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Abstract

This paper provides two contributions to the study of developing and ajptidmain-
specific modeling languages (DSMLS) to distributed real-time and embeddE) (&/s-
tems — particularly those systems using standards-based QoS-enabletheaimpiddle-
ware. First, it describes the Platform-Independent Component Modadimguage (PICML),
which is a DSML that enables developers to define component interl@o&sparameters
and software building rules, and also generates descriptor files tiaafasystem deploy-
ment. Second, it applies PICML to an unmanned air vehicle (UAV) applicatiotiom of
an emergency response system to show how PICML resolves key contfmmsed DRE
system development challenges. Our results show that the capabilitiedqardy PICML
— combined with its design- and deployment-time validation capabilities — eliminates many
common errors associated with conventional techniques, thereby imgrehs effective-
ness of applying QoS-enabled component middleware technologies to tBesidRem
domain.
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1 Introduction

Emerging trends and challenges Reusable components and standards-based com-
ponent models are increasingly replacing the use of mdnoland proprietary
technologies as the platform for developing large-scalssion-critical distributed
real-time and embedded (DRE) systems [1]. This paradigrisimfotivated by the

need to (1) reduce life-cycle costs by leveraging standaaded and commercial-
off-the-shelf (COTS) technologies and (2) enhance softwagdity by amortizing
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validation and optimization efforts over many users antirnigsycles. Component
technologies, such as the OMG'’s Lightweight CORBA Componend®¢{CCM)
and Boeing’s Boldstroke PRiSm, are establishing themselveffetive middle-
ware platforms for developing component-based DRE softagstems in domains
ranging from software-defined radio to avionics mission patimg and total ship
computing environments.

The trend towards developing and reasoning about DRE systent®mponents
provides many advantages compared with earlier forms odsifucture software.
For example, components provide higher-level abstrastioan operating systems,
third-generation programming languages, and earlier rgéinas of middleware,
such as distributed object computing (DOC) middleware. higaar, component
middleware, such as CCM, J2EE, and .NET, supports multiples/iger com-
ponent, transparent navigation, greater extensibilitg a higher-level execution
environment based on containers, which alleviate manytdinons of prior mid-
dleware technologies. The additional capabilities of congmt-based platforms,
however, also introduce new complexities associated vathposing and deploy-
ing DRE systems using components, including (1) the need smueonsistent
component interface definitions, (2) the need to specifidvateractions and con-
nections between components, (3) the need to generatecaah@onent deploy-
ment descriptors, (4) the need to ensure that requireméctsngponents are met
by target nodes where components are deployed, and (5) ddetmguarantee that
changes to a system do not leave it in an inconsistent stagelatk of simplifi-
cation and automation in resolving the challenges outlaisale can significantly
hinder the effective transition to — and adoption of — congsanmiddleware tech-
nology to develop DRE systems.

Solution approach — Model-driven development of component-based DRE
systems To address the needs of DRE system developers outlined abeveve
developed thePlatform-Independent Component Modeling LanguégeCML).
PICML is an open-source domain-specific modeling languag&MD) available
for download atww. dr e. vander bi | t. edu/ cosm ¢ that enables developers of
component-based DRE systems to define application intexf&2eS parameters,
and system software building rules, as well as generatd ¥allL descriptor files
that enable automated system deployment. PICML also prewdeabilities to
handle complex component engineering tasks, such as asyéet visualization
of components and the interactions of their subsystemspooant deployment
planning, and hierarchical modeling of component assasbli

PICML is designed to help bridge the gap between design-tiendication and

model-checking tools (such as Cadena, VEST, and AIRES) aratthal deployed
component implementations. PICML also provides higheellabstractions for de-
scribing DRE systems, using component models that providesa for (1) inte-
grating analysis tools that reason about DRE systems anda®)nm-independent



generation capabilities.e., generation that can be targeted at multiple component
middleware technologies, such as CCM, J2EE, and ICE.

2 Overview of PICML

Model-Driven Development (MDD) [2] is a paradigm that foeason using mod-
els in most system development activities,, models provide input and output at
all stages of system development until the final systemfitsejenerated. A key
capability supported by the MDD paradigm is the definitionl amplementation
of domain-specific modeling languagd3SMLs), which can be viewed as a five-
tuple [3] consisting of: (1) concrete syntax (C), which deditlee notation used
to express domain entities, (2) abstract syntax (A), whiefings the concepts,
relationships and integrity constraints available in theguage, (3) semantic do-
main (S), which defines the formalism used to map the sensaotithe models to
a particular domain, (4) syntactic mapping {MA—C), which assigns syntactic
constructs€.g, graphical and/or textual) to elements of the abstraciesy@ind (5)
semantic mapping (M A—S), which relates the syntactic concepts to those of the
semantic domain.

Crucial to the success of DSMLs msetamodelingand auto-generationA meta-
modeldefines the elements of a DSML, which is tailored to a pardicdbmain,
such as the domain of avionics mission computing or emeygesponse systems.
Auto-generation involves automatically synthesizingacts from models, thereby
relieving DSML users from the specifics of the artifacts tkebaes, including their
format, syntax, or semantics. Examples of such artifactisides (but are not lim-
ited to), code in some programming language and/or descsipin formats such
as XML, that can serve as input to other tools.

To support development of DRE systems using MDD, we have defivedlatform-
Independent Component Modeling LanguégeCML) DSML using theGeneric
Modeling EnvironmentGME) [4]. GME is a meta-programmable modeling envi-
ronment with a general-purpose editing engine, separate-gontroller GUI, and

a configurable persistence engine. Since GME is meta-progedble, the same en-
vironment used to define PICML is also used to build modelschviare instances
of the PICML metamodel.

At the core of PICML is a DSML (defined asaetamodelising GME) for describ-
ing components, types of allowed interconnections betweemponents, and types
of component metadata for deployment. The PICML metamodeiee~115 dif-
ferent types of basic elements, with 57 different types sbamtions between these
elements, grouped under 14 different folders. The PICML metiel also uses the
OMG'’s Object Constraint Language (OCL) to defta@22 constraints that are en-
forced by GME'’s constraint manager during the design pces



Using GME tools, the PICML metamodel can be compiled intm@deling par-
adigm which defines a domain-specific modeling environment. Ftlois meta-
model,~20,000 lines of G-+ code (which represents the modeling language ele-

ments as equivalent-C+ types) is generated. This generated code allows manipu-

lation of modeling elements.e., instances of the language types using-€ and
forms the basis for writingnodel interpreterswhich traverse the model hierarchy
to perform various kinds of generative actions, such asrg¢ing XML-based de-
ployment plan descriptors. PICML currently ha8 interpreters using222 gener-
ated C++ classes ané-8,000 lines of hand-written €+ code that traverse mod-
els to generate the XML deployment descriptors (describeSidebar 2) needed
to support the OMG D&C specification [5]. Each interpretewistten as a DLL
that is loaded at run-time into GME and executed to genehatXML descriptors
based on models developed by the component developersRISINL.

To motivate and explain the features in PICML, we use a runexagmple of a rep-
resentative DRE system designed for emergency responagaitsi(such as disas-
ter recovery efforts stemming from floods, earthquakegjdames) and consists of
a number of interacting subsystems with a variety of DRE Qa@8irements. Our
focus in this paper is on the unmanned aerial vehicle (UAipo of this system,
which is used to monitor terrain for flood damage, spot swngthat need to be
rescued, and assess the extent of damage. The UAV tranbiitsiagery to vari-
ous other emergency response units, including the natguraall, law enforcement
agencies, health care systems, firefighting units, andyutimpanies.

3 Building DRE Systems with PICML

Developing and deploying emergency response systemsdsfarexample, there
are multiple modes of operations for the UAVS, includingi@emaging, survivor
tracking, and damage assessment. Each of these modesdmtesbwvith a differ-
ent set of QoS requirements. For example, a key QoS critar@vies the latency
requirements in sending images from the flying UAVs to grostations under
varying bandwidth availability. Similar QoS requirementanifest themselves in
the traffic management, rescue missions, and fire fightingatipes.

In conjunction with colleagues at BBN Technologies and Wagoim University,
we have developed a prototype of the UAV portion of the emergeesponse sys-
tem described above using the CCM and Real-time CORBA capabiit@vided
by CIAQO [6]. CIAO extends our previous work drhe ACE ORETAO) [7] by pro-
viding more powerful component-based abstractions us$iegspecification, vali-
dation, packaging, configuration, and deployment tectesglefined by the OMG
CCM [8] and D&C [5] specifications. Moreover, CIAO integrates tBCM capa-
bilities outlined above with TAO’s Real-time CORBA [7] featgtesuch as thread-
pools, lanes, and client-propagated and server-declaritgs. The components
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Qosket

in this UAV application are shown in Figure 1 and the stepsived in this effort
are described below:

1. Identify the components in the system, and define their irtrfaces which in-
volves defining component ports and attributes, using the CORBIDL features
provided by CCM. In the UAV example, each UAV is associated witstream of
images. Each image stream is composefeofier , Qosket , andRecei ver com-
ponentsSender components are responsible for collecting the images frach e
image sensor on the UAV. Tt8ender passes the images to a serieQuadket [6]
components that perform operations on the images to erfsairéhe QoS require-
ments are satisfied. Some Qosket components in€lag® essQosket , Scal eQosket
CropQosket , PaceQosket , and abi f f Ser vQosket . The finalQosket then passes
the images to &ecei ver component, which collects the images from the UAV and
passes them on to a display in the control room of the emeygesponse team.

Each Sender, Recei ver, and the variouspsket components pass images via
CCM event source and sink ports. There are also manager contpahat de-
fine policies, such as the relative importance of the differeission modes of each
UAV. These policies in turn modify existing resource allboas by theQosket
components. For example, the gloBgbt enResour ceManager component moni-
tors resource allocation across all the UAVs that are oeraltat any moment, and
is responsible for communicating policy decisions from ¢batrol center to each
UAV by triggering mode changes. The per-strelamnal Resour ceManager com-
ponent is responsible for instructing tGesket components to adapt their internal



QoS requirements according to the mode in which the UAV isanly operating.

2. Define interactions between componentsvhich involves keeping track of the
types of each component’s ports and ensuring that compeoménch must be in-
terconnected have matching ports defined. In the UAV exantipkeinvolves con-
necting the different components that comprise a sing&asgtrin the correct order
since some components (suchla€onpr essQosket ) do the reverse of an oper-
ation performed by another component (suclCagr essQosket ). The manager
components need to be connected to receive monitoringniafoon about the ex-
isting QoS in each stream of image data.

3. Compose the UAV application by defining CCM deployment desiptors,
which involves selecting a set of component implementatifivom a library of
available implementations, describing how to instant@mponent instances us-
ing these component implementations, and specifying adiors between com-
ponent instances. In the UAV example, this first involves biomimg the different
components that comprise a single stream of images intogéesassembly, rep-
resented by an XML descriptor. The complete UAV applicai®then created by
making copies of this file to represent each UAV in flight.

4. Deploy the UAV application onto its runtime platform, which involves en-
suring that the implementation artifacts and the assatidéployment descriptors
are available on the actual target platform, and initiatimg deployment process
using the standard OMG D&C [5] framework and tools. In the U&ample, this
involves taking the hand-written XML descriptors and depig the application
using these descriptors as input.

5. Refine the component-based UAV applicatiorwhich involves making changes
to existing component interface definitions or adding nemjgonent types, as part
of enhancing the initial UAV application prototype. In thé\J example, this in-
volves adding or removing@sket component in the pipeline for a single stream
depending on results from empirical evaluation of the syste

One of the challenges of using just component middlewareatédrrors often go
undetected until late in the development cycle. When theseseare eventually
detected, moreover, repairing them often involves backing to multiple prior

life-cycle steps, which impedes productivity and increatbe level of effort. As a
result, the advantages of transitioning from DOC middletarcomponent middle-
ware can be significantly obstructed, without support fraghér-level tools and
techniques. These observations underscore the importEneehancing design-
time support for DRE systems built using component middlewas well as the
importance of automating the deployment of such systems.



3.1 Resolving the UAV Application Challenges with PICML

As discussed in [9], the use of QoS-enabled component nvidaléeto develop the
UAV application significantly improved upon an earlier DOGdalleware proto-
type of this application [10]. In the absence of model-dnidevelopment (MDD)
tool support, however, a number of significant challengesaie unresolved when
using component middleware. For concreteness, the reeragidhis section de-
scribes five key challenges that arose when the UAV applicatias developed
using CCM and CIAO, and examines how key features of PICML can be ap
plied to address the limitations associated with develpQinS-enabled component
middleware-based DRE systems, such as the UAV application.

We use CCM and CIAO as the basis for our research because it retaga top
of Real-time CORBA, which provides significant capabilities$atisfying end-to-
end QoS requirements of DRE systems [7]. There is nothing@mttén PICML,
however, that limits it to CCM or CIAO. Likewise, the challengksscribed below
are generic to component middleware, and not deficienci€Cdfl or CIAO. For
example, both J2EE and Microsoft .NET use XML to describe ponent assem-
blies, so the challenges we describe apply to them, as well.

3.1.1 Accidental Complexities in Component Interface Déejimit

IDL for CCM (i.e, CORBA 3.x IDL) defines extensions to the syntax and se-
mantics of CORBA 2.x IDL. Every developer of CCM-based applaagi must
therefore master the differences between CORBA 2.x IDL and CORRADL.

For example, while CORBA 2.x interfaces can have multiple iithece, CCM
components can have only a single parent, so equivalerst eingompositioni(e.,
interfaces in CORBA 2.x and components in CCM) can have subtlasgodiffer-
ences. Moreover, any component interface that needs tackssex by component-
unaware CORBA clients should be defined asipportednterface as opposed to
aprovidedinterface.

In any system that transitions from an object-based arcoite to a component-
based architecture, there is likelihood of simultaneouistence of simple CORBA
objects and more sophisticated CCM components. Design of coemp interfaces
must therefore be done with extra care. In the UAV applicatior example, though
theQosket components receive both allocation events from the resquamnagers
and images from th8ender and otherQosket components, they cannot inherit
from base components implementing each functionality.il&ry, the Recei ver
component interface needs to be defined asigportedinterface, rather than a
providedinterface.



3.1.2 Solution— Visual Component Interface Definition.

A set of component, interface, and other datatype defirgtimay be created in
PICML using either of the following approaches:

e Adding to existing definitions imported from IDL . In this approach, ex-
isting CORBA software systems can be easily migrated to PICMhguis
IDL Importer, which takes any number of CORBA IDL files as input, maps
their contents to the appropriate PICML model elements, ameiates a sin-
gle XML file that can be imported into GME as a PICML model. Thisdsl
can then be used as a starting point for modeling assembigegenerating
deployment descriptors.

e Creating IDL definitions from scratch. In this approach, PICML's graph-
ical modeling environment provides support for designimg interfaces us-
ing an intuitive “drag and drop” technique, making this pss largely self-
explanatory and independent of platform-specific techrkicawledge. Most
of the grammatical details are implicit in the visual langege.g, when the
model editor screen is showing the “scope” of a definitiorly acons repre-
senting legal members of that scope will be available fogdirag and drop-
ping.

CORBA IDL can be generated from PICML, enabling generation ftf\soe ar-
tifacts in languages having a CORBA IDL mapping. For each lalgicseparate
definition in PICML, the generated IDL is also split into logidile-type units.
PICML’s interpreter will translate these units into actuBLlIfiles with #include
statements based on the inter-dependencies of the urgistel@toy the interpreter.
PICML's interpreter will also detect requirements for thelusion of canonical
CORBA IDL files and generate them as necessatry.

Application to the UAV example scenario.By modeling the UAV components us-
ing PICML, the problems associated with multiple inheritggn®emantics of IDL,
etc. are flagged at design time. By providing a visual envireminior defining the
interfaces, PICML therefore resolves many problems desdrib Section 3.1.1
associated with definition of component interfaces. Inipaldr, by modeling the
interface definitions, PICML alleviates the need to model lassti of interfaces
for analysis purposes, which has the added advantage adminey skew between
the models of interfaces used by analysis tools and thefacemused in imple-
mentations. It also removes the effort needed to ensurghtedDL semantics are
satisfied, resulting in a50% reduction in effort associated with interface defini-
tion.

3.1.3 Defining Consistent Component Interactions.

Even if a DRE system developer is well-versed in CORBA 3.x IDlisihard to
keep track of components and their types using plain IDL ,(fisich are text-



based and hence provide no visual feedbaek, to allow visual comparison to
identify differences between components. Type checkirty weixt-based files in-
volves manual inspection, which is error-prone and nomasba Moreover, an IDL
compiler will not be able to catch mismatches in the port $ypetwo components
that need to be connected together, since component caomadbrmation is not
defined in IDL. This problem only becomes worse as the numbepmponent
types in a DRE system increases. In our UAV application fongxa, enhancing
the UAV with new capabilities can increase the number of congmt types and
inter-component interactions. If a problem arises, dgy@ie of DRE systems may
need to revise the interface definitions until the types mattich is a tedious and
error-prone process.

3.1.4 Solution— Semantically Compatible Component Interaction Definition.

PICML defines thestatic semantic®f a system using a constraint language and
enforces these semantics early in the development dyeleat design-time. This
type checking can help identify system configuration ersarslar to how a com-
piler catches syntactic errors early in the programmindecy&tatic semantics refer
to the “well-formedness” rules of the language. The wetlkiedness rules of a tra-
ditional compiler are nearly always based on a language manaefining valid
syntax. By elevating the level of abstraction via MDD tecluasg, however, the
corresponding well-formedness rules of DSMLs like PICMLuadly capture se-
mantic information, such as constraints on composition ofiets, and constraints
on allowed interactions.

There is a significant difference in the early detection obesxin the MDD par-

adigm compared with traditional object-oriented or pragatidevelopment using
a conventional programming language compiler. In PICML, O®hstraints are
used to define the static semantics of the modeling langulgesby disallowing

invalid systems to be built using PICML. In other words, PICMifaces the par-
adigm of “correct-by-construction.” Sidebar 1 shows annegie of a constraint
defined in the PICML metamodel.

By using GME's constraint manager, PICML constraints can Deyaluated au-
tomatically (triggered by a specified modeling event) or emdnd, (2) prioritized
to control order of evaluation and severity of violationdéor (3) applied globally
or to one or more individual model elements

Application to the UAV example scenario.In the context of our UAV application,
the components of a single stream can be modeled as a CCM agsendiviL

enables the visual inspection of types of ports of compa@ant the connection
between compatible ports, including flagging error wheenafiting connection be-
tween incompatible ports. PICML also differentiates difietrtypes of connections
using visual cues, such as dotted lines and color, to quatkiypare the structure of



Sidebar 1: Example PICML Constraint

Below is an example of a constraint defined in PICML:

let concrete parents= sel f.parts(“Inherits’) —
select(x: gme:: Model |
X.0clAsTypéEveni.abstract= false) in
if (self.abstract=true)then
concrete parents— size= 0
else
concrete parents— size< 2
endif

This constraint is applied to a PICML model element calieeint . An Event has

a boolean attribute callegbstractand may inherit from O or more other Events,
by containing PICML model elements calledheri ts, which are references to

definitions of other Events. The constraint shown above ensures guraEvient

is “concrete” {.e, itsabst ract attribute isfalse, it cannot be derived from more

than a single concretevent ; and if anEvent is “abstract”, it cannot be derived

from another “concreteEvent . This constraint places no limit on the number of
abstract parents in either case.

an assembly. By providing a visual environment coupled witbg defining valid

constructs, PICML therefore resolves many problems destrib Section 3.1.3
with ensuring consistent component interactions. By eirigrthe constraints dur-
ing creation of component models and interconnections -bgrdisallowing con-

nections to be made between incompatible ports — PICML caeilgleliminates

the manual effort required to perform these kinds of checks.

3.1.5 Generating Valid Deployment Descriptors.

Component developers must not only ensure type compatibiéitween intercon-
nected component types as part of interface definition, lsat @sure the same
compatibility between instances of these component typéise XML descriptor
files needed for deployment. This problem is of a larger sttela the one above,
since the number afomponent instancegpically dwarfs the number afompo-
nent typesn a large-scale DRE system. Moreover, a CCM assembly file writte
using XML is not well-suited to manual editing.

In addition to learning IDL, DRE system developers must adsoi XML to com-
pose component-based DRE systems. In our example UAV appticaimply in-
creasing the number of UAVs increases the number of companstances and
hence the component interconnections. The increase in @oemp interconnec-

10



tions is typically not linear with respect to increase in ftnanof component in-
stances. Any errors in this step are likely to go undetected the deployment of
the system at run-time.

3.1.6 Solution— Automatic Deployment Descriptor Generation.

In addition to ensuring design-time integrity of systemsltbusing OCL con-
straints, PICML also generates the complete set of deploydestriptors that are
needed as input to the component deployment mechanismsleBHueiptors gen-
erated by PICML conform to the descriptors defined by the stah@®@MG D&C
specification [5]. Sidebar 2 shows an example of the typesstuiptors that are
generated by PICML, with a brief explanation of the purposeaith type of de-
scriptor.

Sidebar 2: Generating Deployment Metadata

PICML generates the following types of deployment descriptors baseitheon
OMG D&C specification:

e Component Interface Descriptor (.ccd)- Describes the interfaces — ports,
attributes of a single component.

e Implementation Artifact Descriptor (.iad) — Describes the implementa-
tion artifacts (e.g., DLLs, executables etc.) of a single component.

e Component Implementation Descriptor (.cid) — Describes a specific
implementation of a component interface; also contains component inter-
connection information.

e Component Package Descriptor (.cpd)- Describes multiple alternative
implementations (e.g., for different OSes) of a single component.

e Package Configuration Descriptor (.pcd)- Describes a component pack-
age configured for a particular requirement.

e Component Deployment Plan (.cdp)- Plan which guides the run-time
deployment.

e Component Domain Descriptor (.cdd)- Describes the deployment target
i.e,, nodes, networks on which the components are to be deployed.

Since the rules determining valid assemblies are encodedICML via its meta-
model, and enforced using constraints, PICML ensures tleagémerated XML
describes a valid system. Generation of XML is done in a @nognatic fashion
by writing aVi si t or class that uses the Visitor pattern to traverse the elenoénts
the model and generate XML. The generated XML descript@s @hsure that the
names associated with instances are unique, so that indiéidmponent instances
can be identified unambiguously at run-time.

Application to the UAV example scenario.In the context of the UAV applica-
tion, the automated generation of deployment descriptsirsguPICML not only

11



removes the burden of knowing XML from DRE system developiralso en-
sures that the generated files are valid. Adding (or remQwtiegnponents is as
easy as dragging and dropping (or deleting) an element,ngadke necessary con-
nections, and regenerating the descriptors, instead a-haodifying the existing
XML files as would be done without such tool support. This awation resolves
many problems mentioned in Section 3.1.5, where the XML filese hand-written
and modified manually in case of errors with the initial agésn

For example, itis trivial to make the100 connections in a graphical fashion using
PICML, as opposed to hand-writing the XML. All the connecBdretween com-
ponents for the UAV application were made in a few hours, aeddML was then
generated instantaneously. at the click of a button. In contrast, it required sev-
eral days to write the same XML descriptors manually. PICMiodlas the added
advantage of ensuring that the generated XML files are styoddlg valid, which

is a task that is very tedious and error-prone to perform rabyu

3.1.7 Associating Components with the Deployment Target.

In component-based systems there is often a disconnectbeoftware implementation-
related activities and the actual target system since €l3dfftware artifacts and the
physical system are developed independently and (2) tkere way to associate
these two entities using standard component middlewaterg=a This disconnect
typically results in failures at run-time due to the targetieonment lacking the
capabilities to support the deployed component’s requergsn These mismatches
can also often be a source of missed optimization opporégrsince knowledge of
the target platform can help optimize component implententa and customize
the middleware accordingly. In our UAV application, compats that reside on a
single UAV can use collocation facilities provided by ORBs timnéate unnec-
essary (de)marshaling. Without the ability to associat@pmnents with targets,
errors due to incompatible component connections andrecoXML descriptors
are likely to show up only during actual deployment of thetsys

3.1.8 Solution— Deployment Planning.

In order to satisfy multiple QoS requirements, DRE systeraéten deployed in
heterogeneous execution environments. To support sudétoements, component
middleware strives to be largely independent of the spet@figet environment in
which application components will be deployed. The goabisdtisfy the func-

tional and systemic requirements of DRE systems by makingogpiate deploy-

ment decisions that account for key properties of the tagetonment, and retain
flexibility by not committing prematurely to physical resoas.

To support these needs, PICML can be used to specify the targedbnment where
the DRE system will be deployed, which includes defining:Nbpes where the

12



individual components and component packages are loadedsed to instanti-
ate those components, (Riterconnectsamong nodes, to which inter-component
software connections are mapped, to allow the instantied@sponents to com-
municate, and (3Bridges among interconnects, where interconnects provide a di-
rect connection between nodes and bridges to provide putpability between
interconnects. Nodes, interconnects, and bridges coidgtrepresent the target
environment.

Once the target environment is specified via PICML, allocattbcomponent in-
stances onto nodes of the target target environment canrtogmped. This activity
is referred to asomponent placememhere systemic requirements of the compo-
nents are matched with capabilities of the target envirariraed suitable allocation
decisions are made. Allocation can either be:§fjtic, where the domain experts
know the functional and QoS requirement of each of the compty as well as
knowledge about the nodes of the target environment. In auchse, the job of
the allocation is to create a deployment plan comprisingctiraponents-node
mapping specified by the domain expert, or[@namic, where the domain expert
specifies the constraints on allocation of resources at Badha of the target en-
vironment, and the job of the allocation is to choose a slétabmponent-node
mapping that meets both the functional and QoS requirenfezaah of the com-
ponents, as well as the constraints on the allocation ofiress.

PICML currently provides facilities for specifying statitiacation of components.
As shown in Figure 2, domain experts can visually map the amapts with the
respective target nodes, as well as provide additionakhsuch as whether the
components need to be process-collocated or host-caldcptovided two com-
ponents are deployed in the same target node. PICML genardegdoyment plan
from this information, which is used by the CIAO run-time dgphent engine to
perform the actual deployment of components to nodes.

Application to the UAV example scenario.In the context of the UAV example,
PICML can be used to specify the mapping between the diffépesket compo-
nents and the target environmei,, the UAVS, in the path from each UAV to the
Recei ver component at the control center. By modeling the target enaient in
the UAV example using PICML, therefore, the problem with acdimect between
components and the deployment target described in Sectlon &n be resolved.
In case there are multiple possible comporenbde mappings, PICML can be
used to experiment with different combinations since itegates descriptors auto-
matically. PICML thus completely eliminates the manual gffiovolved in writing
the deployment plan.
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Fig. 2. Component Deployment Planning

3.1.9 Automating Propagation of Changes Throughout a DREe8yS

Making changes to an existing component interface defmiten be painful since
it may involve retracing all the steps of the initial devaiognt. It also does not al-
low any automatic propagation of changes made in a base amnptype to other
portions of the existing infrastructure, such as the compoimstances defined in
the descriptors. Moreover, it is hard to test parts of théesgsncrementally, since
it requires hand-editing of XML descriptors to remove or adthponents, thereby
potentially introducing more problems. The validity of buthanges can be ascer-
tained only during deployment, which increases the timeedfuiit required for the
testing process. In our component-based UAV applicatmmgtample, changes to
the basic composition of a single image stream are followeldlorious changes
to each individual stream, impeding the benefits of reusenconty associated with
component-based development.

3.1.10 Solution— Hierarchical Composition.

In a complex DRE system with thousands of components, vizatedn becomes an
issue because of the practical limitations of displays,taedimitations of human
cognition. Without some form of support for hierarchicahgmosition, observing
and understanding system representations in a visual medaes not scale. To
increase scalability, PICML defineshgerarchy construct, which enables the ab-
straction of certain details of a system into a hierarchazghnization, such that
developers can view their system at multiple levels of dieipending upon their
needs.
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The support for hierarchical composition in PICML not onljomls DRE system

developers to visualize their systems, but also allows them@ompose systems
from a set of smaller subsystems. This feature supportsugli levels of hierar-

chy (constrained only by the physical memory of the systeed s build models)

and promotes the reuse of component assemblies. PICML thnerehables the
development of repositories of predefined components amslystems.

The hierarchical composition capabilities provided by PIC&te only alogical
abstractioni.e., deployment plans generated from PICML (described in 3flaB)
ten out the hierarchy to connect the two destination pomscty (which if not
done will introduce additional overhead in the communaapaths between the
two connected ports), thereby ensuring that at run-timeetigeno extra overhead
that can be attributed to this abstraction. This featureredg the basic hierarchy
feature in GME, which allows a user to double-click to view tontents of con-
tainer objects called “models.”

PICML - UAV - [Stream1 - /UAV/UAV/FourStreams/FourStreams/]
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Fig. 3. Single Image Stream Assembly

Application to the UAV example scenario.In the UAV example, the hierarchy
abstraction in PICML allows the composition of components & single stream
assembly as shown in Figure 3, as well as the composition tipieusuch assem-
blies into a top-level scenario assembly as shown in Figure 4

As aresult, large portions of the UAV application systemlgatuilt using reusable
component assemblies. In turn, this increased reuse altovesitomatic propaga-
tion of changes made to an subsystem to all portions of thesysvhere this
subsystem is used, resolving many problems mentioned itio8e2.1.9. PICML
therefore helps prevent mismatches and removes duplicatisubsystems.

Hierarchical assemblies in PICML also help reduce the eiffiwdived in modeling
of component assemblies by a factorMifl, since N usages of a basic assembly
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Fig. 4. UAV Application Assembly Scenario

can be replaced with N instances of the same assembly, aasygibviding for au-
tomatic generation of descriptors corresponding to thedtamces. This technique
was used to model a single stream of image from a UAV, and thggesassembly
was used to instantiate all the four streams of data, as shofigure 4.

4 Related Work

This section summarizes related efforts associated wikldping DRE systems
using an MDD approach and compares these efforts with ouk aiPICML.

Cadena Cadena[l1l]is an integrated environment developed at K&tagsUni-
versity (KSU) for building and modeling component-based D¥gEtems, with the
goal of applying static analysis, model-checking, andtiighight formal methods
to enhance these systems. Cadena also provides a composeEmbésframework
for visualizing and developing components and their cotioes. Unlike PICML,
however, Cadena does not support activities such as comipmaekaging and gen-
erating deployment descriptors, component deploymemninotg, and hierarchical
modeling of component assemblies. To develop a complete iDiYonment that
seamlessly integrates component development and mod{ingeapabilities, we
are working with KSU to integrate PICML with Cadena’s modeldkieg tools, so
we can accelerate the development and verification of DREs)st

VEST and AIRES The Virginia Embedded Systems ToolR4EST) [12] and
the Automatic Integration of Reusable Embedded Sys{aAhRES) [13] are MDD
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analysis tools that evaluate whether certain timing, mgnmower, and cost con-
straints of real-time and embedded applications are stisiomponents are se-
lected from pre-defined libraries, annotations for desnesd-time properties are
added, the resulting code is mapped to a hardware platfanoh real-time and

schedulability analysis is done. In contrast, PICML allovesnponent modelers
to model the complete functionality of components and Htyenponent interac-

tions, and doesn't rely on predefined libraries. PICML aldoves DRE system

developers the flexibility in defining the target platformgdas not restricted to just
processors.

ESML TheEmbedded Systems Modeling Langu@g®ML) [14] was developed
at the Institute for Software Integrated Systems (ISISytwidle a visual metamod-
eling language based on GME that captures multiple viewsnifeslded systems,
allowing a diagrammatic specification of complex modelse Todeling building
blocks include software components, component intenastibardware configu-
rations, and scheduling policies. The user-created mamisbe fed to analysis
tools (such as Cadena and AIRES) to perform schedulabilityesedt analysis.
Using these analyses, design decisions (such as compdioeatians to the target
execution platform) can be performed. Unlike PICML, ESML latform-specific
since it is heavily tailored to the Boeing Boldstroke PRiSm @o&bled compo-
nent model [1,15]. ESML also does not support nested assesrdoid the alloca-
tion of components are tied to processor boards, which i®prgtary feature of
the Boldstroke component model. We are working with the ESkHN at ISIS to
integrate the ESML and PICML metamodels to produce a unifieDSuitable
for modeling a broad range of QoS-enabled component models.

Ptolemy Il  Ptolemy Il [16]is a tool-suite from the University of Califua Berke-

ley (UCB) that supports heterogeneous modeling, simulatiod, design of con-
current systems using an actor-oriented design. Actorsiaréar to components,
but their interactions are controlled by the semantics oflef® of computation,
such as discrete systems. The set of available actors igtirto the domains that
are natively defined in Ptolemy. Using an actor specialiratframework, code is
generated for embedded systems. In contrast, PICML doesefiaed particular
model of computation. Also, since PICML is based on the methitiog frame-

work of GME, it can be customized to support a broader ranggoaiains than

those supported by Ptolemy II. Finally, PICML targets congr@mmiddleware for

DRE systems and can be used with any middleware technologslbas any pro-

gramming language, whereas Ptolemy Il is based on Javapvétiminary support

for C.
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5 Concluding Remarks

Although component middleware represents an advance og@iops generations
of middleware technologies, its additional complexitieeaten to negate many of
its benefits without proper tool support. To address thiblero, we describe the
capabilities of the Platform-Independent Component Modgdlianguage (PICML)
in this paper. PICML is a domain-specific modeling languag8NIL) that sim-
plifies and automates many activities associated with devsd, and deploying
component-based DRE systems. In particular, PICML providgaphical DSML-
based approach to define component interface definitioegjfgpcomponent in-
teractions, generate deployment descriptors, define alsnoéthe target environ-
ment, associate components with these elements, and ceropogplex DRE sys-
tems from such basic systems in a hierarchical fashion.

To showcase how PICML helps resolve the complexities of Quebled compo-
nent middleware, we applied it to model key aspects of an mmexd air vehicle
(UAV) application that is representative of emergency oese systems. Using this
application as a case study, we showed how PICML can suplesigin-timeac-
tivities, such as specifying component functionalityenaictions with other com-
ponents, and the assembly and packaging of componentsjegahoyment-time
activities, such as specification of target environmend, amtomatic deployment
plan generation.
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