VxWorks.

3.2.2 Step 2: Application Scenario
Due to recent changes made to the message queueing strategy,

the developers of ACE+TAO+CIAO are concerned with measur-
ing two performance criteria: (1) the latency for each request, and
(2) total message throughput (events/second) between the ACE+-
TAO+CIAO client and server. For this version of ACE+TAO+-
CIAO, the developers identified 14 run-time options they felt af-
fected latency and throughput. Each option is binary as shown in
Table 1 and the entire configuration space is2

14
= 16; 384. Note

that since we compare our results to exhaustive configuration space
exploration, this number of options was ideal for our study. In prac-
tice, however, it would be much larger.

3.2.3 Step 3: BGML Tool
Figure 3 describes how the ACE+TAO+CIAO QA engineers used

the BGML tool to generate the screening experiments to quantify
the behavior of latency and throughput. As shown in the figure, the
following steps were performed:
� Using the BGML modeling paradigm QA engineers composed

the experiment.
� In the experiment modeled, QA engineers associate the QoS

characteristic (in this case roundtrip latency and throughput) that
will be captured in the experiment.
� Using the experiment modeled, BGML interpreters generate

the benchmarking code required to set-up, run and tear-down the
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Option Index Option Name Option Settings
o1 ORBReactorThreadQueue fFIFO, LIFOg
o2 ORBClientConnectionHandler fRW, MTg
o3 ORBReactorMaskSignals f0, 1g
o4 ORBConnectionPurgingStrategy fLRU, LFUg
o5 ORBConnectionCachePurgePercentage f10, 40g
o6 ORBConnectionCacheLock fthread, nullg
o7 ORBCorbaObjectLock fthread, nullg
o8 ORBObjectKeyTableLock fthread, nullg
o9 ORBInputCDRAllocator fthread, nullg
o10 ORBConcurrency freactive, thread-per-connectiong
o11 ORBActiveObjectMapSize f32, 128g
o12 ORBUseridPolicyDemuxStrategy flinear, dynamicg
o13 ORBSystemidPolicyDemuxStrategy flinear, dynamicg
o14 ORBUniqueidPolicyReverseDemuxStrategy flinear, dynamicg

Table 1: The Options and Their Settings

Component Interaction
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BGML

Model
Experimet

Associate
QoS

Characteristics

Synthesize
&

Execute
Feedback
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1 2

34

IDL .cpp

Script
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Figure 3: BGML Use Case Scenario

experiment. The files generated include, component implementa-
tion files (.h, .cpp), IDL files (.idl), Component IDL files (.cidl) and
Benchmarking code (.cpp) files. The generated file is executed and
QoS characteristics are measured. The execution was done both in
Steps 4 and 5 described in Sections 3.2.4 and 3.2.5 respectively.

3.2.4 Step 4: Application of the Main Effects Screen-
ing Process

In this step, our main concern is to find the first-order effects
of configuration options; we are not interested in higher-order (in-
teraction) effects. We designed the screening experiment using a
fractional factorial design as explained below:

Based on the information we obtained from the ACE+TAO+-
CIAO developers on the214 configuration space, we decided to
alias no main factors with effects involving fewer than three factors.
This decision dictated a resolution IV design, in which no effect
involving i factors is aliased with effects involving less than4 � i

factors. For example, in such a design some of the main effects
are aliased with three-factor interactions, but not with other main
effects or two-factor interactions.

With resolution IV and run sequence efficiency requirements in
mind, we designed a214�9

IV
screening experiment given in Table 2.

This screening design examines 14 factors in2
5
= 32 runs, which

is a29 fraction of the exhaustive design.
To create the final design, we started with a2

5 all options design
(shown in the first 5 columns in Table 2. We computed the remain-
ing 9 columns by using the following design generators: o6=123,

o7=124, o8=134, o9=234, o10=125, o11=135, o12=235, o13=145,
o14=245.

3.2.5 Step 5: Generating Variation for the Entire
Configuration Space

We also obtained the performance variation for the entire config-
uration space,i.e., 16,384 configurations. It then took 48 hours to
run all the benchmarking experiments.

3.3 Results
The results of the screening phase are summarized in Table 3.

Looking across latency measures of “All Options” (the exhaustive
design) in Table 3, we see that only options o2 and o10 have a sig-
nificant effect on the latency. This result was surprising to ACE+-
TAO+CIAO developers since they thought that all 14 run-time op-
tions would contribute substantially to latency. The same result
appears for latency variation and for throughput. Therefore, only
options 02 and o10 show a significant effect on performance.

Looking instead at the data labeled “screening” (i.e., just the 32
runs selected by the screening design), we draw the exact same con-
clusion. That is the screening design gave us the same information
at a fraction of the cost. Note that the time needed to run the 32
configurations was about 6 minutes.

The second phase of the process used the information that o2 and
o10 are important options to generate all possible (i.e., 4) configu-
rations for the binary values of o2 and o10. Default values were as-
signed to the remaining options. The latency and throughput were
measured for these 4 configurations.

The results of the second phase are summarized in Figure 4.
These box plots show that the distributions obtained from the screen-
ing experiments are very similar to the ones obtained from the ex-
haustive runs. In contrast, the distributions for random configura-
tions (4 chosen at random) were very different. Table 4 provides a
detailed analysis of these box-plots. The table shows the number

Metric Screening Random
latency 77% 46%
latency variance 64% 30%
throughput 75% 55%

Table 4: Range of Performance Metrics Covered by Screening
and Random Design

of observations for each performance metric in the entire config-
uration space that fall into the range of the observations obtained
from screening and random designs. As this table indicates, the
screening design covered a large portion of the system’s range of
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Screening Design Observations
o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14latency s

2
ln(s2) throughput

- - - - - - - - - - - - - - 115.00 323.76 5.78 8572.64
+ - - - - + + + - + + - + - 95.00 181.27 5.20 10451.43
- + - - - + + - + + - + - + 119.00 441.42 6.09 8318.61
+ + - - - - - + + - + + + + 136.00 555.57 6.32 7291.35
- - + - - + - + + - + + - - 107.00 403.43 6.00 9233.01
+ - + - - - + - + + - + + - 81.00 35.87 3.58 12121.94
- + + - - - + + - + + - - + 121.00 507.76 6.23 8154.60
+ + + - - + - - - - - - + + 118.00 365.04 5.90 8393.64
- - - + - - + + + - - - + + 92.00 138.38 4.93 10701.40
+ - - + - + - - + + + - - + 80.00 16.95 2.83 12284.19
- + - + - + - + - + - + + - 103.00 144.03 4.97 9605.94
+ + - + - - + - - - + + - - 134.00 639.06 6.46 7402.15
- - + + - + + - - - + + + + 100.00 333.62 5.81 9918.66
+ - + + - - - + - + - + - + 84.00 83.10 4.42 11693.53
- + + + - - - - + + + - + - 112.00 354.25 5.87 8841.91
+ + + + - + + + + - - - - - 136.00 685.40 6.53 7303.03
- - - - + - - - - + + + + + 89.00 164.02 5.10 11041.34
+ - - - + + + + - - - + - + 92.00 135.64 4.91 10699.18
- + - - + + + - + - + - + - 124.00 518.01 6.25 7978.12
+ + - - + - - + + + - - - - 113.00 314.19 5.75 8766.06
- - + - + + - + + + - - + + 88.00 148.41 5.00 11192.87
+ - + - + - + - + - + - - + 98.00 275.89 5.62 10063.70
- + + - + - + + - - - + + - 120.00 383.75 5.95 8234.28
+ + + - + + - - - + + + - - 115.00 365.04 5.90 8573.15
- - - + + - + + + + + + - - 80.00 15.96 2.77 12373.87
+ - - + + + - - + - - + + - 91.00 127.74 4.85 10838.35
- + - + + + - + - - + - - + 119.00 441.42 6.09 8297.93
+ + - + + - + - - + - - + + 106.00 172.43 5.15 9367.18
- - + + + + + - - + - - - - 98.00 162.39 5.09 10059.06
+ - + + + - - + - - + - + - 106.00 376.15 5.93 9335.74
- + + + + - - - + - - + - + 112.00 83.93 4.43 8836.80
+ + + + + + + + + + + + + + 116.00 437.03 6.08 8542.13

Table 2: 214�9
IV

Screening Experiment Design Matrix and Observed Values

performance and covered more of the performance range than the
random design did.

3.4 Discussion
From this study, we observed that over the course of several

hours, we used BGML to generate scaffolding code that ran all
the benchmarks automatically on all configurations of the subject
applications and collected results. In the past, we have written this
code by hand and manually sent it to the Skoll client sites. Many
times, the code contained editing bugs, causing tests to fail unex-
pectedly, requiring manual intervention and leading to delays in the
experiments.

As a result of this work, the ACE+TAO+CIAO developers learned
that only 2 of the 14 run-time options by themselves had a sig-
nificant affect on performance. These two options were identified
for them automatically using the new main effects screening pro-
cess. We learned that examining only 4 configurations exposed
about 75% of the entire range of the system’s performance across
all 16,000+ valid configurations. Given the small number of im-
portant options, ACE+TAO+CIAO developers can incorporate the
benchmark execution on the 4 configurations whenever they change
the code. Incorporating this into their regular build cycle provides
them with rapid feedback on the effects of their changes (the bench-
marks run on these 4 configurations in just a few seconds, so com-
pile time is the main bottleneck).

The ACE+TAO+CIAO developers can also use the main effects
screening process to track their performance distributions over time.
For example, as changes are made to the code, the screened op-
tions can be recalibrated periodically by executing phase one of
our process, which not only gives developers a more accurate view
of their software’s performance, it also provides a valuable defect

detection aid. If the screened options change unexpectedly when
recalibrated, the developers can re-examine the software to identify
possible problems.

4. RELATED WORK
This section compares our work on model-driven performance

evaluation techniques in Skoll and BGML with other related re-
search efforts including large-scale testbed environments that pro-
vide a platform to conduct experiments using heterogeneous hard-
ware, OS, and compiler platforms, feedback-based optimization
techniques, and generative techniques for synthesizing benchmarks.
Large-scale benchmarking testbeds.EMULab [16] is a test-
bed at the University of Utah that provides an environment for ex-
perimental evaluation of networked systems. EMULab provides
tools that researchers can use to configure the topology of their
experiments,e.g., by modeling the underlying OS, hardware, and
communication links. This topology is then mapped [9] to�250
physical nodes that can be accessed via the Internet. The EMULab
tools can generate script files that use the Network Simulator (NS)
(http://www.isi.edu/nsnam/ns/ ) syntax and semantics
to run the experiment.

The Skoll infrastructure provides a superset of EMULab that is
not limited by resources of a single testbed, but instead can leverage
the large amounts of end-user computer resources in the Skoll grid.
Moreover, the BGML model interpreters can generate NS scripts
to integrate our benchmarks with experiments in EMULab.
Feedback-driven optimization techniques.Feedback-dri-
ven techniques involve using feedback control loops [7] to adapt
adapt QoS measures. Our approach in BGML and Skoll uses screen-
ing experiments to determine first order configuration parameters

8



Latency
Opt. Effect
o2 -25.634
o10 13.183
o3 -1.495
o6 1.077
o12 -0.367
o9 0.361
o11 0.327
o13 -0.241
o1 -0.171
o4 0.155
o8 0.142
o14 0.098
o5 -0.018
o7 -0.005

All Options

Latency
Opt. Effect
o2 -25.500
o10 12.500
o5 4.125
o11 -4.00
o4 3.875
o14 3.750
o13 2.875
o12 2.625
o9 1.875
o7 -1.500
o3 -1.500
o8 -1.00
o6 -0.125
o1 -0.125

Screening

Latency Var.
Opt. Effect
o10 0.652
o2 -0.584
o3 -0.101
o14 -0.044
o9 0.028
o8 0.023
o12 -0.017
o6 0.016
o1 -0.013
o11 0.013
o4 0.007
o7 -0.004
o13 -0.002
o5 0.001
All Options

Latency Var.
Opt. Effect
o2 -1.007
o10 0.731
o4 0.460
o9 0.373
o11 -0.319
o3 -0.305
o12 0.282
o6 -0.201
o8 -0.149
o5 0.127
o13 -0.125
o14 0.124
o7 -0.094
o1 0.058

Screening

Throughput
Opt. Effect
o2 2201.744
o10 -1138.725
o3 110.168
o6 -88.326
o9 -38.973
o12 27.472
o11 -16.630
o13 14.270
o1 14.127
o4 -12.949
o8 -12.003
o14 -5.156
o7 2.766
o5 -0.413

All Options

Throughput
Opt. Effect
o2 2292.127
o10 -1142.989
o4 -394.747
o14 -319.152
o12 -310.049
o11 307.577
o9 -305.431
o5 -244.483
o3 218.231
o13 -201.548
o1 -110.357
o6 69.324
o7 69.319
o8 45.943

Screening

Table 3: Main Effect Estimations of Latency, Variance of Latency, and Throughput for All Options and Screening Designs
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Figure 4: Performance and Predictibility Distributions

impacting performance. These results are then fed-back into per-
formance models to provide information on the consequences of
mixing and matching configuration options at model building time.

The continuous compilation strategy [1] combines aspects of of-
fline (use program analysis to improve compiler-generated code)
and online analysis (where feedback control is used to dynamically
adapt QoS measures). This strategy constantly monitors and im-
proves application code using code optimization techniques. These
optimizations are applied in four phases including (1)static anal-
ysis, in which information from training runs is used to estimate
and predict optimization plans, (2)dynamic optimization, in which
monitors apply code transformations at run-time to adapt program
behavior, (3)offline adaptation, in which optimization plans are
actually improved using actual execution, and (4)recompilation,
where the optimization plans are regenerated.

BGML’s model-based strategy can enhance conventional hybrid
analysis by tabulating platform-specific and platform-independent
information separately using the Skoll framework. In particular,
Skoll does not incur the overhead of system monitoring since be-
havior does not change at run-time. New platform-specific infor-
mation obtained can be fed back into the models to optimize QoS
measures.

Generative techniques for synthesizing benchmarks.
There have been a several initiatives that use generative techniques
similar to BGML for generating test-cases and benchmarking for
performance evaluation. The MODEST [10] tool provides a gen-
erative approach for producing (1) test cases,i.e., test-code that
is used to test the system and (2) test-harness,i.e., the scaffolding
code required for test setup and tear down. In this system, test cases
are generated in parallel with the actual system to provide users
with the system and the test-code to reduce maintenance costs.

Our BGML modeling tool focuses on empirical performance
evaluation rather than just test cases generation since generating
functional test cases may be amenable only to systems that can
capture all inputs to the system. The MODEST approach captures
this information via a domain specification supplied as XML in-
put. In MODEST, all artifacts conform to the same architecture,
with variability only in the domain specification given by the user.
This assumption rarely holds, however, for performance-intensive
software, which often runs on heterogeneous combinations of OS,
compiler and hardware platforms. In contrast, our model-based
DCQA approach to benchmarking allows QA engineers to fully
characterize the inputs to the system and observe QoS behavior and
variations across a wide range of platforms.
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5. CONCLUDING REMARKS
This paper described a model-based distributed continuous qual-

ity assurance (DCQA) process called main effects screening. The
process is designed to improve performance assessment across the
large configuration spaces found in performance-intensive software.
We quickly implemented this process using BGML, executed it on
Skoll, and demonstrated its effectiveness via a feasibility study in-
volving ACE+TAO middleware, which are two large-scale perform-
ance-intensive software frameworks consisting of well over one
million lines of C++ code and regression tests contained in�4,500
files.

The main effects screening process leverages formally-designed
screening experiments to isolate the most significant individual op-
tions in the configuration space. This screening experiment is exe-
cuted by users around the world using the Skoll infrastructure. Af-
ter this reduced option set has been identified it can then be exam-
ined exhaustively (using local resources) as often as desired. Our
feasibility study showed that this process could automatically re-
duce an original set of 14 options down to 2 main effects and that
the information of these main effects provides much of the infor-
mation that could have been gained from exhaustive testing (even
though exhaustive testing is infeasible). We will continue to ex-
plore new DCQA processes,e.g., we are examining how to pri-
oritize parts of the configuration model based on end-user usage
patterns, developer priorities, or other economic justifications.

The results of the work presented in this paper have also moti-
vated research in several new directions. We are working closely
with the ACE+TAO developers to generalize Skoll’s processes to
cover a broader range of QA activities, in particular new end-to-
end QoS measures on heterogeneous DRE systems. One imme-
diate application is to start to refactor ACE to shrink its memory
footprint and enhance its run-time performance. The DCQA pro-
cess will then be used to measure ACE’s footprint and QoS at every
check-in across different configurations, while simultaneously en-
suring correctness via Skoll’s automated and intelligent regression
testing environment [8].
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