
External Polymorphism

An Object Structural Pattern for Transparently Extending C++ Concrete Data Types

Chris Cleeland
chris@envision.com

Envision Solutions, St. Louis, MO 63141

Douglas C. Schmidt and Timothy H. Harrison
schmidt@cs.wustl.edu and harrison@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, Missouri, 63130

This paper appeared in the Proceedings of the 3rd Pat-
tern Languages of Programming Conference, Allerton Park,
Illinois, September 4–6, 1996.

1 Intent

Allow C++ classes unrelated by inheritance and/or having
no virtual methods to be treated polymorphically. These
unrelated classes can be treated in a common manner by
software that uses them.

2 Motivation

Working with C++ classes from different sources can be dif-
ficult. Often an application may wish to “project” common
behavior on such classes, but is restricted by the classes’
existing design. If only the class interface requires adap-
tation an obvious solution is to apply an object structural
pattern such as Adapter or Decorator [1]. Occasionally there
are more complex requirements, such as the need to change
both underlying interface and implementation. In such cases,
classes may need to behave as if they had a common ancestor.

For instance, consider the case where we are debugging
an application constructed using classes from various C++
libraries. It would be convenient to be able to ask any instance
to “dump” its state in a human-readable format to a file or
console display. It would be even more convenient to gather
all live class instances into a collection and iterate over that
collection asking each instance to dump itself.

Since collections are homogeneous, a common base class
must exist to maintain a single collection. Since classes are
already designed, implemented and in use, however, modify-
ing the inheritance tree to introduce a common base class is
not an option – we may not have access to the source, either!
In addition, classes in OO languages like C++ may be con-
crete data types [2], which require strict storage layouts that
could be compromised by hidden pointers (such as C++’s
virtual table pointer). Re-implementing these classes with a
common, polymorphic, base class is not feasible.

Thus, projecting common behavior on unrelated classes
requires the resolution of the following forces constraining
the solution:

1. Space efficiency – The solution must not constrain the
storage layout of existing objects. In particular, classes
that have no virtual methods (i.e., concrete data types)
must not be forced to add a virtual table pointer.

2. Polymorphism – All library objects must be accessed
in a uniform, transparent manner. In particular, if new
classes are included into the system, we won’t want to
change existing code.

Consider the following example using classes from the
ACE network programming framework [3]:

1. SOCK_Acceptor acceptor; // Global storage
2.
3. int main (void) {
4. SOCK_Stream stream; // Automatic storage
5. INET_Addr *addr =
6. new INET_Addr // Dynamic storage.
7. ...

The SOCK Stream, SOCK Acceptor, and INET Addr
classes are all concrete data types since they don’t all in-
herit from a common ancestor and/or they don’t contain vir-
tual functions. If during a debugging session an application
wanted to examine the state of all live ACE objects at line 7,
we might get the following output:

Sock_Stream::this = 0x47c393ab, handle_ = {-1}
SOCK_Acceptor::this = 0x2c49a45b, handle_ = {-1}
INET_Addr::this = 0x3c48a432,

port_ = {0}, addr_ = {0.0.0.0}

An effective way to project the capability to dump state
onto these class without modifying their binary layout is to
use the External Polymorphism pattern. This pattern con-
structs a parallel, external inheritance hierarchy that projects
polymorphic behavior onto a set of concrete class that need
not be related by inheritance. The following OMT diagram
illustrates how the External Polymorphism pattern can be
used to create the external, parallel hierarchy of classes:

1



Collection

Dumpable 
 

dump()

ConcreteDumpable<AnyType> 
 
dump() 
 
AnyType* this_

instance->printTo()

SignatureAdapter<AnyType> 
 

::dump<SOCK_Stream>(instance) 
::dump<INET_Addr>(instance)

delegates

NOTE:SignatureAdapter is the name of 

the role played by the assorted template 

functions; it is not really a class.

As shown in the figure, we define an abstract class
(Dumpable) having the desired dump interface. The
parameterized class ConcreteDumpable<> inherits
from Dumpable and contains a pointer to an instance
of its parameter class, e.g., SOCK Stream. In ad-
dition, it defines a body for dump that delegates to
the dump<> template function (shown in the figure as
the SignatureAdapter<> pseudo-class and parame-
terized over the concrete class). The dump template
function calls the corresponding implementation method
on the concrete class, e.g., SOCK Stream::dump or
INET Addr::printTo.

Using the External Polymorphism pattern, it is now pos-
sible to collect Dumpable instances and iterate over them,
calling the dump method uniformly on each instance. Note
that the original ACE concrete data types need not change.

3 Applicability

Use the External Polymorphism pattern when:

1. Your class libraries contain concrete data types that can-
not inherit from a common base class containing virtual
methods; and

2. The behavior of your class libraries or applications can
be simplified significantly if you can treat all objects in
a polymorphic manner.

Do not use the External Polymorphism pattern when:

1. Your class libraries already contain abstract data types
that inherit from common base classes and contain vir-
tual methods; or

2. Your programming language or programming environ-
ment allows methods to be added to classes dynamically.

4 Structure and Participants

Client
Common 

 
request()

ConcreteCommon<ConcreteType> 
 
request() 
 
ConcreteType* this_

instance->specificRequest()

SignatureAdapter<ConcreteType> 
 

::request<Concrete1>(instance) 
::request<Concrete2>(instance)

delegates

NOTE:SignatureAdapter is the name of 

the role played by the assorted template 

functions; it is not really a class.

� Common (Dumpable)

– This abstract class forms the base of the exter-
nal, parallel hierarchy and defines the interface(s)
whose behaviors will be polymorphically pro-
jected and used by clients.

� ConcreteCommon<ConcreteType>
(ConcreteDumpable)

– This parameterized subclass of Common imple-
ments the interface(s) defined in Common. A typi-
cal implementation will simply forward the call to
the appropriate SignatureAdapter template
function.

� SignatureAdapter::request<ConcreteType>
(::dump<>)

– The template function adapter forwards re-
quests to the object. In some cases, e.g.,
where the signature of specificRequest
is consistent, this feature may not be needed.
However, if specificRequest has differ-
ent signatures within several Concrete classes,
the SignatureAdapter can be used to insulate
ConcreteCommon from the differences.

� ConcreteType

– The ConcreteType classes define
specificRequest operations that perform the
desired tasks. Although Concrete classes need
not be related by inheritance, the External Poly-
morphism pattern allows you to treat all or some
of their methods polymorphically.

5 Collaborations

The External Polymorphism pattern is typically used by hav-
ing an external client make requests through the polymorphic

2



Common*. The following is an interaction diagram for this
collaboration.

Common

request 
operation

ConcreteCommon ConcreteType

requestrequest

SignatureAdapter

::request specificRequest

Many applications of the External Polymorphism pattern
maintain a collection of objects over which the program iter-
ates, treating all collected objects uniformly. Although this
is not strictly part of the pattern, it is a common use-case that
bears mentioning.

6 Consequences

The External Polymorphism pattern has the following bene-
fits:

� Transparent – Classes that were not originally designed
to work together can be extended relatively transparently
so they can be treated polymorphically. In particular,
the object layout of existing classes need not change by
adding virtual pointers.

� Flexible – It’s possible to polymorphically extend non-
extensible data types such as int or double when
the pattern is implemented in a language supporting
parameterized types (e.g., C++ templates).

� Peripheral – Because the pattern establishes itself on
the fringes of existing classes, it’s easy to use condi-
tional compilation to remove all trace of this pattern.
This feature is particularly useful for systems that use
the External Polymorphism pattern only for debugging
purposes.

This pattern has the following drawbacks:

� Instability – The methods in the Common and
ConcreteCommon must track changes to methods in
the Concrete classes.

� Inefficient – Extra overhead due to multiple forwarding
from virtual methods in the ConcreteCommon ob-
ject to the corresponding methods in the Concrete
object. However, judicious use of inline (e.g., within
SignatureAdapter and Concrete) can reduce
this overhead to a single virtual method dispatch.

There is another consideration when using this pattern:

� Possibility of inconsistency – Externally Polymorphic
methods are not accessible through pointers to the con-
crete classes, e.g., using the example in Section 2
it’s not possible to access dump through a pointer to
SOCK Stream. In addition, it is not possible to access
other methods from the concrete class through a pointer
to ConcreteCommon.

7 Implementation

The following issues arise when implementing this pattern.

� Arguments to specificRequest. Projecting poly-
morphic behavior will usually require adaptation of the
signatures of the various specificRequests. This
can be complicated when, for instance, some require ar-
guments, whereas others do not. The implementer must
decide whether to expose those arguments in the poly-
morphic interface or to insulate the client from them.

� Where does the code go? As mentioned in Section 6,
the external class hierarchy must be maintained in par-
allel with the original classes. The implementer must
carefully select the source files in which co-dependent
code, such as signature adaptation, is implemented.

� External Polymorphism is not an Adapter. The in-
tent of the Adapter pattern is to convert an interface
to something usable by a client. External Polymor-
phism, on the other hand, focuses on providing a
new base for existing interfaces. A “serendipitous”
use of External Polymorphism would find all signa-
tures for specificRequest identical across all dis-
parate classes, and thus not require the use of Signa-
tureAdapter; it is in this situation where it is most ap-
parent that External Polymorphism is not an Adapter.

8 Sample Code

To look at an example implementation, recall the motivating
scenario: there are classes whose assistance we wish to enlist
to create a flexible debugging environment. This implemen-
tation uses the External Polymorphism pattern to define a
mechanism by which all participating objects (1) can be col-
lected in a central “in-memory” object collection and (2) can
dump their state upon request.

The Dumpable class forms the base of the hierarchy and
defines the desired polymorphic interface which, in this case,
is for dumping:

class Dumpable
{
public:
Dumpable (const void *);

// This pure virtual method must be
// implemented by a subclass.
virtual void dump (void) const = 0;

};

ObjectCollection is the client–a simple collection
that holds handles to objects. The class is based on the STL
vector class [4].

class ObjectCollection : public vector<Dumpable*>
{
public:
// Iterates through the entire set of
// registered objects and dumps their state.
void dump_objects (void);

};

3



The dump objects method can be implemented as fol-
lows:

void
ObjectCollection::dump_objects (void)
{
struct DumpObject {
bool operator()(const Dumpable*& dp) {
dp->dump();

}
};
for_each(begin(), end(), DumpObject());

}

Now that the foundation has been provided, we can define
ConcreteDumpable:

template <class ConcreteType>
class ConcreteDumpable : public Dumpable
{
public:
ConcreteDumpable (const ConcreteType* t);
virtual void dump (void) const;

// Concrete dump method

private:
const ConcreteType* realThis_;

// Pointer to actual object
};

The ConcreteDumpable methods are implemented as
follows:

template <class ConcreteType>
ConcreteDumpable<ConcreteType>::ConcreteDumpable
(const ConcreteType* t)
: realThis_ (t)

{
}

template <class ConcreteType> void
ConcreteDumpable<ConcreteType>::dump (void) const
{
dump<ConcreteType>(realThis_);

}

All that’s left are the signature adapters. Suppose that
SOCK Stream and SOCK Acceptor both have a dump
method that outputs to cerr. INET Addr, on the other
hand, has a printTomethod that takes the output stream as
the sole argument. We could define two signature adapters.
The first is a generic signature adapter that works with any
concrete type that defines a dump method:

template <class ConcreteType> void
dump<ConcreteType>(const ConcreteType* t)
{
t->dump();

}

whereas the second is specialized signature adapter that is
customized forINET Addr (which does not support adump
method):

void
dump<INET_Addr>(const INET_Addr* t)
{
t->printTo(cerr);

}

The ObjectCollection instance can be populated
by instances of ConcreteDumpable<> by making calls
such as:

...
ObjectCollection oc;
// Have instances of various SOCK_Stream, etc., types
...
oc.insert(oc.end(), aSockStream);
oc.insert(oc.end(), aSockAcceptor);
oc.insert(oc.end(), aInetAddr);
...

Then, later, we could query the state of those objects simply
by calling

...
oc.dump_objects();
...

9 Known Uses

The External Polymorphism pattern has been used in the
following systems:

� The ACE framework uses the pattern to register ACE
objects in a Singleton in-memory object database. This
database stores the state of all live ACE objects and can
be used by debugger to dump this state. Since many
ACE classes are concrete data types it was not possible
to have them inherit from a common root base class
containing virtual methods.

� The DV-Centro C++ Framework for Visual Program-
ming Language development from DV Corporation uses
the External Polymorphism pattern to create a hierarchy
around unrelated internal system classes.

� The Universal Streaming System from ObjectSpace’s
Systems<Toolkit> uses the External Polymorphism
pattern to implement object persistence via streaming.

� A variationof this pattern was independentlydiscovered
and is in use at Morgan Stanley, Inc. in internal financial
services projects.

� This pattern has been used in custom commercial
projects where code libraries from disparate sources
were required to have a more common, polymorphic
interface. The implementation of the pattern presented
a united interface to classes from a locally-developed li-
brary, the ACE library, and various other “commercial”
libraries.

� The idea for the signature adapter came from usage in
the OSE class library.1 In OSE, template functions are
used to define collating algorithms for ordered lists, etc.

10 Related Patterns

This pattern is similar to the Decorator and Adapter patterns
from the Gang of Four (GoF) design patterns catalog [1].

1The OSE class library is written and distributed by Graham Dumpleton.
Further information can be found at http://www.dscpl.com.au/

4



The Decorator pattern dynamically extends an object trans-
parently without using subclassing. When a client uses a
Decorated object it thinks it’s operating on the actual ob-
ject, when in fact it operates on the Decorator. The Adapter
pattern converts the interface of a class into another inter-
face clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

There are several differences between these two GoF pat-
terns and the External Polymorphism pattern. The Decorator
pattern assumes that the classes it adorns are already abstract
(i.e., they have virtual methods, which are overridden by the
Decorator). In contrast, External Polymorphism adds poly-
morphism to concrete classes (i.e., classes without virtual
methods). In addition, since the Decorator is derived from
the class it adorns, it must define all the methods it inherits.
In contrast, the ConcreteCommon class in the External
Polymorphism pattern need only define the methods in the
Concrete class it wants to treat polymorphically.

The External Polymorphism pattern is similar to the GoF
Adapter pattern. However, there are subtle but important
differences:

1. Intents differ: An Adapter converts an interface to some-
thing directly usable by a client. External Polymorphism
has no intrinsic motivation to convert an interface, but
rather to provide a new substrate for accessing similar
functionality.

2. Layer vs. Peer: The External Polymorphism pattern
creates an entire class hierarchy outside the scope of the
concrete classes. Adapter creates new layers within the
existing hierarchy.

3. Extension vs. Conversion: The External Polymorphism
pattern extends existing interfaces so that similar func-
tionality may be accessed polymorphically. Adapter
creates a new interface.

4. Behavior vs. Interface: The External Polymorphism
pattern concerns itself mainly with behavior rather than
the names associated with certain behaviors.

The External Polymorphism pattern is similar to the Poly-
morphic Actuator pattern documented and used internally at
AG Communication Systems.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-

terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[2] Bjarne Stroustrup, The C++ Programming Language, 2nd Edi-
tion. Addison-Wesley, 1991.

[3] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[4] D. L. Musser and A. Saini, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Li-
brary. Addison-Wesley, 1995.

5


