
Automatic Role-based Constraint Solving for Real-Time and Embedded Systems:
An Approach to Modeling Guidance

Andrey Nechypurenko∗, Egon Wuchner∗, Jules White†, Doulas C. Schmidt†

∗Siemens AG,
Corporate Technology (SE 2)

Otto-Hahn-Ring 6
81739 Munich, Germany

Email:{egon.wuchner, ludger.fiege}@siemens.com

†Vanderbilt University,
Department of Electrical Engineering and Computer Science

Box 1679 Station B
Nashville, TN, 37235, USA

Email:{jules, schmidt}@dre.vanderbilt.edu

Abstract

Emerging distributed real-time and embedded (DRE)
systems, such as automotive infotainment, industrial au-
tomation, and medical imaging, are increasingly complex.
Without effective tool support to check the correctness
of the models, this complexity makes it infeasible to
model different aspects, such as various deployments and
configurations of hardware and software components for
specific products. One way to ensure model correctness is
to define constraints using OCL or other languages. Even
with these constraint languages, however, it is still hard to
create correct models manually due to the combinatorial
nature of the constraints and their interdependence. This
paper provides two contributions to work on improving
model correctness in domains where either model size
or constraint combinatorial complexity limits manual ap-
proaches. First, we present our approach of Automatic
Role-based Constraint Solving (ARCS) and show how the
application of declarative constraint programming tech-
niques can ensure model correctness, as well as automati-
cally suggest (deduce) correct modeling steps. Second, we
show how model-driven engineering tools can help guide
modelers towards correct solutions based on the defined
constraints.

I. Introduction

There are many application domains where the con-
straints are so restrictive and the solution spaces so large
that it is extremely hard for modelers to produce correct
solutions manually. Graphical modeling languages such as
UML can help to visualize certain aspects of the system
under development and automate particular development
steps using code-generation. Domain-Specific Modeling
Languages (DSMLs) are another graphical modeling ap-
proach that combine high-level visual abstractions that are
specific to a domain with constraint checking and code-
generation to simplify the development of a large class of
systems [16]. In these complex domains, however, any type
of graphical modeling tool that merely provides solution-
correctness checking via constraints provides few benefits
compared with handcrafted techniques.

Regardless of the modeling language and notation used,
the key challenge in complex domains is their combinato-
rial nature, not code construction. For example, specifying
the deployment of only a few tens of model entities that
map software components to Electronic Control Units
(ECUs) in an automobile can easily generate solution
spaces with millions or morepossibledeployments but
few correct ones due to the complexity of configura-
tion and resource constraints. For these combinatorially-
complex modeling problems, it is impractical to create
a complete and valid model manually. As the number



of model elements grows to hundreds or thousands, the
scalability challenges of large and globally constrained
domains clearly become intractable to handle manually.

In general, respecting configuration and resource con-
straints implies constraint checking and associated revi-
sions to handle any invalid component→ECU assignments.
Applying constraint checking alone, however, is often
insufficient. For instance, constraint checking might reveal
that a component cannot be assigned to any ECU due to
the lack of remaining CPU capacity on each ECU. Unfor-
tunately, this information does not provide modelers with
insights as to whether redoing several previous assignment
might lead to a valid assignment of all currently considered
ECUs, i.e., there is no indication onwhereto reassign the
mapping.

To address the challenges of modeling combinatorially
complex domains, techniques and tools are needed to
simplify the combination of graphical modeling environ-
ments with declarative constraint programming techniques
that can automatically leverage constraint solvers to guide
users’ modeling steps and assist them in producing cor-
rect models. This combined approach should respect the
domain-specificity of the modeling tool and provide a
flexible mechanism for specifying solvers using domain-
specific notations.

This paper describes an approach calledautomatic
role-based constraint solversthat provides the following
three contributions to address scalability problems arising
when modeling complex application domains: (1) how to
combine automatic constraint solving with domain-specific
modeling to offer automated guidance to modelers and
apply constraint-aware batch solving processes to automat-
ically complete models of large systems, (2) how modelers
can specify repair operations that can be leveraged by a
constraint solver to automatically fix models that violate
the domain constraints, and (3) examples based on a
tool for automatically producing deployment plans to map
software components to Electronic Control Units (ECUs)
(which are CPUs in an automobile) in the context of the
EAST-EEA Embedded Electronic Architecture [3] defined
in a European Union research project as a predecessor of
the emerging AUTOSAR [4] middleware and modeling
standard.

The paper extends our previous experience with AU-
TODeploy [13] and focuses on how to address the chal-
lenges related to the complexities of aspect weaving iden-
tified there. Our prior work focused on applying the rela-
tionship between automated role-based constraint solving
and aspect weaving. This paper generalizes our earlier
approach to a broader range of modeling-related activities,
including applying batch processes to create connections
and automatically adding model elements to satisfy domain
constraints.

The rest of the paper is organized as follows: Section II
addresses these considerations in the context of the EAST-
EEA automotive architecture, using the deployment of
software functions to ECUs as a motivating example;
Section III shows how our automatic role-based constraints
solving technique addresses the scalability challenges of
modeling DRE domains; Section IV presents related work;
and Section V presents concluding remarks.

II. Motivating Example

EAST-EEA defines the embedded electronic architec-
ture and structure of automotive middleware to help stan-
dardize solutions to problems that arise when developing
large-scale, distributed real-time and embedded (DRE)
systems for the automotive domain. For instance, it is
complicated to (re)deploy software components in ECU
computers and micro-controllers running software compo-
nents within a car. Key complexities of (re)deployment
include: (1) components often have many constraints that
must be met by the target ECU and (2) there are many
possible mappings of components→ECUs in a car and
finding the optimal one(s) is hard.

For example, finding a set of interconnected ECUs able
to run a group of components that communicate via a bus
is hard to do manually. Modelers must determine whether
the available communication channels between the target
ECUs meet the bandwidth, latency, and framing constraints
of the components communicating through them. It is also
important in automotive domain to optimize the overall
solution costs,e.g., by finding deployments that use as
few ECUs as possible or by minimizing bandwidth require-
ments and using cheaper buses. It is hard, if not impossible,
to answer these questions manually for production system
models.

To illustrate the practical benefits of integrating au-
tomatic role-based constraint solvers with a DSML, we
present a case study based on AUTODeploy [19], which
is a model-driven tool we developed to solve EAST-EEA-
like constraints that ensure correct deployment of software
components to ECUs. The following is a summary of the
aspects of EAST-EEA that are relevant to our example,
starting with the two primary viewpoints on EAST-EEA-
based systems:

• Logical collaboration structure, which specifies
components or functions that should communicate
with each other and through what interfaces.

• Physical deployment structure, which captures the
capabilities of each ECU, their interconnecting buses,
and their available resources.

A typical task for an EAST-EEA developer is to specify
on which ECU each component should run. This mapping
from logical collaboration structure to physical deployment
structure is generally specified with a graphical tool, as
shown in Figure 1.



Fig. 1. Mapping from the Logical Collabora-
tion to the Physical Deployment Structure

Modern cars (such as the BMW 7 Series, Mercedes S-
class, and Audi D3) are typically equipped with 80 or more
ECUs and several hundred or more software components.
Simply drawing arrows from 160 components to 80 ECUs
is tedious. Adding to the difficulty of a manual approach,
moreover, are requirements governing which ECUs can
host a component, which involves assessing the amount
of memory required to run, CPU power, operating system
type and version (if any), etc. These constraints must be
considered carefully when deciding where to deploy a
particular component. The problem is further exacerbated
when considering physical communication paths and as-
pects, such as available bandwidth in conjunction with
periodical real-time messaging.

The work presented in this paper uses the AUTODeploy
tool to specify the mapping of components to ECUs for
EAST-EEA models as our case study. The goal of this case
study was to create(semi)automated mechanisms to map
software components to ECUs without violating the known
constraints. In addition, when there is no way to deploy all
the components in the model (e.g., if certain components
need more memory then available on the ECUs), rather
than saying “a deployment is impossible,” we want to
provide suggestions on how to change the system to make
a full deployment possible, e.g., the tool could suggest
trying a different deployment strategy, relaxing certain
constraints, increasing the memory on a certain ECU by
a designated amount, or adding a higher speed bus. The
following sections describe AUTODeploy and show how
it can significantly reduce the time and effort needed to

creating EAST-EEA deployment models.

III. Automatic Role-based Constraint Solving

Based on the motivation and the example in Sections
I and II, the goals of our AUTODeploy project were
to (a) create a model-driven tool to guide EAST-EEA
modelers by suggesting valid modeling steps to create
a correct model, (2) provide mechanisms that perform
domain constraint-compliant batch processes to complete
a partially specified model, and (3) allow users to express
valid repair operations that can be utilized by a constraint
solver to fix invalid models.

In previous work [17], [18], we illustrated how a DSML
can improve the modeling experience and bridge the gap
between the problem and solution domain by the introduc-
tion of domain-specific abstractions. As a result of these
efforts, the Generic Eclipse Modeling System (GEMS)
was created and integrated with the Eclipse Generative
Modeling Technologies (GMT) project. GEMS provides
a convenient way to define the metamodel,i.e., the visual
syntax of the DSML. Based on the metamodel, GEMS can
automatically generate a graphical editor that enforces the
grammar specified in the DSML. In addition, to facilitate
code-generation, GEMS provides some convenient infras-
tructure (such as built-in support for a Visitor pattern [10]
implementation) to simplify model traversal. We used
GEMS as the basis for AUTODeploy and our work on
automatic role-based constraint solving.

A. Domain Constraints as the Basis for
Automatic Solvers

A key research challenge was to determine how to
specify model constraints in such a way that they could
be used not only to check models for correctness, but
also to enable constraints solvers to derive solutions to
the constraints. We considered using Java, the Object
Constraint Language (OCL), and Prolog for our con-
straint specification language. Initially, we implemented
our EAST-EEA deployment constraints in each of the three
languages to evaluate their pros and cons. As a result of the
evaluation we conducted, we came to the conclusion that
Prolog was the most appropriate language for providing
both constraint checking and model suggestions.

Prolog is a declarative programming language that
allows programmers to define the set of rules in terms of
known facts or a knowledge base (KB). Prolog can then
evaluate these rules and determine if they can be satisfied
by the known facts. Prolog provides a unique degree of
flexibility for writing constraints in that it not only replies
with whether or not a rule can be satisfied but also with
what the valid fact combinations are that will satisfy it. If
users completely specify the input variables values, Prolog
merely checks whether the rule holds for the facts from



KB. If, however, some of the input variables are not bound,
Prolog has the unique ability to return the set of possible
facts from the KB that lead the rule to evaluate to “true”.

In the context of AUTODeploy and EAST-EEA, the
declarative nature of the Prolog reduces the number of
lines of code needed to transform an instance of a DSML
into a knowledge base and create constraints (its roughly
comparable to OCL for writing constraints). Moreover,
Prolog enables AUTODeploy to derive sequences of mod-
eling actions that will take the model from an invalid or
incomplete state to a valid one. As discussed in Section II,
this capability is crucial for domains, such as EAST-
EEA-based deployment, where completely manual model
specification is infeasible or extremely tedious and error-
prone.

The remainder of this section describes how we applied
Prolog and GEMS to create the automatic role-based
constraint solvers used in AUTODeploy. Our research
focused on providing modeling guidance with respect to
single modeling steps, automatic model completion via
batch processing, and automated model repair guided by a
constraint solver.

B. Local Modeling Guidance on-the-fly

To provide automatic role-based constraint solving, AU-
TODeploy must capture the current state of the model and
reason about how to guide the model through a series of
modifications so that it satisfies the domain constraints. For
our EAST-EEA deployment example, when AUTODeploy
is given a set of components, ECUs, and their resources
and constraints, it must suggest a valid assignment of
components to ECUs. Our work provides this reasoning
capability to GEMS by automatically generating a Prolog
representation of each model as a knowledge base (KB),
allowing users to specify Prolog constraints, and then
querying the constraints for valid sequences of model
changes to bring the model to a valid state.

GEMS metamodels represent a set of model entities and
role-based relationships between them. For each model, the
generated DSML editor populates a Prolog KB using these
metamodel-specified entities and roles. For each entity, we
generate a unique id and a predicate statement specifying
the type associated with it. For example, each component
in our EAST-EEA model is transformed into the predicate
statementcomponent(id), where id is the unique id
for the component.

For each instance of a role-based relationship in the
model, a predicate statement is generated that takes the
id of the first participating entity and the id of the entity
the first one is relating it to. For example, if a component,
with id 23, has aTargetECUrelationship with a ECU, with
id 25, the predicate statementtargetECU(23,25) is
generated. This predicate statement specifies that the entity

with id 25 is a TargetECU of the entity with id 23. Each
KB provides a domain-specific set of predicate statements.

Based on this domain-specific knowledge base, mod-
elers can specify user-defined constraints in the form of
Prolog rules for each type of metamodel relationship.
These constraints are a semantical enrichment of the model
that indicate the requirements of a correct model. They are
also used by constraint solvers to automatically deduce
the sets of valid model changes to create a correct model.
For example, consider the following constraint to check
whether a ECU is a valid ECU of a component:

is_a_valid_component_targetECU(Component,
ECU).

This constraint can be used to (1) check a Component-
ECU combination,i.e.:

is_a_valid_component_targetECU(23,[25]).

and (2) to find valid ECUs that can play the
TargetECU role for a particular component using the
Prolog’s ability to deduce the correct solution:

is_a_valid_component_targetECU(23,
ECUs).

In this example, theECUs variable will be assigned the
list of all constraint-valid ECUs for theTargetECU role
of the specified component. This example shows how the
constraint predicate can be used as an automatic role-based
constraint solver to checkand generate the solution.

Figure 2 depicts what the dynamic suggestions mech-
anism looks like for modelers and how it simultaneously
supports the visual modeling steps. The upper part of the

Fig. 2. Highlighting valid target ECU

figure shows the fragment of the metamodel that describes
the “Deployment” relationship between “Component” and
“ECU” model entities. The lower part of the picture illus-
trates how the generated editor shows “ABS” and “ECU10”



as instances of the “Component” and “ECU” types respec-
tively. This screenshot was made at the moment when the
modeler starts dragging the connection line using “ABS”
as starting point. The rectangle around “ECU10” labeled
“Valid TargetECU” is drawn automatically as a result of
triggering the corresponding solver rule and receiving a
valid solution as feedback.

C. Constraint Solver Integration With
GEMS

We have integrated a tool infrastructure into the GEMS-
generated DSML editors that listens for user-initiated ac-
tions, finds all valid relation roles that the source entity
may participate in, and then finds the set of all valid
values for these connection relationships. These valid
connection endpoints are then suggested to the user by
highlighting valid model entities. This feedback mecha-
nism is automatically incorporated into GEMS. The DSML
editors generated by GEMS can leverage multiple Prolog
implementations, including SWI Prolog [20] and XSB
Prolog [14], and can use the Java Prolog Library (JPL) [2]
or Interprolog [6] libraries to invoke Prolog queries from
within Java. The KB is synchronized with the model by
issuing Prolog assert/1 and retract/1 statements when new
information is added or removed from the model.

Using the tools and techniques described above, model-
ers only need to specify the constraints and the generated
DSML editor can automatically find valid solutions for
many types of problems. The feedback mechanism and
the respective automatic role-base constraint solvers are
also dynamic,i.e., users can add or modify role-based
constraint (solvers) at modeling time and immediately
begin receiving step-wise guidance. Having all these mech-
anisms, modelers can receive on-the-fly suggestions for
each modeling step,e.g., while dragging the mouse to
create a connection relation between component and ECU,
the valid drop targets are highlighted.

There are also mechanisms to trigger arbitrary Prolog
rules from the modeling tool and incorporate their results
back into a model. In our EAST-EEA case study, this
mechanism can be used to resolve complete component
to ECU deployments and add deployment relationships
based on a model of partially specified component-ECU
assignments. User-defined solvers usually apply generic
rules that can be derived from the metamodel and often in-
corporate certain heuristics to simplify the solution-finding
process. These solvers encapsulateformalized experience
gained while developing similar systems and can greatly
improve the quality of the model.

An example of a situation where user-defined rules are
helpful is the deployment problem described above. It is
very hard to define a correct global deployment manually
if there are 300 components and 80 ECUs available. In

contrast, we were able to solve this scale of problem in
∼3 seconds using AUTODeploy.

D. Layered Constraint Solving

We initially used a single-solver approach to deduce
solutions to the deployment constraints. The single-solver
approach used local rules to find valid deployment targets
for each component based on the configuration constraints.
When resource and other global constraints began being
added, we had to adopt a multi-solver approach to solve
deployments.

As can be seen in Figure 3, local constraint solving is
the initial step of our automatic constraint-aware deploy-
ment. We used AUTODeploy to check the feasibility of our
multi-solver approach. The local constraints in AUTODe-
ploy correspond to the configuration constraints, such as
required OS, that impact only the valid target ECU sites for
a single component. The solution space initially contained
many millions or more possible deployment combinations,
as shown in step 1 of Figure 3. Any global constraint-
aware deployment solving began by iterating over each
unassigned component and considering only valid ECUs
respecting the configuration constraints. After pruning the

Fig. 3. Layered Deployment Solving

solution space, global constraints, such as resource require-
ments, are considered, as shown in step 2 of Figure 3.
After solving the global constraints, AUTODeploy is left
with a drastically reduced number of deployment solutions
to select from. At this point, depending on the number of
solutions available, optimization algorithms can be applied



to select a solution that optimizes a particular criteria, such
as the number of ECUs used.

In many cases, we observed that domain experts could
not formally specify certain types of constraints, such as
political, legacy, or vendor-specific constraints. For these
types of situations, we found it was essential to allow
modelers to fix certain modeling decisions so that the
automated role-based constraint solvers could not override
them. We therefore introduced a mechanism into AU-
TODeploy so that developers could first fix the deploy-
ment locations of certain components with un-specifiable
constraints an then use the constraint solver to complete
the partially specified deployment.

E. Model Completion Solvers

Global constraint solvers and their respective sugges-
tions are necessary for solving complex problems involv-
ing multiple model entities and roles. For example, in
AUTODeploy, we developed a suggestive solver that not
only checked configuration constraints, but also checked
resource constraints for all components and derived a valid
TargetECU for every component. Nevertheless, automatic
global constraint solvers should integrate into the modeling
experience and not be separate from visual modeling.
Automated role-based constraint solving therefore uses the
role-based constraint rules to provide the glue between
the visual modeling experience and user-defined global
constraint solvers.

For example, the following Prolog rule

batch_assign_component_targetECU(Component,
ECUs, Best, MaxSolutions, FitnessFunc) :-
...

represents a role-based constraint solver for finding
valid connections between a set of components and ECUs.
The modeling step of connecting a component to a valid
ECU is accompanied by a menu item offering to perform
such a step globally,i.e., assign a target ECU for each
component. After deploying several critical components to
some ECUs by using the step-wise guidance, modelers can
trigger the constraint-aware batch processor to request a
complete deployment. The domain-specific GEMS editor
will then attempt to calculate a deployment structure and
if one is found, the corresponding connections will appear
in the model. This type of batch processing can aim for
an optimal deployment structure by using constraint-based
Prolog programs, such as CPL(X) [11]. It can also integrate
domain-specific heuristics known to domain modelers, as
described in Section III-B.

There are many existing algorithms and libraries de-
veloped by the artificial intelligence community and other
Prolog experts that can be used and adapted while perform-
ing complex model analysis. In other work, we have used
the automated role-based constraint solving capabilitiesof

GEMS to integrate an existing Prolog Qualitative Differen-
tial Equation simulator, based on the QSim algorithm, into
one of our DSMLs. The integration was straightforward
and required less than 100 lines of Prolog code.

The drawbacks of allowing modelers to fix certain mod-
eling decisions becomes apparent when batch processing
is applied. Modelers can build models with no valid global
deployment that satisfies the supplied constraints and the
set of available ECUs. For these situations, we further
developed our automated role-based constraint solving
approach to allow modelers to provide model repair op-
erations that could be leveraged by the constraint solver,
as discussed next.

F. Model Repair

It quickly became apparent that an AUTODeploy model
could be defined with various errors, such as conflicting
constraints or insufficient resources, that would make de-
ployment impossible. With numerous complex composi-
tion rules guiding the deployment process, it was hard for
modelers to figure outwhy there was no valid way of
deploying the components andhow to repair the model
to overcome the problem. Simply failing to deploy the
components and not providing an explanation would leave
the reasoning of the underlying cause to modelers, without
any hints on possible modifications (such as resource
expansions) to make it work. In these situations, deducing
the errors in the model could be as hard as finding a valid
concern composition manually.

A key question we needed to address, therefore, was
what type of feedback should be provided to modelers.
One approach we evaluated was marking model elements,
such as components, that could not satisfy their domain
constraints. For example, we considered marking compo-
nents with resource requirements exceeding the available
resources of any available ECU. We found this approach
unsatisfactory for the following reasons:

• For global constraints, such as resource constraints,
the overall state of the system determines whether or
not the constraint succeeds. In the automotive domain,
if the ECUs do not provide sufficient resources to
ECU all of the components, more than a single
component may be causing the problem. Marking
the first component that could not be placed would
therefore make no sense since different packing orders
could result in different components marked as the
cause of failure.

• Even if the cause of the failure was marked in
some manner, modelers would still need to manually
determine how to modify the model from its present
state to make it compliant with its constraints. Al-
though fixing the model might appear trivial when the
failing constraint was identified, changing the model
could have unforseen affects on the other domain



constraints. Again, manual approaches do not scale
for these types of constraint satisfaction problems.

We adopted a strategy in automatic role-based constraint
solving of allowing modelers to express a set of legal
model modifications that could be performed, which we
call “repair operations.” We then used the role-based
constraint solvers to apply these repair operations to the
model to make deployment possible. Repair operations can
be any valid modeling action, such as changing attribute
values, adding or removing modeling elements, or creating
connection and containment relationships. For example, a
repair operatorIncreaseCPUPowercould be used to allow
the constraint solver to place a component on a ECU or
if no suitable ECU was found to increase the power (a
suggestion to improve the hardware) of an upgradeable
ECU. By specifying a series of repair operations, such
as IncreaseCPUPower, IncreaseRAM, and AddECU, the
constraint solver could first try to upgrade an existing ECU
or if none could be upgraded, add an ECU to the merged
model.

Suggesting corrective model changes can be applied
to both failed local constraints or global constraints. For
instance, modelers could try to deploy a component manu-
ally and find that the automatic deployment guidance does
not provide any valid ECUs. This failure might occur if
no ECU matching the configuration requirements of the
component (e.g., the required operating system or target
ECU type). Another reason for failure could be that all
resources of valid ECUs have been exhausted by previous
component assignments. Corresponding suggestions could
therefore be to create a compliant ECU or to increase
respective resources of a single ECU. Conversely, a global
solver could use the repair operations to apply a batch of
corrections to the model to make deployment possible.

The role-based constraint solving model repair capabil-
ities described above go beyond standard Prolog tracing.
Standard Prolog tracing would track execution down to the
point of any assignment problem and force the modeler
to figure out the reason behind a failure to find proper
solution. In contrast, these model repairs raise the level of
abstraction by specifying possible domain-specific correc-
tions within the underlying domain structure and domain
entities.

IV. Related Work

Decision support systems are similar to the automated
role-based constraint solving approach proposed in this
paper. In [5], Achour and all propose a modeling tool
based on the Unified Medical Language System (UMLS),
to create KBs for diagnosing and treating diseases. Both
their approach and the automated role-based constraint
solving approach attempt to glean domain knowledge and
constraints from an expert and simplify a users ability to

find the correct solution to a partially specified problem.
For the UMLS-based decision support system, the goal is
to, given a set of patient condition information, find the
appropriate diagnosis and course of treatment.

The approach in this paper differs significantly from the
research proposed in [5]. First, the research proposed here
facilitates the creation of decision support systems for any
domain-specific modeling language. Moreover, automated
role-based constraint solving is not limited solely to deci-
sion tree guidance, but also complex analysis and optimiza-
tions specified by users. Finally, the automated role-based
constraint solving proposed in this paper is generated from
a metamodel and integrated with a graphical modeling tool.
GEMS and its solver generation capabilities are a tool for
creating graphical modeling tools with integrated modeling
decision support for arbitrary domains.

Many complex modeling tools are available for describ-
ing and solving combinatorial constraint problems, such
as those presented in [12], [8], [15], [7], [9]. These tools
provide mechanisms for describing domain-constraints, a
set of knowledge, and finding solutions to the constraints.
These tools, however, are not designed to generate domain-
specific solvers based on a metamodel. These tools also
do not support the generation of a DSML graphical envi-
ronment and integrated graphical suggestions. Finally, as
discussed previously, these tools do not provide automation
of the problem specification as our GEMS-based role-
based constraint solvers do.

The Eclipse Graphical Modeling Framework (GMF) [1]
provides a generative component and runtime infrastruc-
ture for developing graphical editors based on EMF and
GEF. Similar to GEMS, GMF supports meta-modeling
and can generate graphical editors for a meta-model. Both
GEMS and GMF use EMF as the in-memory model
representation. The core advantage of GEMS is the role-
based constraint solving capabilities for guiding complex
modeling tasks. As we have shown, for realistic size
models, manual modeling approaches do not work. GEMS,
unlike GMF, provides extensive support for handling large
and complex models with constraint solver assistance.

V. Concluding Remarks

The work presented in this paper addresses the scalabil-
ity problems of manual modeling approaches. These scal-
ability issues are particularly problematic for domains that
have large solutions spaces and few correct solutions. In
such domains, it is extremely time consuming to handcraft
correct models, so some type of automatic constraint solver
is needed. Moreover, transforming a DSML instance into a
native constraint solver input format is a time-consuming
task.

Our solution generates a DSML editor that encompasses
a semantically rich knowledge base in Prolog format and



allows users to specify constraints in declarative format
that can be used to derive modeling suggestions. The key
advantages of this approach are that

• The same set of constraints can be used to check
whether a manually defined model is correct and
to generate valid solutions by keeping open some
parameters, such as TargetHost.

• Modelers can specify constraints using the domain-
specific notation of the knowledge base and specify
constraint solver rules in a domain-specific manner.

• The role-based constraint solving model repair ca-
pabilities allow modelers to not only construct valid
models but to repair broken models, which is a key
capability for complex modeling domains.

From our work thus far, we learned the following
lessons about how to write effective role-based constraint
solvers, as well as which problems are still hard to solve:

• Certain types of constraint comparisons, such as
summation comparisons, require significantly more
work to solve. For these constraint types, it is critical
that the generated solvers include templatizations of
known solution algorithms since they are too costly
to reinvent and rediscover.

• Many complex problems we faced have been solved
using Prolog in the past and validated with expert
system approaches. The solvers generated by GEMS
can often easily incorporate these existing algorithms
with a minimal amount of code.

• Automating the transformation from the modeling
domain to native constraint solver input formats is
a crucial element of reducing the cost of integrating
a constraint solver with a modeling environment. The
level of abstraction used to specify constraints must
also be raised to make constraint solvers usable by
domain experts.

• Optimization of a model is a much harder than finding
a valid solution. In our EAST-EEA deployments,
for example, we created algorithms that minimized
the number of nodes used by a deployment. These
algorithms, however, do not scale well if there are a
large number of valid solutions. More work is needed
to provide templatizable optimization rules.

• Constraint solvers can easily be converted to repair
mechanisms by adding a simple check to see if
an assignment decision meets the domain constraint
OR meets a relaxed constraint specified by a repair
operator. We have found that adding these checks is
very straightforward.

In future work, we plan to apply role-based constraint solv-
ing to multiple combinatorially challenging domains, such
as service configuration, failure analysis, and workflow
composition. We are also collaborating with optimization
researchers to develop reusable solution algorithms that
can be generated automatically.

References

[1] GMF, Eclipse Graphical Modeling Framework.
www.eclipse.org/gmf.

[2] JPL, A Java interface to Prolog.
www.swi-prolog.org/packages/jpl/javaapi/index.html.

[3] EAST-EEA Embedded Electronic Architecture Web Site -
www.east-eea.net. 2004.

[4] Automotive Open System Architecture -
www.autosar.org/find02ns6.php. 2006.

[5] S. L. Achour, M. Dojat, C. Rieux, P. Bierling, and E. Lepage. A
UMLS-based Knowledge Acquisition Tool for Rule-based Clinical
Decision Support System Development.Journal of the American
Medical Information Association, 8(4):351–360, July 2001.

[6] M. Calejo. Interprolog: Towards a Declarative Embedding of
Logic Programming in Java.Theory and Practice of Logic
Programming, Lecture Notes in Computer Science, 3229:714–717,
2004.

[7] Y. Caseau, F.-X. Josset, and F. Laburthe. CLAIRE: Combining
Sets, Search And Rules To Better Express Algorithms.Theory
and Practice of Logic Programming, 2:2002, 2004.

[8] J. Cohen. Constraint Logic Programming Languages.Commun.
ACM, 33(7):52–68, 1990.

[9] R. Fourer, D. Gay, and B. Kernighan.AMPL: A Modeling
Language for Mathematical Programming. Duxbury Press,
November 2002.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[11] J. Jaffar and J. Lassez.Constraint Logic Programming. ACM
Press New York, NY, USA, 1987.

[12] L. Michel and P. V. Hentenryck. Comet in Context. InPCK50:
Proceedings of the Paris C. Kanellakis memorial workshop on
Principles of computing & knowledge, pages 95–107, New York,
NY, USA, 2003. ACM Press.

[13] A. Nechypurenko, E. Wuchner, J. White, and D. C. Schmidt.
Application of Aspect-based Modeling and Weaving for
Complexity Reduction in the Development of Automotive
Distributed Real-time Embedded Systems: Technical Report
ISIS-06-709.

[14] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient
Deductive Database Engine. pages 442–453, 1994.

[15] G. Smolka. The Oz Programming Model. InJELIA ’96:
Proceedings of the European Workshop on Logics in Artificial
Intelligence, page 251, London, UK, 1996. Springer-Verlag.

[16] J. Sztipanovits and G. Karsai. Model-Integrated Computing.
Computer, 30(4):110–111, 1997.

[17] J. White, D. C. Schmidt, and A. Gokhale. The J3 Process for
Building Autonomic Enterprise Java Bean Systems.icac,
00:363–364, 2005.

[18] J. White, D. C. Schmidt, and A. Gokhale. Reducing Enterprise
Product Line Architecture Deployment Costs via Model-Driven
Deployment and Configuration Testing. In13th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems, 2006.

[19] J. White, D. C. Schmidt, A. Nechypurenko, and E. Wuchner.
Introduction to the Generic Eclipse Modeling System.Eclipse
Magazine, Software and Support Media, 4, 2007 (to appear).

[20] J. Wielemaker. SWI-Prolog Reference Manual. University of
Amsterdam, The Netherlands,
gollem.science.uva.nl/SWI-Prolog/Manual/, 1997, 1997.


