Acceptor and Connector

A Family of Object Creationa Patterns
for Initializing Communication Services

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, USA
(314) 935-7538

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

1 Introduction

This paper describes the Connector and Acceptor patterns.
Theintent of these patternsisto decouple the active and pas-
sive initialization roles, respectively, from the tasks a com-
munication service performs once initializationis complete.
Common examples of communication services that utilize
these patterns include WWW browsers, WWW servers, ob-
ject request brokers, and “ superservers’ (which provide ser-
viceslikeremoteloginand filetransfer to client applications).

This paper illustrates how the Connector and Acceptor
patterns can help decouple service initialization-related pro-
cessing from service processing, which yieldsmore reusable,
extensible, and efficient communication software. When
used in conjunctionwithrelated patternslikethe Reactor [1],
Active Object [2], and Service Configurator [3], the Accep-
tor and Connector patterns enable the creation of extensible
and efficient communication software frameworks [4] and
applications[5].

This paper isorganized asfollows: Section 2 describesthe
Acceptor and Connector patternsin detail; Section 3 presents
concluding remarks, and the Appendix outlines background
information on networking and communication protocols
necessary to understand the patternsin this paper.

2 The Acceptor and Connector Pat-
terns

21 Intent

The intent of these patternsis to decouple service initidiza-
tion from the tasks performed once a service is initiaized.
The Connector patternisresponsiblefor activeinitialization,
whereas the Acceptor pattern is responsible for passive ini-
tialization.

TRACKING
STATION
PEERS

/
STATUS INFO
/

/

¥ _
/ / /
/ / /
/ / v
COMMANDS // il BULK DATA
/ /7 7 TRANSFER

WIDE AREA

NETWORK

GROUND
STATION
PEERS

Figure1: ThePhysical Architectureof aConnection-oriented
Application-level Gateway

2.2 AlsoKnown As

The Acceptor pattern isalso known as the Listener [6].

2.3 Motivation
2.3.1 Context

To illustrate the Acceptor and Connector patterns, consider
the multi-service, application-level Gat eway shownin Fig-
ure 1. The Gat eway routes severa types of data (such
as status information, bulk data, and commands) that are
exchanged between services running on the Peers. The
Peer s are used to monitor and control a satellite constel-
lation. Peer s can be distributed throughout loca area net-
works (LANSs) and wide-area networks (WANS).

The Gat eway isaMediator [7] that coordinates interac-
tions between its connected Peer s. From the Gat eway’'s
perspective, these Peer services differ solely by their mes-
sageframing formatsand payload types. TheGat eway uses
a connection-oriented interprocess communication (IPC)
mechanism (such as TCP) to transmit data between its con-
nected Peer s. Using a connection-oriented protocol sim-
plifies application error handling and enhances performance
over long-latency WANS.

Each communication service in the Peer s sends and re-
ceives status information, bulk data, and commands to and
from the Gat eway using separate TCP connections. Each
connection is bound to a unique address (e.g., an |P address
and port number). For example, bulk data sent fromaground
station Peer throughthe Gat eway isconnected to adiffer-
ent port than statusinformation sent by atracking station peer
through the Gat eway to a ground station Peer . Separat-
ing connectionsin this manner allows more flexible routing
strategiesand more robust error handling when network con-
nectionsfail.

2.3.2 Common Trapsand Pitfalls

Oneway to design the Peer s and Gat eway isto designate
the initialization roles a priori and hard-code them into the
server implementation. For instance, the Gat eway could
be hard-coded to actively initiate the connections for al its
services. To accomplish this, it could iterate through a list
of Peer s and synchronously connect with each of them.
Likewise, Peer s could be hard-coded to passively accept
connections and initialize the associated services.

In addition, the active and passive connection code for the
Gat eway and Peer s, respectively, could be implemented
with conventional network programming interfaces (such as
sockets or TLI). In this case, a Peer could cdll socket ,
bi nd, |isten, andaccept toinitializeapassive-mode
listener socket and the Gat eway could cdl socket and
connect toactively initiateadata-mode connection socket.
Once the connections were established and the associated
service handler objectswereinitiaized, the Gat eway could
route datafor each type of serviceit provided.

However, this approach has the following drawbacks:

o Limited extensibility and reuse of the Gateway and Peer
software: Thetypeof routing service (e.g., statusinforma-
tion, bulk data, or commands) performed by the Gat eway is
essentially independent of the mechanisms used to establish
connectionsand initializeservices. However, the hard-coded
approach described above tightly couples service initiaiza
tionand service behavior. Thismakesit hard toreuse existing
services or to extend the Gat eway by adding new routing
services and enhancing existing services.

e Lack of scalability: If there are a large number of
Peer s, the synchronous connection establishment strategy
of the Gat eway will not take advantage of the parallelism
inherent in the network and Peer endsystems.

e Error-prone network programming interfaces: Con-
ventional network programming interfaces (such as sockets
or TLI) do not provide adequate type-checking since they
utilize low-level 1/0 handles [8]. The tight coupling of the
hard-coded approach described above makes it easy to acci-
dentally misuse theseinterfaces and I/O handlesin ways that
cannot be detected until run-time.

2.3.3 Solution

A more flexible and efficient way to design the Peer s and
Gat eway is to use the Acceptor and Connector patterns.
These two patterns decouple the active and passive initial-
ization roles, respectively, from the communication services
performed once services are initidlized. These patterns re-
solve the following forces for communication services that
use connection-oriented transport protocols:

1. Theneed toavoid rewritinginitialization codefor each
new servicee The Connector and Acceptor patterns per-
mit key characteristics of services (such as application-level
communi cation protocol sand message formats) to evolvein-
dependently of the strategies used to initiaize the services.
Application-level service characteristics often change more
frequently than initialization strategies. Therefore, this sep-
aration of concerns helps reduce software coupling and in-
creases code reuse.

2. The need to enable flexible strategies for executing
communication services concurrently: Once a connec-
tion is established and the service is initialized using the
Acceptor and Connector patterns, peer applications use the
connection to exchange data while performing the service.
However, regardless of how the service was initialized, these
services may be executed in a single-thread, in multiple
threads, or multiple processes.

3. The need to make connection establishment software
portable across platforms. Many operating systems pro-
vide network programming interfaces (such as sockets and
TLI) and communication protocols (such as TCP/IP and
IPX/SPX) whose semantics are only superficialy different.
Therefore, the syntactic incompatibilities of these interfaces
make it hard to write portable programs, even though the
initialization strategies transcend these differences. It is
particularly hard to write portable asynchronous connection
establishment software since asynchrony is not supported
uniformly by standard network programming interfaces like
sockets, CORBA, or DCOM.

4. The need to actively establish connections with large
number of peers efficiently: The Connector pattern can
employ asynchrony to initiate and complete multiple con-
nections without blocking the caller. By using asynchrony,
the Connector pattern enables applicationsto actively estab-
lish connectionswith alarge number of peersefficiently over
long-latency WANS.

5. Theneed to ensure that passive-mode |/O handles are
not accidentally used toread or writedata: Strongly de-
coupling the initialization role of the Acceptor pattern from
the communication role of theinitialized service ensuresthat
passive-mode listener endpoints are not accidentally used in-
correctly. Without this strong decoupling, services may mis-
takenly read or write data on passive-mode li stener endpoints
(which should only be used to accept connections).

As outlined above, the Connector and Acceptor patterns
address very similar forces. For instance, forces 1, 2, and 3
above are resolved by both the Acceptor and Connector pat-
tern —only the passive and active roles are reversed. Forces
4 and 5 are only resolved by one pattern each, however, due
to theasymmetrical connection roles played by each pattern.
For example, the Connector pattern addresses an additional
force (connection scal ability) by using asynchrony to actively
initializealarge number of peersefficiently. Thisforceisnot
addressed by the Acceptor since it is aways the passive tar-
get of activeinitiaizationreguests. Conversely, a Connector
does not wait passively for services to initialize it. Unlike
the Acceptor pattern, therefore, the Connector pattern need
not decoupl e the listener endpoint from the data endpoint.

Thefollowing section describesthe Acceptor and Connec-
tor patterns using a modified version of the GoF pattern form

[7].

2.4 Applicability

e Use the Acceptor and Connector patterns when tasks
performed by a service can be decoupled from the steps
required toinitiaize the service; and

e Use the Connector pattern when an application must
establish a large number of connections with peers re-
siding across long-latency networks (such as satellite
WANS); or

o Use the Acceptor pattern when connections may arrive
concurrently from different peers, but blocking or con-
tinuous polling for incoming connections on any indi-
vidual peer isinefficient.

25 Structureand Participants

The structure of the participantsin the Acceptor and Con-
nector patternsisillustrated by the Booch class diagram [9]
in Figure 2 and Figure 3, respectively.! The two partic-
ipants (React or and Servi ce Handl er) common to
each pattern are described first, followed by participantsthat
are uniqueto the Acceptor and Connector patterns:

o Reactor: For the Acceptor pattern, theReact or demul-
ti plexes connecti on requestsrecei ved on one or more commu-
ni cation endpointsto the appropriate Accept or (described

1In these diagrams dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; a solid undirected edge with a hollow
circle at one end indicates a uses relation between two classes.

//—\\.— ~T
o Service \
 Handler /
|

M o v 1
o Service Handler!|
_________ =l

~ Acceptor

| peer_stream | 7 peer_acceptor)

\ \Open(E e ACTIVATES _ accept() N
SERVICE- /
DEPENDENT T T =
SERVICE- \1 Reactor \/
INDEPENDENT ‘< _ _ _ _— 2
. J

Figure 2: Structure of Participantsin the Acceptor Pattern

s a
//gx_i__\\
- ervice T 1
(/ ~—~JService Handler|
\, _Handler ¢ (AR s
e —— -~ Connector
peer_stream_ (—_—
\ open() — b connect(sh, addr) /\
S_——-"n ACTIVATES 1 l\ complete() -
J

~

SERVICE- //D

DEPENDENT HANDLE ASYNC
CONNECTION COMPLETION

=< o=
- \
- (
SERVICE v Reactor
INDEPENDENT (o ——
N~

—_———

Figure 3: Structure of Participantsin the Connector Pattern

below). The React or alowsmultiple Accept or s tolis-
ten for connections from different peers efficiently within
a single thread of control. For the Connector pattern, the
React or handles the completion of connections that were
initialized asynchronoudly. The React or alows multiple
Servi ce Handl ers to have their connections initiated
and completed asynchronously by aConnect or configured
within asinglethread of control.

e Service Handler: This class defines a generic interface
for a service. The Servi ce Handl er contains a com-
munication endpoint (peer _st r eam.) that encapsulates an
I/0O handle (also known as an “1/O descriptor”). This end-
pointisinitialized by the Accept or and Connect or and
is subsequently used by the Servi ce Handl er to ex-
change data with its connected peer. The Accept or and
Connect or activate a Servi ce Handl er by cdling
its open hook when a connection is established. Once a
Servi ce Handl er iscompletely initialized (by either an
Accept or oraConnect or), it typically does not interact
withitsinitializer.

Thefollowing participant isuniqueto the Acceptor pattern:

o Acceptor: This class implements the strategy for pas-
sively initializinga Ser vi ce Handl er , which communi-

cc : sh:

a : reactor :
Acceptor Service

Server
Reactor

I-‘Iandler

iopen() i |
" I I

| I
register_handler(acc) ‘il

T 'l

I get handle()

INITIALIZE PASSIVE
ENDPOINT

REGISTER HANDLER

EXTRACT HANDLE

| -

| |
START EVENT LOOP | handle_events() -]

|

|

|

ENDPOINT
INITIALIZATION
PHASE

| select() jV

l handle_event()

FOREACH EVENT DO

CONNECTION EVENT .
sh =make_service_handler()

accept_service_handler (sh)
activate_service_handler (sh)

egister_handler(sh

CREATE, ACCEPT,
AND ACTIVATE OBJECT

REGISTER HANDLER
FOR CLIENT 1/O

SERVICE
PHASE

} get_handle()
|

|

|

|

1

| handle_event()
|

|

| ; service()
|

I

I

|

|

EXTRACT HANDLE
DATA EVENT

PROCESS MSG ‘
I handle close()

andle close() |
! handle_close()

PHASE

CLIENT SHUTDOWN

PROCESSING INITIALIZATION

SERVICE

SERVER SHUTDOWN

Figure4: CollaborationsAmong Participantsin the Acceptor
Pattern

cates with the peer that actively initiated the connection.
The React or cals back to the Accept or’s accept
method when a connection arrives on the passive-mode
peer _accept or _ endpoint. The accept method uses
this passive-mode endpoint to accept connections into the
Servi ce Handl er’s peer _stream and then activate
aServi ce Handl er by calingitsopen hook.

The following participant is unique to the Connector pat-
tern:

e Connector: This class connects and activates a
Servi ce Handl er. The connect method of a
Connect or implementsthestrategy for actively initializing
aServi ce Handl er, which communicates with the peer
that passively acceptstheconnection. TheConnect or acti-
vatesaconnected Ser vi ce Handl er by calingitsopen
method when initidization is complete. The conpl et e
method finishes activating Ser vi ce Handl er s whose
connectionswereinitiated and completed asynchronously. In
this case, the React or calls back the conpl et e method
automatically when an asynchronous connection is estab-
lished.

2.6 Collaborations

The following section describes the collaborations be-
tween participantsin the Acceptor and Connector patterns.

2.6.1 Acceptor Collaborations

Figure 4 illustrates the collaboration between participantsin
the Acceptor pattern. These collaborations are divided into
three phases:

1. Endpointinitializationphase: which crestesapassive-
mode endpoint that is bound to a network address (such as

()
Client col sh: reactor :
Connector Service_Handler Reactor
)
z. ; | | |
S FOREACH CONNECTION ! ! |
g : E INITIATE CONNECTION connect(sh, addr) } }
E E = INSERT IN REACTOR ;reglsterfhandler(conL}
S < [[!
} } handle_events() |
> START EVENT LOOP i i >
< E FOREACH EVENT DO } } } SeleCt() j
SR I thandle_events()
SN2 CONNECTION COMPLETE | - T =
%S E | . complete()
% E ~ ACTIVATE OBJECT } open() !
> | register_handler(sh
<] INSERT IN REACTOR | | =
} } } get_handle()
o EXTRACT HANDLE | | [
zZ | | |
g # 8 I I I
NE] | | handle_event()
= a 5 DATA ARRIVES | | =
| |
S} E & PROCESS DATA | I sve()
L™ | | |
| | |
| J

Figure5: Collaborations Among the Connector Pettern Par-
ticipants for Asynchronous Initialization

an | P address and port number). The passive-mode endpoint
listensfor connection requests from peers.

2. Service initialization phase: which activates the
Servi ce Handl er associated with the passive-mode
endpoint. When a connection arrives, the React or cals
back tothe Accept or 'saccept method. Thismethod per-
forms the strategy for initializing a Ser vi ce Handl er.
The Accept or's strategy assembles the resources neces-
sary to (1) create anew Concr et e Servi ce Handl er
object, (2) accept the connection into thisobject, and (3) ac-
tivate the Ser vi ce Handl er by calling its open hook.
Theopen hook of the Ser vi ce Handl er then performs
service-specific initialization (such as alocating locks, open-
ing logfiles, etc.).

3. Service processing phase: Once the connection has
been established passively and the service has been initial-
ized, service processing begins. In this phase, application-
specific tasks process the data exchanged between the
Servi ce Handl er and itsconnected Peer .

2.6.2 Connector Collaborations

The collaborations among participants in the Connector
pattern are divided into three phases:

1. Connection initiation phase: which actively connects
one or more Ser vi ce Handl er s with their peers. Con-
nections can be initiated synchronously or asynchronously.
TheConnect or 'sconnect method implementsthe strat-
egy for actively establishing connections.

2. Service initialization phase: which activates the
Servi ce Handl er by caling its open hook when the
connection compl etes successfully. The open hook of the
Servi ce Handl er then performs service-specificinitia-
ization.

~N

CONNECTION INITIATION/

Client con : sh:
1Nt Connector Service Handler

L | I
|

reactor :
Reactor

FOREACH CONNECTION

INITIATE CONNECTION
ACTIVATE OBJECT
INSERT IN REACTOR

register_handler(sh
|

get_handle()

SEVICE INITIALIZATION
PHASE

EXTRACT HANDLE

handle_events()

select() SV

handle_event()
; sve()

START EVENT LOOP

|
|
|
|
T
|
FOREACH EVENT DO }

DATA ARRIVES

SERVICE
PROCESSING
PHASE

PROCESS DATA

-

Figure 6: Collaborations Among the Connector Pattern Par-
ticipantsfor Synchronous I nitidization

3. Service processing phase once the Service
Handl er isactivated, it performs the application-specific
service processing using the data exchanged with its con-
nected Peer .

Figure 5 illustrates these three phases of collaboration us-
ing asynchronous service initiaization. Note how the con-
nection initiation phase is temporally separated from the ser-
vice initidization phase. This enables multiple connection
initiationsand compl etionsto proceed in parallel withineach
thread of control.

The collaboration for synchronous serviceinitializationis
shown in Figure 6. In thiscase, the Connect or combines
the connectioninitiationand serviceinitializationphasesinto
a single blocking operation. Note, however, that only one
connection is established per-thread for each invocation of
connect .

In general, synchronous service initidization is useful for
the following situations:

o If thelatency for establishing a connection isvery low
(e.g., establishingaconnection withaserver onthesame
host viathe loopback device); or

o |f multiplethreads of control are availableand it isfea
sibleto use adifferent thread to connect each Ser vi ce
Handl er synchronously; or

o If the services must be initialized in a fixed order and
clients cannot perform useful work until aconnectionis
established.

In contrast, asynchronous service initidization is useful for
the following situations:

o If the connection latency is high and there are many
peersto connect with (e.g., establishing alarge number
of connections over a high-latency WAN); or

o |f only asinglethread of control isavailable (e.g., if the
OSplatform doesnot provide application-level threads);
or

o Iftheorderinwhichservicesareinitializedisnot impor-
tant and if the client application must perform additional
work (such asrefreshing aGUI) whilethe connectionis
in the process of being established.

2.7 Consequences
2.7.1 Bensfits

The Acceptor and Connector patterns provide the following
benefits:

e Enhances the reusability, portability, and extensi-
bility of connection-oriented software by decoupling
mechanisms for passively initializing services from the
tasks performed by the services. For instance, the
application-independent mechanisms inthe Accept or and
Connect or are reusable components that know how to
(1) establish connections passively and (2) initidize the as-
sociated Ser vi ce Handl er. In contrast, the Ser vi ce
Handl er knows how to perform application-specific ser-
vice processing.

This separation of concerns is achieved by decoupling
theinitialization strategy from the service handling strategy.
Thus, each strategy can evolve independently. The strategy
for activeinitialization can bewritten once, placed into aclass
library or framework, and reused viainheritance, object com-
position, or template instantiation. Thus, the same passive
initialization code need not be rewritten for each application.
Services, in contrast, may vary according to different appli-
cation requirements. By parameterizing the Accept or and
Connect or with a Servi ce Handl er, the impact of
thisvariationislocalized to a single point in the software.

e Improves application robustness: Application robust-
ness is improved by strongly decoupling the Servi ce
Handl er from the Accept or. This decoupling ensures
that the passive-mode peer _accept or _ cannot acciden-
tally be used to read or writedata. Thiseliminatesacommon
classof errorsthat can arise when programming with weakly
typed network programming interfaces such as sockets or
TLI[8].

o Efficiently utilize the inherent parallelism in the net-
work and hosts: By using the asynchronous mechanisms
shown in Figure 5, the Connector pattern can actively estab-
lish connectionswith alarge number of peers efficiently over
long-latency WANSs. Thisis an important property since a
large distributed system may have severa hundred Peer s
connectedtoasingleGat eway. Oneway to connect all these
Peer s to the Gat eway is to use the synchronous mecha-
nisms shown in Figure 6. However, the round trip delay
for a 3-way TCP connection handshake over along-latency
WAN (such as a geosynchronous satellite or trans-atlantic
fiber cable) may take several seconds per handshake. In this
case, synchronous connection mechanisms cause unneces-
sary delays since the inherent parallelism of the network and
computers is underutilized.

2.7.2 Drawbacks

The Acceptor and Connector patterns have the following
drawbacks:

¢ Additional indirection: Boththe Acceptor and Connec-
tor patternsmay requireadditional indirectioncompared with
using the underlying network programming interfaces di-
rectly. However, languages that support parameterized types
(such as C++, Ada, or Eiffel), can often implement these pat-
ternswith no significant overhead since compilers can inline
the method calls used to implement these patterns.

o Additional complexity: This pattern may add unneces-
sary complexity for simple client applications that connect
with a single server and perform a single service using a
single network programming interface.

2.8 Implementation

This section describes how to implement the Acceptor and
Connector patterns in C++. The implementation described
bel ow is based on reusable components provided in the ACE
OO network programming toolkit [4].

Figure 7 divides participants in the Acceptor and Con-
nector patterns into the Reactive, Connection, and Appli-
cation layers? The Reactive and Connection layers per-
form generic, appli cation-independent strategiesfor handling
events and initializing services, respectively. The Applice-
tion layer instantiates these generic strategies by providing
concrete templ ate classes that establish connections and per-
form service processing. This separation of concerns in-
creases the reusability, portability, and extensibility in this
implementation of the Acceptor and Connector patterns.

The implementations of the Acceptor and Connector pat-
terns are structured very similarly. The Resctive layer is
identical in both, and the roles of the Ser vi ce Handl er
and Concrete Service Handl er ae adso similar.
Moreover, the Accept or and Concrete Acceptor
play roles equivalent to the Connect or and Concr et e
Connect or classes. The primary difference between the
two patternsisthat in the Acceptor pattern these two classes
play apassive role in establishing a connection. In contrast,
in the Connector pattern they play an activerole.

28.1 Reactivelayer

The Reactive layer isresponsiblefor handling events that oc-
cur on endpoints of communication represented by 1/0 han-
dles (aso known as “descriptors’). The two participantsin
thislayer, theReact or and Event Handl er, arereused
from the Reactor pattern [1]. This pattern encapsulates OS
event demultiplexing system calls (such as sel ect, pol |

2This diagram illustrates additional Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.

[10], and Wi t For Mul ti pl eObj ect s [11]) with an ex-
tensible and portable callback-driven object-oriented inter-
face. The Reactor pattern enables efficient demultiplexing of
multipletypesof eventsfrom multiplesourceswithinasingle
thread of control. Theimplementation of the Reactor pattern
isdescribed in [1]. The two main rolesin the Reactive layer
are summarized bel ow:

e Reactor: This class defines an interface for register-
ing, removing, and dispatching Event Handl er objects
(such as the Accept or, Connector, and Service
Handl er). Animplementation of the React or interface
provides a set of application-independent mechanisms that
perform event demultiplexing and dispatching of application-
specific Event Handl er s inresponse to events.

o Event Handler: Thisclass specifies an interface that the
React or usesto dispatch callback methods defined by ob-
jects that are pre-registered to handle events. These events
signify conditions such as a new connection request, a com-
pletion of aconnection request started asynchronously, or the
arrival of datafrom a connected peer.

2.8.2 Connection Layer

The Connection layer is responsible for (1) creating a
Servi ce Handl er, (2) passively or actively connecting
itwith apeer, and (3) activatingit onceitis connected. Since
all behavior in thislayer is completely generic, these classes
delegate to the concrete IPC mechanism and Concr et e
Servi ce Handl er ingtantiated by the Application layer
(described below). Likewise, the Connection layer delegates
totheReact or to handleinitialization-related events (such
as establishing connections asynchronously without requir-
ingmulti-threading). Thethreeprimary roles(i.e., Ser vi ce
Handl er, Accept or, and Connect or) in the Connec-
tion layer are described bel ow.

e Service Handler: This abstract class provides a generic
interface for processing services. Applications must cus-
tomize this class to perform a particular type of service.
The middle part of Figure 7 illustrates the interface of
the Ser vi ce Handl er. The interface of the Ser vi ce
Handl er isshown below:

/1l PEER_STREAM is the type of the

/1 Concrete | PC mechani sm

tenpl ate <cl ass PEER_STREAM>

class Service_Handl er : public Event_Handl er

{

public:
/1 Pure virtual nethod (defined by a subclass).
virtual int open (void) = 0;

/'l Conversion operator needed by
/'l Acceptor and Connector.
operator PEER _STREAM &() { return peer_stream; }

protected:
/1 Concrete | PC nechani sminstance.
PEER _STREAM peer _stream ;

CONNECTOR SERVICE HANDLER ACCEPTOR
ROLE ROLE ROLE
z =~ Concrete_Service_Handler
(@} (= Concrete_Service_Handler _’n /,1\‘ SOCK. Acceptor
E -4 - ,1 SOCK_Connector // Concrete \\ r\/ c _/
S E \ Concrete / { Service) oncrete /
=~ [Connector ’ _ Handler / { Acceipt/or P
Z ST TN ‘\”‘\\\/ -3
\ \ \
\ \ 777777777
s i sﬁ&cﬁ:ﬁﬂg; o, 4 SERVICE HANDLER}
{ W }PEER CONNECTOR } % W WA LP EE% ﬁCEEfE)E ‘
77777777 < “ cceptor N
AV Connector ., N, ¥ —————— T Acceptor N

/ —_ \ - «‘LPEER STREAM

| make_service handler()

z ~ Servies TErmY
S, \|oomecwnihmdig] Serviee T | accept. servics_handler()
5 = /)Ocomplete() g , Handler \\ / | activate_service_handler() /
2% [- ! / | open() 7
E 5 \KST]Ee_CtESh adir)-o, l\ opin‘() W | \\Qaccept() /,_///

8 | S—— ~- - _</:\\\//

\
I 1: connect_service_handler S
.

| (sh, addr); sh = make_service_handler();

accept_service_handler (sh);
activate_service_handler (sh);

2. activate_service_handler
(sh);

™~ -
[T~ =

e —— =

=
> P \ — \
: = ! EVent \ Reactor !
%: \ Handler | 1y -7
\ —_
gq) n N~ —
\ A
\’/"_/'__'
| J/

Figure 7: Layering and Partitioning of Participantsin the Acceptor and Connector Patterns

The open hook of a Servi ce Handl er iscaled by SYNC, // Initiate connection synchronously.
the Accept or or Connect or once aconnection is estab- }_ASYNC /1 Initiate connection asynchronously.
lished. The behavior of this pure virtua method must be '
defined by a subclass, which typically performs any service- Il Initialization method.

e i e . Connector (void);

specific initiaizations.

Servi ce Handl er subclasses can aso define the ser- /1 Actively connecting and activate a service.

i~ i int connect (SERVICE_HANDLER *sh,
vice's concurrency strategy. For example, a Servi ce const PEER CONNECTOR : PEER ADDR 8addr
Handl er may inherit fromtheEvent Handl er and em- Connect _Mbde node);

ploy the Reactor [1] pattern to process data from peers

; ; . protected:

In-a smgle-threed of ContrOI_' anversely, a Service /1 Defines the active connection strategy.
Handl er might use the Active Object pattern [2] to pro- virtual int connect_service_handl er

cess incoming data in a different thread of control than the (R N o . PEER ADDR gaddr
one the Accept or object used to connect it. Section 2.9 Connect _Mbde node); - ‘

illustrates how several different concurrency strategies can /) Redister the SERVICE HANDLER that it
- . . . egl ster e - SO at | can
be configured flexibly without affecting the structure or be- /1 be activated when the connection conpl et es.

havior of the Acceptor or Connector patterns. int register_handl er (SERVI CE_HANDLER *sh,
) . . Connect _Mobde node);
e Connector: This abstract class implements the generic

: S s s ot ; /1 Defines the handl er’s concurrency strategy.
strategy for act|velly |n|t|al!2|ng commun|.cat|on services. virtual int activate service handl er
The left part of Figure 7 illustrates the interface of the (SERVI CE_HANDLER *sh)

Connector. The key methods and objects in the

Acti a SERVI CE_HANDLER whose
Connect or are shown below: I Activate —

/1 non-bl ocki ng connection conpl et ed.
virtual int conplete (HANDLE handl e);
/1 The SERVI CE_HANDLER is the type of service.

/1 The PEER _CONNECTOR is the type of concrete private:
/1 1 PC active connection nechani sm /1 1 PC nechani smthat establishes
tenpl ate <cl ass SERVI CE_HANDLER, /] connections actively.

cl ass PEER_CONNECTOR> PEER_CONNECTOR connect or _;

cl ass Connector : public Event_Handl er
/1 Collection that maps HANDLEs

{
public: /1 to SERVI CE_HANDLER *s
enum Connect _Mode {

Map_Manager <HANDLE, SERVI CE_HANDLER *>
handl er _map_;

/1 Inherited fromthe Event_Handler -- will be

/1 called back by Eactor when events conplete

/1 asynchronously.

virtual int handl e_event (HANDLE, EVENT_TYPE);
H

/1 Useful "short-hand" nacros used bel ow.
#defi ne SH SERVI CE_HANDLER
#defi ne PC PEER_CONNECTI ON

The Connect or is parameterized by a particular type of
PEER CONNECTORand SERVI CE HANDLER. The PEER
CONNECTOR provides the transport mechanism used by
the Connect or to actively establish the connection syn-
chronoudly or asynchronously. The SERVI CE HANDLER
provides the service that processes data exchanged with its
connected peer. Parameterized types are used to decouple
the connection establishment strategy from the type of ser-
vice handler, network programming interface, and transport
layer connection acceptance protocol.

The use of parameterized typesis an implementation de-
cision that hel psimprove portability by alowing the whole-
sale replacement of the mechanisms used by the Connec-
tor. This makes the connection establishment code portable
across platformsthat contain different network programming
interfaces (such as sockets but not TLI, or vice versa). For
example, the PEER CONNECTOR template argument can
be instantiated with either a SOCK Connect or or a TLI
Connect or, depending on whether the platform supports
socketsor TLI.

An even more dynamic type of decoupling could be
achieved viainheritanceand polymorphismby using the Fac-
tory Method and Strategy patterns described in [7]. Param-
eterized types improve run-time efficiency at the expense of
additional space and time overhead during program compil-
ing and linking.

The implementation of the Connect or’s connect
method is outlined in Figure 7.2 The connect method
is public entry point for aConnect or , as shown below.

tenpl ate <class SH, class PCs int
Connect or <SH, PC>:: connect
(SERVI CE_HANDLER *servi ce_handl er,
const PEER_CONNECTOR : PEER_ADDR &addr,
Connect _Mbde npde)
{

connect _servi ce_handl er (service_handl er,
addr, node);

This method provides the external entry point into
the Connector factory. It uses the Bridge pattern®
to delegate to the Connect or’s connection strategy,
connect _servi ce_handl er, which initiates a connec-
tion:

3To save space, most of the error handlingin this paper has been omitted.
4The use of the Bridge pattern allows subclasses of Connect or to
transparently modify the connectionstrategy, without changingtheinterface.

~

sh:

2 z Client con : : SOCK Service : Reactor
z Connector Connector
< Handler
SIS L ! | | !
E § FOREACH CONNECTION connect(sh, addr, SYNC) | I

) . |
s # 8 INITIATE CONNECTION . connect_service_handler(sh, addr)
; [l SYNC CONNECT connect() | | |
Z S e o |
E z & ACTIVATE OBJECT actlvatei?erwceihandler(sh) }

|
S open() | | !

N] . |
E % INSERT IN REACTOR register_handler(sh) }
8 “ EXTRACT HANDLE getﬁhandle() }
START EVENT LOOP handle_events()

select() |

handle_event()
- service()

FOREACH EVENT DO

DATA ARRIVES

SERVICE
PROCESSING
PHASE

|
|
|
|
|
f
|
|
|
|
|
|
PROCESS DATA |
|

Figure 8: Collaborations Among the Connector Participants
for Synchronous I nitidization

tenpl ate <class SH, class PC> int
Connect or <SH, PC>::connect_servi ce_handl er
(SERVI CE_HANDLER *servi ce_handl er,
const PEER CONNECTOR: : PEER_ADDR &r enot e_addr,
Connect _Mbde npde)

/1 Delegate to concrete PEER_CONNECTOR
/1 to establish the connection.

if (connector_.connect (*service_handler,
renot e_addr,
node) == -1) {
if (mode == ASYNC && errno == EWOULDBLOCK)
/1 1f the connection hasn't conpleted and
/1 we are using non-bl ocking semantics then
/'l register ourselves with the Reactor
/1 Singleton so that it will callback when
/1 the connection is conplete.
Reactor::instance ()->register_handl er
(this, WRI TE_MASK);

/1 Store the SERVI CE_HANDLER in the nmap of
/1 pending connections.
handl er _map_. bi nd
(connector_.get_handl e (), service_handler);

}

else if (nmobde == SYNC)
/1 Activate if we connect synchronously.
activate_servi ce_handl er (service_handler);

}

If the value of the Connect _Mbde parameter is SYNC the
SERVI CE HANDLERwill be activated after the connection
completes synchronoudly, asillustrated in Figure 8.

To connect with multiple Peers efficiently, the
Connect or must be able to actively establish connections
asynchronously, i.e., without blocking the caller. Asyn-
chronous behavior is specified by passing the ASYNC con-
nection mode to Connect or : : connect , asillustrated in
Figure9.

Once instantiated, the PEER CONNECTOCR class pro-
vides the concrete IPC mechanism for initiating connec-
tions asynchronoudy. The implementation of the Con-
nector pattern shown here uses asynchronous 1/0O mecha
nisms provided by the operating system and communication
protocol stack (e.g., by setting sockets into non-blocking

sh:

con : :SOCK .
Service

Connector Connector
. . | Handler '
: : I
connect(sh, addr, ASYNC) } I

Client

FOREACH CONNECTION

INITIATE CONNECTION

ASYNC CONNECT connect() ! |
et ¥/ .
‘ } register_handler(con) |

INSERT IN REACTOR |

CONNECTION
INITIATION
PHASE

Ihandle_events()

} select() |

} handle_event()

|
o
il

START EVENT LOOP

FOREACH EVENT DO

- ———

CONNECTION COMPLETE

|
|
|
|
|
|
|
—
T — activate_service_handler(sh)

ACTIVATE OBJECT open() ‘

register_handler(sh

getﬁhandle()

SERVICE
INITIALIZATION
PHASE

INSERT IN REACTOR

|
EXTRACT HANDLE }
|
|

handle_event()
; service()

DATA ARRIVES

PROCESS DATA

SERVICE
PROCESSING
PHASE

g

r

~

: Reactor

' |
" connect_service_handler(sh, add‘r)
|

Figure 9: Collaborations Among the Connector Participants
for Asynchronous Initiaization

mode and using an event demultiplexer like sel ect or
Wi t For Mul ti pl eQbj ect s to determine when the 1/0O
completes).

The Connector mantains a map of Service
Handl er s whose asynchronous connections are pending
completion. Since the Connect or inherits from Event
Handl er , theReact or can automatically call back to the
Connect or’ s handl e_event method when a connec-
tion completes.

The handl e_.event method is an Adapter that trans
forms the React or 's event handling interface to a call to
the Connector pattern'sconpl et e method, which activates
by SERVI CE HANDLER by invoking its open hook. The
open hook is called when a connection is established suc-
cessfully, regardless of whether connections are established
synchronously or asynchronously. Thisuniformity of behav-
ior makes it possible to write services whose behavior can
be decoupled from the manner by which they are actively
connected and initialized.

The Connect or’ s handl e_.event method is shown
bel ow:

tenpl ate <class SH, class PCs int
Connect or <SH, PC>:: handl e_event (HANDLE handl e,
EVENT_TYPE type)

/1 Adapt the Reactor’s event handling APl to

/1 the Connector’s API.
conpl ete (handl e);
}

The conpl ete method then activates a SERVI CE
HANDL ER whose non-blocking connection just completed
successfully:

tenpl ate <class SH, class PCs int
Connect or <SH, PC>::conpl ete (HANDLE handl e)

SERVI CE_HANDLER *servi ce_handl er = 0;

/'l Locate the SERVI CE_HANDLER correspondi ng
/1 to the HANDLE.

handl er _map_.find (handl e, service_handler);
/1 Transfer 1/0O handl e to SERVI CE_HANDLER *.
servi ce_handl er->set _handl e (handl e);

/! Rermove handl e from Reactor.
Reactor::instance ()->renove_handl er
(handl e, WRI TE_MASK) ;

/1 Renove handl e fromthe map.
handl er _map_. unbi nd (handl e);

/1 Connection is conplete, so activate handl er.
activate_service_handl er (service_handler);

}

The conpl et e method finds and removes the connected
SERVI CE HANDLER from its internal map, transfers the
[/OHANDLEtothe SERVI CE HANDLER, andinitiaizesthe
service by calling acti vat e_servi ce_handl er. This
method del egates to the concurrency strategy designated by
the SERVI CE HANDLER: : open hook, as follows:

tenpl ate <class SH, class PC> int
Connect or<SH, PC>::activate_service_handl er
(SERVI CE_HANDLER *ser vi ce_handl er)

servi ce_handl er->open ();

e Acceptor: This abstract class implements the generic
strategy for passively initializing communication services.
Theright-hand part of Figure 7 illustratesthe interface of the
Accept or . Thekey methodsand objectsinthe Accept or
are shown below:

/1 The SERVI CE_HANDLER is the type of service.
/1 The PEER _ACCEPTOR is the type of concrete
/1 1 PC passive connection nmechani sm
tenpl ate <cl ass SERVI CE_HANDLER,

cl ass PEER_ACCEPTOR>
cl ass Acceptor publ i c Event _Handl er

publi c:

/1 Initialize |local _addr |istener endpoint

/1 and register with Reactor Singleton.

virtual int open

(const PEER _ACCEPTOR : PEER_ADDR &l ocal _addr);

/] Factory that creates, connects, and
/] activates SERVI CE_HANDLER' s.
virtual int accept (void);

protected:
/1 Defines the handler’s creation strategy.
virtual SERVI CE_HANDLER *
make_servi ce_handl er (void);

/1 Defines the handler’s connection strategy.
virtual int accept_service_handl er
(SERVI CE_HANDLER *) ;

/1 Defines the handler’s concurrency strategy.
virtual int activate_service_handler
(SERVI CE_HANDLER *) ;

/1 Denul tiplexing hooks inherited from

/1 Event _Handl er -- used by Reactor for call backs.
virtual HANDLE get_handl e (void) const;

virtual int handle_close (void);

/1 I nvoked when connection requests arrive.
virtual int handl e_event (HANDLE, EVENT_TYPE);

private:
/1 | PC mechani smthat establishes
/] connections passively.
PEER_ACCEPTOR peer _acceptor_;

h

/1 Useful "short-hand" nacros used bel ow.
#defi ne SH SERVI CE_HANDLER
#defi ne PA PEER_ACCEPTOR

The Accept or is parameterized by a particular type of
PEER ACCEPTOR and SERVI CE HANDLER. The PEER
ACCEPTOR provides the transport mechanism used by the
Accept or to passively establish the connection. The
SERVI CE HANDLER provides the service that processes
data exchanged with its connected peer. Parameterized types
are used to decouple the connection establishment strategy
from the type of service handler, network programming in-
terface, and transport layer connection initiation protocol.

Aswith the Connect or , the use of parameterized types
hel psimprove portability by allowing the wholesale replace-
ment of the mechanisms used by the Acceptor. This makes
the connection establishment code portable across platforms
that contain different network programming interfaces (such
assocketsbut not TLI, or viceversa). For example, the PEER
ACCEPTOR template argument can be instantiated with ei-
theraSOCK Accept or oraTLl Accept or, depending
on whether the platform supports socketsor TLI. Theimple-
mentation of the Accept or 'smethods is presented bel ow.

Applications use the open hook to initidize an
Accept or . Thismethod isimplemented as follows:

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::open
(const PEER_ACCEPTOR: : PEER _ADDR &l ocal _addr)

{
/1 Forward initialization to the PEER ACCEPTOR

peer _acceptor _. open (local _addr);

/! Register with Reactor.
Reactor: :instance ()->register_handl er
(this, READ MASK);
}

Theopen hook ispassed thel ocal _addr network address
used to listen for connections. It forwardsthisaddressto the
passive connection acceptance mechanism defined by the
PEER ACCEPTOR. This mechanism initializes the listener
endpoint, which advertisesits " service access point” (e.g., IP
address and port number) to clients interested in connecting
with the Accept or . The behavior of the listener endpoint
is determined by the type of PEER ACCEPTOR instantiated
by auser. For instance, it can be a C++ wrapper for sockets
[10], TLI [6], STREAM pipes[12], Win32 Named Pipes, etc.

After the listener endpoint has been initidized, the
open method registersitself with the React or Singleton.
The React or performs a “double dispatch” back to the
Accept or 'sget _handl e method to obtain the underly-
ing HANDLE, as follows:

10

tenpl ate <class SH, class PA> HANDLE
Accept or <SH, PA>::get_handl e (void)
{

return peer_acceptor_.get_handle ();

The React or stores this HANDLE internally and uses
it to detect and demultiplex incoming connection from
clients. Since the Accept or class inherits from Event
Handl er ,theReact or can automatically call back to the
Accept or’ s handl e_event method when a connection
arrives from a peer. This method is an Adapter that trans-
forms the React or 's event handling interface to a call to
the Accept or 'saccept method, as follows:

tenpl ate <class SH, class PA> int
Accept or<SH, PA>::handl e_event (HANDLE,
EVENT_TYPE)

/1 Adapt the Reactor’s event handling APl to
/1 the Acceptor’s API.
accept ();

As shown below, the accept method is a Template
Method [7] that implements the Acceptor pattern’s pas
sive initialization strategy for creating a new SERVI CE
HANDL ER, accepting a connection into it, and activating the
service:

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::accept (void)

/] Create a new SERVI CE_HANDLER.
SH *servi ce_handl er = nake_service_handler ();

/1 Accept connection fromclient.
accept _servi ce_handl er (service_handler);

/1 Activate SERVI CE_HANDLER by cal ling

/1 its open() hook.

activate_service_handl er (service_handler);
}

This method is very concise since it factors al low-level
details into the concrete SERVI CE HANDLER and PEER
ACCEPTORInstantiated via parameterized types. Moreover,
all of its behavior is performed by virtual functions, which
alow subclasses to extend any or al of the Accept or’s
strategies. Thisflexibility makesit possibleto write services
whose behavior can be decoupled from the manner by which
they are passively connected and initialized.

TheAccept or’ s default strategy for creating SERVI CE
HANDLERS is defined by the make_ser vi ce_handl er
method:

tenpl ate <class SH, class PA> SH *
Accept or <SH, PA>:: make_servi ce_handl er (void)

{
}

return new SH;

The default behavior uses a “demand strategy,” which cre-
atesanew SERVI CE HANDLER for every new connection.
However, subclasses of Accept or can override this strat-
egy to create SERVI CE HANDLERS using other strategies

(such as creating an individua Singleton [7] or dynamically
linking the SERVI CE HANDLER from a shared library).

The SERVI CE HANDLER connection acceptance strat-
egy used by the Acceptor is defined below by the
accept servi ce_handl er method:

tenpl ate <class SH, class PA> int

Accept or <SH, PA>::accept_service_handl er
(SH *handl er)

{

peer _acceptor_->accept_ (*handl er);

}

The default behavior delegates to the accept method pro-
vided by thePEER ACCEPTOR. Subclasses can overridethe
accept _servi ce_handl er method to perform more so-
phisticated behavior (such as authenticating the identity of
the client to determine whether to accept or reject the con-
nection).

The Acceptor’s SERVI CE HANDLER concurrency
strategy isdefined by theact i vat e_ser vi ce_handl er
method:

tenpl ate <class SH, class PA> int
Accept or<SH, PA>::activate_service_handl er
(SH *handl er)

handl er - >open ();

The default behavior of this method is to activate the
SERVI CE HANDLER by calling its open hook. This d-
lows the SERVI CE HANDLER to select its own concur-
rency strategy. For instance, if the SERVI CE HANDLER
inherits from Event Handl er it can register with the
React or. This alows the React or to dispatch the
SERVI CE HANDLER' s handl e_event method when
events occur on its PEER STREAM endpoint of commu-
nication. Subclasses can override this strategy to do more
sophisticated concurrency activations (such as making the
SERVI CE HANDLER an “active object” [2] that processes
data using multi-threading or multi-processing).

Whenan Accept or terminates, either dueto errorsor due
to the entire application shutting down, the React or calls
the Accept or 'shandl e_cl ose method, which enables
it to release any dynamically acquired resources. In this
case, the handl e_cl ose method simply closes the PEER
ACCEPTOR'slistener endpoint, as follows:

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::handl e_cl ose (void)

{

return peer_acceptor_.close ();

}

2.8.3 Application Layer

TheApplication Layer isresponsiblefor supplying aconcrete
i nterprocess communi cation (1PC) mechanism and aconcrete
Servi ce Handl er. The IPC mechanisms are encapsu-
lated in C++ classesto simplify programming, enhancereuse,
and to enablewhol esal erepl acement of | PC mechanisms. For
example, the SOCK Accept or, SOCK Connect or, and

11

SOCK St r eamclasses used in Section 2.9 are part of the
SOCK SAP C++wrapper library for sockets[8]. SOCK SAP
encapsulates the stream-oriented semantics of connection-
oriented protocolslike TCP and SPX with efficient, portable,
and type-safe C++ wrappers.

Thethreemain rolesin the Applicationlayer are described
bel ow.

e Concrete Service Handler: This class implements
the concrete application-specific service activated by a
Concrete Acceptor or a Concrete Connector.
A Concrete Service Handl er is instantiated with
a specific type of C++ IPC wrapper that exchanges data
with its connected peer. The sample code examples in
Section 2.9 use a SOCK St r eam as the underlying data
transport delivery mechanism. It is easy to vary the
data transfer mechanism, however, by parameterizing the
Concrete Service Handl er with a different PEER
STREAM (such as an SVR4 TLI Stream or a Win32
Naned Pi pe Strean.

e Concrete Connector: Thisclassinstantiates the generic
Connect or factory with concrete parameterized type argu-
ments for SERVI CE HANDLER and PEER CONNECTOR.

e Concrete Acceptor: This class instantiates the generic
Accept or factory with concrete parameterized type argu-
ments for SERVI CE HANDLER and PEER ACCEPTOR.

In the sample code in Section 2.9, SOCK Connect or
and SOCK Accept or are the underlying transport pro-
gramming interfaces used to establish connections ac-
tively and passively, respectively. However, parameteriz-
ing the Connect or and Accept or with different mech-
anisms (such as a TLI Connector or Named Pi pe
Accept or) is straightforward since the |PC mechanisms
are encapsulated in C++ wrapper classes.

The following section illustrates sample code that in-
stantiatesaConcr et e Servi ce Handl er,Concrete
Connect or, and Concrete Accept or to implement
the Peer s and Gat eway described in Section 2.3. This
particular example of the Application layer customizes the
genericinitiaizationstrategies provided by the Connect or
and Accept or components in the Connection layer. Note
how the use of templates and dynamic binding permits spe-
cific details (such as the underlying network programming
interface or the creation strategy) to change flexibly. For
instance, no Connect or components must change when
the concurrency strategy is modified in Section 2.9.1 and
Section 2.9.2.

2.9 SampleCode

The sample code below illustrates how the Peer s and
Gat eway described in Section 2.3 use the Acceptor and
Connector patternsto simplify thetask of passively initializ-
ingservices. ThePeer s play thepassiverolein establishing
connections with the Gat eway, whose connections are ini-
tiated actively by using the Connector pattern. Figure 10

e
SOCK
(Va OC]| Slrezm

Command_Handler
SOCK_Acceptor

« 7
Y Command\ n 1) Command (
I
[\\Handler / ACTIVATES ? Acceptor //\
Z -~ ~——"TN_ ~=
=) 7 sock_ Slrcnm ,\Bulk Data_Handler
22 |
< ATES
S : |} Bl;llk Dlata / Il ACTIVATES Bulk Data ! /,
=~ 1 _Handler / Acceptor P
& o
/

. " "] SOCK _stream

_
o~ Status_Handler
SOCK_Acceptor

1. Status |
\Handler 4? ! ’ h

|
\
|
|
|
|
|
[
[
‘ll
| /
‘.I\StatuS\
|
[
[
[
Lo
|
A\
>

Rgiane ACTIVATES Acceptor) o

/ NI2eS \ r

/ Voo
2 R vy
Sa (o rmmsTEM] Asirce sioier]
E E \ Service (\// }PEER ACCEPTOR |
0% lHandler / g <
SJal—— _ / Acceptor)

—= -

Figure 10: Structure of Acceptor Pattern Participants for
Peer s

illustrates how participantsin the Acceptor pattern are struc-
tured inaPeer and Figure 11 illustrates how participantsin
the Connector pattern are structured inthe Gat eway.

291 Pear Components

e Service Handlers for Communicating with a Gate-
way: The classes shown below, Status Handl er,
Bul k Dat a Handl er, and Conmand Handl er, pro-
cess routing messages sent and received from a Gat eway .
Since these Concr et e Servi ce Handl er classes in-
herit from Ser vi ce Handl er they are capable of being
passively initialized by an Accept or .

To illustrate the flexibility of the Acceptor pattern, each
open routinein the Ser vi ce Handl er s can implement
a different concurrency strategy. In particular, when the
St at us Handl er isactivated it runsin a separate thread;
theBul k Dat a Handl er runsasaseparate process; and
the Command Handl er runs in the same thread as the
React or that demultiplexes connection requests for the
Accept or factories. Note how changes to these concur-
rency strategies do not affect the implementation of the
Accept or, which is generic and thus highly flexible and
reusable.

We start by defining a Ser vi ce Handl er that uses
SOCK St r eamfor socket-based datatransfer:

typedef Service_Handl er <SOCK_Stream> PEER HANDLER;

The PEER HANDLER typedef forms the basis for al the
subsequent service handlers. For instance, the St at us

Handl er class processes status data sent to and received
fromaGat eway:

class Status_Handl er : public PEER HANDLER

{

publi c:
/1 Perforns handl er activation.
virtual int open (void) {

12

-~ C»mmand Router
/
\\ Command' n 1 55 Command (\
\ Router / ACTIVATES Connector Y "
. _Route aanger
r4 |
\ Bulk_Data_Router |
2. | |
|
52 l. }Bulk Data 'n 1 \ Bulk Data 1 I'
S
- ! \. Router / ACTIVATES (Connector M }
& | =t !
l
= | l\ e S Status_Router || !
l. I tatus ! - SOCK_Connector | :
1
| |l Router /A—1lo Status b
| UNCEE) acmvates [Connector ! '| !
Lo P Nty 1 I
‘l ! / \ ! 1|
\ |
g v e | N 1
= [iyl ipuhpinkint |
=17 1 SERVICE, . HANDLER |
Q E \1 Service (\—/ | PEER_CONNECTOR |
B> | gandla.) N =T .
25 Egrgi\ler ! ; Connector
: \ /“”‘V"/
s}
/T —— e~
E o~ -7 Y -
;E Event _TTTTTN
% | Handler ,n 1) Reactor
E‘éq _,,_/#/ N -

r

Figure11: Structureof Connector Pattern Participantsfor the
Gat eway

/1 Make handler run in separate thread (note
/1 that Thread::spawn requires a pointer to
I/l a static nmethod as the thread entry point).

Thr ead:
}

/] Static entry point into thread, which bl ocks

/1 on the handle_event () call in its own thread.

static void *service_run (Status_Handler *this_) {
/1 This nmethod can block since it
/1 runs in its own thread.
whil e (this_->handl e_event ()

conti nue;
}

:spawn (&St atus_Handl er:

:service_run,
this);

1= -1)

/'l Receive and process status data from Gat eway.
virtual int handle_event (void) {
char buf [MAX STATUS DATA]

stream..recv (buf, sizeof buf);
/1

}

11
b

The Bul k Data Handl er and Command Handl er
classes can likewise be defined as subclasses of PEER
HANDL ER. For instance, The following class processes bulk
data sent to and received from the Gat eway .

cl ass Bul k_Data_Handl er : public PEER HANDLER
{
publi c:
/1 Perfornms handl er activation.
virtual int open (void) {
/1 Handler runs in separate process.
if (fork () == 0) // In child process.
/1 This nethod can block since it
/1 runs in its own process.
while (handle_event () != -1)

conti nue;
1.,

}

/'l Receive and process bul k data from Gat eway.
virtual int handl e_event (void) {

char buf [MAX_BULK_DATA ;

stream..recv (buf, sizeof buf);

1.
}

o
b

The following class processes bulk data sent to and received
fromaGat eway:

cl ass Command_Handl er : public PEER _HANDLER

-
publi c:
/1 Perforns handl er activation.
virtual int open (void) {
/1 Handl er runs in same thread as nain
/1 Reactor singleton.
Reactor: :instance ()->register_handl er
(this, READ MASK);
}

/'l Receive and process conmand data from Gat eway.
virtual int handl e_event (void) {
char buf [MAX_COMVAND DATA| ;
/1 This nethod cannot block since it borrows
/1 the thread of control fromthe Reactor.
stream..recv (buf, sizeof buf);
...

}
/...

e Acceptors for creating Peer Service Handlers: The
s_accept or, bd_accept or, and c_accept or objects
shown below are Concrete Acceptor factories that
cregte and activate St at us Handl ers, Bul k Data
Handl er s, and Conrand Handl er s, respectively.

/'l Accept connection requests from Gateway and
/] activate Status_Handl er.
Accept or <St at us_Handl er, SOCK_Acceptor> s_acc;

/'l Accept connection requests from Gateway and
/1 activate Bul k_Data_Handl er.
Accept or <Bul k_Dat a_Handl er, SOCK_Accept or> bd_acc;

/'l Accept connection requests from Gateway and
/1 activate Command_Handl er.
Accept or <Comrand_Handl er, SOCK_Acceptor> c_acc;

e The Peer Main function: The main program initia-
izestheconcrete Accept or factoriesby calingtheiropen
hookswith the well-known portsfor each service. Asshown
in Section 2.8.2, the Accept or : : open method registers
itself with an instance of the React or . The program then
enters an event loop that uses the React or to detect con-
nection requests from the Gat eway. When connections ar-
rive, theReact or callsback totheappropriate Accept or,
which creates the appropriate PEER HANDLER to perform
the service, accepts the connection into the handler, and acti-
vates the handler.

13

Service (
Handler

J : Service|
Handler

Service!
Handler

: Acceptor

ACTIVE

PASSIVE

| _J/

: Service
Handler

Figure 12: Object Diagram for the Acceptor Pattern in the
Peer

/1 Main programfor the Peer.

int main (void)

{

/1 Initialize acceptors with their well-known ports.

s_acc. open (| NET_Addr (STATUS_PORT));
bd_acc. open (I NET_Addr (BULK _DATA PORT));
c_acc. open (I NET_Addr (COWAND_PORT));

/1 Loop forever handling connection request
/1 events and processing data fromthe Gateway.

for (;;)
Reactor::instance ()->handl e_events ();
}

Figure 12 illustrates the relationship between Acceptor pat-
tern objects in the Peer after four connections have been
established. While the various Handl er s exchange data
with the Gat eway, the Accept or s continue to listen for
new connections.

2.9.2 Gateway Components

¢ Service Handlers for Gateway routing: The classes
shown below, St at us Rout er, Bul k Data Rout er,
and Conmmand Rout er, route data they receive from
a source Peer to one or more destination Peers.
Since these Concr et e Servi ce Handl er classes in-
herit from Ser vi ce Handl er they can be actively con-
nected and initialized by aConnect or .

To illustrate the flexibility of the Connector pattern,
each open routinein a Ser vi ce Handl er implements
a different concurrency strategy. In particular, when the
St at us Rout er isactivated it runsin a separate thread;
the Bul k Data Rout er runs as a separate process; and
the Command Rout er runs in the same thread as the
React or that demultiplexes connection completion events
for the Connect or factory. Aswith the Accept or, note
how changes to these concurrency strategies do not affect the
implementation of the Connect or, which is generic and
thus highly flexible and reusable.

We'll start by definingaSer vi ce Handl er that isspe-
cialized for socket-based data transfer:

typedef Service_Handl er <SOCK_Strean> PEER _ROUTER;

This class forms the basis for al the subsequent routing ser-
vices. For instance, the St at us Rout er class routes sta-
tus datafrom/to Peer s:

class Status_Router : public PEER ROUTER
publi c:
/1 Activate router in separate thread.
virtual int open (void) {
/1 Thread::spawn requires a pointer to a
/1 static nmethod as the thread entry point).
Thr ead: : spawn (&St atus_Router::service_run,
this);
}

/] Static entry point into thread, which bl ocks
/1 on the handl e_event() call inits own thread.
static void *service_run (Status_Router *this_) {
/1 This nethod can block since it
/1 runs in its own thread.
whil e (this_->handl e_event ()
conti nue;
}

/! Receive and route status data fromto Peers.
virtual int handl e_event (void) {

char buf [MAX_STATUS_DATA] ;

peer _stream .recv (buf, sizeof buf);

/1 Routing takes place here...

}

11
}s

1= -1)

The Bulk Data Router and Comrand Rout er
classes can likewise be defined as subclasses of PEER
ROUTER. For instance, the Bul k Dat a Rout er routes
bulk data from/to Peer s:

class Bul k_Data_Router :
{
publi c:
/1 Activates router in separate process.
virtual int open (void) {
if (fork () 0) // In child process.
/1 This nethod can block since it

publ i ¢ PEER_ROUTER

/1 runs in its own process.
whil e (handl e_event () != -1)
conti nue;
/1
}

/! Receive and route bulk data fronmto Peers.
virtual int handle_event (void) {

char buf [MAX_BULK_DATA ;

peer _stream .recv (buf, sizeof buf);

/1 Routing takes place here...

}
}s

TheCommand Rout er classroutesCommand datafrom/to
Peers:

cl ass Comuand_Router : public PEER ROUTER
{
publi c:
/1 Activates router in sane thread as Connector.
virtual int open (void) {
Reactor::instance ()->register_handl er
(this, READ MASK);

14

/'l Receive and route command data fronmto Peers.

virtual int handl e_event (void) {
char buf [MAX_COVWAND_DATA ;
/1 This nethod cannot bl ock since it borrows
/1 the thread of control fromthe Reactor.
peer _stream .recv (buf, sizeof buf);
/1 Routing takes place here...

}

s

¢ A Connector for creating Peer Service Handlers: The
followingt ypedef definesaConnect or factory specid-
ized for PEER ROUTERS:

typedef Connect or <PEER ROUTERS, SOCK_Connect or >
PEER_CONNECTOR,

e The Gateway Main function: The main program for
the Gat eway is shown below. The get _peer _addrs
function creates the St at us, Bul k Dat a, and Commrand
Rout er s that route messages through the Gat eway. This
function (whose implementation is not shown) reads alist of
Peer addresses from a configuration file. Each Peer ad-
dress consists of an IP address and a port number. Once the
Rout er s areinitialized, the Connect or factories defined
aboveinitiate all the connections asynchronoudly (indicated
by passing the ASYNC flag to theconnect method).

/1 Main programfor the Gateway.

/] Obtain lists of Status_Routers,
/1 Bul k_Data_Routers, and Command_Rout ers
/1 froma config file.

voi d get_peer_addrs (Set <PEER_ROUTERS> &peers);
int main (void)

/1 Connection factory for PEER _ROUTERS.
PEER_CONNECTOR peer _connector;

/1 A set of PEER _ROUTERs that perform
/1 the Gateway’'s routing services.
Set <PEER_ROUTER> peers;

/] Get set of Peers to connect with.
get _peer_addrs (peers);

/1 lterate through all the Routers and
/] initiate connections asynchronously.
PEER_ROUTER * peer ;

for (Set_Iter<PEER ROUTER> set_iter (peers);
set _iter.next (peer) != 0;
set _iter++)
peer _connect or . connect (peer,
peer - >address (),
PEER_CONNECTOR: : ASYNC) ;
/1 Loop forever handling connection conpletion
/1 events and routing data from Peers.

for (;;)
Reactor::instance ()->handl e_events ();

/* NOTREACHED */

}

All connections are invoked asynchronously. They com-
plete concurrently via Connect or : : conpl et e method,
which are caled back within the React or’s event loop.
The React or aso demultiplexes and dispatches routing

----- : Service
\ _Handler

) : Service
Handler

PENDING
CONNECTIONS

}/: Service
Handler

ACTIVE
HANDLERS

- J

: Connector

: Service
Handler

Figure 13: Object Diagram for the Connector Pattern in the
Gateway

events for Cormand Rout er objects, which run in the
React or's thread of control. The St at us Routers
andBul k Dat a Rout er s executein separatethreadsand
processes, respectively.

Figure13illustratesthe rel ationshi p between objectsinthe
Gat eway after four connectionshavebeen established. Four
other connections that have not yet completed are “owned”
by the Connect or . When all Peer connections are com-
pletely established, theGat eway canrouteandforward mes-
sages sent toit by Peer s.

2.10 Known Uses

The Acceptor and Connector patterns have been used in a
wide range of frameworks, toolkits, and systems:

e UNIX network superservers. such as i netd [10],
i sten[6],andthe Servi ce Confi gurat or dagmon
from the ASX framework [4]. These superservers utilize a
master Acceptor process that listens for connections on a
set of communication ports. Each port is associated with a
communication-related service (such as the standard Inter-
net services ft p, t el net, dayti me, and echo). The
Acceptor pattern decouples the functiondity in the i net d
superserver into two separate parts. onefor establishing con-
nections and another for receiving and processing requests
from peers. When a service request arrives on a monitored
port, the Acceptor process accepts the request and dispatches
an appropriate pre-registered handler to perform the service.
The | i st en superserver aways executes services in a
separate process, thei net d superserver can be configured
to alow both single-threaded and separate processes, and
the Servi ce Confi gurat or supports single-threaded,
multi-threaded, and multi-process execution of services.

e CORBA ORBs. The ORB Core layer in many imple-
mentations of CORBA [13] (such as VisiBroker and Orbix)
use the Acceptor pattern to passively initialize server object
implementations when clients request ORB services.

15

e WWW Browsers: The HTM. parsing components in
WWW browsers like Netscape and I nternet Explorer use the
asynchronousform of the Connector pattern to establish con-
nections with servers associated with images embedded in
HTML pages. This behavior is particularly important so that
multiple HTTP connections can be initiated asynchronously
to avoid blocking the browsers main event loop.

e Ericsson EOS Call Center Management System: this
system uses the Acceptor and Connector patterns to allow
application-level Call Center Manager Event Servers[14] to
actively establish connections with passive Supervisorsin a
distributed center management system.

o Project Spectrum: The high-speed medica imagetrans-
fer subsystem of project Spectrum [15] usesthe A cceptor and
Connector patternsto passively establish connectionsand ini-
tialize application services for storing large medical images.
Once connections are established, applicationsthen send and
receive multi-megabyte medical images to and from these
image stores.

e ACE Framework: Implementations of the React or,
Servi ce Handl er, Connector, and Acceptor
classes described in this paper are provided as reusable com-
ponents in the ACE object-oriented network programming
framework [4].

211 Redated Patterns

The Acceptor and Connector patterns use the Template
Method and Factory Method patterns[7]. The Accept or’s
accept andtheConnect or 'sconnect andconpl et e
functions are Template Methods that implements a generic
service initialization Strategy for connecting with peers and
activating a Ser vi ce Handl er when the connectionsis
established. The use of the Template Method pattern allows
subclasses to modify the specific details of creating, con-
necting, and activating Ser vi ce Handl ers. The Fac-
tory Method pattern is used to decouple the creation of a
Servi ce Handl er from itssubsequent use.

The Connector pattern has an intent similar to the Client-
Dispatcher-Server pattern described in [16]. They both
are concerned with separating active connection establish-
ment from the subsequent service. The primary difference
is that the Connector pattern addresses both synchronous
and asynchronous service initiaization, whereas the Client-
Dispatcher-Server pattern focuses on synchronous connec-
tion establishment.

3 Concluding Remarks

This paper describes the Acceptor and Connector pat-
terns and gives a detailed example illustrating how to
use them. Implementations of the Acceptor, Con-
nector, and Resctor patterns described in this paper
are freey available via the World Wide Web a URL
www. cs. wust | . edu/ “schm dt/ACE. htmi . This

distribution contains compl ete source code, documentation,
and example test drivers for the C++ components devel oped
as part of the ACE object-oriented network programming
toolkit [4] developed at Washington University, St. Louis.
The ACE toolkit is currently being used on communication
software at many companies including Bellcore, Siemens,
DEC, Motorola, Ericsson, Kodak, and McDonnell Douglas.

Acknowledgements

Thanks to Hans Rohnert for helpful comments during the
shepherding process.

References

[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[2] R.G. LavenderandD. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern
Languages of Program Design (J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[3] P.JanandD.C. Schmidt,“ Service Configurator: A Patternfor
Dynamic Configuration and Reconfiguration of Communica-
tion Services,” in The 3" Pattern Languagesof Programming
Conference (Washington Univer sity technical report AWUCS-
97-07), September 1996.

[4] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6'" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994,

[5] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 2% Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[6] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[8] D. C. schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1°* Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[9] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2" Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[10] W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[11] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[12] D. L. Presotto and D. M. Ritchie, “Interprocess Communi-
cation in the Ninth Edition UNIX System,” UNIX Research
SystemPapers, Tenth Edition, vol. 2, no. 8, pp. 523-530, 1990.

2: ACTIVE

ROLE 1: PASSIVE
socket() goocLlfet()
blnd() (optional) bin d()
connect() listen()

accept()

_ = ™ send()/recv()

3: SERVICE

PROCESSING ClOSC()

Figure14: Active and Passive I nitialization Roles

[13] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

[14] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” |IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280-293, December 1994.

[15] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture- A System of
Patterns. Wiley and Sons, 1996.

[17] J. Postel, “ Transmission Control Protocol,” Network Informa-
tion Center RFC 793, pp. 1-85, Sept. 1981.

[18] S.J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[19] W. R. Stevens, TCP/IP Illustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

Appendix

Connection-oriented protocol s (such as TCP[17]) reliably
deliver data between services connected by two or more end-
pointsof communication. Initializingthese service endpoints
involvesthe followingtwo roles:

e The passive role — which initializes a service endpoint
that is listening at a particular address and waits pas-
sively for the other service endpoint(s) to connect with
it;

e The active role — which actively initiates a connection
to one or more service endpoints that are playing the
passiverole.

Figure 14 illustrates how these initialization roles behave
andinteract when aclient actively connectsto apassiveserver
using the socket network programminginterface[18] and the

TCP transport protocol [19]. In this figure the server plays
the passive initialization role and the client plays the active
initializationrole®

The primary goal of the Acceptor and Connector patterns
is to decouple the passive and active initidization roles, re-
spectively, from the tasks performed once the endpoints of a
service are initialized. These patterns are motivated by the
observation that the tasks performed on messages exchanged
between endpoints of a distributed service are largely inde-
pendent of the following initialization-related issues:

e Which endpoint initiated the connection: Connection
establishment is inherently asymmetrical since the passive
endpoint waits and the active service endpoint initiates the
connection. Once the connection is established, however,
data may be transferred between endpoints in any manner
that obeys the service's communication protocol (e.g., peer-
to-peer, request-response, oneway streaming, etc.). Figurel4
illustrates (1) the client-side and (2) server-side connection
establishment process and (3) the service processi ng between
two connected service endpoints that exchange messages.

e The network programming interfaces and underlying
protocolsused to establish the connection: Different net-
work programming interfaces (such as sockets [10] or TLI
[6]) provide different library calls to establish connections
using various underlying communication protocols (such as
the Internet TCP/IP protocol or Novell's IPX/SPX). Regard-
less of the mechanism used to establish a connection, how-
ever, datacan betransferred between endpointsusinguniform
message passing operations (e.g., UNIX send/r ecv cdls
or Win32 ReadFi | e/WiteFile).

e The creation, connection, and concurrency strategies
used to initialize and execute the service: The process-
ing tasks performed by a service are often independent of
the strategies used (1) to create an instance of a service, (2)
connect the serviceinstanceto oneor more peers, and (3) exe-
cutethisserviceinstancein oneor morethreadsor processes.
By explicitly decoupling these initialization strategies from
the behavior of the service, the Connector and Acceptor pat-
ternsincrease the potential for reusing and extending service-
specific behavior in different environments.

5The distinction between “client” and “server” refer to communication
roles, not necessarily to initialization roles. Although clients often play the
activerole wheninitiating connectionswith a passive server theseinitializa-
tion roles can be reversed, as shown in Section 2.3.

17

